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Background: Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is a crucial transcription factor mediating
protection against oxidants. Nrf2 is negatively regulated by cytoplasmic Kelch-like ECH associated protein 1
(Keap1) thereby providing inducible antioxidant defence. Antioxidant properties of Nrf2 are thought to be
mainly exerted by stimulating transcription of antioxidant proteins, whereas its effects on ROS productionwithin
the cell are uncertain.
Methods: Live cell imaging and qPCR in brain hippocampal glio-neuronal cultures and explants slice cultureswith
graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-type (WT), and Keap1-knockdown (Keap1-KD).
Results:Wehere show that ROS production in Nrf2-KO cells and tissues is increased compared to theirWT coun-
terparts. Mitochondrial ROS production is regulated by the Keap1–Nrf2 pathway by controlling mitochondrial
bioenergetics. Surprisingly, Keap1-KD cells and tissues also showed higher rates of ROS production when
compared to WT, although with a smaller magnitude. Analysis of the mRNA expression levels of the two NOX

isoforms implicated in brain pathology showed, that NOX2 is dramatically upregulated under conditions of
Nrf2 deficiency, whereas NOX4 is upregulated when Nrf2 is constitutively activated (Keap1-KD) to a degree
which paralleled the increases in ROS production.
Conclusions: These observations suggest that the Keap1–Nrf2 pathway regulates bothmitochondrial and cytosol-
ic ROS production through NADPH oxidase.
General significance: Findings supports a key role of the Keap1–Nrf2 pathway in redox homeostasis within the
cell.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nuclear factor (erythroid-derived 2) factor 2 (Nrf2) is increasingly
being recognized as a crucial transcription factor which mediates
protection against electrophiles and oxidants and enhances cell survival
inmany tissues [1]. Under homeostatic conditions, Nrf2 is negatively reg-
ulated by cytoplasmic Kelch-like ECH associated protein 1 (Keap1). The
Keap1–Nrf2 system orchestrates a very powerful inducible antioxidant
defence, andmore recently has been also shown to contribute to cellular
bioenergetics by controlling substrate availability for mitochondrial
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respiration [2,3]. Nrf2 binds to antioxidant response elements (AREs),
specific sequences present in the promoter regions of its target genes,
as a heterodimer with a small Maf protein, and stimulates transcription
of antioxidant proteins [4]. These include gluthatione S-transferases
(GSTs), NAD(P)H: quinone oxidoreductase 1 (NQO1), thioredoxin,
thioredoxin reductase, as well as proteins involved in scavenging reac-
tive oxygen species (ROS) and glutathione (GSH) biosynthesis and
regeneration. ROS have been implicated in physiological functions such
as for example signal transduction cascades and calcium signalling [5],
but excess of ROSmay lead to cell death via oxidation ofmembrane lipids
(lipid peroxidation) and oxidation of proteins, and is a fundamental
mechanism underlying many human diseases such as diabetes and
neurodegenerative diseases [6]. The degree of tissue damage varies
depending on tissue composition and properties and on the balance of
oxidative stress and antioxidant defence within the cells. The brain is
particularly susceptible to oxidative damage due to its high levels of
oxidizable polyunsaturated fatty acids (PUFAs), high rates of ROS
production given its high oxygen consumption, and low levels of endog-
enous antioxidants [7,8]. Importantly, the levels of ROS within a cell are
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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not only determined by the availability of scavengers of ROS, but also by
systems or enzymes producing ROS either as the main product or as a
by-product of their catalytic reactions. ROS are produced during
mitochondrial respiration and the mitochondria are considered as one
of the main ROS producers within the cell. Given that Nrf2 affects
substrate availability for mitochondrial respiration, it is therefore likely
to also affect mitochondrial ROS production. However, the experimental
evidence for the effect of Nrf2 on the generation of ROS specifically in
mitochondria is limited.

Besides mitochondria, the NADPH oxidase system is now widely
recognized as a key player in intracellular ROS homeostasis and as one
of the major producers of ROS within the cell [6]. Initially discovered
as the enzyme responsible for the oxidative burst by which leukocytes
kill bacteria [9], the NADPH oxidase is now considered to play a role in
almost all tissue types [10]. There are different isoforms (NOX1-NOX5
and DUOX1 and 2) of this enzyme and the expression of different
subtypes varies amongst tissue types [10]. NOX2 is the main isoform of
NADPHoxidase in brain tissues such as glia andneurons [10–12] and con-
tributes to brain injury but NOX4 also seems to play a role [13]. Both
NOX2 and NOX4 activation has been linked to brain pathology, imply-
ing that NADPH oxidase mediated ROS production participates in
acute and chronic neurological disease [13–15]. Several lines of evi-
dence strongly suggest that NADPH oxidase regulates Nrf2 activation;
indeed, this has been shown for NOX4 in pulmonary epithelial cells
and cardiomyocytes [16,17]. Whether the reverse holds true, namely
whether NADPH oxidase expression and activation are regulated by
the Keap1–Nrf2 pathway, is much less understood. Cells and animals
with graded expression of Nrf2, i.e. Nrf2-knockout (Nrf2-KO), wild-
type (WT), and Keap1-knockdown (Keap1-KD) [18] represent an
ideal genetic model system in which to address the role of Nrf2 on
NADPH oxidase expression and to test the hypothesis that there is a re-
ciprocal interaction between Nrf2 activity and NADPH oxidase expres-
sion, thereby forming a negative feedback regulatory loop. Such
information is important since the Keap1–Nrf2 pathway is increasingly
targeted to prevent and treat human disease and several clinical trials
have been completed or are underway [19]. Moreover, BG12 (an
orally-bioavailable preparation of dimethyl fumarate), a drug licensed
for the treatment of multiple sclerosis, exerts its effect via activation
of theNrf2 antioxidant pathway [20].We therefore aimed tofirstly, pro-
vide a detailed analysis of the interaction between ROS and the Nrf2
pathway. Secondly, we determined the NOX expression levels in prima-
ry glio-neuronal and brain explant slice cultures, and in mouse embry-
onic fibroblasts (MEFs) isolated from WT, Nrf2-KO and Keap1-KD
animals to establishwhether there is a correlationwith ROS production.

We found that the Keap1–Nrf2 pathway modulates ROS production
in primary glio-neuronal and brain explant slice cultures. ROS production
in Nrf2-KO cells and tissues was increased dramatically in comparison
with their WT counterparts. This increase was seen in mitochondrial
ROS, and was even more pronounced in overall ROS production.
Surprisingly, Keap1-KD cells and tissues, in which Nrf2 is constitutively
upregulated, also showed higher rates of ROS production when com-
pared to WT, although with a much smaller magnitude. Analysis of
the mRNA expression levels of the two NOX isoforms implicated in
brain pathology showed, that NOX2 was dramatically upregulated
under conditions of Nrf2 deficiency, whereas NOX4 was upregulated
when Nrf2 is constitutively activated (Keap1-KD) to a degree which
paralleled the increases in ROS production.

2. Experimental—materials and methods

2.1. Mouse embryonic fibroblast cultures

Three lines of mouse embryonic fibroblasts (MEFs) were used for
experiments. These were wild-type (WT), Keap1-knockout (Keap1-
KO) andNrf2-knockout (Nrf2-KO). Cellswere grown in IscovesModified
Eagle's medium (IMDM; Gibco) with each 500 ml bottle supplemented
with 5 μg epidermal growth factor (EGF; Invitrogen), 5 ml of insulin
transferrin-selenium (ITS; Gibco) and 50 ml foetal bovine serum (FBS;
Gibco) and kept at 37 °C with 5% CO2. Cells were maintained in culture
and split regularly to maintain them at a maximum 90% confluency.
Cells were seeded onto coverslips 24 h prior to experiments.

2.2. Cortical cell cultures

Mixed co-cultures of cortical neurons and glial cells from postnatal
(P0–3) WT, Nrf2-KO or Keap1-KD SKH-1 hairless mice (from our
breeding colony at the University of Dundee) were prepared according
to a modified protocol described by Deitch and Fischer [21]. Mixed co-
cultures were used rather than pure neuronal cultures as these provide
a more physiological model than separate cultures of individual cell
types. In addition, neuron–astrocyte interaction is vitally important in
terms of bioenergetics and antioxidant defence (astrocytes supporting
neurons with precursors of GSH)—processes in which Nrf2 plays an
important role. Mouse brains were quickly removed and neocortical
tissue was cut and minced in ice-cold HBSS (Ca2+, Mg2+-free, Gibco-
Invitrogen, Paisley, UK). After treatment with 1% trypsin for 15 min at
37 °C to dissociate the cells, residual trypsin was removed and the tissue
was triturated. The suspension was plated on Poly-D-Lysine/Laminin
coated coverslips and cultured in Neurobasal A medium (Gibco-
Invitrogen, Paisley, UK) supplemented with B-27 and 2 mM l-glutamine
(Gibco-Invitrogen, Paisley, UK). Experiments were carried out after
12–18 DIV to allow maturation of synapses in cultures.

2.3. Cortical explant cultures

Organotypic slice cultures were prepared from embryonic tissue
from littermates of the same WT, Nrf2-KO or Keap1-KD mice as for
the primary cultures according to Stoppini et al. [22] with slightmodifi-
cations [23,24]. Mice were sacrificed according to the British Home
Office ethical guidelines. Brains were rapidly removed and placed into a
chilled dissection medium, containing: EBSS media with 1% penicillin/
streptomycin (Invitrogen) supplemented with 25 mM HEPES (Sigma
Aldrich). Hemispheres were separated and placed on a vibratome
stage (Leica VT1000S) for coronal sectioning at a 250-μm thickness.
Three to six slices were directly transferred to one membrane insert
(PICM0RG50; Millipore) in 6-well plates, containing culturing media:
MEM + EBSS (2:1), 25% horse serum, 2 mM Glutamax, 1% penicillin–
streptomycin (all Invitrogen), 20 mM D-glucose, 0.06% Nystatin (both
from Sigma). Slices were incubated in a humidified 5% CO2 atmosphere
at 37 °C, and medium was replaced twice a week. On the 12–14 DIV
explants were excised from the biomembrane and imaged in HBSS
(Invitrogen).

2.4. Imaging of intracellular ROS generation and lipid peroxidation

ROS generation was measured with hydroethidine (HEt; 2–10
μM—mostly superoxide) and MitoSOX. Both probes were obtained
from Invitrogen, Life science (Paisley, UK). All imaging was performed
in HBSS. To avoid accumulation of oxidized products, HEt was not pre-
incubated, but was present in solutions throughout the experiments
both in glio-neuronal co-cultures and explants slice cultures. To target
mitochondrial ROS production, cells were loaded with MitoSOX
(10 μM) for 10min andwashed prior to experiments. Rates of lipid per-
oxidation in glio-neuronal cultures and explants slice cultures were
measured using C11-BODIPY (581/591) (Invitrogen, Life science, Pais-
ley, UK). Glio-neuronal co-cultures were pre-incubated for 20 min
with C11-BODIPY 581/591 (2 μM; Molecular Probes, Eugene, OR).

Imaging of reactive oxygen species with HEt was performed with a
CCD camera andwith a confocalmicroscope. Recordings on the CCD cam-
erawere performed capturingfluorescence images on an epifluorescence
inverted microscope equipped with a 20× fluorite objective (Cairn
Research, Kent, UK). Excitation wavelength was selected using a
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10 nm bandpass filter centred on 530 nm light. Emitted fluorescence
was detected by a cooled CCD camera after passing through a long-
pass filter and 12-bit resolution. HEt was excited by illumination at
530 nm. Ratiometric HEt fluorescence was recorded with excitation
light at 380 and 530 nm.

We also imaged ROS with dihydroethidium using confocal
microscopy. Confocal images were obtained with a Zeiss 710 LSM
with an integrated META detection system. HEt was excited with the
565 laser and light emitted at 580–620 nm was measured. To assess
lipid peroxidation, C11-BODIPY (581/591) was excited using the 488
and 543 nm laser line and fluorescence measured between 505 to
540 nm and 560–650 nm accordingly (40× objective). MitoSOX images
were obtained using a 63× objective to increase precision in measuring
fluorescent signals immediately over mitochondria. MitoSOX were
excited using the 565 nm laser line and fluorescence was measured
above 580 nm. Phototoxicity and photobleaching of cells were mini-
mized by limiting the light exposure to the time of acquisition of the
images. Fluorescent images were acquired with a frame interval of
10 s. Data were analysed using software from Andor (Belfast, UK).
Illumination intensity was kept to a minimum (at 0.1–0.2% of laser out-
put) to avoid phototoxicity and the pinhole set to give an optical slice of
~2 μm. Rates of mitochondrial ROS increase were calculated at different
time points after exposure to rotenone or pyruvate and compared to
baseline rates of ROS production.

HEt, MitoSOX and Bodipy are dynamic dyes; i.e. meaningful quanti-
fication of these dyes is only achieved by measuring increases in the
rates of fluorescence rather than absolute fluorescence at a given time
point. Therefore, HEt data, MitoSOX and Bodipy data were analysed by
determining the slope of the trace after normalization to the first data
point.

2.5. Analysis of mRNA expression levels

The primers and probes used to quantify the levels of mRNA
for NOX2 and NOX4 were obtained from Applied Biosystems
(Mm01287743_m1and Mm00479246_m1). Total RNA was extracted
from WT, Nrf2-KO, and Keap1-KD glio-neuronal co-cultures (n = 3)
or from WT, Nrf2-KO, and Keap1-KO MEFs (n = 3) using RNeasy Kit
(Qiagen Ltd.). Total RNA (500 ng) was reverse transcribed into cDNA
with Omniscript Reverse Transcription Kit (Qiagen Ltd.). Real-time
quantitative PCR was performed on Applied Biosystems 7500 Real
Time PCR System. The TaqMan® data for the mRNA species were
normalized using β-actin (mouse ACTB, Applied Biosystems,
Mm00607939_s1) as an internal control.

2.6. Statistical analyses

Statistical analyses (Student t-tests)were performed using SPSS 17.0
(Chicago, IL, USA). The significance level was set at p b 0.05 and all
data are given as mean ± standard error of the mean (SEM) or mean ±
standard deviation (for measurements of mRNA expression). Analyses
were performed on single cells if not explicitly stated otherwise.

3. Results

3.1. NADPH oxidase contributes to ROS production in Nrf2-knockout MEFs

We first examined rates of ROS production in mouse embryonic
fibroblasts of Keap1-KO and Nrf2-KO mice. Surprisingly, we found that
basal rates of ROS production as measured with dihydroethidium
fluorescence in Nrf2-KO MEFs were similar to WT (p = ns.). Keap1-
KO MEFs had significantly lower rates of ROS production when com-
pared to either Nrf2-KO (p b 0.01) or WT MEFs (n = 7; p b 0.05;
Fig. 1A and B). Ionomycin is a Ca2+ ionophore and amongst other effects
has been used as a potent activator to stimulate ROS production in
several cell types via activation of NADPH oxidase [25,26].We therefore
measured ROS production in MEFs after treatment with ionomycin.
Ionomycin increased the rate of ROS production in all treatment groups
when compared to basal ROS production. However there were no
significant differences between the groups (each group n = 7; Fig. 1C,
D). We next asked whether the increase in ROS production in MEFs
after stimulation with ionomycin can be attributed to an increased
ROS production through NADPH oxidase. Blocking NADPH oxidase
with AEBSF (20 μM) significantly (p b 0.01) reduced ionomycin induced
ROS production in Nrf2-KO MEFs whereas there was no inhibition of
ionomycin induced ROS production in Keap-1 KO and WT MEFs
(Fig. 1E) suggesting ROS production through NADPH oxidase contrib-
utes significantly to ionomycin induced increases in ROS production in
Nrf2-KO MEFs.

Next, we evaluated the expression of NADPH oxidase in MEF cells of
the three genotypes. It has been reported previously that NOX4 is
expressed in fibroblasts [27–29]. Besides NOX4, some studies have
reported NOX2 expression in adventitial fibroblasts on a protein level
[30,31]. Quantitative real-time PCR analysis in WT, Nrf2-KO and
Keap1-KO MEFs showed that the mRNA levels of NOX4 were lowest in
Keap1-KO, higher in Nrf2-KO, and highest in WT MEFs (Fig. 2). NOX2
mRNA was not detectable in any of the genotypes of MEFs. The
profound (~90%) reduction in NOX4 mRNA in Keap1-KO MEFs relative
to their WT counterparts is consistent with the previously reported
transcriptional down-regulation of NOX4 expression by Nrf2 in endo-
thelial cells [32]. The lower levels of NOX4 mRNA in Nrf2-KO MEFs in
comparison with WT cells were at first sight surprising. However, this
is consistent with the facts that: (i) inhibition of histone deacetylase
(HDAC) 3 has been shown to decrease NOX4 transcription in human
endothelial cells [33], (ii) similarly to other HDACs, HDAC3 is inactivated
by oxidative stress [34], and (iii) compared toWT cells, the levels of GSH
are lower in Nrf2-KOMEFs, whereas the levels of ROS are higher [2,35].
It can be therefore proposed that, in the absence of Nrf2, the increased
levels of ROS lead to inactivation of HDAC3, and consequently to
reduced expression of NOX4.

3.2. ROS production in mouse glio-neuronal cultures and explants cultures

Strong evidence indicates that ROS play a critical role in neuronal
toxicity [7,36–38]. Indeed, the sequelae of neurodegenerative disease
and acute neurological disorders may be largely mediated by ROS
[15,39]. NADPH oxidase plays an important role in ROS production in
the brain, and both NOX2 and NOX4 isoforms have been implicated
[13,14]. We therefore next examined the basal rates of ROS production
in brain hippocampal glio-neuronal and explant slice cultures isolated
from mice with graded levels of Nrf2. As Keap1-KO mice die shortly
after birth and cannot be used for breeding [40], we used WT, Nrf2-KO
and Keap1-KD mice for these experiments. Keap1-KDmice carry floxed
alleles of the keap1 gene,which reduces its expression and consequently
increases the levels of Nrf2, and thus represent a genetic model for
constitutive Nrf2 activation [18].We have previously shown that the ac-
tivities of several Nrf2-dependent enzymes are higher in Keap1-KD an-
imals compared to their WT counterparts [2]. As expected, we found
that the rate of ROS production was dramatically increased in Nrf2-KO
when compared to WT (Fig. 3) in both primary hippocampal cultures
(~6-fold increase; p b 0.001; Fig. 3A and B) as well as explant slice cul-
tures (all; ~8-fold increase; p b 0.001 Fig. 3C and D). Surprisingly, the
rates of ROS production were also increased in Keap1-KD compared to
WT, although to a lesser extent (1.5-fold increase in primary cultures;
p = ns.; 2-fold increase in explant cultures; p b 0.01). Increases in ROS
production were also paralleled by increased lipid peroxidation as
measured with Bodipy-11 in explants cultures (Fig. 4) with a significant
increase in lipid peroxidation in Nrf2-KO when compared to WT (p b

0.01) and a slight, but non-significant increase in Keap1-KD when
compared to WT. These data strongly suggest that NOX-mediated ROS
production induced oxidative stress, resulting in lipid oxidation in
Nrf2-KO but not in Keap1-KD cells.



Fig. 1. Ionomycin induced ROS production in Nrf2-KO, Keap1-KO and wild-type (WT) mouse embryonic fibroblasts (MEFs). ROS production asmeasured with HEt fluorescence is significantly
reduced in Keap1-KO when compared to Nrf2-KO and WT (A and B). The graphs show the mean (and SEM) rate of ROS production in a representative experiment (A). Histograms
quantifying rates of ROS production in the three groups (B; each n = 7 coverslips). Treatment with ionomycin, an activator of NADPH oxidase, induced ROS production in all three
genotypes (n = 7 coverslips; C and D). C: Increase of ROS production in MEFs after treatment with ionomycin as measured with HEt representative experiment (mean and SEM; n =
4 cells); histogram summarizing ROS increase after ionomycin treatment; co-treatment of MEFs with an inhibitor of NADPH oxidase, AEBSF (20 μM), during activation with ionomycin
reduced the rate of ROS production when compared to ionomycin treatment only in Nrf2-KO MEFs (E). Note that inhibition of NADPH oxidase in Keap1-KO and WT MEFs activated
with ionomycin did not have any effect on ROS production when compared to ionomycin treatment alone. Error bars indicate SEM. **p b 0.01; *p b 0.05.
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Real-time PCR using brain hippocampal glio-neuronal cultures of
WT, Nrf2-KO, and Keap1-KD mice showed that NOX2 mRNA levels are
robustly elevated in Nrf2-KO (~7-fold increase compared to WT; p b

0.01; Fig. 5A), whereas NOX2 mRNA expression in Keap1-KD was not
different from WT cells. The elevated NOX2 expression in the absence
of Nrf2, when the intracellular levels of ROS are high, may render the
Fig. 2. mRNA expression levels of NOX4 in Nrf2-KO, Keap1-KO and wild-type (WT) MEFs.
Histogram quantifying relative mRNA expression with WT mRNA set as 1 (mean ± SD);
**p b 0.01; ***p b 0.001.
brain tissue especially vulnerable to damaging agents, such a pesticides,
β-amyloid, glutamate, emphasizing the critical role of Nrf2 in neuropro-
tection. Interestingly NOX4 mRNA expression levels were decreased by
~50% in Nrf2-KOwhen compared toWT cells (p b 0.05; Fig. 5B), consis-
tent with the findings in MEFs (Fig. 2). However, in contrast to the MEF
data, Keap1-KD glio-neuronal cells showed slightly higher (~1.5-fold)
NOX4mRNA expression when compared toWT. Together, these results
suggest that the relationship between Nrf2 and NOX4 is complex and
tissue-specific. In brain cells, the primary mechanism of regulation of
NOX4 expression by Nrf2 is most likely indirect, i.e. determined by the
levels of ROS and consequently HDAC activity, and not through direct
binding of Nrf2 to the promoter of NOX4 as in endothelial cells. This
conclusion is further supported by the fact that the magnitude of the
relative increase in NOX4 mRNA levels in Keap1-KD brain cultures
(~1.5-fold) and the increase in NOX2mRNA levels in Nrf2-KO brain cul-
tures (~7-fold; Fig. 5) paralleled the ROS increases which we observed
in both primary glio-neuronal cultures and brain explant cultures
(Fig. 3).
3.3. Mitochondrial ROS in mouse glio-neuronal cultures

Mitochondria are a prominent source of ROS within the cell.
We therefore next examined whether ROS of mitochondrial origin con-
tribute to the overall ROS production in WT, Nrf2-KO, and Keap1-KD



Fig. 3. ROS production in Nrf2-KO, Keap1-KD and wild-type (WT) neuronal co-cultures and organotypic slice cultures. ROS production is significantly higher in Nrf2-KO both in glio-neuronal
co-culture (A and B; WT: n = 49 cells; 3 experiments; Nrf2-KO: n = 70 cells; 3 experiments; Keap1-KD n = 51 cells; 3 experiments) and organotypic slice cultures (C and D WT: n =
72 cells; 3 experiments; Nrf2-KO: n = 62 cells; 3 experiments; Keap1-KD n = 80 cells; 3 experiments). Panel A and C show representative experiments (mean ± SEM) demonstrating
increase in ROS as measured by HEt fluorescence over time for the different groups. B and D summarize normalized ROS production rates in histograms. **p b 0.01; ***p b 0.001;
ns: not significant.
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mouse glio-neuronal co-cultures. Mitochondrial ROS production is
linked to the rate of respiration and therefore also to the mitochondrial
membrane potential, with hyperpolarization contributing to higher
rates of respiration and thus increased electron leak/ROS production.
In full agreementwith our previous studies [2], themitochondrialmem-
brane potential was lower in Nrf2-KO when compared to WT cells,
whereas mitochondria of Keap1-KD cells were slightly hyperpolarized
(Fig. 6G). The basal rates of mitochondrial ROS production, asmeasured
with the mitochondria-specific probe MitoSOX, differed between the
three genotypes. Nrf2-KO showed higher rates of mitochondrial ROS
production (~180% of WT) than WT (p b 0.001; Fig. 6A–F, H, I).
Surprisingly, Keap1-KD also showed higher rates of mitochondrial
ROS production when compared to WT cells (p b 0.001; ~160% of WT;
Fig. 6 A–E, H, I).

To further investigate themechanisms governingmitochondrial ROS
production in Nrf2-KO and Keap1-KD cells, we inhibited complex I with
rotenone (5 μM) (Fig. 6A–C) or increased respiration with pyruvate
(Fig. 6D–F) while monitoring mitochondrial ROS production with
Fig. 4. Rates of lipid peroxidation in Nrf2-KO (n = 5), Keap1-KD (n = 5) and wild-type
(WT; n = 9) organotypic slice cultures.
MitoSOX. Blocking complex I with rotenone, which is recognized as a
powerful mechanism to induce ROS [15,41] led to a dramatic increase
in mitochondrial ROS when compared to basal ROS production in both
WT (p b 0.001) and Keap1-KD cells (p b 0.001; Fig. 6A, B,I). However,
no significant increase in ROS production was observed in Nrf2-KO cells
(p = ns. Fig. 6C,I) upon rotenone administration, suggesting that, in the
absence of Nrf2, the activity of complex I is impaired even at basal state
due to substrate limitation [2]. While the basal level of mitochondrial
ROS production in Nrf2-KO cells was higher than WT cells, the rate of
ROS production in Nrf2-KO cells was comparable to WT cells following
rotenone treatment, indicating that Nrf2-KO cells respond to complex I
inhibition with the same degree of ROS production as WT cells.

Furthermore, this result implies that insufficient supply of substrates
is the main mechanism for mitochondrial ROS generation under basal
conditions. We next explored mitochondrial ROS production under
conditions of increased NADH availability within the cell by adding
pyruvate (5mM) to glio-neuronal co-cultures. Pyruvate increasedmito-
chondrial ROS production compared to basal levels in WT (p b 0.05;
Fig. 6D and I), and in Keap1-KD cells (p=ns; Fig. 6E and I). In sharp con-
trast, administration of pyruvate significantly decreased ROS production
in Nrf2-KO cells (p b 0.001; Fig. 6F and I), in agreement with our previ-
ous studies showing that application of substrates restores the mito-
chondrial membrane potential and decreases ROS [2]. Together, these
results strongly suggest, that limitation of substrates for complex I
and, consequently its impaired activity, is the main reason for mito-
chondrial ROS production in Nrf2 deficiency.

4. Discussion

4.1. ROS production

Previous studies have reported that ROS levels are increased in
Nrf2-KO cardiomyocytes when compared to WT cells [42]. Similar to



Fig. 5.mRNA expression levels of NOX2 in Nrf2-KO, Keap1-KD andwild-type (WT) glio-neuronal co-cultures. Histograms summarizing expression of NOX2 (A) and NOX4 (B)mRNA inmouse
glio-neuronal co-cultures. **p b 0.01; *p b 0.05.
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cardiomyocytes, neurons have high metabolic rates. This is due to high
activity of transmembrane channels and pumps in electrically active
cells with consequent high metabolic demand predominantly covered
Fig. 6. Mitochondrial ROS production in Nrf2-KO, Keap1-KD and wild-type (WT) glio-neuronal co
mean MitoSOX fluorescence of representative experiments in Nrf2-KO (n = 42), Keap1-KD (
(5 μM;A–C;WT (n=16); Nrf2-KO (n=20) andKeap1-KD (n=20) or pyruvate (5mM; D-FW
decreases mitochondrial ROS production in Nrf2-KO neurons (F). Histograms summarizing bas
Nrf2-KO, Keap1-KD andWT neurons. The histogram in I shows rates of mitochondrial ROS prod
Significance levels are indicated above the bars and refer to a comparison between baseline an
by oxidative phosphorylation. We therefore examined ROS production
in brain tissue. We chose to study glio-neuronal co-cultures and brain
slices as we believe that this provides more valuable insight in the
-cultures. Mitochondrial ROS production was measured with MitoSOX. Traces A–F show
n = 46) and WT (n = 32) neurons. Grey background indicates treatment with rotenone
T (n=16); Nrf2-KO (n=22) and Keap1-KD (n=26). Note that treatmentwith pyruvate
al mitochondrial membrane potential (G) and basal mitochondrial ROS production (H) in
uction in Nrf2-KO, Keap1-KD andWT neurons after treatment with rotenone or pyruvate.
d pyruvate or rotenone. **p b 0.01; *p b 0.05.
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physiological and pathophysiological processes in health and disease.
Although Nrf2 mediated neuroprotection has been primarily attributed
to astrocytes [43,44], more recent studies show that regulation of
endogenous antioxidant and Nrf2 signalling is highly dependent on
the interplay between neurons and astrocytes at the neuron–astrocyte
tripartite synapse [45].

We found that ROS production is dramatically increased in brain
tissue from Nrf2-KD mice. Previous studies in Nrf2-KO mice have
shown that Nrf2-target gene products play a role in protection against
oxidative stress in primary cortical astrocytes and in vivo [43,46,47].
Jeffrey Johnson et al. showed that Nrf2-KO neuronsweremore sensitive
to mitochondrial toxins such as rotenone than their WT counterparts.
Using microarray analysis they then found that this vulnerability was
due to Nrf2-KO cells having reduced expression of genes encoding
detoxification enzymes, antioxidant proteins, calcium homeostasis pro-
teins, growth factors, neuron-specific proteins, and signallingmolecules
compared to WT cultures [47]. Furthermore, compared to WT, Nrf2-KO
mice that had been exposed to themitochondrial complex I inhibitor 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) display a much
more rapid dose-dependent decline inmarkers of dopaminergic toxicity,
including decreases in tyrosine hydroxylase levels, in both striatum and
substantia nigra [48]. In addition, numerous studies have shown that
Nrf2-KO mice have enhanced susceptibility to oxidizing stimuli and
glutathione depletion [49]. Whereas it is well established that deletion
of Nrf2 causes ROS accumulation, the origin of these ROS is unknown.

We here show that ROS of mitochondrial origin are upregulated in
brain tissue of Nrf2-KO mice. We have previously shown that Nrf2
impacts on cellular bioenergetics by controlling substrate availability
and the efficiency of mitochondrial fatty acid oxidation [2,3]. Both pro-
cesses affect oxidative phosphorylation and thereby are likely to affect
mitochondrial ROS production. We here found that mitochondrial ROS
production can be decreased by providing substrates, such as pyruvate,
to Nrf2-deficient neurons, further linking metabolic pathways to redox
homeostasis within the cell.

We want to highlight that within the brain glial cells, macrophages
and neurons produce ROS, with all three cell types expressing NADPH
oxidase [6]. ROS are small molecules and ROS induced damage is
not restricted to the cell producing ROS. Thus, measuring intact brain
tissue such as glioneuronal cultures and explants cultures rather than
cells in isolation is important to appreciate the overall impact on brain
tissue.
4.2. Nrf2 and NADPH oxidase

Previous studies have suggested a link between NADPH oxidase
and Nrf2. Thus, in MEFs, suppression of NADPH oxidase with
diphenyleneiodonium reduced activation of Nrf2 and thereby transcrip-
tion of antioxidant enzymes [50]. Similarly, NADPH oxidase and ERK
signalling play a role in hyperoxia-induced Nrf2 transcriptional
response in pulmonary epithelial cells [16]. These findings have been
replicated in studies in vivo and in isolated macrophages showing that
NADPH oxidase redox-mediated signalling is critical in activating Nrf2,
which ultimately terminated lung inflammation [51]. Whether there is
an interaction in the other direction, i.e. whether Nrf2 regulates
NADPH oxidase expression is less clear and may be tissue-specific.
Curiously, it has been reported that Nrf2 negatively regulates the gene
expression of NOX4 in endothelial cells [32], suggesting the existence
of a negative feedback regulation. However, another study points to a
role for Nrf2 in upregulating NOX4 expression. This has been shown
to occur in the mouse and human lung endothelium in response to
hyperoxia [52]. In the present study, we found that, compared to WT,
the expression of NOX2 is upregulated in primary brain hippocampal
glio-neuronal cultures of Nrf2-KOmice,whereasNOX4 is downregulated.
Interestingly, the expression of NOX4 appeared higher in Keap1-KD than
in WT cells, even though the difference was not statistically significant.
The expression of NOX4 in both MEF and glio-neuronal cultures is
lower when Nrf2 is absent (Figs. 2 and 5B), suggesting at first glance,
that Nrf2 is a positive regulator of NOX4 transcription. An alternative
explanation of this result is the following: The absence of Nrf2 promotes
a pro-oxidative environment. This in turn leads to oxidation of redox-
sensitive cysteines in HDAC4 and enzyme inactivation [53]. Inactivation
of HDAC4 ultimately results in decreased transcription of NOX4 [33].
Interestingly, constitutive activation of Nrf2 (by Keap1-knockdown or
knockout) has a divergent outcome in the two tissue types, whereby it
leads to strong suppression of NOX4 expression in MEFs and upregula-
tion in glio-neuronal cultures. Moreover, in contrast to NOX4, deletion
of Nrf2 leads to higher NOX2 expression (Fig. 5A). Together, these
findings indicate that the mechanism by which Nrf2 regulates NADPH
oxidase activity is complex, and that the overall outcome is probably
determined by both direct (promoter binding) and indirect (chromatin
remodelling) effects. Such effects have been previously reported for
other Nrf2-regulated genes. One prominent example is the pentose
phosphate pathway NADPH-generating enzyme, glucose-6-phosphate
dehydrogenase (G6PD), the gene expression of which is profoundly
affected by the activity of Nrf2 [54–56]. Direct effects of Nrf2 activation
(by sulforaphane) on G6PD activity have been shown before [57], espe-
cially in astroglia [58]. It has been suggested that loss of Nrf2 increases
oxidation and nuclear export of the redox-sensitive histone deacetylase,
HDAC4 [56,59]. In turn, the resulting hypoacetylation of the HDAC
targets miR-1 and miR-206 leads to enhanced expression of these
miRs, and consequently, to inhibition of G6PD expression and activity.
It can be proposed that the absence of Nrf2 leads to downregulation of
NOX4 expression by a similar (HDAC4-dependent) mechanism.

Taken together with previous reports by other investigators,
our findings suggest the existence of a negative feedback regulatory
loop between NOX4 and Nrf2. Under homeostatic conditions, NOX4
generates superoxide and hydrogen peroxide, which in turn activate
Nrf2 [17] by oxidizing cysteine sensors and inactivating Keap1. The
activated Nrf2 then inhibits the transcription of NOX4 [32] to lower
ROS production. In the absence of Nrf2, the feedback regulation is
missing, creating a pro-oxidative environment, leading to oxidation of
redox-sensitive cysteines in HDAC4 [53], HDAC4 inactivation and
decreasedNOX4 transcription [33].WhenNrf2 is constitutively activated
(as in Keap1 knockdown or knockout), HDAC4 is fully reduced and
active, leading to enhanced transcription of NOX4, and higher levels of
ROS.

Interestingly, a recent investigation has suggested that Nrf2 controls
neuronal survival in ageing and neurodegenerative disease upstream of
ROS. This study showed that glutathione depletion did not correlate
with ageing, but found that rather the redox environment which was
modulated by a protective treatmentwith anNrf2 activator and nicotin-
amide protected against neuronal damage [60]. We here show that
Nrf2 activity affects the function of two different sources of ROS—
i.e. mitochondrial ROS production and production of ROS via NADPH
oxidase. Our study therefore supports the notion that Nrf2 functions
at the interface between redox and intermediary metabolism and does
not only affect the levels of scavengers of ROS, but also ROS production.
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