Elliptic equations with singular BMO coefficients in Reifenberg domains

Ko Woon Um

The University of Texas at Austin, Department of Mathematics, 1 University Station C1200, Austin, TX 78712, United States

A R T I C L E I N F O

Article history:

Received 11 July 2011
Revised 18 February 2012
Available online 3 September 2012

Abstract

$W^{1, p}$ estimate for the solutions of elliptic equations whose coefficient matrix can have large jump along the boundary of subdomains is obtained. The principal coefficients are supposed to be in the John-Nirenberg space with small BMO seminorms, and the domain and subdomains are Reifenberg flat domains. Moreover, it has been shown that the estimates are uniform with respect to the distance between the subdomains.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

We consider the following Dirichlet problem for the divergence form elliptic equation

$$
\begin{cases}-\left(a_{i j} u_{x_{j}}\right)_{x_{i}}=-\operatorname{div}(A(x) \nabla u(x))=\operatorname{div} f=\left(f^{i}\right)_{x_{i}} & \text { in } \Omega, \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where Ω is an open and bounded subset of \mathbb{R}^{n}. Throughout this paper we assume that the $n \times n$ matrix A is defined on \mathbb{R}^{n} as follows:

$$
A=\sum_{i=0}^{K} A^{i} \chi_{\Omega^{i}}
$$

where $\Omega^{1}, \ldots, \Omega^{K}$ are disjoint open subsets of Ω with flat boundary (see Definition 1.2), $\Omega^{0}:=$ $\Omega \backslash \bigcup_{i=1}^{i=K} \Omega^{i}$, and A^{i} s for $i=0, \ldots, K$ are uniformly bounded and uniformly elliptic with ellipticity

[^0]constant Λ and also they are in the John-Nirenberg space BMO of the functions of bounded mean oscillation with small BMO seminorms, see [6].

This problem arises from the underground water flow through composite media with closely spaced interfacial boundaries. In particular, the coefficient matrix A has discontinuity across the boundaries of subdomains. There have been many results proving $C^{1, \alpha}$ regularity for a weak solution, see $[8,7,1]$. In this paper, we prove $W^{1, p}$ regularity for Elliptic Dirichlet problem with singular coefficient matrix A, under some necessary conditions. Our approach is influenced by [4] and [10]. However, additional difficulties are present due to the fact that we allow discontinuous coefficients, these are handled in the following sections.

We assume A^{i} s are (δ, R)-vanishing in Ω^{i} for $i=0, \ldots, K$. Let us also recall the following, see Section 2.2 for undefined notation.

Definition 1.1 (Small BMO seminorm assumption). We say that the matrix A of coefficients is (δ, R) vanishing in Ω if

$$
\sup _{0<r \leqslant R} \sup _{x \in \mathbb{R}^{n}} \sqrt{\frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)}\left|A(y)-\bar{A}_{B_{r}(x)}\right|^{2}} d y \leqslant \delta .
$$

In our setting $\Omega_{i}, i=1, \ldots, K$, are (δ, R)-Reifenberg Flat Domain defined as following:
Definition 1.2 (Reifenberg Flat Domain assumption). For $R>0, \delta>0$, we say that a domain Ω is (δ, R)Reifenberg flat if for every $x \in \partial \Omega$ and every $r \in(0, R]$, there exists orthonormal coordinate system $\left(y_{1}, \ldots, y_{n}\right)$ with origin at x so that in that coordinate system

$$
\begin{aligned}
& B_{r}(0) \cap\left\{y_{n}>r \delta\right\} \subset \Omega, \\
& B_{r}(0) \cap\left\{y_{n}<-r \delta\right\} \subset \Omega^{c} .
\end{aligned}
$$

To deal with flat domains, this definition becomes meaningful when $\delta>0$ is small and one can see δ depends on R. From this definition, we can see that if a domain Ω is (δ, R)-Reifenberg flat, then for any $x \in \partial \Omega$ and every $r \in(0, R]$, there exists an ($n-1$) dimensional plane $\mathcal{P}(x, r)$ such that

$$
\frac{1}{r} D\left[\partial \Omega \cap B_{r}(x), \mathcal{P}(x, r) \cap B_{r}(x)\right] \leqslant \delta,
$$

where D denotes the Hausdorff distance.
We will get $W^{1, p}$ estimate for the classical weak solution of (1). As usual, the following is the definition for a weak solution.

Definition 1.3. We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of (1) if

$$
\int_{\Omega} A \nabla u \nabla \varphi d x=-\int_{\Omega} f \nabla \varphi d x \quad \forall \varphi \in H_{0}^{1}(\Omega) .
$$

We are now ready to state the main result of this paper.
Theorem 1.4. Let $1<p<\infty$ be a real number. Then there is a small $\delta=\delta(\Lambda, p, n, R)>0$ so that for all $f \in L^{p}\left(\Omega, \mathbb{R}^{n}\right)$ the Dirichlet problem (1), with the above notation and conditions, has a unique weak solution which satisfies the estimate

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x \leqslant C \int_{\Omega}|f|^{p} d x \tag{2}
\end{equation*}
$$

The constant C is independent of u and f.

Let us just mention here that the constant C above does not depend on the distance between the subdomains, which allows the domains to touch each other.

Before our work, in the parabolic case, Fred Almgren and Lihe Wang proved the $C^{1, \alpha}$ estimates for heat flows across an interface in [1] where the coefficient matrix has singularity along the Hölder continuous boundaries of subdomains.

In the elliptic case, in [8], Y. Li and M. Vogelius considered an elliptic equation

$$
\begin{equation*}
\operatorname{div}(A \nabla u)=h+\operatorname{div}(g) \tag{3}
\end{equation*}
$$

on a bounded domain D which has a finite number of disjoint subdomains with $C^{1, \alpha}$ boundary. They also allow the matrix A to have discontinuity across the boundaries. They proved a $C^{1, \alpha}$ regularity for the solution under reasonable Hölder continuity assumptions on A, h and g_{i}. Later in [7], Y. Li and L. Nirenberg extended the result in [8] to general second order elliptic systems with piecewise smooth coefficients. It is worth mentioning that this extension has applications in problems arising in elasticity.

Structure of the paper: in Section 2, we state preliminary notation, definitions and assumptions throughout this paper. Mathematical background and main tools are given in Section 3. In the first subsection of Section 4, we discuss the interior $W^{1, p}$ regularity for a weak solution of (1) and in the second subsection, a global $W^{1, p}$ regularity is derived.

2. Definitions and notation

2.1. Geometric notation

(1) A typical point in \mathbb{R}^{n} is $x=\left(x^{\prime}, x_{n}\right)$. A typical point in $\mathbb{R}^{n} \times \mathbb{R}$ is $(x, t)=\left(x^{\prime}, x_{n}, t\right)$.
(2) $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{n}>0\right\}$ and $\mathbb{R}_{-}^{n}=\left\{x \in \mathbb{R}^{n} ; x_{n}<0\right\}$.
(3) $B_{r}=\left\{x \in \mathbb{R}^{n}:|x|<r\right\}$ is an open ball in \mathbb{R}^{n} centered at 0 and radius $r>0, B_{r}(x)=B_{r}+x$, $B_{r}^{+}=B_{r} \cap\left\{x_{n}>0\right\}, B_{r}^{+}(x)=B_{r}^{+}+x, T_{r}=B_{r} \cap\left\{x_{n}=0\right\}$, and $T_{r}(x)=T_{r}+x$.
(4) $\Omega_{r}=\Omega \cap B_{r}, \Omega_{r}(x)=\Omega \cap B_{r}(x)$.
(5) $\partial \Omega_{r}$ is the boundary of $\Omega_{r}, \partial_{w} \Omega_{r}=\partial \Omega \cap B_{r}$ is the wiggled part of $\partial \Omega_{r}$, and $\partial_{c} \Omega_{r}=\partial \Omega_{r} \backslash \partial_{w} \Omega_{r}$ is the curved part of $\partial \Omega_{r}$.
(6) $\mathcal{P}_{i}^{\delta}(y)$ is the ($n-1$) dimensional plane which is translated hyperplane at $y \in \partial \Omega^{i}$ by δ along the normal direction toward Ω^{i}.
(7) Hausdorff distance D is defined as

$$
D[A, B]=\sup \{\operatorname{dist}(a, B): a \in A\}+\sup \{\operatorname{dist}(b, A): b \in B\}
$$

2.2. Matrix of coefficients

A is supposed to be $A=\sum_{i=0}^{K} A^{i} \chi \Omega^{i}$ where A^{i} 's for any $i=0, \ldots, K$ are $(\delta, R)-v a n i s h i n g$ on Ω^{i}, uniformly bounded and uniformly elliptic, i.e., there exists a positive constant Λ such that

$$
\Lambda^{-1}|\xi|^{2} \leqslant A^{i}(x) \xi \cdot \xi \leqslant \Lambda|\xi|^{2} \quad \text { a.e. } x \in \mathbb{R}^{n}, \forall \xi \in \mathbb{R}^{n}
$$

and

$$
\|A\|_{\infty}=\sup _{y}|A(y)|<C .
$$

We also fix the following notation.
(1) $|A|=\sqrt{(A: A)}=\sqrt{\sum_{i, j=1}^{n} a_{i j}^{2}}$.
(2) The average of A over Ω is $\bar{A}_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega}|A(x)| d x$.
(3) $\tilde{A}_{B_{r}}:=\sum_{i=0}^{K} \bar{A}_{\Omega_{r}^{i}} \chi_{\Omega_{r}^{i}}$.

2.3. Notation for estimates

We employ the letter C to denote a universal constant usually depending on the dimension, ellipticity and the geometric quantities of Ω.

3. Preliminary tools and mathematical background

In this section we recall standard facts from measure theory and functional analysis which will be needed in the sequel.

One of our main tools will be the Hardy-Littlewood maximal function since a function value at a point in L^{p} does not make a good sense. The maximal function controls the local behavior of a function in an analytical way.

Definition 3.1. For a locally integrable function f on \mathbb{R}^{n}. Let

$$
(\mathcal{M} f)(x)=\sup _{r>0} \frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)}|f(y)| d y
$$

be the Hardy-Littlewood maximal function of f. We also define

$$
\mathcal{M}_{\Omega} f=\mathcal{M}\left(\chi_{\Omega} f\right)
$$

if f is not defined outside Ω.
The basic theorem for the Hardy-Littlewood maximal function is the following:
Theorem 3.2. (Cf. [9].) We have
(a) If $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $p>1$, then $\mathcal{M} f \in L^{p}\left(\mathbb{R}^{n}\right)$. Moreover,

$$
\|\mathcal{M} f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leqslant C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

(b) If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then

$$
\left|\left\{x \in \mathbb{R}^{n}:(\mathcal{M} f)(x)>\lambda\right\}\right| \leqslant \frac{C}{\lambda}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} .
$$

To show $\nabla u \in L^{p}$, we will use the following lemma:

Lemma 3.3. (Cf. [3].) Suppose that f is a nonnegative measurable function in a bounded domain Ω. Let $\theta>0$ and $m>1$ be constants. Then for $0<p<\infty$,

$$
f \in L^{p}(\Omega) \quad \text { iff } \quad S=\sum_{k \geqslant 1} m^{k p}\left|\left\{x \in \Omega: f(x)>\theta m^{k}\right\}\right|<\infty
$$

and

$$
\frac{1}{C} S \leqslant\|f\|_{L^{p}(\Omega)}^{p} \leqslant C(|\Omega|+S)
$$

where $C>0$ is a constant depending only on θ, m and p.
Another main tool is the modified Vitali Covering Lemma:
Lemma 3.4. (Cf. [2].) Assume that C and D are measurable sets. $C \subset D \subset \Omega$ with $\Omega(\delta, 1)$-Reifenberg flat, and that there exists an $\varepsilon>0$ such that

$$
\begin{equation*}
|C|<\varepsilon\left|B_{1}\right| \tag{4}
\end{equation*}
$$

and for all $x \in B_{1}$ and for all $r \in(0,1]$ with $\left|C \cap B_{r}(x)\right| \geqslant \varepsilon\left|B_{r}(x)\right|$,

$$
\begin{equation*}
B_{r}(x) \cap \Omega \subset D . \tag{5}
\end{equation*}
$$

Then

$$
|C| \leqslant\left(\frac{10}{1-\delta}\right)^{n} \varepsilon|D|
$$

4. Regularity for elliptic equations

4.1. Interior estimates

In this section we investigate the interior $W^{1, p}$ estimates for a solution of

$$
\begin{equation*}
-\operatorname{div}(A(x) \nabla u)=\operatorname{div} f \quad \text { in } \Omega, \tag{6}
\end{equation*}
$$

under the conditions as in Section 1.
$W^{1, p}$ estimate without discontinuity in A was done by S. Byun and L. Wang in [2]. Here we consider the case that A has discontinuity along the boundary of subdomains Ω^{i}, $\sin \Omega$ for $i=$ $1, \ldots, K$.

The main result of this section is the following:
Theorem 4.1. There is a constant N_{1} so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ such that for all $f \in L^{2}\left(B_{4} ; \mathbb{R}^{n}\right)$ and for all A as in Section 2.2 with $R=4$ and Ω are ($\delta, 9$)-flat, if u is a weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in $\Omega \supset B_{4}$ and if

$$
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right| \geqslant \varepsilon\left|B_{r}\right| \quad \text { for all } r \in(0,1],
$$

then

$$
B_{r} \subset\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>1\right\} \cup\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2}\right\} .
$$

Definition 4.2. We say that $u \in H^{1}\left(B_{R}\right)(R>0)$ is a weak solution of (6) if

$$
\int_{B_{R}} A \nabla u \nabla \varphi d x=-\int_{B_{R}} f \nabla \varphi d x \quad \forall \varphi \in H_{0}^{1}\left(B_{R}\right) .
$$

Lemma 4.3. (Cf. [2].) Assume that u is a weak solution of (6) in B_{2}. Then

$$
\begin{equation*}
\int_{B_{2}} \varphi^{2}|\nabla u|^{2} d x \leqslant C\left(\int_{B_{2}} \varphi^{2}|f|^{2} d x+\int_{B_{2}}|\nabla \varphi|^{2}|u|^{2} d x\right) \quad \text { for any } \varphi \in C_{0}^{\infty}\left(B_{2}\right) \tag{7}
\end{equation*}
$$

We want to control the gradient of the weak solution of (6) using the gradient of the weak solution of the related homogeneous equation. The following lemma shows that one can bound the gradient of homogeneous solution by L^{2}-norm. The following is well known, we include the proof for the sake of completeness and using our notation here.

Lemma 4.4. If v is a weak solution of $\operatorname{div}(\bar{A} \nabla v(x))=0$ in B_{1} for a piecewise constant matrix $\bar{A}=$ $\overline{A^{1}} \chi_{B_{1} \cap\left\{x_{n}>a\right\}}+\overline{A^{0}} \chi_{B_{1} \cap\left\{x_{n}<a\right\}}$ for any $a \in(-1,1)$, then

$$
\|\nabla v\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} .
$$

Proof. First assume $a=0$. Let $D_{i}^{h} v(x)=\frac{v\left(x+h e_{i}\right)-v(x)}{h}$, for $h>0, i=1, \ldots, n-1$. Since the jump of the coefficient matrix \bar{A} occurs across $\left\{x_{n}=0\right\}$,

$$
\operatorname{div}\left(\bar{A} \nabla D_{i}^{h} v(x)\right)=0
$$

for sufficiently small $h>0$. Also

$$
\begin{align*}
\int_{B_{\frac{1}{2}+\frac{1}{4}}}\left|\nabla D_{i}^{h} v(x)\right|^{2} d x & \leqslant C \int_{B_{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}}}\left|D_{i}^{h} v(x)\right|^{2} d x \tag{8}\\
& \leqslant C \int_{B_{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}}|\nabla v(x)|^{2} d x \tag{9}\\
& \leqslant C \int_{B_{1}}|v(x)|^{2} d x \tag{10}
\end{align*}
$$

for $0<h<\frac{1}{16}$. Here we used Lemma 4.3 for the first and the third inequality. So $v_{x_{i}} \in H^{1}\left(B_{\frac{3}{4}}\right)$ for $i=1, \ldots, n-1$. Similarly, we can apply this method to $v_{x_{i}}$, i.e. using $D_{j}^{h} v_{x_{i}}(x)$ for $i, j=1, \ldots, n-1$. So $v_{x_{i} x_{j}} \in H^{1}\left(B_{\frac{1}{2}+\frac{1}{8}}\right)$ for $i=1, \ldots, n-1$. Let $S=\left[\frac{n}{2}\right]+3$. For any tangential vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}, 0\right)$ such that $|\alpha| \leqslant S$, we can iterate $|\alpha|$ times and get

$$
D^{\alpha} v(x) \in H^{1}\left(B_{\frac{1}{2}+\frac{1}{2^{s+1}}}\right)
$$

Since $\operatorname{div}\left(\bar{A} \nabla D^{\alpha} v(x)\right)=0$, we can use the De Giorgi-Nash theorem to say that $D^{\alpha} v$ is Hölder continuous. So there is a constant C such that

$$
\begin{align*}
\left\|D^{\alpha} v\right\|_{L^{\infty}\left(B_{\frac{1}{2}+\frac{1}{2^{S+2}}}\right)} \leqslant C\left\|D^{\alpha} v\right\|_{L^{2}\left(B_{\frac{1}{2}+\frac{1}{2^{S+1}}}\right)} & \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} \tag{11}
\end{align*}
$$

Now consider the vertical direction. Define

$$
g\left(x_{1}, x_{2}, \ldots, x_{n}\right):=v\left(x_{1}, \ldots, x_{n-1}, 0\right) \quad \text { in } B_{\frac{1}{2}+\frac{1}{2^{s+1}}}^{+}
$$

We can see that $g_{x_{n}}=0$ and also by (11),

$$
\left\{\begin{array}{l}
D^{\alpha} g=D^{\alpha} v \in H^{1}\left(B_{\frac{1}{2}+\frac{1}{2^{S+1}}}^{+}\right) \\
\left\|D^{\alpha} g\right\|_{L^{\infty}\left(B_{\frac{1}{2}+\frac{1}{2}}{ }^{S+2}\right)}=\left\|D^{\alpha} v\right\|_{L^{\infty}\left(B_{\frac{1}{2}+\frac{1}{2}}^{2^{S+2}}\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)}
\end{array}\right.
$$

for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n-1}, 0\right)$ such that $|\alpha| \leqslant S$. Let

$$
\tilde{v}\left(x_{1}, \ldots, x_{n}\right):=v\left(x_{1}, \ldots, x_{n}\right)-g\left(x_{1}, \ldots, x_{n}\right) .
$$

Note that $\tilde{v} \in H^{1}\left(B_{\frac{1}{2}+\frac{1}{2^{s+1}}}^{+}\right)$and $\left.\tilde{v}\right|_{x_{n}=0}=0$. Since $\operatorname{div}(\bar{A} \nabla(\tilde{v}+g))=0$,

$$
\begin{aligned}
\operatorname{div}(\bar{A} \nabla \tilde{v}) & =-\operatorname{div}(\bar{A} \nabla g) \\
& =-\sum_{i=1}^{n}\left(\sum_{j=1}^{n} \bar{a}_{i j} g_{x_{i}}\right)_{x_{j}} \\
& =-\sum_{i=1}^{n-1}\left(\sum_{j=1}^{n-1} \bar{a}_{i j} g_{x_{i}}\right)_{x_{j}} \in H^{S-1}\left(B_{\frac{1}{2}}^{+}\right) \\
& =H^{\left[\frac{n}{2}\right]+1}\left(B_{\frac{1}{2}}^{+}\right) .
\end{aligned}
$$

Furthermore, by Theorem 5 in Section 6.3 and the Trace Theorem, see Section 5.5 in [5], also by Lemma 4.3,

$$
\begin{equation*}
\|\tilde{v}\|_{H^{S-1}\left(B_{\frac{1}{2}}^{+}\right)} \leqslant C\left(\|v\|_{L^{2}\left(B_{1}\right)}+\|\tilde{v}\|_{L^{2}\left(B_{\frac{1}{2}}\right)}\right) \leqslant C\|v\|_{L^{2}\left(B_{1}\right)}, \tag{13}
\end{equation*}
$$

we can combine (13) and Sobolev inequality to get

$$
\|\tilde{v}\|_{C^{\left.S-\frac{n_{2}^{n}}{1}-2, \gamma_{\left(B_{\frac{1}{2}}^{+}\right.}\right)}} \leqslant C\|\tilde{v}\|_{H^{S-1}\left(B_{\frac{1}{2}}^{+}\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} .
$$

Thus \tilde{v} is $C^{1, \gamma}$ Hölder continuous. Finally we can say that $|\nabla \tilde{v}|$ is bounded in $\overline{B_{\frac{1}{2}}^{+}}$. Similarly $|\nabla \tilde{v}|$ is also bounded in $\overline{B_{\frac{1}{2}}^{-}}$. So $|\nabla \tilde{v}|=|\nabla v-\nabla \tilde{g}|$ is bounded in $B_{\frac{1}{2}}$. Thus

$$
\begin{equation*}
\|\nabla v\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} . \tag{14}
\end{equation*}
$$

Assume $|a|>\frac{3}{4}$. Then \bar{A} has no discontinuity in $B_{\frac{3}{4}}$. So there is a constant C such that

$$
\begin{equation*}
\|\nabla v\|_{L^{\infty}\left(B_{\frac{1}{2}}\right)} \leqslant C\|v\|_{L^{2}\left(B_{\frac{3}{4}}\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} . \tag{15}
\end{equation*}
$$

Assume $0<|a|<\frac{3}{4}$. Say $L:=\left\{x \in \mathbb{R}^{n}: x_{n}=a\right\}$.
For any $x \in B_{\frac{3}{4}} \cap L, B_{\frac{1}{4}}(x) \subset B_{1}$. By above case for $a=0$, there exists a constant C such that

$$
\begin{align*}
&\left.\left.\|\nabla v\|_{L^{\infty}\left(\left\{x \in B_{\frac{1}{2}}:\right.\right.} \cdot \operatorname{dist}(x, L)<\frac{1}{8}\right\}\right) \tag{16}\\
& \leqslant \sup _{x \in B_{\frac{3}{4}} \cap L}\|\nabla v\|_{L^{\infty}\left(B_{\frac{1}{8}}(x)\right)} \tag{17}\\
& \leqslant C\|v\|_{L^{2}\left(B_{\frac{1}{4}}(x)\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} .
\end{align*}
$$

For any $x \in\left\{x \in B_{\frac{1}{2}}\right.$: $\left.\operatorname{dist}(x, L) \geqslant \frac{1}{8}\right\}, B_{\frac{1}{8}}(x) \subset B_{1}$ and \bar{A} has no discontinuity in $B_{\frac{1}{8}}(x)$. So there exists a constant C such that

$$
\begin{equation*}
\sup _{\left\{x \in B_{\frac{1}{2}}: \operatorname{dist}(x, L) \geqslant \frac{1}{8}\right\}}\|\nabla v\|_{L^{\infty}\left(B_{\frac{1}{16}}(x)\right)} \leqslant C\|v\|_{L^{2}\left(B_{\frac{1}{8}}(x)\right)} \leqslant C\|v\|_{L^{2}\left(B_{1}\right)} . \tag{18}
\end{equation*}
$$

By taking the maximum C in (14)-(16) and (18), we are done.
Lemma 4.5. For any $\varepsilon>0$, there is a small $\delta=\delta(\varepsilon)>0$ such that for any weak solution u of (6) in B_{2} where for any $l, m=0, \ldots, K$ and any $|a|<2$,

$$
\begin{align*}
& B_{2} \cap\left\{x_{n}>a+\delta\right\} \subset \Omega_{2}^{l} \subset B_{2} \cap\left\{x_{n}>a-\delta\right\}, \tag{19}\\
& B_{2} \cap\left\{x_{n}<a-\delta\right\} \subset \Omega_{2}^{m} \subset B_{2} \cap\left\{x_{n}<a+\delta\right\} \tag{20}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{\left|B_{2}\right|} \int_{B_{2}}|\nabla u|^{2} d x \leqslant 1, \tag{21}\\
& \frac{1}{\left|B_{2}\right|} \int_{B_{2}}\left(|f|^{2}+\left|A-\tilde{A}_{B_{2}}\right|^{2}\right) d x \leqslant \delta^{2}, \tag{22}
\end{align*}
$$

where $\tilde{A}_{B_{2}}=\sum_{i} \overline{A^{i}} \Omega_{\Omega_{2}^{i}} \chi_{\Omega_{2}^{i}}$, there exists a piecewise constant matrix $\tilde{A^{b}}{ }_{B_{2}}$ as $\tilde{A}^{b}{ }_{B_{2}}=\bar{A}_{\Omega_{2}^{l}} \chi_{B_{2} \cap\left\{x_{n}>a\right\}}+$ $\overline{A^{m}} \Omega_{2}^{m} \chi_{B_{2} \cap\left\{x_{n}<a\right\}}$ and for a corresponding weak solution v of

$$
\begin{equation*}
-\operatorname{div}\left(\tilde{A^{b}}{ }_{B_{2}} \nabla v\right)=0 \quad \text { in } B_{2} \tag{23}
\end{equation*}
$$

such that

$$
\int_{B_{2}}|u-v|^{2} d x \leqslant \varepsilon^{2}
$$

Proof. If not, there exists $\varepsilon_{0}>0,\left\{A_{k}\right\}=\left\{\sum_{i=0}^{K} A_{k}^{i} \chi_{\Omega^{i, k}}\right\},\left\{u_{k}\right\},\left\{f_{k}\right\},\left\{\Omega_{2}^{l, k}\right\}$ and $\left\{\left(\Omega^{m, k}\right)_{2}\right\}$ for some $l, m=0, \ldots, K$ and some $|a|<2$ such that u_{k} is a weak solution of

$$
\begin{equation*}
-\operatorname{div}\left(A_{k} \nabla u_{k}\right)=\operatorname{div} f_{k} \quad \text { in } B_{2} \tag{24}
\end{equation*}
$$

with

$$
\begin{aligned}
& B_{2} \cap\left\{x_{n}>a+\frac{1}{k}\right\} \subset\left(\Omega^{l, k}\right)_{2} \subset B_{2} \cap\left\{x_{n}>a-\frac{1}{k}\right\} \\
& B_{2} \cap\left\{x_{n}<a-\frac{1}{k}\right\} \subset\left(\Omega^{m, k}\right)_{2} \subset B_{2} \cap\left\{x_{n}<a+\frac{1}{k}\right\}
\end{aligned}
$$

but

$$
\begin{equation*}
\int_{B_{2}}\left|u_{k}-v_{k}\right|^{2} d x>\varepsilon_{0}^{2} \tag{25}
\end{equation*}
$$

for any weak solution v_{k} of

$$
\begin{equation*}
-\operatorname{div}\left(\tilde{A_{k B_{2}}^{b}} \nabla v_{k}\right)=0 \quad \text { in } B_{2} \tag{26}
\end{equation*}
$$

where $\tilde{A_{k B_{2}}^{b}}=\overline{A_{k}^{l}} \Omega_{\left.\Omega^{l, k}\right)_{2}} \chi_{B_{2} \cap\left\{x_{n}>a\right\}}+\overline{A_{k}^{m}}{\left(\Omega^{m, k}\right)_{2}} \chi_{B_{2} \cap\left\{x_{n}<a\right\}}$.
By (21), $\left\{u_{k}-\bar{u}_{k} B_{2}\right\}_{k=1}^{\infty}$ is bounded in $H^{1}\left(B_{2}\right)$, and so $\left\{u_{k}-\overline{u_{k} B_{2}}\right\}$ has a subsequence, which we denote as $\left\{u_{k}-\overline{u_{k}}\right\}$, such that

$$
\begin{equation*}
u_{k}-\overline{u_{k}} \rightharpoonup u_{0} \quad \text { in } H^{1}\left(B_{2}\right), \quad u_{k}-\overline{u_{k}} \rightarrow u_{0} \quad \text { in } L^{2}\left(B_{2}\right) . \tag{27}
\end{equation*}
$$

Since $\tilde{A_{k B_{2}}^{b}}$ is bounded in L^{∞}, there is a subsequence $\left\{\tilde{A_{k}^{b}}\right\}$ such that

$$
\begin{equation*}
\left\|\tilde{A_{k}^{b}}-A_{0}\right\|_{\infty} \rightarrow 0 \quad \text { as } k \rightarrow \infty \tag{28}
\end{equation*}
$$

for some piecewise constant matrix A_{0}. Since $\tilde{A_{k}^{b}}-\tilde{A}_{k B_{2}} \rightarrow 0$ in $L^{2}\left(B_{2}\right)$ and $\tilde{A}_{k B_{2}}-A_{k} \rightarrow 0$ in $L^{2}\left(B_{2}\right)$. Thus $A_{k} \rightarrow A_{0}$ in $L^{2}\left(B_{2}\right)$.

Next we will show that u_{0} is a weak solution of

$$
\begin{equation*}
-\operatorname{div}\left(A_{0} \nabla u_{0}\right)=0 \quad \text { in } B_{2} \tag{29}
\end{equation*}
$$

To do this, fix any $\varphi \in H_{0}^{1}\left(B_{2}\right)$. Then by (24),

$$
\begin{equation*}
\int_{B_{2}} A_{k} \nabla u_{k} \nabla \varphi d x=-\int_{B_{2}} f_{k} \nabla \varphi d x \tag{30}
\end{equation*}
$$

Since $\nabla u_{k} \rightharpoonup \nabla u_{0}$ and $A_{k} \rightarrow A_{0}$ in $L^{2}\left(B_{2}\right), A_{k} \nabla u_{k} \rightharpoonup A_{0} \nabla u_{0}$ in $L^{2}\left(B_{2}\right)$. Then by letting $k \rightarrow \infty$,

$$
\begin{equation*}
\int_{B_{2}} A_{0} \nabla u_{0} \nabla \varphi d x=0 . \tag{31}
\end{equation*}
$$

This shows (29). Note that

$$
\begin{aligned}
-\operatorname{div}\left(\tilde{A_{k}^{b}} \nabla u_{0}\right) & =-\operatorname{div}\left(\left(\tilde{A_{k}^{b}}-A_{0}\right) \nabla u_{0}\right)-\operatorname{div}\left(A_{0} \nabla u_{0}\right) \\
& =-\operatorname{div}\left(\left(\tilde{A_{k}^{b}}-A_{0}\right) \nabla u_{0}\right)
\end{aligned}
$$

in B_{2}. Let h_{k} be the weak solution of

$$
\begin{cases}-\operatorname{div}\left(\tilde{A_{k}^{b}} \nabla h_{k}\right)=\operatorname{div}\left(\left(\tilde{A_{k}^{b}}-A_{0}\right) \nabla u_{0}\right) & \text { in } B_{2} \tag{32}\\ h_{k}=0 & \text { on } \partial B_{2}\end{cases}
$$

Then $u_{0}-h_{k}$ is a weak solution of

$$
\begin{equation*}
\operatorname{div}\left(\tilde{A_{k}^{b}} \nabla\left(u_{0}-h_{k}\right)\right)=0 \quad \text { in } B_{2} \tag{33}
\end{equation*}
$$

Furthermore, by (32),

$$
\begin{aligned}
\left\|h_{k}\right\|_{L^{2}\left(B_{2}\right)} & \leqslant C\left\|\nabla h_{k}\right\|_{L^{2}\left(B_{2}\right)} \leqslant C\left\|\left(\tilde{A_{k}^{b}}-A_{0}\right) \nabla u_{0}\right\|_{L^{2}\left(B_{2}\right)} \\
& \leqslant C\left\|\left(\tilde{A_{k}^{b}}-A_{0}\right)\right\|_{L^{\infty}}\left\|\nabla u_{0}\right\|_{L^{2}\left(B_{2}\right)} \\
& \leqslant C\left\|\left(\tilde{A_{k}^{b}}-A_{0}\right)\right\|_{L^{\infty}\left(B_{2}\right)} .
\end{aligned}
$$

So now

$$
\begin{aligned}
\left\|u_{k}-\left(u_{0}+\overline{u_{k}}-h_{k}\right)\right\|_{L^{2}\left(B_{2}\right)} & \leqslant\left\|u_{k}-\overline{u_{k}}-u_{0}\right\|_{L^{2}\left(B_{2}\right)}+\left\|h_{k}\right\|_{L^{2}\left(B_{2}\right)} \\
& \leqslant\left\|u_{k}-\overline{u_{k}}-u_{0}\right\|_{L^{2}\left(B_{2}\right)}+C\left\|\left(\tilde{A_{k}^{b}}-A_{0}\right)\right\|_{L^{\infty}\left(B_{2}\right)} .
\end{aligned}
$$

This estimate, (27) and (28) imply that

$$
\left\|u_{k}-\left(u_{0}+\overline{u_{k}}-h_{k}\right)\right\|_{L^{2}\left(B_{2}\right)} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

But this is a contradiction to (25) by (32).

Corollary 4.6. For any $\varepsilon>0$, there is a small $\delta=\delta(\varepsilon)>0$ such that for any weak solution u of (6) in B_{2} where for any $l, m=0, \ldots, K$ and any $|a|<2$,

$$
\begin{align*}
& B_{2} \cap\left\{x_{n}>a+\delta\right\} \subset \Omega_{2}^{l} \subset B_{2} \cap\left\{x_{n}>a-\delta\right\} \tag{34}\\
& B_{2} \cap\left\{x_{n}<a-\delta\right\} \subset \Omega_{2}^{m} \subset B_{2} \cap\left\{x_{n}<a+\delta\right\} \tag{35}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{\left|B_{2}\right|} \int_{B_{2}}|\nabla u|^{2} d x \leqslant 1, \tag{36}\\
& \frac{1}{\left|B_{2}\right|} \int_{B_{2}}\left(|f|^{2}+\left|A-\tilde{A}_{B_{2}}\right|^{2}\right) d x \leqslant \delta^{2}, \tag{37}
\end{align*}
$$

where $\tilde{A}_{B_{2}}=\sum_{i} \overline{A^{i}} \Omega_{\Omega_{2}^{i}} \chi_{\Omega_{2}^{i}}$, there exists a piecewise constant matrix $\tilde{A}^{b}{ }_{B_{2}}$ as $\tilde{A}^{b}{ }_{B_{2}}=\bar{A}_{\Omega_{2}^{l}} \chi_{B_{2} \cap\left\{x_{n}>a\right\}}+$ $\overline{A^{m}} \Omega_{2}^{m} \chi_{B_{2} \cap\left\{x_{n}<a\right\}}$ and for a corresponding weak solution v of

$$
\begin{equation*}
-\operatorname{div}\left(\tilde{A}^{b}{ }_{B_{2}} \nabla v\right)=0 \quad \text { in } B_{2} \tag{38}
\end{equation*}
$$

such that

$$
\int_{B_{\frac{4}{3}}}|\nabla(u-v)|^{2} d x \leqslant \varepsilon^{2} .
$$

Proof. By Lemma 4.5, for any $\eta>0$, there exists $\delta=\delta(\eta)>0$, a piecewise constant matrix $\tilde{A}_{B_{B_{2}}}=$ $\overline{A^{l}}{ }_{\Omega_{2}^{l}} \chi_{B_{2} \cap\left\{x_{n}>a\right\}}+\bar{A}^{m} \Omega_{2}^{m} \chi_{B_{2} \cap\left\{x_{n}<a\right\}}$ and a corresponding weak solution v of $-\operatorname{div}\left(\tilde{A}^{b}{ }_{B_{2}} \nabla v\right)=0$ in B_{2} such that

$$
\int_{B_{2}}|u-v|^{2} d x \leqslant \eta^{2}
$$

First we see that $u-v \in H^{1}\left(B_{2}\right)$ is a weak solution of

$$
\begin{equation*}
-\operatorname{div}(A \nabla(u-v))=\operatorname{div}\left(f+\left(A-\tilde{A}^{b} B_{2}\right) \nabla v\right) \quad \text { in } B_{2} . \tag{39}
\end{equation*}
$$

Now, by (7),

$$
\begin{align*}
\int_{B_{\frac{4}{3}}}|\nabla(u-v)|^{2} & \leqslant C\left(\int_{B_{\frac{3}{2}}}\left|f+\left(A-\tilde{A}_{B_{2}}\right) \nabla v\right|^{2}+|u-v|^{2} d x\right) \tag{40}\\
& \leqslant C\left(\int_{B_{\frac{3}{2}}}|f|^{2} d x+\int_{B_{\frac{3}{2}}}\left|\left(A-\tilde{A}^{b} B_{B_{2}}\right) \nabla v\right|^{2} d x+\int_{B_{\frac{3}{2}}}|u-v|^{2} d x\right) \tag{41}\\
& \leqslant C\left(\int_{B_{2}}|f|^{2}+\int_{B_{2}}\left|A-\tilde{A}^{b} B_{B_{2}}\right|^{2} d x+\int_{B_{2}}|u-v|^{2} d x\right) . \tag{42}
\end{align*}
$$

Here we used the fact that v is Lipschitz, which we showed in Lemma 4.4, and (36). Also,

$$
\begin{align*}
\int_{B_{2}}|f|^{2}+\left|A-\tilde{A}^{b}{ }_{B_{2}}\right|^{2} d x & \leqslant 2 \int_{B_{2}}\left(|f|^{2}+\left|A-\tilde{A}_{B_{2}}\right|^{2}\right)+\left|\tilde{A}_{B_{2}}-\tilde{A^{b}} B_{B_{2}}\right|^{2} \tag{43}\\
& \leqslant 2\left(\left|B_{2}\right| \delta^{2}+C(\Lambda) \delta\right) \tag{44}\\
& \leqslant C \delta \text { for a small } \delta . \tag{45}
\end{align*}
$$

So $\|\nabla(u-v)\|_{L^{2}\left(B_{2}\right)}^{2} \leqslant C\left(\delta+\eta^{2}\right)=\varepsilon^{2}$ by taking η and δ satisfying the last identity. This completes our proof.

We can control the measure of the set where $|\nabla u|$ is quite big as the following lemma.

Lemma 4.7. (Cf. [2].) There is a constant $N_{1}>0$ so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ such that for all A as in Section 2.2 with $R=4$ and for any $l, m=0, \ldots, K$ and any $|a|<4$ in appropriate coordinate system

$$
\begin{align*}
& B_{4} \cap\left\{x_{n}>a+\delta\right\} \subset \Omega_{4}^{l} \subset B_{4} \cap\left\{x_{n}>a-\delta\right\}, \tag{46}\\
& B_{4} \cap\left\{x_{n}<a-\delta\right\} \subset \Omega_{4}^{m} \subset B_{4} \cap\left\{x_{n}<a+\delta\right\}, \tag{47}
\end{align*}
$$

and if u is a weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in $\Omega \supset B_{4}$ and if

$$
\begin{equation*}
\left\{x \in B_{1}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in B_{1}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset \tag{48}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1}\right|<\varepsilon\left|B_{1}\right| . \tag{49}
\end{equation*}
$$

Proof. By (48), there is a point $x_{0} \in B_{1}$ such that for all $r>0$,

$$
\begin{equation*}
\frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{0}\right) \cap \Omega}|\nabla u|^{2} d x \leqslant 1, \quad \frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{0}\right) \cap \Omega}|f|^{2} d x \leqslant \delta^{2} . \tag{50}
\end{equation*}
$$

Since $B_{2}(0) \subset B_{3}\left(x_{0}\right)$, we have by (50),

$$
\begin{equation*}
\frac{1}{\left|B_{2}\right|} \int_{B_{2}}|f|^{2} d x \leqslant \frac{\left|B_{3}\right|}{\left|B_{2}\right|} \frac{1}{\left|B_{3}\right|} \int_{B_{3}\left(x_{0}\right)}|f|^{2} d x \leqslant\left(\frac{3}{2}\right)^{n} \delta^{2} . \tag{51}
\end{equation*}
$$

Similarly, we see that

$$
\begin{equation*}
\frac{1}{\left|B_{2}\right|} \int_{B_{2}}|\nabla u|^{2} d x \leqslant\left(\frac{3}{2}\right)^{n} \tag{52}
\end{equation*}
$$

In view of (51) and (52), and from the assumption on A, we can apply Corollary 4.6 with u replaced by $\left(\frac{2}{3}\right)^{n} u$ and f replaced by $\left(\frac{2}{3}\right)^{n} f$, respectively, to find that for any $\eta>0$, there exists a small $\delta(\eta)$ and a corresponding weak solution v of

$$
\begin{equation*}
-\operatorname{div}\left(\tilde{A}^{b} B_{B_{2}} \nabla v\right)=0 \tag{53}
\end{equation*}
$$

in B_{2} such that

$$
\begin{equation*}
\int_{B_{\frac{4}{3}}}|\nabla(u-v)|^{2} d x \leqslant \eta^{2} \tag{54}
\end{equation*}
$$

provided that

$$
\begin{equation*}
\frac{1}{\left|B_{2}\right|} \int_{B_{2}}\left(|f|^{2}+\left|A-\tilde{A}_{B_{2}}\right|^{2}\right) d x \leqslant \delta^{2} . \tag{55}
\end{equation*}
$$

By the interior $W^{1, \infty}$ regularity that we proved in Lemma 4.4 , we can find a constant N_{0} such that

$$
\begin{equation*}
\|\nabla v\|_{L^{\infty}\left(B_{\frac{3}{2}}\right)} \leqslant N_{0} . \tag{56}
\end{equation*}
$$

Now we will show that

$$
\begin{equation*}
\left\{x \in B_{1}: \mathcal{M}|\nabla u|^{2}>N_{1}^{2}\right\} \subset\left\{x \in B_{1}: \mathcal{M}_{B_{2}}|\nabla(u-v)|^{2}>N_{0}^{2}\right\} \tag{57}
\end{equation*}
$$

for $N_{1}^{2}:=\max \left\{5^{n}, 4 N_{0}^{2}\right\}$. To do this, suppose that

$$
\begin{equation*}
x_{1} \in\left\{x \in B_{1}: \mathcal{M}_{B_{2}}(|\nabla(u-v)|)^{2}(x) \leqslant N_{0}^{2}\right\} \tag{58}
\end{equation*}
$$

For $r \leqslant \frac{1}{2}, B_{r}\left(x_{1}\right) \subset B_{\frac{3}{2}}$, and by (56) and (58), we have

$$
\begin{equation*}
\frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{1}\right)}|\nabla u|^{2} d x \leqslant \frac{2}{\left|B_{r}\right|} \int_{B_{\frac{3}{2}}}\left(|\nabla(u-v)|^{2}+|\nabla v|^{2}\right) \leqslant 4 N_{0}^{2} \tag{59}
\end{equation*}
$$

For $r>\frac{1}{2}, B_{r}\left(x_{1}\right) \subset B_{5 r}\left(x_{0}\right)$, and by (50), we have

$$
\begin{equation*}
\frac{1}{\left|B_{r}\right|} \int_{B_{r}\left(x_{1}\right)}|\nabla u|^{2} d x \leqslant \frac{5^{n}}{\left|B_{5 r}\right|} \int_{B_{5 r}\left(x_{0}\right) \cap \Omega}|\nabla u|^{2} d x \leqslant 5^{n} \tag{60}
\end{equation*}
$$

Then (59) and (60) show

$$
\begin{equation*}
x_{1} \in\left\{x \in B_{1}: \mathcal{M}(|\nabla u|)^{2} \leqslant N_{1}^{2}\right\} . \tag{61}
\end{equation*}
$$

Thus assertion (57) follows from (58) and (61).
By (57), weak 1-1 estimates and (54), we obtain

$$
\begin{aligned}
\left|\left\{x \in B_{1}: \mathcal{M}(|\nabla u|)^{2}>N_{1}^{2}\right\}\right| & \leqslant\left|\left\{x \in B_{1}: \mathcal{M}_{B_{2}}(|\nabla(u-v)|)^{2}>N_{0}^{2}\right\}\right| \\
& \leqslant \frac{C}{N_{0}^{2}} \int_{B_{\frac{4}{3}}}|\nabla(u-v)|^{2} d x \\
& \leqslant \frac{C}{N_{0}^{2}} \eta^{2}=\varepsilon\left|B_{1}\right|
\end{aligned}
$$

by taking small η satisfying the last identity above. Now Corollary 4.6 gives the desired δ.
Corollary 4.8. There is a constant $N_{1}>0$ so that for any $\varepsilon, r \in(0,1]$, there exists a small $\delta=\delta(\varepsilon)>0$ such that for all A as in Section 2.2 with $R=4$ and for any $l, m=0, \ldots, K$ and any $|a|<4 r$ in appropriate coordinate system

$$
\begin{align*}
& B_{4 r} \cap\left\{x_{n}>a+\delta r\right\} \subset \Omega_{4 r}^{l} \subset B_{4 r} \cap\left\{x_{n}>a-\delta r\right\}, \tag{62}\\
& B_{4 r} \cap\left\{x_{n}<a-\delta r\right\} \subset \Omega_{4 r}^{m} \subset B_{4 r} \cap\left\{x_{n}<a+\delta r\right\} \tag{63}
\end{align*}
$$

and if u is a weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in $\Omega \supset B_{4 r}$ and if

$$
\begin{equation*}
\left\{x \in B_{r}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in B_{r}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{64}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right|<\varepsilon\left|B_{r}\right| . \tag{65}
\end{equation*}
$$

Proof. The proof is given by Lemma 4.7 and a scaling argument.
To use the modified Vitali Covering Lemma, we need to show Theorem 4.1 holds for any ball $B_{r}(x)$ for $r \in(0,1]$ and $x \in \Omega$. If $B_{r}(x)$ intersects with only one subdomain Ω^{l} then the proof of Theorem 4.1 comes directly from Lemma 4.8 for $l=m$. If $B_{r}(x)$ intersects with two subdomains Ω^{l} and Ω^{0}, then the proof of Theorem 4.1 also comes directly from Lemma 4.8 for $m=0$.

Then next natural question would be how many subdomains can intersect with $B_{r}(x)$ for $r \in(0,1]$ and $x \in \Omega$ when $\partial \Omega^{i}$'s are flat enough. Next lemma will be used to show that a ball can intersect with at most three subdomains.

Lemma 4.9. H_{i} 's for $i=1, \ldots, K$ are half spaces. If $\left\{H_{i} \cap B_{2}\right\}_{i}$ are disjoint. Then at most two half spaces can intersect with B_{1}.

Proof. Assume there are three half spaces, say H_{1}, H_{2} and H_{3} such that $B_{2} \cap H_{i}$'s are disjoint and $H_{i} \cap B_{1} \neq \emptyset$ for $i=1,2,3$. Let $p_{i} \in H_{i} \cap B_{1}$ for $i=1,2,3$. Note that since half spaces are disjoint in B_{2} these points are not collinear. Let \mathcal{T} be the two dimensional plane containing p_{1}, p_{2}, p_{3}. For $j=1,2$ let $\mathcal{D}_{j}=\mathcal{T} \cap B_{j}$ which are indeed two dimensional balls. Let $r_{j}=$ radius of \mathcal{D}_{j} for $j=1,2$. Note that $r_{2} \geqslant 2 r_{1}$.

Let $h_{i}:=\mathcal{T} \cap H_{i}$ and $l_{i}:=\mathcal{T} \cap \partial H_{i}=\partial h_{i}$. We have
(1) $p_{i} \in l_{i} \cap \mathcal{D}_{1}$ for $i=1,2,3$;
(2) $h_{i} \cap \mathcal{D}_{2}$'s are disjoint for $i=1,2,3$.

Pushing l_{i} 's into h_{i} by $\delta_{i}>0$, we may assume that l_{i} 's are tangent to the \mathcal{D}_{1} and $p_{i} \in \partial \mathcal{D}_{1}$ for $i=1,2,3$. Let also A_{i} and B_{i} be the points where l_{i} intersects $\partial \mathcal{D}_{2}$ for $i=1,2$, 3. Let $h_{i} \cap \partial D_{2}=A_{i} B_{i}$.

Note that $\widehat{A_{i}} B_{i}$ for $i=1,2,3$ are disjoint on ∂D_{2}. Since $r_{2} \geqslant 2 r_{1}$ and l_{i} 's are tangent to D_{1},

$$
\begin{equation*}
\frac{\text { length of } \widehat{A_{i} B_{i}}}{\text { length of } \partial D_{2}} \geqslant \frac{1}{3}, \quad \text { for } i=1,2,3 \tag{66}
\end{equation*}
$$

The above is a strict inequality if $r_{2}>2 r_{1}$, which is a contradiction to the fact that $\widehat{A_{i}} B_{i}$'s are disjoint on ∂D_{2}. If $r_{2}=2 r_{1}$, (66) is an equality. In this case l_{i} 's end points meet each other. So we cannot push l_{i} outward from h_{i} which means $\delta_{i}=0$ for $i=1,2,3$.

So now we consider the case that a ball intersect with three subdomains Ω^{l}, Ω^{0} and Ω^{m} for any $l, m=1, \ldots, K$. To prove Theorem 4.1 for this case, our goal is to show Lemma 4.7 holds for this case as well. Roughly there can be two different cases; The first case is when Ω^{l} and Ω^{m} are quite close and the second case is when Ω^{l} and Ω^{m} are not so close.

Lemma 4.10. There exists a constant $N_{1}>0$ so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ and for all $\Omega \supset B_{4}$ and subdomain Ω^{i} for all $i=1, \ldots, K$ and Ω are ($\delta, 9$)-flat and for all A as in Section 2.2 with $R=9$, and if u is a weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in $\Omega \supset B_{4}$ and if

$$
\begin{equation*}
\left\{x \in B_{1}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in B_{1}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{67}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1}\right|<\varepsilon\left|B_{1}\right| . \tag{68}
\end{equation*}
$$

Proof. If B_{4} intersects with two subdomains, then we are done by Lemma 4.7.
Suppose B_{4} intersects with three subdomains, say Ω^{l}, Ω^{0} and Ω^{m}. First assume that $\operatorname{dist}\left(\Omega^{l}, \Omega^{m}\right)<\gamma$ in B_{1} for some small $\gamma>0$. Since $\operatorname{dist}\left(\Omega^{l}, \Omega^{m}\right)<\gamma$ in B_{1}, there exist $p_{l} \in \partial \Omega^{l} \cap B_{1}$ and $p_{m} \in \partial \Omega^{m} \cap B_{1}$ such that $\operatorname{dist}\left(p_{l}, p_{m}\right)<\gamma$. Also assume that Ω^{l}, Ω^{m} are ($\delta, 9$)-Reifenberg flat for a δ with $\gamma<\delta \ll 1$. So for each $p_{i}, i=l$, m, there exist $(n-1)$ dimensional hyper plane \mathcal{P}_{i} such that

$$
\begin{equation*}
D\left[\partial \Omega^{i} \cap B_{9}\left(p_{i}\right), \mathcal{P}_{i} \cap B_{9}\left(p_{i}\right)\right] \leqslant 9 \delta, \quad \text { for } i=l, m \tag{69}
\end{equation*}
$$

where D denotes the Hausdorff distance. In other words, the boundary of Ω^{i} is squeezed between \mathcal{P}_{i} and $\mathcal{P}_{i}^{9 \delta}$ which is the translation of \mathcal{P}_{i} by 9δ in the normal direction of \mathcal{P}_{i} inward Ω^{i} for $i=l, m$. We can choose a coordinate system such that the normal direction of $\mathcal{P}_{l}^{9 \delta}$ is the x_{n} axis. Let us say y_{i} is the intersection point between $\mathcal{P}_{i}^{9 \delta}$ and vertical line of $\mathcal{P}_{i}^{9 \delta}$ passing through p_{i} for $i=l$, m. Then the distance between y_{m} and $\mathcal{P}_{l}^{9 \delta}$ is less than $\gamma+18 \delta<19 \delta$ by (69). Since $\mathcal{P}_{l}^{9 \delta} \cap \mathcal{P}_{m}^{9 \delta} \cap B_{4}=\emptyset$, on $\mathcal{P}_{m}^{9 \delta}$

$$
\left|\frac{\partial x_{n}}{\partial x_{i}}\right|<\frac{\gamma+18 \delta}{3-\gamma-18 \delta}<\frac{19 \delta}{3-19 \delta}<7 \delta \text { for any } \gamma<\delta \ll 1, \text { and } i=1, \ldots, n-1 .
$$

So $\max _{y \in \mathcal{P}_{m}^{9 \delta} \cap B_{4}} \operatorname{dist}\left(y, \mathcal{P}_{l}^{9 \delta} \cap B_{4}\right)<C \delta+\gamma$ where C depends on the dimension n.
The above is nothing but Harnack Inequality. Since distance function between $\mathcal{P}_{l}^{9 \delta}$ and $\mathcal{P}_{m}^{9 \delta}$ in B_{4} is nonnegative harmonic, we can apply Harnack Inequality:

$$
\begin{equation*}
\max _{y \in \mathcal{P}_{m}^{9 \delta} \cap B_{1}} \operatorname{dist}\left(\mathcal{P}_{l}^{9 \delta}, y\right)<C_{1} \min _{y \in \mathcal{P}_{m}^{98} \cap B_{1}} \operatorname{dist}\left(\mathcal{P}_{l}^{9 \delta}, y\right)<C \operatorname{dist}\left(y_{l}, y_{m}\right)=C(19 \delta+\gamma) \tag{70}
\end{equation*}
$$

where C depends on the dimension n.
Since the Hausdorff distance between $\mathcal{P}_{l}^{9 \delta}, \mathcal{P}_{m}^{9 \delta}$ is less than $C(\delta+\gamma)$, we can choose small δ_{0} and γ_{0} such that $C\left(\delta_{0}+\gamma_{0}\right)$ is less than δ in Lemma 4.7. By Lemma 4.7, we can conclude.

Now suppose $\operatorname{dist}\left(\partial \Omega^{l}, \partial \Omega^{m}\right)>\gamma_{0}$ in B_{1} for above γ_{0}. If $y \in S_{1}=\left\{x \in B_{1} \mid x \in \partial \Omega^{l} \cap \partial \Omega^{m}\right\}$, then $B_{\gamma_{0}}(y)$ has only two subdomains. From (67), there exists $x_{0} \in B_{1}$ such that

$$
\mathcal{M}\left(|\nabla u|^{2}\right)\left(x_{0}\right) \leqslant 1 \quad \text { and } \quad \mathcal{M}\left(|f|^{2}\right)\left(x_{0}\right) \leqslant \delta^{2}
$$

For any $y \in S_{1}$, by weak $1-1$ estimate in Theorem 3.2,

$$
\begin{aligned}
\left|\left\{x \in B \frac{\gamma_{0}}{4}(y): \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{1}\right\}\right| & \leqslant \frac{C}{\lambda_{1}} \int_{B_{2}\left(x_{0}\right)}|\nabla u|^{2} d x \\
& \leqslant \frac{C}{\lambda_{1}}\left|B_{2}\left(x_{0}\right)\right|<\frac{1}{2}\left|B \frac{\gamma_{0}}{4}(y)\right|
\end{aligned}
$$

when $\lambda_{1}>\frac{C 2^{3 n+1}}{\gamma_{0}^{n}}$. Similarly for this λ_{1},

$$
\begin{aligned}
\left|\left\{x \in B \frac{\gamma_{0}}{4}(y): \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} \lambda_{1}\right\}\right| & \leqslant \frac{C}{\delta^{2} \lambda_{1}} \int_{B_{2}\left(x_{0}\right)}|f|^{2} d x \\
& \leqslant \frac{C}{\delta^{2} \lambda_{1}}\left|B_{2}\left(x_{0}\right)\right|<\frac{1}{2}\left|B_{\frac{\gamma_{0}}{4}}(y)\right| .
\end{aligned}
$$

From above two inequalities, one can find an $x_{y} \in B_{\frac{\gamma_{0}}{4}}(y)$ such that

$$
\mathcal{M}\left(|\nabla u|^{2}\right)\left(x_{y}\right) \leqslant \lambda_{1} \quad \text { and } \quad \mathcal{M}\left(|f|^{2}\right)\left(x_{y}\right) \leqslant \delta^{2} \lambda_{1} .
$$

By Lemma 4.8, there is a constant N_{1} so that for any $\varepsilon>0$

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{1} N_{1}^{2}\right\} \cap B_{\frac{\gamma_{0}}{4}}(y)\right|<\varepsilon\left|B_{\frac{\gamma_{0}}{4}}(y)\right| . \tag{71}
\end{equation*}
$$

If $y \in S_{2}=\left\{x \in B_{1} \left\lvert\, \min _{i=l, m} \operatorname{dist}\left(x, \partial \Omega^{i}\right)>\frac{\gamma_{0}}{4 \times 5}\right.\right\}, B \frac{\gamma_{0}}{20}(y) \subset \Omega^{i}$ for $i=0, l, m$. Similarly as above, there is an $x_{y} \in B \frac{\gamma_{0}}{80}(y)$ such that

$$
\mathcal{M}\left(|\nabla u|^{2}\right)\left(x_{y}\right) \leqslant \lambda_{2} \quad \text { and } \quad \mathcal{M}\left(|f|^{2}\right)\left(x_{y}\right) \leqslant \delta^{2} \lambda_{2},
$$

when $\lambda_{2}>\frac{\mathrm{C}^{5 n+1} 5^{n}}{\gamma_{0}^{n}}$. By Lemma 4.8 , there is a constant N_{1} so that for any $\varepsilon>0$

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{2} N_{1}^{2}\right\} \cap B \frac{\gamma_{0}}{80}(y)\right|<\varepsilon\left|B \frac{\gamma_{0}}{80}(y)\right| . \tag{72}
\end{equation*}
$$

So $U=\left\{B_{r}(y) \left\lvert\, r=\frac{\gamma_{0}}{4 \times 5}\right., \quad y \in S_{1}\right\} \cup\left\{B_{r}(y) \left\lvert\, r=\frac{\gamma_{0}}{80 \times 5}\right., y \in S_{2}\right\}$ covers B_{1}. Then by Vitali Covering Lemma, there exist disjoint balls $\left\{B_{r_{i}}\left(y_{i}\right)\right\}_{i=1}^{\infty} \subset U \subset B_{2}$ such that $B_{1} \subset \bigcup_{i} B_{5 r_{i}}\left(y_{i}\right)$. Let N_{1} to be $\max \left(\sqrt{\lambda_{1}} N_{1}, \sqrt{\lambda_{2}} N_{1}\right)$. Then by (71) and (72),

$$
\begin{aligned}
& \left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1}\right| \\
& \quad<\sum_{i}\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{5 r_{i}}\left(y_{i}\right)\right| \\
& \quad<\varepsilon \sum_{i}\left|B_{5 r_{i}}\left(y_{i}\right)\right|<\varepsilon 5^{n} \sum_{i}\left|B_{r_{i}}\left(y_{i}\right)\right| \\
& \quad<\varepsilon 5^{n}\left|B_{2}\right|<\varepsilon(10)^{n}\left|B_{1}\right| .
\end{aligned}
$$

Since Ω^{i} 's for $i=0, \ldots, n$ are ($\delta, 9$)-flat, B_{4} does not intersect more than three subdomains. To see that, assume that B_{4} intersects with $\Omega^{0}, \Omega^{1}, \Omega^{2}, \Omega^{3}$. For any $p_{i} \in \partial \Omega^{i} \cap B_{4}$, for $i=1,2,3$, there exists a hyperplane \mathcal{P}_{i} such that $\partial \Omega^{i} \cap B_{9}$ is between \mathcal{P}_{i} and $\mathcal{P}_{i}^{9 \delta}$ where $\mathcal{P}_{i}^{9 \delta}$ is translation of \mathcal{P}_{i} into Ω^{i} in the normal direction by 9δ since Ω^{i},s for $i=0, \ldots, n$ are $(\delta, 9)$-flat. Then for any $\delta<\frac{1}{18}$, on the plane \mathcal{T} containing $p_{1}, p_{2}, p_{3}, H_{i}$ for $i=1,2,3$ intersect with $B_{\frac{9}{2}}$ but they are disjoint in B_{9}, which is a contradiction to Lemma 4.9.

Proof of Theorem 4.1. The proof follows from Lemma 4.10 and scaling argument.
The following is an interior regularity theorem.

Theorem 4.11. Let $1<p<\infty$ be a real number. There is a small $\delta=\delta(\lambda, p, n, R)$ so that for all $\Omega=$ $\bigcup_{i=0}^{K} \Omega^{i}$ where Ω^{i} 's for $i=1, \ldots, K$ and Ω are ($\delta, 9$)-flat and A as in Section 2.2 with $R=9$ and for all $f \in L^{p}\left(B_{4} ; \mathbb{R}^{n}\right)$, if u is a weak solution of the elliptic PDE (1) in B_{4}, then u belong to $W^{1, p}\left(B_{1}\right)$ with the estimate

$$
\|\nabla u\|_{L^{p}\left(B_{1}\right)} \leqslant C\left(\|u\|_{L^{p}\left(B_{4}\right)}+\|f\|_{L^{p}\left(B_{4}\right)}\right)
$$

where the constant C is independent of u and f.
Proof. The proof follows from the global regularity theory in the next section with u replaced by ϕu for an appropriately chosen cutoff function ϕ.

Remark 4.12. We can change the ball B_{4} in Theorem 4.11 to any ball B_{R} for $R>1$.

4.2. Global estimates

Definition 4.13. We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of (1) if

$$
\begin{equation*}
-\int_{\Omega} A \nabla u \nabla \varphi d x=\int_{\Omega} f \nabla \varphi d x \quad \forall \varphi \in H_{0}^{1}(\Omega) \tag{73}
\end{equation*}
$$

In this section our interest is the following case:

$$
\Omega_{R} \supset T_{R} \quad \text { with } D\left(\Omega_{R}, T_{R}\right) \text { small, }
$$

where D denotes the Hausdorff distance. We consider weak solution of

$$
\begin{cases}-\operatorname{div}(A(x) \nabla u(x))=\operatorname{div} f & \text { in } \Omega_{R} \tag{74}\\ u=0 & \text { on } \partial_{w} \Omega_{R}\end{cases}
$$

under the conditions as in Section 1.
Definition 4.14. $u \in H^{1}\left(\Omega_{R}\right)$ is a weak solution of (74) in Ω_{R} if

$$
\int_{\Omega_{R}} A \nabla u \nabla \varphi d x=-\int_{\Omega_{R}} f \nabla \varphi d x \quad \text { for any } \varphi \in H_{0}^{1}\left(\Omega_{R}\right)
$$

and u 's 0-extension is in $H^{1}\left(B_{R}\right)$.
In [2], the following lemmas were proven for A without discontinuity.
Lemma 4.15. (Cf. [2].) There is a constant $N_{1}>0$ so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ with A uniformly elliptic and ($\delta, 4$)-vanishing, and if $u \in H_{0}^{1}(\Omega)$ is a weak solution of (74) with $B_{4}^{+} \subset \Omega_{4} \subset$ $B_{4} \cap\left\{x_{n}>-\delta\right\}$ and

$$
\begin{equation*}
\left\{x \in \Omega_{1}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in \Omega_{1}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset \tag{75}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1}\right|<\varepsilon\left|B_{1}\right| . \tag{76}
\end{equation*}
$$

Corollary 4.16. (Cf. [2].) There is a constant $N_{1}>0$ so that for any $\varepsilon, r>0$, there exists a small $\delta=\delta(\varepsilon)>0$ with A uniformly elliptic and ($\delta, 4 r$)-vanishing, and if $u \in H_{0}^{1}(\Omega)$ is a weak solution of (74) with $B_{4 r}^{+} \subset \Omega_{4 r} \subset$ $B_{4 r} \cap\left\{x_{n}>-\delta r\right\}$ and

$$
\begin{equation*}
\left\{x \in \Omega_{r}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in \Omega_{r}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{77}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right|<\varepsilon\left|B_{r}\right| . \tag{78}
\end{equation*}
$$

Now we consider how to control the measure of the set where $|\nabla u|$ is big for the case that A has big discontinuity along the subdomains.

Lemma 4.17. There is a constant $N_{1}>0$ so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ with A as in Section 2.2 with $R=9$ and Ω and Ω^{i} 's are ($\delta, 9$)-flat for $i=1, \ldots, K$, and if $u \in H_{0}^{1}(\Omega)$ is a weak solution of (74) with $B_{4}^{+} \subset \Omega_{4} \subset B_{4} \cap\left\{x_{n}>-4 \delta\right\}$ and

$$
\begin{equation*}
\left\{x \in \Omega_{1}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in \Omega_{1}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{79}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1}\right|<\varepsilon\left|B_{1}\right| . \tag{80}
\end{equation*}
$$

Proof. If B_{4} intersects with only Ω^{0}, then this lemma is nothing but what Lemma 4.15 says. Note that B_{4} cannot intersect with more than two subdomains by the same argument in the proof of Lemma 4.10 (considering Ω^{c} as ($\delta, 9$)-flat for any sufficiently small δ). Assume that B_{4} intersects with Ω^{0} and Ω^{l} for any $l=1, \ldots, K$.

First suppose $\operatorname{dist}\left(\partial \Omega^{l}, \partial \Omega\right)<\gamma$ in B_{4} for some $\gamma>0$. Then there exist $p_{l} \in \partial \Omega^{l} \cap B_{4}$ and $p \in \partial \Omega \cap B_{4}$ such that $\operatorname{dist}\left(p, p_{l}\right)<\gamma$. Since Ω^{l} are ($\delta, 9$)-flat, $\mathcal{P}_{l}^{9 \delta}\left(p_{l}\right) \cap B_{4} \subset \Omega^{l}$ where $\mathcal{P}_{l}^{\delta}\left(p_{l}\right)$ is the $(n-1)$ dimensional plane which is translated hyperplane at p_{l} by δ along the normal direction toward Ω^{l}. Let us say y_{l} is the intersection point between $\mathcal{P}_{l}^{9 \delta}$ and vertical line of $\mathcal{P}_{l}^{9 \delta}$ passing through p_{l}. Then the $\operatorname{dist}\left(y_{l},\left\{x \in B_{4}: x_{n}=-4 \delta\right\}\right)<9 \delta+\gamma+4 \delta=13 \delta+\gamma$. Note that $\mathcal{P}_{l}^{9 \delta} \cap B_{4} \subset \Omega^{l}$. Since distance function between $\mathcal{P}_{l}^{9 \delta} \cap B_{4}$ and $\left\{x \in B_{4}: x_{n}=-4 \delta\right\}$ is nonnegative harmonic, we can apply Harnack Inequality:

$$
\begin{aligned}
& \max _{y \in \mathcal{P}_{l}^{9 \delta} \cap B_{4}} \operatorname{dist}\left(y,\left\{x \in B_{4}: x_{n}=-4 \delta\right\}\right) \\
& \quad \leqslant C \min _{y \in \mathcal{P}_{l}^{9 \delta} \cap B_{4}} \operatorname{dist}\left(y,\left\{x \in B_{4}: x_{n}=-4 \delta\right\}\right) \\
& \leqslant C \operatorname{dist}\left(y_{l},\left\{x \in B_{4}: x_{n}=-4 \delta\right\}\right) \\
& =C(13 \delta+\gamma)
\end{aligned}
$$

where C depends on the dimension n. One can choose small γ_{0} and δ_{0} so that $C\left(13 \delta_{0}+\gamma_{0}\right)<\delta$ for δ in Lemma 4.15. We conclude by Lemma 4.15.

Now suppose $\operatorname{dist}\left(\partial \Omega^{l}, \partial \Omega\right) \geqslant \gamma_{0}$ in B_{4} for the γ_{0} above. For any $y \in S_{1}=\left\{x \in B_{1} \mid x \in \partial \Omega^{l}\right\}$, $B_{\gamma_{0}}(y)$ has two subdomains and $B_{\gamma_{0}}(y) \cap \partial \Omega=\emptyset$. From (79), there exists $x_{0} \in \Omega_{1}$ such that

$$
\mathcal{M}\left(|\nabla u|^{2}\right)\left(x_{0}\right) \leqslant 1 \quad \text { and } \quad \mathcal{M}\left(|f|^{2}\right)\left(x_{0}\right) \leqslant \delta^{2} .
$$

As we showed in the proof of Lemma 4.10, there is a constant N_{1} so that for any $\varepsilon>0$, there exists $\delta>0$ so that

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{1} N_{1}^{2}\right\} \cap B_{\frac{\gamma_{0}}{4}}(y)\right|<\varepsilon\left|B \frac{\gamma_{0}}{4}(y)\right|, \tag{81}
\end{equation*}
$$

where $\lambda_{1}>\frac{C 2^{3 n+1}}{\gamma_{0}^{n}}$. Also for any $y \in S_{2}=\left\{x \in B_{1} \mid x \in \partial \Omega\right\}, B_{\gamma_{0}}^{+} \subset \Omega^{0} \subset B_{\gamma_{0}} \cap\left\{x_{n}>-\gamma_{0} \delta\right\}$ in appropriate coordinate system. By applying Corollary 4.16, there is a constant N_{1} so that for any $\varepsilon>0$, there exists $\delta>0$ so that

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{1} N_{1}^{2}\right\} \cap B_{\frac{\gamma_{0}}{4}}(y)\right|<\varepsilon\left|B_{\frac{\gamma_{0}}{4}}(y)\right| . \tag{82}
\end{equation*}
$$

For any $y \in T=\left\{x \in B_{1} \left\lvert\, \min \left(\operatorname{dist}\left(x, \partial \Omega^{l}\right), \operatorname{dist}(x, \partial \Omega)\right)>\frac{\gamma_{0}}{4 \times 5}\right.\right\}, B_{\frac{\gamma_{0}}{20}}(y) \subset \Omega^{i}$ for $i=0, l$. Then by Lemma 4.7 there is a constant N_{1} so that for any $\varepsilon>0$, there exists $\delta>0$ so that

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>\lambda_{2} N_{1}^{2}\right\} \cap B \frac{\gamma_{0}}{20 \times 4}(y)\right|<\varepsilon\left|B_{\frac{\gamma_{0}}{80}}(y)\right| \tag{83}
\end{equation*}
$$

where $\lambda_{2}>\frac{C 2^{5 n+1} 5^{n}}{\gamma_{0}^{n}}$.
Since $B \subset U:=\left\{B_{r}(y) \left\lvert\, r<\frac{\gamma_{0}}{4 \times 5}\right., y \in S_{1} \cup S_{2}\right\} \cup\left\{B_{r}(y) \left\lvert\, r<\frac{\gamma_{0}}{80 \times 5}\right., y \in T\right\}$, by Vitali Covering Lemma, there are disjoint set $\left\{B_{r_{i}}\left(y_{i}\right)\right\}_{i=1}^{\infty} \subset U \subset B_{2}$ s.t. $B_{1} \subset \bigcup_{i} B_{5 r_{i}}\left(y_{i}\right)$

$$
\begin{aligned}
\mid\{x & \left.\in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{1} \mid \\
& <\sum_{i}\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{5 r_{i}}\left(y_{i}\right)\right| \\
& <\varepsilon \sum_{i}\left|B_{5 r_{i}}\left(y_{i}\right)\right|<\varepsilon 5^{n} \sum_{i}\left|B_{r_{i}}\left(y_{i}\right)\right| \\
& <\varepsilon 5^{n}\left|B_{2}\right|<\varepsilon(10)^{n}\left|B_{1}\right| .
\end{aligned}
$$

Here we used (81)-(83).
Corollary 4.18. There is a constant $N_{1}>0$ so that for any $\varepsilon>0$, there exists a small $\delta=\delta(\varepsilon)>0$ with A as in Section 2.2 with $R=9$ and Ω, Ω^{i} 's are ($\delta, 9$)-flat for $i=1, \ldots, K$, and if $u \in H_{0}^{1}(\Omega)$ is a weak solution of (74) with $B_{4 r}^{+} \subset \Omega_{4 r} \subset B_{4 r} \cap\left\{x_{n}>-4 \delta r\right\}$ and

$$
\begin{equation*}
\left\{x \in \Omega_{r}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in \Omega_{r}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{84}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right|<\varepsilon\left|B_{r}\right| . \tag{85}
\end{equation*}
$$

Proof. Then proof is given by Lemma 4.17 and scaling argument.
The following lemma shows that same result of Lemma 4.17 holds for any ball intersecting with Ω.

Lemma 4.19. There is a constant $N_{1}>0$ so that for any $\varepsilon>0$ and $0<r<1$, there exists a small $\delta=\delta(\varepsilon)>0$ for all $\Omega=\bigcup_{i=0}^{K} \Omega^{i}$ where Ω and Ω^{i} 's for $i=1, \ldots, K$ are ($\delta, 45$)-flat and for any A as in Section 2.2 with $R=45$, and if $u \in H_{0}^{1}(\Omega)$ is the weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in $\Omega \supset B_{4 r}$ and if the following property holds:

$$
\begin{equation*}
\left\{x \in \Omega_{r}: \mathcal{M}\left(|\nabla u|^{2}\right) \leqslant 1\right\} \cap\left\{x \in \Omega_{r}: \mathcal{M}\left(|f|^{2}\right) \leqslant \delta^{2}\right\} \neq \emptyset, \tag{86}
\end{equation*}
$$

then

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right|<\varepsilon\left|B_{r}\right| . \tag{87}
\end{equation*}
$$

Proof. If $B_{4 r} \cap \partial \Omega=\emptyset$, then by an interior estimate Theorem 4.1 we can conclude. Assume that $B_{4 r} \cap \partial \Omega \neq \emptyset$. Note that $B_{r} \subset B_{5 r}(y)$ for some $y \in \partial \Omega$. By (86), there exists $x_{0} \in B_{r} \subset B_{5 r}(y)$ such that $\mathcal{M}\left(|\nabla u|^{2}\right)\left(x_{0}\right) \leqslant 1$ and $\mathcal{M}\left(|f|^{2}\right)\left(x_{0}\right) \leqslant \delta^{2}$. Since Ω is ($\left.\delta, 45\right)$-Reifenberg flat, we have, in appropriate coordinate system,

$$
B_{20 r}^{+} \subset \Omega_{20 r} \subset B_{20 r} \cap\left\{x_{n}>-20 \delta r\right\} .
$$

Here we use Corollary 4.18 to the ball $B_{5 r}(y)$ with ε replaced by $\frac{\varepsilon}{5^{n}}$. Then

$$
\begin{aligned}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{r}\right| & <\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\} \cap B_{5 r}(y)\right| \\
& <\frac{\varepsilon}{5^{n}}\left|B_{5 r}\right|=\varepsilon\left|B_{r}\right| .
\end{aligned}
$$

Corollary 4.20. (Cf. [2].) Suppose that $u \in H_{0}^{1}(\Omega)$ is the weak solution of $-\operatorname{div}(A \nabla u)=\operatorname{div} f$ in Ω. Assume $\Omega=\bigcup_{i=0}^{K} \Omega^{i}$ where Ω, Ω^{i} 's for $i=1, \ldots, K$ are $(\delta, 45)$-flat and A as in Section 2.2 with $R=45$. Assume that

$$
\begin{equation*}
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)>N_{1}^{2}\right\}\right|<\varepsilon\left|B_{1}\right| . \tag{88}
\end{equation*}
$$

Let k be a positive integer and set $\varepsilon_{1}=\left(\frac{10}{1-\delta}\right)^{n} \varepsilon$. Then we have

$$
\begin{align*}
& \left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)>N_{1}^{2 k}\right\}\right| \tag{89}\\
& \quad \leqslant \sum_{i=1}^{k} \varepsilon_{1}^{i}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)>\delta^{2} N_{1}^{2(k-i)}\right\}\right|+\varepsilon_{i}^{k}\left|\left\{x \in \Omega: \mathcal{M}(|\nabla u|)^{2}(x)>1\right\}\right| . \tag{90}
\end{align*}
$$

Proof. We prove by induction on k. For the case $k=1$, set

$$
C=\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2}\right\}
$$

and

$$
D=\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2}\right\} \cup\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>1\right\} .
$$

Since Ω is ($\delta, 45$)-Reifenberg flat, Ω is ($\delta, 1$)-Reifenberg flat. Then in view of (88), Lemma 4.19 and Theorem 3.4, we see $|C| \leqslant \varepsilon_{1}|D|$, and so our conclusion is valid for $k=1$.

Assume that the conclusion is valid for some positive integer $k \geqslant 2$. Set $u_{1}=u / N_{1}$ and corresponding $f_{1}=f / N_{1}$. Then u_{1} is the weak solution of

$$
\begin{cases}-\operatorname{div}\left(A \nabla u_{1}\right)=\operatorname{div} f_{1} & \text { in } \Omega, \tag{91}\\ u_{1}=0 & \text { on } \partial \Omega\end{cases}
$$

and the following inequality holds:

$$
\left|\left\{x \in \Omega: \mathcal{M}\left(\left|\nabla u_{1}\right|^{2}\right)(x)>N_{1}^{2}\right\}\right|<\varepsilon\left|B_{1}\right| .
$$

By the induction assumption and from a simple calculation, we deduce the following estimates:

$$
\begin{aligned}
&\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2(k+1)}\right\}\right| \\
&=\left|\left\{x \in \Omega: \mathcal{M}\left(\left|\nabla u_{1}\right|^{2}\right)(x)>N_{1}^{2 k}\right\}\right| \\
& \leqslant \sum_{i=1}^{k} \varepsilon_{1}^{i}\left|\left\{x \in \Omega: \mathcal{M}\left(\left|f_{1}\right|^{2}\right)(x)>\delta^{2} N_{1}^{2(k-i)}\right\}\right| \\
&+\varepsilon_{1}^{k}\left|\left\{x \in \Omega: \mathcal{M}\left(\left|\nabla u_{1}\right|^{2}\right)(x)>1\right\}\right| \\
& \leqslant \sum_{i=1}^{k+1} \varepsilon_{1}^{i}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} N_{1}^{2(k+1-i)}\right\}\right| \\
&+\varepsilon_{1}^{k+1}\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>1\right\}\right| .
\end{aligned}
$$

This estimate in turn completes the induction on k.
Finally we are ready to prove the main theorem.
Theorem 4.21. Let $1<p<\infty$ be a real number. Then there is a small $\delta=\delta(\Lambda, p, n, R)>0$ so that for all $\Omega=\bigcup_{i=0}^{i=K} \Omega^{i}$ where Ω, Ω^{i} 's for $i=1, \ldots, K$ are (δ, R)-Reifenberg flat, for all A as in Section 2.2, and for all $f \in L^{p}\left(\Omega, \mathbb{R}^{n}\right)$, the Dirichlet problem (1) has a unique weak solution with the estimate

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x \leqslant C \int_{\Omega}|f|^{p} d x \tag{92}
\end{equation*}
$$

where the constant C is independent of u and f.
Proof. First we will consider the case $p>2$. The case $p=2$ is classical and the case $1<p<2$ will be proved using duality. Without loss of generality, we assume that

$$
\begin{equation*}
\|f\|_{L^{p}(\Omega)} \text { is small enough } \tag{93}
\end{equation*}
$$

and

$$
\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)>N_{1}^{2}\right\}\right|<\varepsilon\left|B_{1}\right|
$$

by multiplying the PDE (1) by a small constant depending on $\|f\|_{L^{2}(\Omega)}$ and $\|\nabla u\|_{L^{2}(\Omega)}$. Since $f \in$ $L^{p}(\Omega), \mathcal{M}\left(|f|^{2}\right) \in L^{p / 2}(\Omega)$ by strong $\mathrm{p}-\mathrm{p}$ estimates. In view of Lemma 3.3, there is a constant C
depending only on δ, p, and N_{1} such that

$$
\begin{equation*}
\sum_{k=0}^{\infty} N_{1}^{p k}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} N_{1}^{2 k}\right\}\right| \leqslant C\left\|\mathcal{M}\left(|f|^{2}\right)\right\|_{L^{p / 2}(\Omega)}^{p / 2} . \tag{94}
\end{equation*}
$$

Then this estimate, strong p-p estimates, and (93) imply

$$
\begin{equation*}
\sum_{k=0}^{\infty} N_{1}^{p k}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} N_{1}^{2 k}\right\}\right| \leqslant 1 \tag{95}
\end{equation*}
$$

Now we will claim that $\mathcal{M}\left(|\nabla u|^{2}\right) \in L^{p / 2}$ by using Lemma 3.3 when $f=\mathcal{M}\left(|\nabla u|^{2}\right)$ and $m=N_{1}^{2}$. Let us compute

$$
\begin{aligned}
& \sum_{k=0}^{\infty} N_{1}^{p k}\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>N_{1}^{2 k}\right\}\right| \\
& \leqslant \\
& \left.\leqslant \sum_{k=1}^{\infty} N_{1}^{p k}\left(\sum_{i=1}^{k} \varepsilon_{1}^{i}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} N_{1}^{2(k-i)}\right\}\right|+\varepsilon_{1}^{k}| | x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>1\right\} \mid\right) \\
& =\sum_{i=1}^{\infty}\left(N_{1}^{p} \varepsilon_{1}\right)^{i}\left(\sum_{k=i}^{\infty} N_{1}^{p(k-i)}\left|\left\{x \in \Omega: \mathcal{M}\left(|f|^{2}\right)(x)>\delta^{2} N_{1}^{2(k-i)}\right\}\right|\right) \\
& \quad+\sum_{k=1}^{\infty}\left(N_{1}^{p} \varepsilon_{1}\right)^{k}\left|\left\{x \in \Omega: \mathcal{M}\left(|\nabla u|^{2}\right)(x)>1\right\}\right| \\
& \leqslant C \sum_{k=1}^{\infty}\left(N_{1}^{p} \varepsilon_{1}\right)^{k}<+\infty
\end{aligned}
$$

where we used Corollary 4.20 and (95). Also we can choose ε_{1} so that $N_{1}^{p} \varepsilon_{1}<1$ since N_{1} is a universal constant depending on the dimension and ellipticity. So we can take ε, and find the corresponding $\delta>0$, also ε_{1}. By this estimate and Lemma 3.3, $\mathcal{M}\left(|\nabla u|^{2}\right) \in L^{p / 2}(\Omega)$. Thus $\nabla u \in L^{p}(\Omega)$.

Now suppose that $1<p<2$. For any $g \in L^{q}\left(\Omega, \mathbb{R}^{n}\right)$ and A^{T}, a transpose matrix of A, consider the following equation:

$$
\begin{cases}-\operatorname{div}\left(A^{T}(x) \nabla v(x)\right)=\operatorname{div} g & \text { in } \Omega, \tag{96}\\ v=0 & \text { on } \partial \Omega\end{cases}
$$

Then

$$
\begin{aligned}
\int_{\Omega} f \nabla v d x & =-\int_{\Omega} \operatorname{div} f v d x=\int_{\Omega} \operatorname{div}(A \nabla u) v d x \\
& =-\int_{\Omega}(A \nabla u)(\nabla v) d x=-\int_{\Omega} \nabla u\left(A^{T} \nabla v\right) d x \\
& =\int_{\Omega} u \operatorname{div}\left(A^{T} \nabla v\right) d x=\int_{\Omega} u(-\operatorname{div} g) d x=\int_{\Omega} \nabla u g d x .
\end{aligned}
$$

By above, note that $\|\nabla v\|_{L^{q}} \leqslant C\|g\|_{L^{q}}$,

$$
\begin{aligned}
\|\nabla u\|_{L^{p}(\Omega)} & =\sup _{0 \neq g \in L^{q}(\Omega)} \frac{\left|\int_{\Omega} \nabla u g\right|}{\|g\|_{L^{q}(\Omega)}} \leqslant \frac{\left|\int_{\Omega} \nabla v f\right|}{\|g\|_{L^{q}(\Omega)}} \\
& \leqslant \frac{\|\nabla v\|_{L^{q}}\|f\|_{L^{p}}}{\|g\|_{L^{q}}} \leqslant C\|f\|_{L^{p}},
\end{aligned}
$$

which completes the proof.

Acknowledgments

We would like to thank Professor Lihe Wang for leading us into this direction of research and for many enlightening conversations in the course of our graduate studies and also after graduation to date.

References

[1] F. Almgren, L. Wang, Mathematical existence of crystal growth with Gibbs-Thomson curvature effects, J. Geom. Anal. 10 (1) (2000) 1-100.
[2] S. Byun, L. Wang, Elliptic equations with BMO coefficients in Reifenberg domains, Comm. Pure Appl. Math. LVII (2004) 1283-1301.
[3] L.A. Caffarelli, X. Cabré, Fully Nonlinear Elliptic Equations, Amer. Math. Soc. Colloq. Publ., vol. 43, American Mathematical Society, Providence, RI, 1995.
[4] L.A. Caffarelli, L. Peral, On $W^{1, p}$ estimates for elliptic equations in divergence form, Comm. Pure Appl. Math. 51 (1) (1998) 1-21.
[5] L.C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, 1998.
[6] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426.
[7] Y. Li, L. Nirenburg, Estimates for elliptic systems from composite material, Comm. Pure Appl. Math. 56 (7) (2003) 892-925.
[8] Y. Li, M. Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal. 153 (2) (2000) 91-151.
[9] E.M. Stein, Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, in: Monographs in Harmonic Analysis, vol. III, in: Princeton Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993.
[10] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2) (2003) $381-396$.

[^0]: E-mail address: kum@math.utexas.edu.

