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Transcriptional repression by Suppressor of Hairless involves the
binding of a Hairless-dCtBP complex in Drosophila
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Notch is the receptor for a conserved signaling blastoderm stage (Figure 1a–b9). Sim confers to these cells
a mesectodermal identity [20]. We have previously shownpathway that regulates numerous cell fate

decisions during development [1]. Signal that Su(H) has a dual function in the regulation of sim
expression. First, Su(H) directly inhibits the expressiontransduction involves the presenilin-dependent

intracellular processing of Notch and the nuclear of the sim gene in the neuroectoderm. In Su(H) mutant
embryos derived from germ-line clones (GLC), both en-translocation of the intracellular domain of Notch,

NICD [2–6]. NICD associates with Suppressor of dogenous sim and a sim-lacZ transgene that mimics the
expression of sim are ectopically expressed in 2–3 rowsHairless [Su(H)], a DNA binding protein, and

Mastermind (Mam), a transcriptional coactivator of neuroectodermal cells (Figure 1c,c9; see [12]). Second,
Su(H) upregulates the expression of sim in the mesecto-[7–9]. In the absence of Notch signaling, Su(H) acts

as a transcriptional repressor [10, 11]. Repression derm. Transcriptional activation by Su(H) depends on
Notch signaling, but repression by Su(H) is independentby Su(H) is relieved by the activation of Notch

[12–16]. In the Drosophila embryo, this of Notch activity [12].
transcriptional switch from repression to activation is
important for patterning the expression of the Hairless is a nuclear protein that binds Su(H) and antago-
single-minded (sim) gene along the dorsoventral nizes Notch activity in numerous cell fate decisions [17,
axis [12]. Here, we investigate the mechanisms by 18, 21, 19]. It is, however, unclear how Hairless inhibits
which Su(H) inhibits the expression of Notch target transcriptional activation by Su(H). One hypothesis is that
genes in Drosophila. We show that Hairless, an Hairless promotes repression by Su(H). Our previous anal-
antagonist of Notch signaling [17–19], is required ysis of the sim promoter allowed us to test for the first
to repress the transcription of the sim gene. Hairless time whether Hairless is required for Su(H)-dependent
forms a DNA-bound complex with Su(H). repression. The expression of the sim gene was analyzed
Furthermore, it directly binds the Drosophila in embryos that lack both the maternal and the zygotic
C-terminal Binding Protein (dCtBP), which acts as a contributions of Hairless. In these Hairless GLC embryos,
transcriptional corepressor. The dCtBP binding motif sim-lacZ is ectopically expressed in cells located dorsally
of Hairless is essential for the function of Hairless to the mesectoderm (Figure 1d,d9). This ectopic expres-
in vivo. We propose that Hairless mediates sion in the neuroectoderm is similar to the one observed
transcriptional repression by Su(H) via the in Su(H) mutant embryos (Figure 1c,c9; see [12]). Thus,
recruitment of dCtBP. Hairless is required for the repression of sim in the same
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Current Biology 2001, 11:789–792 of sim in neuroectodermal cells. We therefore envisage that
Hairless and Su(H) act together to repress transcription.

0960-9822/01/$ – see front matter This implies that Hairless must bind to a DNA bound 2001 Elsevier Science Ltd. All rights reserved.
form of Su(H). We have therefore reexamined whether
Hairless and Su(H) can form a DNA bound complex in
a gel retardation assay. Hairless and a truncated version
of Hairless that binds Su(H) (H[1–293]) are shown toResults and discussion

The sim gene is expressed in a single row of cells abutting supershift a Su(H)-oligonucleotide complex (Figure 1e).
We conclude that Hairless associates with DNA via Su(H).the mesoderm in the Drosophila embryo at the cellular
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Figure 1 Figure 2

Hairless represses the expression of the sim gene and binds DNA via
Su(H). (a) Schematic diagram of the sim-lacZ construct. The 2.5
kb of sim 59 regulatory sequences that drive lacZ expression contain
ten Su(H) binding sites (in red) [12]. (b–d9) Lateral views of (b) a
wild-type embryo and of (c) Su(H) and (d) Hairless (H) GLC mutant
embryos. The expression of sim-lacZ was analyzed by in situ Hairless cooperates with Su(H) to inhibit Notch signaling. Cuticular
hybridization. Su(H)del47 and HE31 mutant GLC embryos were obtained preparations from (a) wild-type, (b) hs-H[1–1076]/1, (c) hs-Su(H)/
as described previously [12, 33]. Females were mated with sim- hs-H[1–1076], (d) hs-Su(H)/1, (e) hs-H[1–1061]/1, and (f) hs-
lacZ Su(H)del47/CyO ftz-lacZ and sim-lacZ H2/TM3 Sb ftz-lacZ males, Su(H)/hs-H[1–1061]. The hs-Su(H)/1, hs-H[1-1076]/1, and hs-
respectively. Enlarged views are shown in (b9,c9,d9). Panels (b) and Su(H)/hs-H[1–1076] flies were heat-shocked for 30 min at 378C 6
(c) are taken from [12]. (e) Gel retardation analysis of the Su(H)- hr after pupae formation (APF). The hs-H[1–1061]/1 and hs-Su(H)/
Hairless complex. A radiolabeled 43mer oligonucleotide that hs-H[1–1061] flies were heat-shocked 3 times for 30 min at 378C
contains two consensus binding sites for Su(H) (sequence available between 3 and 7 hr APF. Under these heat shock conditions, hs-
upon request) binds in vitro-translated Su(H) (lane 3, arrowhead) Su(H)/hs-H[1–1076] pupae do not develop. Su(H) strongly enhances
but neither in vitro-translated H[1–1076] nor H[1–293] (lanes 1 and the inhibition of Notch signaling by H[1–1076]. In contrast, Su(H)
2; similar results are seen with oligonucleotides containing a single does not enhance inhibition by H[1–1061]. The hs-Su(H), hs-
Su(H) binding site). H[1–1076] supershifts the Su(H)-oligonucleotide H[1–1076] and hs-H[1–1061] lines are described in [17, 30, 34].
complex (lane 4, asterisk). H[1–293], which binds Su(H) [22], also
supershifts the Su(H)-DNA complex (lane 5, asterisk). Gel retardation
was carried out as previously described [22] except that salmon sperm
DNA (0.2 mg/ml) was used as a nonspecific competitor.

dorsal thorax (Figure 2c). This shows that Su(H) and Hair-
less strongly synergize to inhibit Notch signaling in this
experimental situation. This synergy between Hairless and

To test whether Hairless is able to cooperate with Su(H) Su(H) was also seen for the regulation of sim expression
in vivo, we have used an assay based on the expression in the mesectoderm (data not shown), as well as during
of Hairless and Su(H) during pupal development. Lateral wing development [25]. These findings suggest that this
inhibition mediated by Notch signaling controls the spac- synergy represents a general feature of the function of
ing of bristle sensory organs on the dorsal thorax of the fly these two genes. These observations are not consistent
(Figure 2a; [23]). Increasing the level of Notch signaling with the titration model described above, but rather they
results in the determination of a reduced number of sense support the hypothesis that Hairless acts in a Su(H)-
organs. Conversely, decreasing the level of Notch signal- dependent manner to antagonize Notch signaling activity.
ing leads to an increased density of sense organs. Similarly,
overexpression of Su(H) under heat-shock control de-
creases sense organ density, while overexpression of Hair- We next investigated the mechanism by which Hairless

might regulate transcription. Sequence analysis of Hair-less has the opposite effect [17, 24]. Control flies in which
the expression of either Su(H) or Hairless was induced less identifies a putative binding site for the Drosophila

C-terminal Binding Protein (dCtBP; Figure 3a). This siteunder mild heat shock conditions (30 min at 378C) display
only a weakly decreased or increased bristle density, re- is located at the very C terminus of the Hairless protein.

In Drosophila and mammals, CtBP is a transcriptional core-spectively (Figure 2b,d). The titration model proposed
earlier [22] predicts that when Su(H) and Hairless are si- pressor [26–29]. We therefore tested whether Hairless binds

to dCtBP. The full-length Hairless protein, H[1–1076],multaneously overexpressed, they should counteract each
other’s activity to produce an intermediate phenotype. In interacts with dCtBP in a yeast two-hybrid assay (Fig-

ure 3b). In contrast, a truncated version of Hairless in whichcontrast to this prediction, low-level expression of Hairless
and Su(H), under the same mild heat shock conditions, the last 15 amino acids had been deleted, H[1–1061], did

not bind to dCtBP. This shows that the Hairless-dCtBPleads to a dramatic increase in sense organ density on the
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Figure 3

Hairless binds to dCtBP. (a) Schematic
representation of the Hairless protein. The
position of the Su(H) binding domain [22, 35]
and of the putative binding site for dCtBP
are indicated in blue and red, respectively. The
putative dCtBP interaction motif of Hairless
is compared with the dCtBP binding sites of
various Drosophila proteins and with the
CtBP binding site of the viral E1A protein
[26–29]. (b) b-galactosidase filter assay
showing that the H[1–1076] protein and the
H[1052–1076] peptide binds to dCtBP. No
interaction was detected between H[1–1061]
and dCtBP. Su(H) was used as a positive
control. The Su(H)-B42, dCtBP-VP16, GAL4-
H[1–1076], and GAL4-H[1–1061]
constructs are described in [29, 30, 36]. The
GAL4-H[1051–1076] construct was
obtained by PCR subcloning. (c) A GST-
dCtBP fusion protein [29] binds the
H[1–1076] protein (lanes 1–3) but not the
H[1–710] protein (lanes 4–6). Input lanes
show 10% of the radiolabeled proteins used
for interaction. Interactions were performed
as previously described [22] except that 0.75
M NaCl was used in the last wash.

interaction strictly depends on the conserved C-terminal These results therefore suggest that Hairless requires the
binding of dCtBP to repress the expression of Notchpart of Hairless that contains the dCtBP binding site.

Furthermore, a small C-terminal peptide, H[1052–1076], target genes.
is sufficient to bind dCtBP (Figure 3b). Finally, a specific
interaction between Hairless and dCtBP is also observed The role of dCtBP in repressing the expression of sim can-

not easily be tested genetically. Indeed, dCtBP is a core-in vitro with a GST pull-down assay. H[1–1076], but not
H[1–710] or H[1–1061], is efficiently retained by a GST- pressor of Snail, and in dCtBP mutant embryos derived

from GLC, the repression activity of Snail is abolisheddCtBP fusion protein (Figure 3c; data not shown). This
in vitro interaction indicates that the Hairless-dCtBP in- [27]. This in turn leads to the ectopic expression of sim
teraction is likely to be direct. We conclude that the con-
served C-terminal part of Hairless contains a motif neces- Figure 4
sary and sufficient to bind dCtBP.

To test the functional significance of this binding site,
we have used the in vivo assay described above (Figure 2).
The expression of a truncated version of Hairless that does
not bind dCtBP, H[1–1061], does not lead to an increased
density of sense organs (Figure 2e; see also [30]) and does
not rescue the loss of Hairless function [30]. Thus, the last
15 amino acids of Hairless are required for the activity of the
protein. Interestingly, flies overexpressing both H[1–1061]
and Su(H) display a wild-type phenotype (Figure 2f). This
shows that H[1–1061] is unable to cooperate with Su(H)
to block Notch signaling. Nevertheless, H[1–1061] ex-
pression suppresses the loss-of-bristle phenotype associ-
ated with increased levels of Su(H) (Figure 2f and data
not shown). Since H[1–1061] binds Su(H) [22, 30], it
is possible that H[1–1061] proteins form nonproductive

Hairless links Su(H) to dCtBP. The repression of Notch target genescomplexes with Su(H). Accordingly, the residual activity by Su(H) is mediated by Hairless and dCtBP. NICD would compete
of the mutant HRP1 protein, which carries a 68 amino acid with Hairless to bind Su(H). NICD would then allow the recruitment

of the coactivator Mam.C-terminal deletion [30], might result from its ability to
sequester Su(H) without actively repressing transcription.
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