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Abstract

We consider tame minimal simple groups of finite Morley rank and of odd type. We show that the
Prifer 2-rank of such a group is bounded by 2. We also find all potential nonalgebraic configurations;
there are essentially four of them, and we delineate them with some precision.
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1. Introduction

The role of groups of finite Morley rank in model theory was first seen in the work of
Zilber on¥-categorical theories ([33], cf. [35]). Motivated by a sense that most interesting
structures occur “in nature,” Cherlin and Zilber independently proposed:

Classification Conjecture. A simple infinite group of finite Morley rank is isomorphic as
an abstract group to an algebraic group over an algebraically closed field.

To date there have been three fruitful lines of attack on this problem. First of all, one
may simply attempt to mimic the theory of algebraic groups. The second line of attack is
to embed the problem in model theory proper. The third line, taken here and in numerous
related recent articles, is to see what can be done by the methods of finite group theory,
consisting of local geometrical analysis and some considerations involving involutions
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(i.e., elements of order 2). These methods may serve to limit the Sylow 2-subgroup
structure severely.

In the classification of the finite simple groyjitsvas noticeable thajuite indirect and
subtle methods are usually required for the classification of “small” simple groups, whereas
“generic” or “large” simple groups can be handled by more direct and elementary methods.
This holds with a vengeance in the case of groups of finite Morley rank. Accordingly work
on simple groups of finite Morley rank has tended to focus on those which are large in
some sense. Here we take up the problem from the other end, and attempt to bring some
order into the study ofinimalsimple groups of finite Morley rank:

Definition 1.1. A minimalsimple group is a connected simple group of finite Morley rank
in which every proper definable connected subgroup is solvable.

Examples of such groups were encountered in the earliest work in this area, in an
extreme form:

Definition 1.2. A badgroup is a simple group of finite Morley rank for which every proper
definable connected subgroup is nilpotent.

The structure of Sylow 2-subgroups in a bad group is dramatically trivial:
Fact 1.3[10,14,22].A simple bad group has no involutions.

Minimal simple groups were already considered in [21] (where they were dalled
groupy as a possible generalization of bad groups. The task we set ourselves here is to
determine the Sylow 2-subgroup structure of tame non-algebraic minimal simple groups
of finite Morley rank as tightly as we can. The role of tameness in this enterprise will
be discussed further below. Ideally one would like to eliminate involutions entirely,
reducing the problem to the analog of the Feit—-Thompson theorem, whose proof would
clearly require other methods entirely; but it is well known that there are some other
configurations, such as cyclic or quasibySylow 2-subgroups, hich offer little scope
for internal geometric analysis. As we wilkplain below, we encousted some additional
configurations in Prifer 2-rank 2 with a similar flavor, but using tameness we are able
to exclude higher Prifer 2-ranks, and at the same time severely limit the structure of the
Sylow 2-subgroups in Priifer 2-ranks 1 and 2.

In general, theconnected componewf a Sylow 2-subgroug of a group of finite
Morley rank is defined as° = S N d(S)°, whered(S) denotes the definable closuresf
i.e., the smallest definable subgroup contairingvith this definition, one can say a good
deal about the Sylow 2-subgroup structure in an arbitrary group of finite Morley rank:

Fact 1.4 [11]. Let G be a group of finite Morley rank. Then its Syl@&asubgroups are
conjugate. The connected component of a S@eubgroup is nilpotent, and is a central
product, with finite intersection, of Zunipotent subgrouy and a2-torusT .
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In this connection ap-unipotentsubgroup is a definable connectpesubgroup of
bounded exponent, and prtorus is a divisible abelianp-group. The terminology is
motivated by the situation in algebraic groups, in which a Sylow 2-subgroup is a finite
extension of a 2-torus in characteristic not equal to 2, and is 2-unipotent in both the
algebraic and model theoretic senses when the characteristic is 2. Accordingly, the
following terminology has been adopted.

Definition 1.5. Let G be a group of finite Morley rank, angithe connected component of
a Sylow 2-subgroup of;. ThenG is said to be:

(1) ofdegeneratéypeif S =1;

(2) of oddtype if S is a nontrivial 2-torus;

(3) ofeventype if S is a nontrivial 2-unipotent group;

(4) of mixedtype if S is a central product of a nontrivial 2-unipotent group and a nontrivial
2-torus.

Work on the structure of simple groups of finite Morley rank implies that there are no
minimal simple groups of finite Morley rank of mixed type, and none of even type other
than the algebraic grouple(K), with K an algebraically closed field of characteristic 2.
These results have been proved in considerably greater generality, using the notiSt of a
group, which is a group; of finite Morley rank such that every infinite definable proper
simple section of; is algebraic. This class would include any counterexample to the main
conjecture of minimal rank, as well as all the minimal simple groups of finite Morley rank.

Building on earlier work in [2] about tam& *-groups, it is shown in [19]:

Fact 1.6 [2,19]. Let G be a simple infinite *-group of finite Morley rank. Thet is not
of mixed type.

In addition, work in course of publication shows that Alf-groups of even type are
algebraic; in any case it is easy to dedfimen [3] that a minimal simple group of finite
Morley rank of even type is isomorphic BLy(K) with K an algebraically closed field of
characteristic 2.

Hence, for the determination of minimal simple groups of finite Morley rank, it remains
to deal with the degenerate and odd type cases. The degenerate case is of substantial
interest, and while the connected component of a Sylow 2-subgroup is trivial in that case,
this does not sufficiently limit the Sylow structure, and one would hope eventually to limit
the 2-rank severely. Extreme forms of minimal simple groups, without involutions, are
also studied in [21]. However, we turn our attention here to the odd type case, in which
case the connected component of a Sylow 2-subgroup is a 2-fpmkose structure is
entirely determined by its so-called Priifarank, which can be defined as the dimension
over F; of the subgroup21(S) = {x € S: x? = 1}, or more informatively as the number of
quasicyclic factors in a direct product decompositior§ gthis number is finite according
to [11]). We will denote the Prifer 2-rank by R§), or Pp(G) if G is the ambient group.
Under the assumption of tameness, we pritna the Prifer 2-rank is at most 2, and we
delineate the troublesome configurations with some precision.
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Tameness is defined as follows.

Definition 1.7. A bad fieldis a structure(F, T;...) of finite Morley rank in whichF
carries the structure of an algebraically closed field &nglan infinite proper subgroup of
the multiplicative group ofF'. A group of finite Morley rank igameif it does not interpret
a bad field naturally. Here a natural interpretation of the bad {igld"; .. .) in the group
G consists of a pair of definable sectioAs B of G, with B acting naturally omA (the
action being induced by conjugation@) so that

(A, B; -4, -g,action ~ (F, T; -r, -7, multiplication.

Work on groups of odd type has emphasized the tame case in the past, primarily because
of difficulties with signalizer functor theory, recently reworked by Jeff Burdges in [12]. We
need the tameness restriction for other og&ss as we are very much concerned with the
structure of tori in our groups. This hypothesis is used quite heavily throughout the present
paper.

The main result of this paper is that thaiRer 2-rank of a tame minimal simple group
of finite Morley rank is at most 2. For the remaining cases, in which the Prifer rank is 1
or 2, we analyze the groups from various points of view, notably in terms of the structure
of Borel subgroups, i.e., the maximal proper definable connected (solvable) subgroups of
the ambient minimal simple group. We obtain in particular the following theorem.

Theorem 1.8. Let G be a tame minimal simple group of finite Morley rank and of odd
type. LetS be a Sylow2-subgroup ofG, A = £21(5°), T = C(S°), C = C(A), and

W = Ng(T)/T, which is called theWeyl group. ThenPr(G) < 2 and one has the
following two possibilities

(1) Pr(G)=1:
(a) If C is not a Borel subgroup of7, thenG is of the form PSi(K) with K an
algebraically closed field of characteristic different fr@&n
(b) If C is a Borel subgroup o6 and if W # 1, thenC = T is 2-divisible abelian,
|[W| =2, W acts by inversion o', and Ng (T) splits asT x Z,. All involutions
in G are conjugate.
(2) Pr(G)=2:
ThenT = C = Cg(A) is nilpotent,|W| = 3, all involutions ofG are conjugate, and
G interprets an algebraically closed field of characterisdid-urthermore
(a) If C is not a Borel subgroup o5, then T is divisible abelian, and for each
involutioni in S°, the subgroupB; = C¢ (i) is a Borel subgroup of; of the form
O (B;) x T, whereO (B;) is inverted by the two involutions ifi different fromi.
(b) Otherwise,T is a nilpotent Borel subgroup .

And without tameness? Burdges recentlyeleped a new abstract notion of unipo-
tence, leading to a robust signalizer functor theory without the tameness assumption [12].
This allows one to prove a Trichotomy Theorem [7]: a simfl&-group of odd type is
either a Chevalley group, or has small Sylow 2-subgroups, or has a proper “2-generated
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core.” In the third case, the ambient group has recently been shown, without tameness,
to be minimal simple in [8], provided it has large enough Sylow 2-subgroups. Thus, the
problem of the limitation of the Priifer 2-rank of a potential nonalgebraic sikiplgroup

of odd type reduces to the case of minimal simple groups without tameness. Assuming
tameness, our result gives thus an absolute bound: 2. Unfortunately, tameness is used very
intensively in our proof. On the one hand, it is used heavily to analyze the intersections
of Borel subgroups. On the other hand, it is used in a critical arithmetical argument at the
end of our proof that B(G) < 2. Without tameness, such a bound remains a major open
problem. To be continued, thus.

The paper is organized as follows. In Section 2 we review known results (and some
direct corollaries) needed here. Our main reference for the theory of groups of finite Morley
rank is [5] and our notations generally follow [5]; the reader can also refer to [27] for a more
model theoretic introduction to the subject. In Section 3 we derive some additional, less
familiar, results of a general nature. Noliglwe prove in Proposition 3.11 the important
consequences of tameness for intetises of Borel subgroups which are used heavily
throughout the paper.

After these preparations we prove our main results in Sections 4—7. We deal with the
case of Prifer rank 1 in Sections 4 and 5d avith the case of Prifer rank at least 2 in
Sections 6 and 7. The treatment is parallel in the two cases; in particular, the division into
two subcases is the same in each case, harktare other parallels throughout. On the
other hand, the case of Prufer rank 1 is much briefer than the case of Prifer rank at least 2,
which works out similar themes on a substantially larger scale. In particular, Section 6 is
quite elaborate.

In Section 4, dealing with a minimal simple groap of finite Morley rank of Prufer
2-rank 1 and in whiclC is not a Borel subgroup, we prove part (1a) of Theorem 1.8. This
is Theorem 4.1.

In Section 5 we assume that,PG) = 1 and thatC is a Borel subgroup o, and
we prove statement (1b) of Theorem 1.8. We first suppose that the Borel suligrisup
nonnilpotentin Section 5.1, showing that the Weyl gré¥ips trivial in that case, and then
we consider the case in whieh is nilpotent, in Section 5.2. In this case we also analyze
the geometry of involutions i, at the end of Section 5.2.

In Section 6 we assume thét has Prufer 2-rank at least 2 and tltats not a Borel
subgroup. We show that RIG) = 2 (Proposition 6.3), and prove part (2a) of Theorem 1.8
in Theorem 6.6. Then we show thit acts faithfully onA (Corollary 6.18), obtaining, in
particular,|W| =1, 2,3, or 6. We show that the cas¢®| = 2,6, and 1 do not occur,
in Sections 6.1-6.3, respectively. We end the proof of the main statement of part (2)
of Theorem 1.8 in Section 6.4 (the remaining casg| = 3), and we also analyse the
geometry of involutions in this case.

In Section 7 we assume thatoPG) > 2 and thatC is a Borel subgroup. We then
show easily thatC is nilpotent in Section 7.1 (Theorem 7.1). In Section 7.2, Witk T
nilpotent, we obtain a very good description@fand prove part (2) of Theorem 1.8. In
this case, we find tha¥ has Prifer 2-rank 2 at the very end of the analysis in Section 7.2
(Proposition 7.29), completing the proof of our main result that®y < 2 in all cases.

We use the following notation throughout:Xf is any subset of a grou@, thenl (X)
denotes the set of involutions i, and X* denotes the set of nontrivial elementsXof
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To describe Borel subgroups, we will also use the nota¥oto denote a certain class of
Borel subgroups in Sections 5.2, 6, and 7.2. The definitio® afill be slightly different

in Section 6, but we adopt the same terminology throughout as Borel subgroup®from
will always play the same role in the different cases considered.

2. Toolbox
The proofs of most of the following facts can be found in [5].
2.1. Generalities

Fact 2.1 [13]. A group of finite Morley rank is connected if and only if its Morley degree is
one.

Fact 2.2 ([32], [5, Corollary 5.29])Let H be a definable connected subgroup of a group of
finite Morley rankG. Then the subgroufH, X] is definable and connected for any subset
X of G.

Fact 2.3 [5, Corollary 5.13].Let G be a connected group of finite Morley rank aXda
definable subset @ . If X is generic inG, thenG = X - X.

If X is a subset of a group of finite Morley rank, thendifinable closuredenoted by
d(X), is the smallest definable subgroup®fontainingX .

Fact 2.4 [5, Exercise 2, p. 92).et G be a group of finite Morley rank and a subset of5.
ThenCg(X) = Cg(d(X)).

Fact 2.5 [9]. Let H be a group of finite Morley rank an a normal definable subgroup
of H. If h is an element o such that: is a p-element ofd = H/N (p a primé, then
the cosehi N contains ap-element.

2.2. Nilpotent groups

Fact 2.6 [5, Lemma 6.3]Let G be a nilpotent group of finite Morley rank. H < G is a
definable subgroup of infinite index @, thenNg (H)/H is infinite.

Fact 2.7 [5, Exercise 5, p. 98Let G be a nilpotent group of finite Morley rank. H is a
normal infinite subgroup ofr, thenH N Z(G) is infinite.

Fact 2.8[26]. Let G be a nilpotent group of finite Morley rank. Théhis a central product
D x C whereD andC are two definable characteristic subgrougsjs divisible andC is
of bounded exponent. Tf is the set of torsion elements bf, thenT is central in D and
D =T x N whereN is a divisible subgroup. Furthermoré€, is the direct sum of its Sylow
p-subgroups.
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Fact 2.9 [11]. Let P be a locally finitep-subgroup of a group of finite Morley rank. Then
P has the following properties

(i) P° is nilpotent andP° = B x T is the central product of a nilpotent subgrodpof
bounded exponent andatorusT .
(i) Z(P) # 1and P satisfies the normalizer conditiofor Q < P, we haveQ < Np(Q).
(i) If P is infinite and of finite exponent, theh is nilpotent and its center contains
infinitely many elements of order.

The following result is calledigidity of p-tori in groups of finite Morley rank.

Fact 2.10[11]. If T is a p-torus in a group of finite Morley rank, then[Ng(T) : Cc(T)]
is finite.

Fact 2.11[31, p. 146]. AutZ,») is a 2-group for every positive integer.

2.3. Solvable groups

Fact 2.12 [5, Theorem 9.29]Let G be a connected solvable group of finite Morley rank.
Then the Sylow-subgroups oG are connected.

If 7 is a set of prime numbers, then we call any maximasubgroup of a solvable
groupG aHall w-subgroup ofG.

Fact 2.13 [4]. Let G be a solvable group of finite Morley rank. #f is a set of prime
numbers, then the Halt-subgroups of; are conjugate inG.

Fact 2.14 ([4], [1, Fact 2.30]).Let G be a solvable group of finite Morley rank ard a
definable normal subgroup @f. If 7 is a set of prime numbers, then a Haltlsubgroup
of G/N is of the formH N /N for a Hall =-subgroupH of G.

For every groupH of finite Morley rank, itsFitting subgroup, denoted b§ (H), is the
maximal normal nilpotent subgroup &f. It is well-defined and definable iH (see [25]).

Fact 2.15[24]. Let H be a connected solvable group of finite Morley rank. THei#¥°(H)
is divisible abelian.

The preceding fact has the following corollary.

Corollary 2.16 [2, Fact 2.36]Let H be a connected solvable group of finite Morley rank,
p aprime number, an@, a p-unipotent subgroup aff. ThenU, < F°(H). In particular,

H contains a uniqgue maximal-unipotent subgroup, which is nilpotent and characteristic
in H.

The following useful fact has been proved by several people; a simple proof, due to
B. Poizat, can be found in [21].
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Fact 2.17. Let H be a nontrivial connected solvable group of finite Morley rank. Then any
element off has an infinite centralizer it .

Corollary 2.18. Let G be a nontrivial connected group of finite Morley rank with a
definable connected solvable subgradpsuch thatUgeG H$ is generic inG. Then any
element ofG has an infinite centralizer.

Proof. If ¢ € G has a finite centralizer, then its conjugacy class is genexitamdyg is in
a conjugate of{ by Fact 2.1, a contradiction to Fact 2.172

A subgroup of a grou; which is nilpotent and selfnormalizing i@ will be called a
Carter subgroup ofG.

Fact 2.19 [16,29].Let H be a connected solvable group of finite Morley rank. Tli&n
contains Carter subgroups. Furthermore

(i) If C is a definable nilpotent subgroup &f of finite index in its normalizer it , then
C is a Carter subgroup off.
(i) Carter subgroups off are H-conjugate.
(i) If C is a Carter subgroup of{, thenH = F°(H)C.

The following corollary is due to O. Frécon.

Corollary 2.20 [17]. Let H be a connected solvable group of finite Morley rank of odd
type with an element of prime orderp. If F°(H) contains no nontrivialp-unipotent
subgroup, then: centralizes a Sylo&-subgroup ofH .

Proof. We first claim that if7, is a maximalg-torus of H (¢ a prime), thenT, is
contained in a Carter subgroup &f. For, letC be a Carter subgroup @3, (7). Then
T, < C andT, is the maximalg-torus of C as in Fact 2.8. Now Fact 2.10 shows that
N3 (C) < N3 (Ty) = C3(Ty), thus N3, (C) < N°;,1(Tq)(C) = C. HenceC is a Carter
subgroup off containingZ;, which proves the claim.

By our assumption about, Facts 2.9, 2.12, and 2.16 show that a Sylpwubgroup
of H is ag-torus forg = 2 andg = p. Thus,x is in a maximalp-torus of H, which is in
a Carter subgroup off by the claim. Similarly, a Sylow 2-subgroup &f is in a Carter
subgroup ofH. We can now conclude by conjugacy of Carter subgroups (Fact 2.19(ii))
and Fact2.8. O

We note that the first half of the above proof has recently been generalized by Frécon and
Jaligot in the following way: ifG is any group of finite Morley rank, anfl is a maximal
direct sum ofg-tori of G (¢ varies), ther¥" is contained in a nilpotent definable connected
subgroup ofG of finite index in its normalizer.

Fact 2.21[16, Corollaire 5.20]Let H be a connected solvable group of finite Morley rank
and C a Carter subgroup of{. Let N be a(not necessarily definabl@ormal subgroup
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of H. ThenCN/N is a Carter subgroup off /N and every Carter subgroup é&f /N has
this form.

If H is any group, we denote b/ the intersection of all normal subgroufis of H
such thatH / H1 is nilpotent.H s is obviously a characteristic subgroupiét

Fact 2.22[16, Corollary 7.7 and remarks followindlet H be a connected solvable group
of finite Morley rank and” a Carter subgroup off . Assume tha#/ is solvable of clasg.
ThenH ), is definable inH and H = Hys x C.

If H isagroupand/ a subsetof, thenthegeneralized centralizesf U in H, denoted
by Eg (U), is defined as

Eq(U)=() < J{reH: @d) )= 1}),

uelU “neN

where ag is the map
ad,:H — H, hv+— [h,ul.

Fact 2.23 [16, Théoreme 1.2, Corollaire 5.17 and 7.4t H be a connected solvable
group of finite Morley rank and leU be a nilpotent subgroup off. Then Eg (U)
is a definable connected subgroup Bf which contains a Carter subgroup @&, and
U< F(Eg(U)).

Corollary 2.24. Let H be a connected solvable group of finite Morley rank of the form
U x C, whereC is a Carter subgroup o and U is a nontrivial definable connected
nilpotent subgroup normal itf. Let X be a nilpotent subgroup aff . If Egy(X) is not a
Carter subgroup of, thenCy, (X) # 1.

Proof. By Fact 2.23,Ey(X) contains a Carter subgroup #f, that isC* for someu € U
by Fact 2.19. By assumption we have thig (X) = Uy x C*, whereUy = Eg(X) N U
is nontrivial and connected (Facts 2.1 and 2.23). iAs<d Ey(X), U1 < F(Eg(X))
and U; contains infinitely many elements in the centerfofEy (X)) by Fact 2.7. But
X < F(En(X)) by Fact 2.23, thus ¥ Cj, (X) < Cj(X). O

2.4. Torsion and automorphisms

Fact 2.25 [23]. Let G be a group of finite Morley rank with a definable involutive auto-
morphisno. If o fixes only finitely many elementsdh thenG has a definabléabelian
normal subgroup inverted by and of finite index irG.

Fact 2.26[5, Exercise 14, p. 73].et H be a group of finite Morley rank without involutions
and with a definable involutory automorphismIf H~ denotes the set of elementskf
inverted byo, then H~ is a 2-divisible subset o, H = Cy(c)H~, and each coset
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of Cy (o) contains a unique element & ~. In particular, Cy (o) is connected ifH is
connected.

Fact 2.27 [5, Exercise 10, p. 98]Let G be a group of finite Morley rankl/ < G a
connected definable nilpotent subgroup, @nd definable automorphism 6f stabilizing
U and centralizing finitely many elementsiof ThenU = {[u, ¢]: u € U}. Furthermore,
if [G,¢] CU,thenG =UCg(¢).

We give now a stronger form of Fact 2.25.

Fact 2.28 23, Proposition 4.1]Let H be a group of finite Morley rank such that/ H° is
of order2 and such that the elements Bf\ H° are generically of ordeR. ThenH splits
as H = H° x (i) for some involutiori which invertsH®°.

Proof. Let X = {x € H\ H°: x?=1},i € X, andA = i X. By assumptior¥X is generic
in the coset H°, andA =i X is generic inH°. Note thati inverts by conjugation every
element ofA: for if a € A, thenia €iA = X, so(ia)? =1 anda’ = a~1. We claim that
AC Z(H°.If ge Aandh € ANg~1A, theni invertsg, h, andgh, which shows thag
commutes withz. Thusg commutes withd N g~ 1A. But AN g~1A is generic inH® (by
genericity of A and Fact 2.1), which implies tha° = (A N g~1A)? by Fact 2.3. Thus
g€ Z(H®)andA C Z(H"®) as claimed. Now, asinvertsA, it also invertsA - A, i.e., H°
by Fact2.3. O

The following result provides a partial generalization of the foregoing for arbitrary
primes.

Fact 2.29 [18, Corollary 16].Let H be a group of finite Morley rank such th&° is
solvable. Assume that there is a prim@and a cosek H° of H° (x € H \ H®) of orderp
moduloH°, such that the elements of the cosét® are generically of ordep. ThenH®
is nilpotent.

Fact 2.29 has the following special case.

Fact 2.30 ([30, Theorem 2.4.7], [5, Exercise 14, p. 79pt H be a connected solvable
group of finite Morley rank with a definable automorphism of prime order which centralizes
only finitely many elements. Théhis nilpotent.

We also prove here alemma about automorphisms of order 2 of 2-tori of Prufer 2-rank 2.

Lemma 2.31. Let Tp be a2-torus of Priifer2-rank 2 anda an involutive automorphism of
To which fixes only one involution of the three involutions ofp. ThenTp = Cry () T,y
whereT|, is the set of elements @p inverted bya. Furthermore, the two factors in this
product are two2-tori of Priifer 2-rank one and they intersect exactly in the subgroup of
order 2 generated by.
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Proof. Let z1 andzz = a(z1) be the two involutions offy distinct fromz. Let 77 be a
2-torus inTp of Priifer 2-rank one containing, and7> = «(71). ThenI (T1 N T2) = @ and
T1NT>=1,s0Tp=T1 x To. Now it is easy to see that

Cry(@) = {na(t): n e} andthat Ty ={na()™: 1 e 1},

where both subgroups are isomorphicTin As Ty = Zoy~ is 2-divisible, we findTy =
T1 x Tz = Cry(a) T, , which proves our lemma. O

2.5. Fusion

Fact 2.32 [5, Propositim 10.2].Let G be a group of finite Morley rank and lét j be
two involutions ofG. Theni and j are d(ij)-conjugate or they both commute with an
involution ind (ij).

As we will work only with groups of odd type, we will apply the following fact only in
the case in whict$® = T is both the connected component of a Sylow 2-subgroup and a
maximal 2-torus of the ambient group.

Fact 2.33[5, Lemma 10.22]Let G be a group of finite Morley rank§ a Sylow2-subgroup
of G, andT the maximaR-torus of S°. If X andY are two subsets &f° with X = Y ¢ for
someg € G, thenX = Y" for someh € Ng(T) (that is, N (T) controls fusiorin $°).

Lemma 2.34. Let G be a group of finite Morley rank of odd type and of Pri®erank one,
S a Sylow2-subgroup ofG, andi the unique involution o§°. ThenCg (5°) Ni% = {i}.

Proof. If j is aninvolution inCg(S°) Ni%, thenj = i¢ for someg € G. Furthermores®
ands°¢ are both contained i@'Z; (j), so they are conjugate @y, (/). As the Prufer 2-rank
is one, this implies thatandj are conjugate i€ (j), thusi = j. O

A proper definable subgrou¥ of a groupG of finite Morley rank is said to bstrongly
embeddedh G if M has an involution and/ N M ¢ has no involution for every € G\ M.

Fact 2.35 [5, Theorem 10.19]Let G be a group of finite Morley rank with a strongly
embedded subgrould. Then involutions of; and M are respectivel\G-conjugate and
M-conjugate.

Fact 2.36 [20, Lemme 2.13]Let G be a simple infinite group of finite Morley rank and
a proper definable subgroup 6&f. Thenrk(x® N M) < rk(x) for every nontrivial element
x of G.

As this last fact is not so well-known, we give the proof.

Proof. The intersection of the conjugates Mf is a proper hormal subgroup 6f, hence
trivial. Hence, by the descending chatondition on definable subgroups, some finite
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intersectionMé1 N ... N M8 = 1. On the other hand® has Morley degree 1, as this
conjugacy class can be identified witty C (x).

If rk(M N x%) =rk(x%), thenM N x% = x¢ modulo sets of lower rank, se® =
M NxS8N...Nn (M nNx%s = {1} modulo sets of lower rank, and= 1, a contra-
diction. O

2.6. Generation
We call any elementary abelian 2-group of orderféw-group

Fact 2.37[6, Theorem 5.14]Let H be a group of finite Morley rank such that® is solv-
able and without involutions. I¥ is a four-subgroup o1, thenH° = (C3,. (v): v € %}

2.7. Tame solvable groups

Fields appear in connected solvable groups of finite Morley rank via the following
fundamental result, called hezdéber’s Field Theorem

For its statement, recall that a subgraupf a groupH of finite Morley rank is said to
be H-minimalif it is infinite, definable, normal i, and minimal with respect to these
properties. Note thad is then connected and abeliay Bact 2.2. Note also that if is
connected and solvable, than< Z(F (H)) by Fact 2.7.

Fact 2.38 (Zilber’s Field Theorem [5, Theorem 9.1])et G = A x H be a group of finite
Morley rank whereA and H are two infinite definable abelian subgroupssis H-minimal
andCgy(A)=1.Then

(i) The subringk = Z[H]/anmyx(A) of the seEnd(A) of endomorphisms of is a
definable algebraically closed fielih fact, there exists an integérsuch that each
element ok can be represented by an endomorphism of the @ﬂgl h;, for some
elements; € H.

(i) A= KT, Hisisomorphic to a subgroup of K>, andH acts onA by multiplication,
ie.,

~ t al.
G_A><1H={<O 1).t6T,aeK}.

(iii) In particular, H acts freely onA, K =T +---+ T (I time9 and (with additive
notation) A = {Y"!_, h;a: h; € H)} for eacha € A*.

Zilber’s Field Theorem has the following important corollary.

Corollary 2.39 [34]. Let H be a solvable nonnilpotent connected group of finite Morley
rank. ThenH interprets an algebraically closed fieki. More precisely, a definable section
of F(H) is isomorphic toK+ and a definable section g /F(H) is isomorphic to an
infinite definable subgroup & *.
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The following fact is also a direct collary of Zilber’s Field Theorem.

Fact 2.40 [16]. Let H be a connected solvable group of finite Morley rank andn H -
minimal subgroup of. ThenCy (a) = Cy (A) for every nontrivial element € A.

For any groupH of finite Morley rank we denote by (H) its maximal normal
definable connected subgroup without involutions. (Note thékl) is well-defined by
Fact 2.5.)

Lemma 2.41. Let H be a connected solvable group of finite Morley rank of odd type
which does not interpret a bad field.Uf is a definable connected subgroupmfwithout
involutions, therl < O(F(H)) = O(H).

Proof. First note that, agf does not interpret a bad field) (H) is nilpotent by Cor-
ollary 2.39 and Fact 2.14, thu8(H) = O(F(H)). Note also that the assumption about
bad fields implies thaV < F°(H) (else Fact 2.15 and Corollary 2.39 would imply that
F°(H)U interprets an algebraically closedlfief characteristic different from 2 af is
of odd type, forcing a nontrivial 2-torus int@ by Fact 2.14).

It remains to show that/ < O(F°(H)) = O(F(H)). But the normalizer condition
in nilpotent groups of finite Morley rank (Fact 2.6) implies the existence of a finite
sequencd/ = Ug <1 Uy < --- < Ug—1 < Uy = F°(H) of definable connected subgroups
U; (0<i<k),andwe haveclearly < O(U1) <---<O0Ur-1) < O(F°(H)). O

2.8. Around Zsigmondy'’s theorem

We will use in the sequel a purely arithmetical resulta landn are integers greater
than 1, then a prime is called aZsigmondy priméor (a, n) if p does not divide: anda
has orden modulop, andp is called alarge Zsigmondy prime fora, »n) if, in addition,
la" — 1], >n+ 1.

Couples(a, n) without a large Zsigmondy prime were classified by W. Feit. &et 2
this gives:

Fact 2.42 [28, Theorem 6]Letn > 1 be an integer. Then there exists a large Zsigmondy
prime for (2, n) except exactly in #afollowing cases: = 2, 4, 6, 10, 12, or 18.

Corollary 2.43. Letn > 1 be an integer such th&" — 1 dividesd” — 1 for all integersd
relatively prime ta2” — 1. Thenn =1, 2,4, 6, or 12.

Proof. Letn be as in the statement. We first claim:
if p*=|2" - 1\p >1, thenp*1(p —1) dividesn. (1)
So let p¥ = 2" — 1, > 1. The subgroup of invertible elements moduylb has order

p*1(p — 1) and asp is odd, it is well known that it is cyclic. Thus there existsof
orderp*~1(p — 1) modulop*, and we may furthermore assume by the Chinese Remainder
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Theorem thadl is relatively prime to 2— 1. But now Z — 1 dividesd” — 1 by assumption,
thusd” = 1 modulop*. It follows that the ordep*~1(p — 1) of d modulo p* dividesn,
and our first claim is proved. Now we claim:

there is no large Zsigmondy prime f&, n). (2)

If pis a Zsigmondy prime fot2, n), then 2 has ordet modulo p and it follows thatn
dividesp — 1. Let nowp* = 2" — 1| ,. Thenp*~1(p — 1) dividesn by (1). Thusk = 1,
n=p—1,andp* = p=n+ 1. Thereforep cannot be large and our claim (2) is proved.
We are now in a position to apply Fact 2.42, thus- 1, 2,4, 6,10, 12, or 18, and it
suffices to eliminate the cases= 10 and 18. But ¥ — 1=31-11- 3 and the prime 31
violates(1), and 28 — 1 =262143=73-19. 7- 3% and the prime 73 violates (1).0

2.9. Recognition
We use the following result to recogniPSLy(K) in the odd type setting.
Definition 2.44. A doubly transitive permutation grou@ is:
(1) azassenhaus groupthe stabilizer of any three points is trivial;
(2) splitif the stabilizer of two points5, , has a normal complement in the stabilizer of
one pointG,.
Fact 2.45 ([5, Theorem 11.89], [15]).et G be an infinite split Zassenhaus group of finite

Morley rank. If a two point stabilizef” contains an involution, theld ~ PSLy(K) for
some algebraically closed field of characteristic 2ot

3. General principles

In this section we will presentsne general results of a more specialized nature, useful
for the analysis of Borel subgroups of tammnimal simple goups of odd type. Recall
that Borel subgroups of a given group of finite Morley rank are defined as the maximal
definable connected solvable subgroups. If the ambient group is minimal simple, then Borel
subgroups are exactly the maximal proper definable connected subgroups.

3.1. Solvable groups of odd type

We begin with two lemmas about the structure of connected solvable groups of finite
Morley rank of odd type.

Lemma 3.1. Let H be a connected solvable group of finite Morley rank of odd type. Then
the Sylow2-subgroup ofF(H) isin Z(H).

Proof. Let F(H) = D x C be the decomposition of' (H) into a central product of
definable characteristic subgroups as in Fact 2.8, wheiedivisible andC of bounded
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exponent. AsD is divisible, it is in particular connected and it contains a unique maximal
2-torus by Facts 2.12 and 2.8 again, which is central{iroy Fact 2.10. Fact 2.8 also
shows thatC contains a unique Sylow 2-subgroSpwhich is finite asH is of odd type.
So H acts by conjugation on this finite Sylow 2-subgrafymand H centralizesS asH is
connected. O

Lemma 3.2. Let H be a connected solvable group of finite Morley rank of odd type. If
O(H) =1, thenH is divisible abelian.

Proof. Let F = F°(H). As O(H) =1, we haveO(F) = 1 and Fact 2.8 shows that
contains no nontrivigb-unipotent subgroups for any prinpe> 2, and in fact for any prime
p asF is of odd type. Thus, Fact 2.8 again shows thas divisible andF = Tor(F) x U
where Tot F) denotes the subgroup of torsion element# pivhich is central inF, andU
is a torsion free subgroup. Note that T8) is the product ofp-tori (p varies) which are
characteristic i, thus central i by rigidity of tori (Fact 2.10). It follows that” < U,
and asF’ is definable and connected by Fact 2.2, it must be triviaDég) = 1. SoF is
abelian and divisible.

To conclude it suffices to show that is central in H, because thei#/ is nilpotent
by Fact 2.15, and thus equal . For this, it suffices to show thdt, F] = 1 for
anyh € H. Butif h € H, then[h, F] =~ F/Cr(h) is torsion free by Fact 2.14 (with
7 the set of all primes), since T@r) is central inH. Thus Fact 2.2 again shows that
[h, FISKO(F)=1. O

3.2. Genericity

Lemmas 3.3 and 3.4 will be applied to suitable Borel subgraBpsf the ambient
groupG.

Lemma 3.3. Let G be a connected group of finite Morley rank aBd definable subgroup
of G of finite index in its normalizer. Assume that there is a definable subsétB, not
generic inB, such thatB N B8 € X whenevel € G \ Ng(B). ThenUgec B8 is generic
inG.

Proof. An element ofB \ X cannot belong to a conjugate Bfdistinct fromB. Thus

rk< U (B \X)g) > 1k(G/Ng(B)) +IK(B \ X).

geG

But B is of finite index in its normalizer, so
rk(G/Ng(B)) + k(B \ X) =rk(G)

andlJ,. B® is genericinG. O
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Lemma 3.4. Let G be a connected group of finite Morley rank aBda proper definable
connected subgroup of finite index in its normalizeidrsuch thatl J,.; B is generic
in G. Assume that € Ng(B) \ B is of ordern > 1 moduloB, and let{x) B be the union
xBUXx?BU---Ux""1B U B. Then the definable subset

X1 = {x1€xB: x1 € ({x)B)® for someg € G\ Ng(B)}
of x B is generic inx B.

Proof. Assume thafX1 is not generic it B. Thenx B \ X1 is generic inx B. So we have
that

rk((xB\ X)) > 1k(G) — rk(Ng(B)) + rk(x B\ X1) =K(G) — k(NG (B)) + rk(B),

and asB is of finite index in its normalizer, tKx B \ X1)¢) = rk(G). But (xB \ X1)¢ is
disjoint from(_J,. B¢, thusG cannot be connected by Fact 2.1, a contradictian.

The following important lemma was proved by O. Frécon.

Lemma 3.5 [17]. Let H be a connected solvable group of finite Morley rank aha
Carter subgroup of. ThenlJ, ¢\ (C N CMy is not generic inC.

Proof. Assume toward a contradiction thitis a counterexample of minimal rank, so that

U (Cmch)=< U (cmch)>u< U (cmch)>

heH\C heH\CA heCA\C

is generic inC, whereA is an H-minimal subgroup of{ . Let also the notation™ denote
the quotient byA.
As

U (cnchyc | (€nch,
heH\CA ReH\C

and asC is a Carter subgroup off (Fact 2.21), then the minimality implies that
Unernca (€N CMy is not generic inC. It follows thatUyeca\c (CN CMy is generic in
C and the minimality again implies th& = CA.

Note thatA £ C, as otherwise? = C. SoC¢(A) < C and, in particularC¢ (A) is not
genericinC. Itis thus enough to show that

J (enc")ccem
heCA\C

to get a final contradiction.
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SoletC; = CNC" forsomeh € CA\ C. AsC is selfnormalizing and nilpotent, we have
C1 < C < (C,C") < Ey(Cy), whereEy(Cy) is the generalized centralizer 6% in H.
So the subgroupl;1 = A N Eg(C1) is nontrivial. ButAj is normal inEg(C1), SOA1 <
F(Ey(C1)). Itfollows that there exists a nontrivial element A1 N Z(F(Eg(C1))). But
C1 < F(Eg(C1)) by Fact 2.23, s@1 < Cc(a) = Cc(A) by Fact 2.40. The proof is now
complete. O

3.3. Automorphisms and torsion

Lemma 3.6. Let H be a group of finite Morley rank such th&t° is abelian. Ifx is an
element inH \ H° such that the elements of the coséf° are generically of ordern for
some integen > 1, then every element inH ° is of ordern.

Proof. Let X be a generic definable subset Bf such that every element afX is of
ordern. We may assume thatis of ordern, and asH® = X - X by Fact 2.3, it suffices
to show that(xx1x2)" = 1 for all elements1, x2 € X. But if x1 andx» are such elements,
then

n—1 n—-2
(xx1x2)" = x"(x1x2)" “(x1x2)" ... (x1x2),
that is
n—1 n—-2 n—-2

n—1
(xx1x2)" =x)l‘ x2F xi‘ )6“2Y )

asx" =1. As H° is abelian, we have thus

n—1 n—2

(xx1x2)" = (xi‘ x3 ...xl) (xgn_1x§,1_z .. .xz).
But
()c)l‘n_lxi‘n_2 .. .x1) =x" (xi‘n_lx)l‘n_2 .. .xl) =(xx)" =1,

so the first factor in the product is trivial and similarly the second factor is trivial. Thus
(xx1x2)"=1. O

Lemma 3.7. Let H be a group of finite Morley rank such that® is nilpotent,H /H° is of
prime orderp, and the elements of each cosetrbf distinct fromH*° are generically of
order p. If some element € H \ H° has an infinite centralizer i °, thenH° contains a
nontrivial p-unipotent subgroup.

Proof. Suppose tha#/ is a counterexample of minimal rank andtet H \ H° such that
C := C},.(x) is nontrivial. We claim that the minimality off implies thatC < Z°(H°®).
Assume thaC ¢ Z°(H°) and let the notation “ ” denote the quotients bg°(H°). Then
the elements of the cosets &f in H, distinct fromH®, are still generically of order

p andC = C° is a nontrivial subgroup of the centralizer ®fin H°. As Z°(H®) # 1
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by Fact 2.7, rkH) < rk(H) and the minimality implies thal° contains a nontriviap-
unipotent subgroup, hence al#f® (Facts 2.14 and 2.8). This contradiction proves that
C < Z°(H°®). This implies thalC < Z(H).

The cosetc H° is partitioned by the definable equivalence relation “being in the same
coset ofZ°(H®),” so there isx1 € x H® such that the elements of the coseEZ°(H°) are
generically of ordep, and then each element of Z°(H°) is of orderp by Lemma 3.6.

As C < Z(H), we then have that? = x{c¢? = (x1c)? = 1 for everyc € C. ThusC is a
connected elementary abeliprsubgroup ofZ°(H °), a contradiction. O

Lemma 3.8. Let H be a group of finite Morley rank of odd type afich Sylow2-subgroup
of H. Assume that{° < Cy(S°) (which is the case in particular it7° is nilpoten).
Assume also that for each element H \ H° there is an integen > 1 such that the
elements of the coset{° are generically of order bounded lay ThenCy (S°) = H°.

Proof. First note that ifH° is nilpotent, thenH® < Cy (S°) by Fact 2.8. Suppose that
H° < Cy(S°). Then there is an elemente H \ H° which centralizesS°, hence also
d(S°) by Fact 2.4, and there is an integesuch that the elements of the coséi° are
generically of order bounded by. But x H° is definably partitioned by the equivalence
relation of “being in the same coset 8fS°),” so we can findx; € x H° such that the
elements of the cosetid(S°) are generically of order bounded lay As (x1)d(S°) is
abelian, Lemma 3.6 shows that each element;af(S°) is of order bounded by, and
henced (5°) has bounded exponent, a contradictiom

Lemma 3.9. Let H be a group of finite Morley rank wherB° is solvable, of odd type,
and has PrufeR2-rank one. Assume tha&f /H® is of prime orderp and assume also that
there is a finite subgroupp of H° without involutions, disjoint fron&°(H °), such that the

definable subset

{xlexH°: xf e TOF(HO)}

of x H® is generic inx H° for eachx € H \ H°. Thenp =2 and H splits asH® x (x) for
some involutionr € H which invertsH°.

Proof. Let S be a Sylow 2-subgroup off°, that is a 2-torus of Prifer rank 1. We first
show thatp = 2.

The subgrougds, H°] is definable and connected (Fact 2.2) and normalized/by
By a Frattini argumentH = H° Ny (S). Hence,[S, H®] is normal in H. We claim that
[S, H°] contains no involutions. I§ < F°(H®), thenS is central inH° by Lemma 3.1,
and[S, H°] = 1. Otherwise, a$ has Prifer rank 1, we hawn F°(H°) =1 by Fact 2.12,
and again S, H°] < F°(H?) (Fact 2.15) contains no involutions.

Let“” " denote quotients byS, H°]. As[S, H°] contains no involutiong? "~ has Priifer
2-rank 1. Forx ¢ H°, the elements of the cos&# are generically of order bounded
by p|Tol. By Lemma 3.8, we hav€#(S) = H', and it follows thati /H " = Z,, embeds
into Aut(Zo~). By Fact 2.11, this forcep = 2.
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Now let X1 be the generic subset ®f7° consisting of elements; such thatxf € TO’
for somef € F(H®). We claim thate? = 1 for x1 € X1.

For the remainder of the argument we use the bar notatiohtt denote quotients
moduloF°(H®). Note thatH° is divisible abelian by Fact 2.15.

First we show thatr; has a finite centralizer ifH°. Let C denote the connected
component of its centralizer if°. One can findrz € X7 such that the elements of the
cosetxzC are generically of order bounded pyTp|, and Lemma 3.6 implies that each
element inxz2C has an order bounded by Ty|. As (x3)C is abelian, this implies that is
of bounded exponent and &5 is divisible, C is trivial.

Now 1 induces by conjugacy an involutory automorphism /f and Fact 2.25
shows thatyy inverts H°. So x1° is equal to its inverse as it is both centralized and
inverted byxi. But x12 € To which has no involutions by assumption; tht& = 1 and
xf € TOF(HO) N F°(H®) = 1. We have shown that the elements of the cosdf are
generically of order 2, and we may conclude by invoking Fact 2.28.

3.4. Borel subgroups

The next result shows that in a tame minimal simple group of odd type, the connected
components of centralizers of maximal 2-tori behave like tori in algebraic groups.

Lemma 3.10. Let G be a tame minimal simple group of odd type &hal Sylow2-subgroup
of G. ThenCg(S°) is nilpotent and of finite index in its normalizer. In particulay, (S°) is
a Carter subgroup of any connected definable proper subgrfoofG containingCg; (S°).

Proof. Firstnote that/(S°) is central inC¢, (S°) by Fact 2.4. Facts 2.12 and 2.14 show that
C(8°)/d(S°) has no involution and it is thus nilpotent by Lemma 2.41Gasterprets
no bad field. SaC¢, (S°) is central-by-nilpotent and it is nilpotent. We have also that it is
of finite index in its normalizer by Fact 2.10 and the fact tNat(C¢, (S°)) < Ng(S°). The
last statement then follows from Fact 2.190

The next proposition, together with Lemn2a41, will be used intensively in our
analysis based on the tameness assumption. We are not able to prove it without tameness.
Nevertheless, there are weak analogsthay be useful in the absence of tameness.

Proposition 3.11. Let G be a tame minimal simple group of odd type.

(i) Assume thaB; and B> are two distinct Borel subgroups @f such thatO(B1) # 1
andO(B2) # 1. ThenF(B1) N F(B2) = 1.

(i) In particular, any nontrivial connected definable subgroup without involutiére G
is contained in a unique Borel subgroupGf

Proof. The second statement follows from the first one: by Lemma 2/44, F (B) for
any Borel subgroug containingU.
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We prove now the first statement. We first show th@tB1) N O (B2))° = 1. Assume
that B1 and B are as in the statement and that

X:=(0(B)NO(B)) #1

is of maximal rank. LetB3 be a Borel subgroup aff containingNg, (X). If X < O(By),
then we can look ang p,) (X)), which containsX as a subgroup of infinite index by the
normalizer condition (Fact 2.6), and the maximality of Xk together with Lemma 2.41
shows thatB; = B3, and asB1 # Bp, we then have for the same reason tdiB,) =
X < O(By). But nong(Bl)(O(Bz)) < O(NG(O(B2))) = O(B2) by Lemma 2.41, and
Fact 2.6 shows thaD (B1) = O(B2), and thusBy = N3 (O(B1)) = N3 (O(B2)) = By,
a contradiction. We have proved that = O(B1). Symmetrically we also have that
X = O(B2),thusO(B1) = X = O(B2), which implies as just seen th&f = By, a contra-
diction. So(O(B1) N O(B2))° = 1 whenevelB1 and B> are as in the first statement of the
proposition.

We now end the proof of the propositionsgume that there is a nontrivial element
f € F(B1) N F(B2). Let B3 be a Borel subgroup o containingC¢,(f). Fact 2.7 and
Lemma 2.41 show thatO (B1) N O(B3))° is nontrivial, as well ag0(B2) N O(B3))°,
thus what we have shown before implies tBat= B3 = B>, a final contradiction. O

Lemma 3.12. Let G be a tame minimal simple group of odd type ahd Borel subgroup
of G. ThenC¢ (f) < B for eachf € F(B)*.

Proof. If O(B)=1thenB is abelian by Lemma 3.2, sB= C (/).

AssumeO(B) # 1. ThenO(B) = O(F(B)) by Lemma 2.41, and Fact 2.7 shows that
Co (s (f) is nontrivial. By Proposition 3.113 is the unique Borel subgroup containing
C°0(B)(f),soBcontainscg(f). O

To conclude this section, we remark thatGf is a tame minimal simple group of
degeneratdype, then its Borel subgroups are without involutions by Fact 2.12 and are
nilpotent by the proof of Lemma 2.41. Thus is a bad group and it again satisfies
Proposition 3.11 and Lemma 3.12 by the well-known structural properties of bad groups
(cf. [5, Chapter 13]).

4. Pra(G) =1and Cg(A) not aBorel

In this section, as well as in the next ones, we assumedhiaia tame minimal simple
group of odd type and we fix the notations as in Theorem 1.8:

S is a fixed Sylow 2-subgroup ¥,
A=(I(8%), C=Cg(A), T=Cg(s°), and W=Ng(T)/T.
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In this section we assume furthermore,
Pr(G) =1 andC¢(A) is not a Borel subgroup af,
and we will prove part (1a) of Theorem 1.8.

Theorem 4.1. Assume thaPr(G) = 1 and thatC is not a Borel subgroup of;. Then
G = PSlp(K) for some algebraically closed fielll of characteristic different frona.

We embark now on the proof of Theorem 4.1. Weiletenote the unique involution
of A, so thatA = (i). We will compute the rank off and eventually show tha is a split
Zassenhaus group.
Lemma 4.2. F(B) has no involution for any Borel subgroupof G.
Proof. If a Borel subgroupB has an involution, then one can assume, by conjugacy of
Sylow 2-subgroups and Fact 2.12, that this involutioh. i i € F(B), then Lemma 3.1
shows thatB = Cg (i), a contradiction to our assumption tha@g, (i) is not a Borel
subgroup. O

Corollary 4.3. B1 N F°(B>) is finite andF(B1) N F(B2) = 1 for every pair of distinct
Borel subgroups; and B of G.

Proof. This follows from Lemma 2.41 and Proposition 3.111

Fix B a Borel subgroup of; containingC = C¢(i). Note then that®° < 7 < C < B,
and thats® is a Sylow 2-subgroup aB by Fact 2.12. Let als¢/ = Ng(B). Then(i% \ M)
is generic in¢ by Fact 2.36, so

rk(i%\ M) = k(i) = rk(G) — rk(C).

We define an equivalence relatienon i9\ M by w1 ~ w» if and only if w; andw, are
in the same coset a&f. Let

pi(iC\ M) — (i°\ M)/~
be the natural (definable) projection, and fo£@ < rk(B), let
Xy = {w € (iG \ M): rk(pfl(p(w))) :k}.

As i% \ M is partitioned by the (finite number of§;’s, there existskg such thatXy, is
generic ini® \ M, and such &g is unique, since the definable &t \ M) has degree 1.

Lemmad4.4. kg > 1.
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Proof. If ko =0, thenrKG) —rk(Cg(i)) = rk(Xo/~) < rk(G) —rk(B), so rk B) < rk(C)
andB = C, contradicting our assumption.c

For every involutionw in i \ M, let
T(w) = {ww1: w1 € (iG N wB)}.

Lemma 4.5. If w € Xy, thenT (w) is an infinite definable abelian subgroup Bfwhich
intersectsF°(B) trivially, and contains a uniqué-conjugate ofs°.

Proof. LetT,, be the set of all elements &finverted byw. Corollary 4.3 and the fact that
w ¢ N¢(B) shows thafl, N F°(B) is trivial. As (T,,) is included inF°(B) (by Fact 2.15)
and normalized by, Corollary 4.3 again shows théf,,)’ must be trivial asv ¢ Ng (B).
Thus T, is an abelian subgroup @. It is also obviously definable, and infinite as it
containsT (w).

We claim thatT (w) = T,,. For this it suffices to show that each involutionwof, is
T,,-conjugate taw. Let wt be such an involution for sonres Ty, . It suffices to show that
T,, is 2-divisible, as themws = wt’?2 = '~ 1ws’ for some element e T, such that’? =¢.

Claim 4.6. T, is 2-divisible.

Proof of claim. First note thafl,, is definably isomorphic to a subgroupBf F°(B) as it

is disjoint fromF°(B). Facts 2.8 and 2.15 show tH&f = T,) « C, whereT,; is divisible and

C is a direct product of finitgp-groups for some prime numbeps As 7,) # 1 is disjoint

from F°(B) = O(B) (Lemmas 2.41 and 4.2), one sees with the same kind of arguments
as in the proof of Lemma 2.41, given the absence of bad fields7thabntains a Sylow
2-subgroup ofB. Thus a Sylow 2-subgroup df, is in T;) and one can assume thatis

the direct product of finitgp-groups for some prime numbeps> 2. It follows thatC is
2-divisible andT, is also 2-divisible. O

We have now thaf'(w) = T, is an infinite definable abelian subgroup Bfdisjoint
from F°(B). The fact that it contains &-conjugate ofS° has been shown in the proof of
the claim. This conjugate is unique as it is a Sylow 2-subgroup of the abelian gr@uwyp
ending the proof of Lemma 4.5.0

Lemmad4.7. C =T is abelian.

Proof. Pick an elementv € Xy, (as Xy, # 9!) which invertsS°. Thenw centralizes,
sow normalizesC as well as its commutator subgroap which is contained inF°(B)
(Fact 2.15), and must then be trivial by Corollary 4.3.(5cs abelian and as° < T < C,

we havethaC =T7. O

Corollary 4.8. F°(B) is inverted byi andB = F°(B) x T.
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Proof. If C;O(B)(i) # 1, then 1# O(Cg(i)) < F(B) by Corollary 4.3 and Lemma 2.41
and if we pickw € Xy, which invertsS°, thenw € Ng(B) by Corollary 4.3, a contradic-
tion. ThusCy. B)(i) =1 andi inverts F°(B) by Fact 2.25.

One sees then easily th@g,ro(p) (i) = Cp(i) F°(B)/F°(B). As B/F°(B) is abelian,
this gives thatB = F°(B)Cp(i) = F°(B) x Cp(i) and the connectedness Bfimplies
thatB = F°(B) x C3(i)) = F°(B) x C. O

At this point, we can conclude the proof of Theorem 4.1 as follows: we take a
minimal subgroug/ of F(B) and we remark that'.(U) has no involution (as the unique
involutioni of C invertsU by the preceding corollary). SB°(B)C¢ (U) is nilpotent and
included inF°(B) = O(B) by Lemma 2.41, and’z.(U) < CN F°(B) = 1. So we can
apply the result of [20], without further use of the assumption on bad fields.

To keep this text self-contained, we may peed as follows, first embarking on the rank
computation of the grou@. As T < B andT is of finite index inNg (S°) by rigidity of S°
(Fact 2.10), the equivalence classes of the definable equivalence retationXy,/~,
defined by(w1/~) ~ (w2/~) if and only if w1 andws invert the sames-conjugate ofs°,
are all finite. So

rk(Xio/~) < rk(B) — rk(Np(S°)) =rk(B) — rk(T).
Finally, as
rk(G) — rk(C) = rk(Xk,) = ko + rk(Xyo/~),
we get that
rk(G) < ko + rk(B) — rk(T") + rk(C),
and Lemma 4.7 shows that
rk(G) < rk(B) + ko.
Corollary 4.9. rk(F°(B)) < ko.

Proof. Pick an elemeng € G\ M. As B N F°(B)¢ is finite, we have that iB) +
rk(F°(B)%) < 1k(G). So kK F°(B)) =rk(F°(B)¢) <ko. O

Let U be aB-minimal subgroup of3. ThenZ := C7 (U) is finite by Corollary 4.8 and
Lemma 2.41. So we have that

Ux(T/Z)=K" xK*

for some algebraically closed fieki by the field theorem (Fact 2.38) and the absence of
bad fields. Thus

rk(T) =rk(U) < rk(F°(B)) < ko.
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So rkT) = ko, andT is entirely inverted by an involution iX, by connectedness. We
also have thakg = rk(U) < rk(F°(B)) < ko, SO0 F°(B) = U. Note now thatZ(B) = Z
is inverted by an involution iXy,, so it must be trivial (otherwise this involution would
normalizeC¢, (Z) = B).

To summarize, we have th8t= K+ x K* andF(B) = F°(B).

Lemma4.10. F(B)8 N M = 1for every elemeng € G\ M.

Proof. F(B)® N M is finite by Corollary 4.3. If it is nontrivial, therK must be of
characteristicp > 0. If y is an element of ordep in this intersection, therfs,, (y) <
(F(B)$ N M°)° by Corollary 4.3, thusC$,.(y) is trivial by the same corollary. Ay
normalizesB, Fact 2.30 implies thad° is nilpotent, a contradiction. Thus(B)® N M
is trivial. O

Lemma4.11. M = B and G = B U F(B)wB, wherew is an involution ofG \ B which
invertsT .

Proof. If g isin G\ M, then the mag f, m) — fgm from F(B) x M to F(B)gM is an
interpretable bijection by the pceding lemma. Its image, of rankg3is generic inG, so it
must be of degree one, as well &6B) x M. In particular,M is connected and thus equal
to B. By connectedness agaii,= BU F(B)gB. O

Proof of Theorem 4.1. To conclude the proof of Theorem 4.1, it remains to show st

a split Zassenhaus group and to apply Fact 2.45. The gig@agting by left multiplication
on the left coset space &, is a split doubly transitive group; the stabilizer Bfandw B
isT = C = BN BY. This stabilizerT contains an involution. It remains to show that the
stabilizer of three points is trivial: if € T stabilizes a third pointfwB, where f is a
nontrivial element ofF (B), then fwB =tfwB andt/ e T/ N BY < T/ N BN BY <

T/ NT =1.Theorem 4.1 is proved.O

5. Pr2(G) =1and Cg(A) aBore

In this section we assume théat is fixed as in Theorem 1.8, and we adopt all the
associated notation from the statemefithat theorem. We assume furthermore,

Pr(G) =1 andC = C; (A) is a Borel subgroup of.

We will prove part (1b) of Theorem 1.8. As in the last section, we gnote the unique
involution generatingd. Notice that/ (C) = {i} by Fact 2.12, as B(G) = 1.

5.1. CaseC(A) a nonnilpotent Borel subgroup

We assume here thét is a nonnilpotent Borel subgroup 6f and we will show that
Cg(i)=C and thatW = Ng(T)/T = 1 in that case.
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Lemmab5.1. O(B) = F°(B) (# 1) for every Borel subgroup of G.

Proof. If F°(B) has an involution for some Borel subgroBmf G, thenF°(B) contains
an infinite Sylow 2-subgroup which is a conjugate$f by Fact 2.12, as B(G) = 1.
This conjugate ofS° is characteristic inB by Fact 2.8, and central iB by Fact 2.10.
This shows thaC¢,(S°) is a Borel subgroup of;, thus equal taC; (A). But Cg(S°) is
nilpotent by Lemma 3.10, a contradiction to our assumption, which showg ti{#®t) has
no involutions. Thus°(B) = O(B) by Lemma 2.41. O

Lemma 5.2. There is a finite subgrouffp of odd order ofC, disjoint from F°(C), and
such thatC N C$ is F(C)-conjugate to a subgroup dfy for everyg € G \ Ng(C).
Furthermore,Cr(c)(to) is finite for every nontrivial elemeng belonging toC N C$ for
someg € G\ Ng(C).

Proof. Let g € G \ Ng(C) and assume thaf, := C N C# is nontrivial. If T, has an
involution, then it is the unique involutionof C andié of C$, respectively, s6 = i¢,

a contradiction to our assumption that¢ Ng(C). Thus T, has no involutions and

Ty = O(Tg) must be trivial by Lemma 2.41 and Proposition 3.11. The family of subgroups
T, of G is thus a uniformly definable family of finite subgroups. It follows that there is a
uniform boundr on the order of eaclfy, by elimination of infinite quantifiers (cf. [27,
Introduction]).

We now claim thaf, intersects triviallyF (C), as well asF(C$). If t € T; isin F(C),
then Cg,(t) < C by Lemma 3.12 (a®)(C) = F°(C) # 1 by the preceding lemma) and
Co(t) < C8 N C isfinite, a contradiction to Fact 2.17. Thiig intersectsF'(C) trivially,
and we get in the same way tHBtN F(C#) is trivial.

Let + be a nontrivial element of,. If C;(C)(t) # 1, then Lemma 5.1 shows that
C¢ (1) < C by Proposition 3.11(ii). Thug'g, () < Iy = 1, a contradiction to Fact 2.17.
Thus any nontrivial element df, has a finite centralizer ifr (C).

Let nowr be the set of prime numbers dividing,| for someg € G \ Ng(C). The
preceding, together with Facts 2.8, 2.10, and 2.9 shows that therFalbgroup ofF°(C)
is trivial. Let now S, be a Hallz-subgroup ofC. Note thatS,, is a direct product op-
tori (p € ), disjoint from F°(C). EachT, is, after conjugacy by an element 5P (C) if
necessary (Fact 2.13), i} . Let Tp be the subgroup o, generated by all these conjugates
of theT,’s. As Sy, is divisible abelian and the exponent of tfigs is uniformly bounded,
To is the product of finitely many conjugates of tiig's, and Ty satisfies all the required
properties. O

The preceding lemma allows us to applynvma 3.3 and to get the following corollary.
Corollary 5.3. | ,c¢ C# is generic inG.
Corollary 5.4. If x is an element oiNg(C) \ C and is of ordern moduloC, for some

integern > 1, then the condition] € TOF(C) is satisfied for every; in a definable generic
subsetX of xC.
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Proof. Let X, be the definable subset o of elementst; € xC such thate; € ((x)C)8
for someg € G\ Ng(C). ThenX1 is generic inxC by Lemma 3.4 and if; € X3, then
x1 € ((x)C)¢ for someg € G \ Ng(C) andx? e CNC¢ € Ty © by Lemma5.2. O
Corollary 5.5. C¢ (i) is connectedin particular, S = S°).

Proof. Use the preceding corollary, Lemma 3.9, and the fact¢histnonnilpotent. O

Corollary 5.6. The Weyl groug¥ = Ng(T)/T is trivial.

Proof. T is a Carter subgroup af by Lemma 3.10, so it is selfnormalizing ifi. But
Ng(T) < Cg (i) = C by the preceding corollary, 98 (T) = Nc(T) =T andW =1. O

5.2. CaseC{(A) anilpotent Borel subgroup

We assume here that= C¢,(A) is a nilpotent Borel subgroup @f. As S° < Cg,(A),
Fact 2.8 then shows that = C¢,(A) = Cg(S°) = T. We will show that the Weyl group
W = Ng(T)/T is either trivial or of order 2 (Corollary 5.13 below) and that involutions
in G are all conjugate (Lemma 5.14).|liV| = 2, then we will show in Corollary 5.15 that
Ng(T) splits asT x Zp, proving the statement (1b) of Theorem 1.8. We will also obtain
a good algebraic description 6f in Lemma 5.11 and Corollaries 5.16 and 5.17. After all
that, we will finally analyze the geometry of involutionsén

Lemmab.7. T NT8 =1foreachg € G\ Ng(T).

Proof. Assumethal’ NT# # 1 for someg € G. Proposition 3.11 then shows tha{T) =
O(T#) = 1. Butthen Lemma 3.2 implies thétis abelian, thug", 76 < C (T N T#) and
T=T¢=Cg(TNTS$)asT is a Borel subgroup of;. Thusg € Ng(T). O

Corollary 5.8. | J,. T¢ is generic inG.

Proof. This follows immediately from the preceding lemmeat

Corollary 5.9. If x isin Ng(T) \ T and is of ordem moduloT, for some integen > 1,
then the elements of the cosdt are generically of order:.

Proof. It suffices to apply the preceding corollary and Lemma 3.4, and to remark that
an elementt € Ng(T) \ T of ordern moduloT and such thak € ({(x)T)8 for some
g€G\ Ng(T) satisfiesx" e TNTS=1. O

Corollary 5.10. Cg(S°) =T.

Proof. This follows from Corollary 5.9 and Lemma 3.80
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We now detail the general structure 6f Let 95 be the set of Borel subgroups 6f
nonconjugate td" and having a nontrivial Sylow 2-subgroup, that is a conjugat&® dfy
Fact2.12, as B(G) = 1.

The same notatio® will be introduced in Section 6 (before Lemma 6.22) and in
Section 7.2 (before Lemma 7.10), but with a different definition in Section 6. Nevertheless,
Borel subgroups in each version 8f will all have analogous properties, as will be seen
throughout the paper.

Lemma 5.11. B is nonempty and every Borel subgroupgbhonconjugate td” is in 8. If
B € %8 contains the involution € A%, thenB = F(B) x Cg(i), F(B) = O(B) is inverted
byi, andCp (i) is a connected divisible abelian subgrou@o€ontainingS°. Furthermore

G= ( U N(;(T)g) u( U NG(B)).

geG BeB

Proof. We first show thatG contains no Borel subgroups without involutions. Suppose
that B is such a Borel subgroup @. Then B = O(B) is nilpotent by Lemma 2.41,
and Proposition 3.11 shows that two distinct conjugates dfave a trivial intersection.
Thus(J,.; B® is generic inG by Lemma 3.3, as well ds), . 7¢. But then there exists

an elemenb € B¥ which is in a conjugate of’ by Fact 2.1. In particulad; centralizes

a conjugate ofS°. This is a contradiction becauggf;(b) < B (Lemma 3.12) has no
involutions. Thus every Borel subgroup &f has an involution. If every such Borel
subgroup is conjugate tB, thenG is a simple bad group, and it cannot have involutions
by Fact 1.3, a contradiction which ends the proof of our first sentence.

Let now B be a Borel subgroup if8 containing the involution € A®. If k is an
involution in F(B), thenk € Z(B) by Lemma 3.1. Butk is in a Sylow 2-subgroup of
B which is connected by Fact 2.12, thusSt¥ for someg € G. So B, T4 < C¢; (k), and
B = T# by maximality, a contradiction to the definition &, which shows that'(B) has
no involutions. Notice then tha is in particular nonnilpotent, and tha? (B) = O (B) by
Lemma 3.2. IfC°0(B)(i) # 1, then as this is a subgroup Bf Proposition 3.11(ii) implies
that T = B, a contradiction. ThuS?‘(’)(B)(i) is trivial and Fact 2.25 shows th&(B) is
inverted byi. As B/O(B) is abelian by Fact 2.15, we conclude thiiat= O(B) x Cp (i)
with Fact 2.27. It follows then from Fact 2.1 thatz (i) is connected and contained in
Cg(i)=T. As Cp(i) is isomorphic toB/F (B), it is also divisible abelian by Fact 2.15.
We now show thaO (B) = F(B). If O(B) < F(B), then the finite groug’z (i) N F(B) is
nontrivial and it contains an elemenbdf prime orderp. As Cp(i) is divisible, Fact 2.12
shows that is in a p-torus of Cz(i); so it is in ap-torus of T andz is central inT by
Fact2.10. Thug < Cg(t) < B by Lemma 3.12 an@ = B by maximality, a contradiction
which shows thaO (B) = F(B).

It remains to show thaG = (UgGG NG(T)8) U (Ugess NG (B)). If g is any element
in G, theng has an infinite centralizer by Corollaries 5.8 and 2.18, thatjisg) # 1.

If Cg(g) contains an involution, then it contains a nontrivial 2-torus by Fact 2.12,
so it contains an involutiori” for some elementi € G. Then g € Ng(C&(i")) <
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Ng(T)". If C¢(g) has no involutions, then it is in a unique Borel subgraupf G by
Proposition 3.11(ii), ang € Ng(B). O

We now look at the structure of the finite grodfs; (7)/ 7. In what follows the nota-
tion“ " denotes the quotients .

Lemmab5.12. Ng(T) is trivial or Ng(T) = w for some involutionw € G which invertsT
andw? = wT.

Proof. Assume thatVg (T') is nontrivial. ThenNg (T') embeds into a finite subgroup of
Aut(S°) by Corollary 5.10. But finite subgroups of ASP) = Aut(Z,~) are 2-groups by
Fact 2.11, thuvg (T) is a 2-group.

Assume thatv € Ng(T) \ T is such thatw is an involution. Then elements of the coset
wT are generically of order 2 by Corollary 5.9, and Fact 2.28 showsithgan involution
which invertsT'. If w’ is another involution oNg (T), thenw’ is also an involution which
invertsT, andww’ € Cg(S°) = T by the preceding lemma, thatis = w’. This shows
that Ng(T) is a 2-group with a unique involution.

To show thatNg (T) is cyclic of order 2, it remains to show that it cannot contain an
element of order 4. Assume thats an element of order 4 iNg (T), for somex € Ng(T).

Let Y be the subgroup of elementss T such that* = 1. Y is cyclic of order 4, thus
Y ={1,y,i, y~1} for some generatoy such thaty?2 = i. As x acts by conjugation o,
we havey* = y or y* = y~1. In any casex? centralizes the generatorof Y. But x2
has an image of order 2 iNg(T), so it is an involution which invert¥ by the preceding
remarks and it must in particular invert Thus the element of order 4 is both centralized
and inverted by, a contradiction.

This shows thavg (T) = (w) for some involutioriv, andw is an involution ofG which
invertsT. FurthermorewT = w’ becausd’ is 2-divisible. O

Corollary 5.13. Cg(A) is connected o€ (A) = T x (w) wherew is an involution which
invertsT and such thatn7 = w7 .

Lemma 5.14. All involutions inG are conjugate.

Proof. Lemma 5.12 shows that= S° or § = S° x (w), wherew invertsS°. In the first
case we have nothing to prove because then each involutiGn®€onjugate to which is
the unique involution of°. So we assume now th&t= S° x (w); Lemma 5.12 also tells
us that involutions of the cosetS° are allS°-conjugate as® is 2-divisible. The conjugacy
of Sylow 2-subgroups i’ then shows that; possesses at most two conjugacy classes of
involutions:i¢ andw©. It suffices thus to show that® = iC.

Suppose, in order to get a contradiction, thét £ i¢. Notice then thaiw is never in
the connected component of a Borel subgrougGofby Fact 2.12 and our assumption
that Pp(G) = 1. Notice also thaiC;(w) # 1, as otherwiseG would be abelian by
Fact 2.25. IfCZ (w) has an involution, then it contains a conjug&té of S° for some
g € G, by Fact 2.12 and our assumption thag(@r) = 1. But thenS°é{(w) = $°& x (w)
(as Pp(G) = 1 andw? # i8) is in a Sylow 2-subgroug” of G, for someh € G.
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As Pn(G) = 1 again,S°¢ = (§")° and w inverts S°¢ by Lemma 5.12, a contradiction
which shows thaC¢, (w) has no involution. Proposition 3.11(ii) then shows t@@t(w) is
contained in a unique Borel subgrodpof G. If B = T# for someg € G, thenw is not
in T8, sow invertsT¢, a contradiction a€’;;(w) < T4. ThusB is not conjugate td" and
itisin B by Lemma 5.11. It is in particular clear from the proof of Lemma 5.11 thit
nonnilpotent.

We now claim thai® < N (B), which will contradict the simplicity ol5. Let j =i
forsomeg € G. If [j, w] =1, thenj normalizeC¢, (w) andj € Ng (B). Assume now that
[/, w] # 1. Asj andw are not conjugate, there is a third involutipaf G which commutes
with both j andw by Fact 2.32. Notice thatis not conjugate tg, as otherwise it is equal
to j which then commutes with. Thusz = w” for someh € G andCg(z) is in particular
without involutions. Asz normalizesC¢, (w), it also normalizes3, andz € Ng(B) \ B.
As B is nonnilpotent, Fact 2.25 shows th@} (z) # 1. ButC3(z) has no involution, as it
is conjugate to a subgroup 6f;; (w), and is in a unique Borel subgrouy of G. Now
Proposition 3.11(ii) shows that = By, andCg,(z) < O(B). As j normalizesC¢ (z), it
also normalizes3, and we are done.O

Corollary 5.15. Cg(A) is connected orCg(A) = T x (w) wherew is an involution
conjugate ta which invertsT and such thatw? = w’ .

We can now refine Lemma 5.11.
Corollary 5.16. G = {1} U (U,cc T8* L (Upes O(B))*.

Proof. Corollary 5.15 tells us thaUgeG Ng(T)8 = UgeG T8. If a nontrivial element
feGisin O(B) for someB € B, thenCg(f) < B by Lemmas 5.11 and 3.12 and
O(B) < Ci(f). ButCg (f) has no involution by Lemma 5.11 again, 68 (f) = O(B)
by Lemma 2.41. In particulay; cannot be in a conjugate @f, so the second union in the
statement of the corollary is disjoint.

Let now B be a Borel subgroup i#s containing the involution, asin Lemma5.11. Note
that NG (B) = N, (8)(S°) B by the Frattini argument, that g (B) = Cy, () (i) B. Then
Lemma 5.11 shows th&¥s (B) = Cn, ) (i) O(B) and asi inverts O(B), the product is
semidirect. If a nontrivial element € O (B) centralizes a nontrivial elemeate Cg (i) =
Ng(T), then f is in the normalizer of a conjugat®” of T which contains, thus in a
conjugate ofT’, a contradiction. This shows, with Fact 2.27, th&(B) = (¢)°®, so
elements oiVg (B) \ O(B) are all in conjugates df . Our statement follows by conjugacy
of Sylow 2-subgroups. O

We can also obtain some additional information on Borel subgrous in

Corollary 5.17. If B € B contains the involutiorn, then Cy,5)(i) < Ng(B) is a
Frobenius group withO(B) as a Frobenius kernel, andy, ) (i) < T. In particular,

i is the unique involution iNCy,)(i) and I(Ng(B)) = iO(B). We also have that
rk(O(B)) < rk(T).
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Proof. We know from the proof of Corollary 5.16 thaig (B) = O (B) x Cn, ) (0). If zis
an involution inCy,, () (i) different fromi, then there is an involutiogi in the elementary
abelian 2-grougi, z) of order 4 with an infinite centralizer i® (B) by Fact 2.37. Then
B = C¢(z') by Proposition 3.11(ii) ag’ is conjugate tai, a contradiction. Thus is
the unique involution ofCy, (i), and Corollary 5.15 shows tha&iy,)(i) < T. If
feO(B)andCy; s (i) N CNG(B)(i)f is nontrivial, thenf € Ng(T)N O(B) = 1.

It remains to show the last point. Assume thafftk< rk(O (B)). Then rKG/O(B)) <
rk(i9), and by Fact 2.36, there is an involutiene G \ N (B) such thatw O (B) contains
infinitely many involutions. Thetw € Ng(B), a contradiction. O

We now analyze the geometry of involutions@®@f Let
D={(j. b eixi% [j,k1#1]}.
If Cg(A) is connected, thed(Cg(A)) = I(T) = {i}, so in that case is simply the set
of pairs of distinct involutions of;. Notice that, in any casd) is generic ini® x i¢, as

otherwise there would be an involutigrcommuting with a generic subsetsf, which is
impossible by Fact 2.36. Let be the definable map

v:D— G, (j,k)— jk.

By Corollary 5.16, we have a definable partitionBfinto definable subset®; and D>,
thatisD = D1 u Dy, where

D1={(j.k) € D: jke O(B) forsomeB € B} and

Do ={(j.k) € D: jkeT¢ for someg e G}.

Lemma5.18. D1 # @ and(j, k) € D isin D1 if and only if j, k € Ng(B) for some Borel
subgroupB € B. In particular, ¥ (D1) = Ugess O (B).

Proof. Obvious from Lemma 5.11 and Corollaries 5.16 and 5.1(7.

Lemma 5.19. Do £ ¢ if and only if Cg(A) is not connected. Thety, k) € D is in D if
and only if j, k € Cg(z) for a third involutionz € i“. In particular, ¥ (D) = UgeG TS
whenCg(A) is not connected.

Proof. Obvious from Lemma 5.11 and Corollaries 5.16 and 5.17.
Lemma 5.20. If Cg(A) is not connected, theh; is generic inD (and, thus, i x i9).

Proof. If (j, k) € D1, thenjk € O(B) for a uniqueB € B and we claim thaty ~1(jk) =
{Gf, jfik): fe OB} If (j, k') e y~1(jk), thenj” andk’ invert j’k’ = jk, so j’ and
k' normalizeCZ (jk) = O(B) andj’, k' € Ng(B). Thus(j'. k") = (j f, jf') where f and
/' are in O(B) by Corollary 5.17. Ther(j', k") = (jf, jif Gfif) = Gf, jf(G'k)) =
(jf, jfik), which proves the claim. In particular,@—1(jk)) = rk(O(B)).
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Lety(D1) =Uy uU2U--- L Us be a finite partition ofy(D1) into definable set#/y/,
such that the fibers af are of constant ranK in eachU,/, and letsg such thahp—l(USO)
is generic inD;. Note then thatg = rk(O (B)) for someB € 8. By additivity of the rank,
we have

rk( U 0(8)) = rk(y(D1)) = k(v (¥ 1 (Usy))) = k(¥ (Usp)) — 50

Be®B
=rk(D1) — rk(O(B)).

We can also compute ﬂUgeG T8) usingDa. If (j, k) € D2, then(j’, k') € D2 satisfies
¥ (', k") = jk if and only if (j/, k") = (jt, jtjk) wherer varies over the conjugate af
which containgik. So the fibers of/ restricted toD», have a constant rank equal ta 7K.
Thus we have r(UgEc T8) =rk(D2) — rk(T).

As 1k(Uges O(B)) < rk(Ugec T8) by Corollary 5.16, we get that (1) —
rk(O(B)) < rk(D2) —rk(T), thatis rkD1) —rk(D2) < rk(O(B))—rk(T).ButLemma5.17
shows that rkO (B)) — rk(T) < 0, so rkD1) —rk(D2) <0 and rkKD1) <rk(D2). O

6. Pr2(G) > 1and C;(A) not a Borel

In this section we again assume tldats fixed as in Theorem 1.8, and we adopt all the
associated notation from the statemefithat theorem. We assume furthermore,

Pro(G) > 1 andC = C;(A) is not a Borel subgroup af.

Note that| A| = 2P2(%) > 4 in the case considered. We will prove part (2a) of Theorem 1.8.
We will first prove that P#(G) = 2 in this case (Proposition 6.3 below). Then we will
show part (2a) of Theorem 1.8 in Lemma 6.4 and Theorem 6.6 below. After that, the main
point will be to show thatW acts faithfully onA (Proposition 6.17 below), obtaining in
particular|W| =1, 2,3, or 6 (Corollary 6.18 below). The casg¥| = 2,6, and 1 will

be removed from the horizon in Section 6.1 (Theorem 6.29), Section 6.2 (Theorem 6.43),
and Section 6.3 (Theorem 6.63), respectively. After this lengthy analysis, the remaining
statements of part (2) of Theorem 1.8 will be shown in Section 6.4.

Lemma 6.1. Assume that there are two distinct Borel subgrosasand B, of G, each
containing a conjugate af°, and with a nontrivial intersection. ThdPr(G) = 2.

Proof. Fix two distinct Borel subgroupB; and Bz of G so thatX := B1 N By is nontrivial
and of maximal rank.
We first claim
X is infinite.

Suppose the contrary, and pick an elememf prime orderp in X. We will eventually
apply Corollary 2.20 toc in both By and Bs.
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We show thatF°(B1) has no nontriviap-unipotent subgroup. Suppose on the contrary
that the maximal (normalp-unipotent subgroud/, of F°(By) (Corollary 2.16) is
nontrivial. Thean,p(x) is nontrivial (Fact 2.9) and ifB3 is a Borel subgroup of5
containing C¢ (x), then Bz = By by Proposition 3.11(ii). We then get that; (x) <
B> N B1 is finite, a contradiction to Fact 2.17. Thpsunipotent subgroups df°(B;1) and,
similarly, F°(B) are trivial and we can apply Corollary 2.20 to see that(x) contains
a Sylow’ 2-subgroup of bottB1 and B». If B3z is now a Borel subgroup aff containing
C¢(x), thenwe getthaBy = Bz = B2 by the maximality of rkX). This final contradiction
proves thatX is infinite.

If O(X)# 1, thenB1 = B by Proposition 3.11(ii). Thu® (X) =1 andX?® is abelian
divisible by Lemma 3.2. LefSx be the (nontrivial) maximal 2-torus of, and letss
(respectivelySS) be a Sylow 2-subgroup ofB1 (respectivelyB;) such thatSx < S
(respectivelySx < S5). If Sx is not a Sylow 2-subgroup ofG, then we can consider a
Borel subgroupBs of G containingNg, (d(Sx)); it containsX, as well asS; (> Sx) and
S5 (> Sx), thus the maximality of rkX) implies By = B3 = Bz, a contradiction which
shows thatS] = Sx = S5.

We now claim thatO (B1) # 1 and O (B2) # 1. If these are both trivial, theB1 and
B, are abelian by Lemma 3.2, thus includeddg (X) and equal, a contradiction. We
may assume therefore th@t(B1) # 1. If O(B2) = 1, then by Fact 2.37 one can find an
involutioni € Sx such thatC‘(’)(Bl)(i) #*1; butC"O(Bl) (i) < Cg (i) = B2 as By is abelian
by Lemma 3.2, a contradiction to Lemma 2.41(a&B>) = 1.

Proposition 3.11(ii) shows that any involution$iy cannot have an infinite centralizer
both in O (B1) andO (B2). Thus any such involution invert3(B1) or O (B2) by Fact 2.25.
We can now conclude that the Prifer 2-rankSgfis two. Suppose on the contrary thfat
contains an elementary abelian 2-subgroup of order eight, that is seven distinct involutions.
This is then the union of two sets of involutions, those which inv@(B1) and those
which invertO (B2), and neither set contains three linearly dependent elements; but this is
impossible. O

Corollary 6.2. SupposéCs (i): i € A*) = G. ThenPr(G) = 2.

Proof. The hypothesis implies that there are involutiang € A such thatC°(i) and
C°(j) are contained in distinct Borel subgroups, so the preceding lemma appties.

Proposition 6.3. (C (i): i € A#) = G. In particular, Pro(G) = 2 by Corollary 6.2.

Proof. Suppose(Cg(i): i € A*) < G. Let B be a Borel subgroup o6 containing
(Cgli): i e A#). As C < B, there is an involution € A* such thatCg (i) < B. In
particular,B is not abelian, and thu@ (B) # 1 by Lemma 3.2.

Let T(w) denote the sefwwi: wi € i N wB} for eachw € i% \ Ng(B). Note
that rkiC \ Ng(B)) = rk(i%) = rk(G/C¢g(i)) by Fact 2.36. AsC%(i) < B, we have
k(G/B) < tk(G/Cg (i) = rk(i% \ Ng(B)). Thus there is a coset a8 disjoint from
Ng(B) containing infinitely many involutions af®, and if w is such an involution, then
T (w) is infinite. Asw ¢ Ng(B), F(B) N F(B)Y is trivial by Proposition 3.11 and one
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sees as in the proof of Lemma 4.5 thlAT (w))’ < F(B) N F(B)¥ = 1. Thusd(T (w))

is an infinite abelian subgroup @& inverted byw, and it is necessarily disjoint from
F(B). Notice that, conjugating by an element®fif necessary, we may assume without
loss of generality that the Sylow 2-subgroupd&ifl’ (w)) is contained inS°. If d(T (w))
contains a four-subgroup of, then there is by Fact 2.37 an involutiéne A such that
Co B)(k) # 1, and then ¥ O(Cg (k)) < O(B) by Lemma 2.41 and Proposition 3.11(ii)
and ask” =k, w € Ng(B) by Proposition 3.11(ii), a contradiction. Thd¢T (w)) has at
most one involution and has Priifer 2-rank at most 1. On the other lia@d T (w))) <
O(B)N O(B)* =1 by Lemma 2.41. Thus R (T (w))°) = 1.

Let j be the unique involution ofl (T (w))°. As w € Cg(j), w acts by conjugacy
onCg(j) < B. If O(CZ(j)) # 1, then, as this is normalized by, Proposition 3.11(ii)
would show thatB = B", a contradiction. Thu® (C¢,(j)) = 1 andCg () is abelian by
Fact 3.2. But ther$® is the unique Sylow 2-subgroup 6, (), andw acts by conjugacy
on I(8°) = A*. As above there i& € A* such that L O(Cg (k) < O(B). AskY € A,
we have 1# O(Cg (k")) < O(B)Y N O(B) by the definition of B. Thus B = B" by
Proposition 3.11(ii), a final contradiction.co

Now leti1, i», andiz = i1i» be the three involutions of*.
Lemma6.4. O(C) =1andT = C is abelian divisible.

Proof. If O(C) # 1, andB;,, B;,, andB;, are Borel subgroups af containingC¢ (i1),
C¢(i2), andCg (iz), respectively, then Propiien 3.11(ii) implies thatB;, = B;, = Bj,.
Thus(Cgz(i): i € A#) < G, a contradiction. S@(C) = 1, andC is abelian divisible by
Lemma3d.2. AsS° < C(S°)=T<C, T=C. O

Lemma6.5. If a Borel subgroupB of G containsT’, thenO (B) is nontrivial and is inverted
by an involution ofd. FurthermoreB = O(B) x T.

Proof. If O(B) =1, thenB is abelian by Lemma 3.2, s® = C is a Borel subgroup of;,

a contradiction to our assumption. ThagB) # 1. If C°O(B)(k) # 1 for each involution
k e I(A), thenCg (k) < B for eachk € 1(A) by Proposition 3.11(ii), a contradiction. Thus
there is an involutiofig € 1 (A) such tha‘C°0(B)(ko) =1, andkg invertsO (B) by Fact 2.25.

It remains to show thaB = O(B) x T. As T is nilpotent and of finite index in its
normalizer by Lemma 3.10, it is a Carter subgrou@dfy Fact 2.19. AQ) (B/0(B)) =1,
B/O(B) is abelian by Lemma 3.2 and &%(B) is also abelian by the preceding, is
solvable of class 2. ThuB = By x T by Fact 2.22 and it suffices now to show that
Bar= O(B).ButBys < O(B) asB/O(B) is abelian and thu® (B) = By x (T N O(B)).

As O (B) is connected, this shows th@ N O(B)) is connected. Then Lemma 6.4 shows
that(TN O(B)) < O(T)=1,andO(B) =By. O

Theorem 6.6. For eachk € 1(A), C¢ (k) = O(Cg(k)) x T is a Borel subgroup of;, where
O(C¢ (k)) is nontrivial and inverted by the two involutionsiiiA) \ {k}.

The proof will depend on the three following lemmas.
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Lemma 6.7. There is an involutiork € 1(A) such thatC¢, (k) is a Borel subgroup otz
and O(Cg(k)) # 1.

Proof. By Lemma 6.5, it suffices to show that there is a Borel subg®wop G containing
T and such that an involutidne S° centralize=) (B). Assume toward a contradiction that
C°O(B)(k) < O(B) for each Borel subgroup of G containing? and eactk € 1(A), and
fix such a Borel subgroup.

By Lemma 6.5, there is an involutioky € 1(A) which invertsO(B). As O(B) is
in particular abelian, we have@ (B) = CC&(B) (k1) x Cg(B)(kz) by Fact 2.26, wheré1
andky = koky are the two other involutions in(A). Our assumption shows that the two
factors in the product are properd B) and nontrivial. Thu<'¢, (k1) andC¢; (k2) are both
contained inB by Proposition 3.11(ii). Thu€'g, (ko) % B by Proposition 6.3. LeBg be a
Borel subgroup ot> containingCy; (ko). Note thatO (Bo) # 1 by Lemma 6.5. As3o # B,
we haveC;’)(BO) (ky) = C;’)(BO) (k2) = 1 by Proposition 3.11(ii). Buk; andky are in B,
so they normalized (Bp) and they inveriO (Bg) by Fact 2.25. Thugg = k1k> centralizes
O (Byp), as well asBo = O(Bp) x T (Lemma 6.5). Nowkg is central in a Borel subgroup
and our claim is proved. O

To prove Theorem 6.6, we can now assume, in view of the preceding lemma, that
C¢(i1) is a Borel subgroup ofs. (%)

Let By denote this Borel subgroup. There is an involutian/ (A) such thaC°O(B )(k) =1,
as otherwiseC (k): k € I(A)) < By by Proposition 3.11(ii). Then this involutiohin-
verts O (B1) by Fact 2.25, as doésk. Thusio andiz invert O (B1).

If O(C(i2)) =1 andO(Cg(iz)) =1, thenCg (iz) and Cg (i3) are abelian by Lem-
ma 3.2, thus equal t& and contained irB1, a contradiction. Thus for the proof of Theo-
rem 6.6, we may suppose that

0(Cg(i2) # 1.
By Proposition 3.11(ii)C¢, (i2) is contained in a unique Borel subgroBpof G. Note that
if C°O(BZ) (i1) is nontrivial, thenBy = B> by Proposition 3.11(ii), and (Cg (i2)) < O(B1)

by Lemma 2.41, a contradiction gsinverts O (B1). Thus, as; hormalizesB», i1 inverts
O (B2) by Fact 2.25.

Lemma 6.8. CZ (i2) = Ba.

Proof. Suppose tha€?,(i2) < Bo. ThenC"O(BZ)(iz) < O(B2) by Lemma 6.5. AsO(B>)
is inverted byi1, it is abelian and Fact 2.26 implies that

O(B2) = COO(BZ)(iZ) X COO(BZ)(ig),

where both factors in the product are nontviThen Proposition 3.11(ii) shows that
Co(py(i3) is contained in a unique Borel subgroBp, and thatB, = Bs.
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As Cg(i2) < B2, we have rkG/B>) < rk(izG) and there is a coset B> of By, for
somew € iZG \ Ng(B2), containing infinitely many involutions m‘g. Let thenT (w) =
{ww’: w e iZG N wB2}. We can see as in the proof of Proposition 6.3 Wk (w)) is
an infinite abelian subgroup d#, disjoint from F(B2). FurthermoreO (d(T (w))) =1
andd(T (w)) contains a nontrivial 2-toru®; by Fact 2.12, which is inverted by. Now
T1 » (w) is in a Sylow 2-subgroug; of G, andw € S1 \ S7 (as connected components
of Sylow 2-subgroups of; are abelian). Thus there is an involutiene S \ S° which is
conjugate ta, and which inverts a nontrivial 2-tords, of S°.

We claim now thaiv’ € N (B) \ B2. As we assume that?, (i2) is not a Borel subgroup
of G, iz is not conjugate té; andié"/ is equal taz or toiz. But O(C¢ (i2)) and O (CE (i3))
are both contained iB2 = B3 by Proposition 3.11(ii). With Proposition 3.11(ii) again,
we findw’ € Ng(B2) in each case. Furthermoug ¢ B, as Sylow 2-subgroups di» are
abelian by Fact 2.12.

Now w’ normalizesO(B2) and in factw’ inverts O(By): else C‘g)(Bz)(w’) # 1 by
Fact 2.25, which shows thaty, (w') < Bz by Proposition 3.11(ii), and a8’ € C¢,(w'),
this is a contradiction.

Now asw’ also invertsi (T, ), it inverts O (B2) x d(T,,)° (Fact 2.25) which is therefore
abelian, and is normal iB2 by Lemma 6.5. In particulae](T,,)° < F°(B2) and F°(B2)
contains an involution which is central iB; by Lemma 3.1. As; inverts O(B>), this
involution is eithetri, or i3, a final contradiction. O

Lemma6.9. T < C¢(i3).

Proof. Assume that" = C¢,(i3). ThenCg (iz) is a proper subgroup d#; by Lemma 6.5,
and one can see as in the precedingriea that there is an involution € i3G \ Ng(B1)
such thatl (w) = {ww': w’ € ig NwB1} is infinite andd (T (w)) is an abelian subgroup of
B inverted byw and containing a nontrivial 2-torus. As before, we can find an involution
w’ € §'\ §° which is conjugate téz and which inverts a nontrivial 2-torug, in S°.

We claim that Pg(Cj;(So)(w’)) = 1. First we show thaCj;(So)(w’) # 1: otherwisew’
invertsd (S°) by Fact 2.25, sa’ centralizes; andi, and it normalize®) (B1) andO (B>).

As w' is conjugate taiz, we haveO(Cg(w')) =1 by Lemma 6.4, thu:é‘g(Bl)(w’) =
C°0(32)(w’) =1 by Lemma 2.41 andv’ inverts O(B1) and O(B») by Fact 2.25. As
w’ also invertsd(S°), it inverts O(B1) x d(S°) (Fact 2.25) which is therefore abelian
and contained inF(B1) by Lemma 6.4 and Lemma 6.5. This shows tl§at< F(B1)

is central inBy by Lemma 3.1, ands € Z(B1), a contradiction. Thus,“;(so)(w’) #1
and O(Cg(so)(w/)) <O(Cg(w")) =1. Thust;(So)(w/) contains a nontrivial 2-torus by
Fact 2.12. If the Prifer 2-rank aﬁ‘;;(so)(w/) is two, then the 2-torus involved &, a con-
tradiction asw’ inverts the nontrivial 2-torug,,, < S°.

We now show thatw’ centralizesA. Let 71 be the 2-torus of Priifer 2-rank one of
Cg(so)(w’). We havel; < Cg (w') and asw’ is conjugate tas, w’ is the only involution of
C¢ (w') whose centralizer is not a Borel subgroup®fThus!(71) # {i3}, as otherwise
w’ = i3 € §°, acontradictionas’ € §\ §°. Thereforel (T1) = {i1} or I (T1) = {i2} and as
i3 is conjugate to neithey norip, w’ centralizesA.
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Sow’ normalizesO (B1) and O(Bz). As O(Cg(w')) =1, Fact 2.25 and Lemma 2.41
show thatw’ inverts O(B1) and O(B2). As w’ also invertsd(T,) < T, w’ inverts
O(B1) x d(T,) andO(B2) x d(T,y) by Fact 2.25. These subgroups are therefore abelian
and contained irF(B1) and F(B2), respectively, by Lemma 6.5. Thds7T,,) < F(B1) N
F(B2) and asO (B1) and O (B2) are both nontrivial, Proposition 3.11 shows tiBat= Bo,

a contradiction. O

Proof of Theorem 6.6. The statement of Theorem 6.6 is proved forandi; by Lem-
mas 6.5, 6.7, and 6.8, and it remains only to prove @fati3) is a Borel subgroup of;.

Note thatO (Cg,(i3)) # 1, as otherwis€'¢, (i3) = T by Lemma 3.2, which contradicts
Lemma 6.9. Hence Lemma 6.8 appliesian place ofi;. O

This proves the statement of part (2a) of Theorem 1.8. We will now analyze the Weyl
group W = Ng(T)/T. Note thatT < Cg(A) < Ng(A) = Ng(T) asT = C;(A) by
Lemma 6.4. Note also tha¥;(A)/Cg(A) acts faithfully onA, so embeds int¢3, and
ING(A)/Cg(A)| =1, 2, 3, or 6. Our target is now to show that= Cs(A), i.e., that
W = Ng(A)/Cg(A), which will be obtained in Proposition 6.17 below.

We setB; = Cg, (i) for I =1, 2, 3; these are three distinct Borel subgroups.

Lemma 6.10. There is a definable nongeneric sub&ebf T such thatT N 7% C X for
eachg € G\ Ng(T).

Proof. For eachg € N(T)\ T, letT, =T NTS. If T, # 1, then(T,T¢) < Cg,(Ty).
Note thatO (Cg (Ty)) is nontrivial, as otherwis€, (T,) is abelian by Lemma 3.2 and then
§° = $°¢ andg € Ng(T). As A < C&(Ty), there is by Fact 2.37 an involutidne A* with

an infinite centralizer ir0 (C¢, (T,)). Now Theorem 6.6 and Proposition 3.11(ii) show that
Ci(Ty) < Cg(k). SoT andT¢ are two Carter subgroups 6f; (k) and one can assume
thatg € Cg; (k) \ T by Fact 2.19. We have shown that

QgCWlJ(TﬂWﬂ.
1=1-heB\T
It suffices now to apply Lemma 3.5.00
Corollary 6.11. ( J,. T¢ is generic inG.
Proof. We apply the preceding lemma and Lemma 3.8

Lemma 6.12. If w is an involution inS \ $°, thenw ¢ CZ (w). In particular, (S'\ §°) N
1(5°)¢ =.

Proof. Suppose toward a contradiction thate /(S), w ¢ S°, butw € Cg (w). Thenw
centralizes an involution € A, for somel = 1, 2, or 3. We will show thatv € B;, which
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gives a contradictions® is a Sylow 2-subgroup aB; by Fact 2.12, and normalizess®,
Ssow € S°.

If w does notinverO (B;) thenw has an infinite centralizer i@ (B;) by Fact 2.25, and
C¢(w) < By by Proposition 3.11(ii), s € B;. So suppose

w invertsO(By).

Thenw does not inverS°, as otherwisav would invertO (B;) x d(S°) by Fact 2.25. As
0(d($°)) =1 by Lemma 6.4, it follows thaC§. (w) is nontrivial. We may suppose that
i € C3o(w).

Let P O C§.(w) be a Sylow 2-subgroup of' g (w) containing (w, C.(w)). Then
w e P < By, as claimed. O

Lemma 6.13. Let/ € {1, 2, 3} and assume that is an element inNg(T) \ T. Then the
definable seX; = {y e xT: Cg,(y) =1} is generic inxT".

Proof. As xT has Morley degree one, we may assume toward a contradictiofy;teat
xT \ X;is genericinxT. It follows that P, = Y; O (B;) is also generic i (T x O(B;)) =
xB;. As O(B)) is abelian, any element @ has an infinite centralizer i® (B;).

If g1, g2 € G are such thag1 N (B)) # g2Ng (By), thenPf* N Pf? is empty: otherwise
an elementx in this intersection would have an infinite centralizer in badiB;)s!
and O(B;)%2, and thusB* = Bf?> by Proposition 3.11(ii). It follows that ) >
rk(P;) + rk(G) — rk(Ng (B;)) = rk(G). Now Corollary 6.11 together with Fact 2.1 shows
that there is an elemente P, N T4 for someg € G. Theny € T8 < Cg(y) < By
(Proposition 3.11(ii)). Thus B; € B; andx € Ng,(T) =T, a contradiction. O

Corollary 6.14. Assume that is an element itNg (T) \ T. Then the definable set

X={yexT: Cp,(y) =CQp,)(¥) = Cp, (») =1}
is generic inxT.

Proof. This follows from the precedmlemma and the fact that7 has Morley degree
one. O

Lemma6.15. If Cg(A)NCg(A)8 is nontrivial, withg € G, thenA N A¢ is also nontrivial.

Proof. Suppose that is a nontrivial element o€ (A) N Cg(A)8. Note thatCg, (x) # 1

by Corollary 2.18 and the genericity bjgec T8,andthatA, A8 < Cg(x). If the maximal
2-torusTy of F(Cg(x)), which is characteristic i€ (x), is nontrivial, then it has Prifer
2-rank 1 or 2. If P§(T1) = 2, thenA = 21(T1) = A8, by Lemma 6.12. If B(Ty) = 1,
then A and A% have in common the unique involution &%, by Lemma 6.12 again. So
we can assume that®(C¢ (x)) has no involution by Fact 2.12, and by Fact 2.37 there are

involutionsk € A andk’ € A8 such thaC}’:(C%(x))(k) andC;(C%(x))(k’) are both nontrivial.

Now C¢ (k) = CZ (k') by Theorem 6.6 and Proposition 3.11(ii), and Theorem 6.6 shows
thatk =k'. O
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Lemma6.16. Assume: € Cg(A) \ T and letX be the definable generic subsetdf as in
Corollary 6.14 Fix y € X. Then there is a finite subsg} of Uf’zl O(By), depending only
ony, with the property that for every; € X andg € G, y = yf implies that7¢ = T/ for
somef € Fy.

Proof. We show that the seff, = | J3_, C, ;, where

Cyi={fe€O0B): f2eComy(M},

has the required properties. First, remark thats finite: for eachl, Co(p,)(y) is finite (by
definition of X, asy € X), and as any element of the abelian grauB;) (Theorem 6.6)
has at most one square ro6t, ; is also a finite subgroup ad (B;).

Suppose now thays € X and g € G satisfy y = yf. Theny € Cg(A) N Cg(A)S
and A N A¢ is nontrivial by Lemma 6.15. IfA = A%, thenT¢ =T =T, and 1€ F,.
Assume nowA # AS. ThenA N A8 = (i;) for somel € {1,2,3}, andT andT?¢ are two
Carter subgroups of (i) = By, i.e., TS = T/ for some f € O(B;) by Theorem 6.6.
It suffices now to show that such ghnecessarily belongs 0, ;. For, notice thatCs(A)
is characteristic inVg (T), thusCg (A)¢ = Cg(A)/ andy = y§ € Cg(A)/ centralizesA
andA/. In particular,y centralizes, andiljf wherel’ € {1, 2, 3} \ {I}; but ilff =iy f2 by
Theorem 6.6, thus centralizesf? and f € Cy;. O

Proposition 6.17. Cg(A) =T.

Proof. Assume toward a contradiction thais an elementirCg(A) \ T and letX be the
definable generic subset of" as in Corollary 6.14. Consider the definable map

U:XxG— G, (y,8r—

Fory e X andg € G, we claim that

w8y < | J {67 i8): 1 e No (D), (+)

fEeFy

where F), is the finite subset 0U13:1 O (B;) depending only ory as in Lemma 6.16.

So let (y1, g1) be in the fiber ofy$. Theny = yflgfl and 718" = T/ for some

f € Fy, by Lemma 6.16. Then the element= g1~ 11 is in Ng(T) and g1 = tfg,
-1 -1.-1 . . .

y1=y881 " =y/ """ which proves inclusiofts).

Clearly, each member in the finite union of the right side of inclugionhas a rank
equal to rKNg (T)) = rk(T), thus rk¥ ~1(y%)) < rk(T). We have shown that the fibers
of elements of the image af have a rank uniformly bounded by (fK). It follows that
rk(X x G) <rk(¥ (X x G)) +rk(T), i.e.,

rk(X9) = k(¥ (X x G)) > k(X x G) — IK(T) = rk(X) + Ik(G) — Ik(T) = rk(G)
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as rkX) =rk(xT) =rk(T). ThusX© is generic inG.

Now, by Fact 2.1 and Corollary 6.11, there exists X andg € G such thak € 7$. But
thenTé < Cg(i)) for somel € {1, 2,3} (Lemma 6.15). Axc e T¢ < B, x e Ng(T) =T,
a contradiction. O

Corollary 6.18. W = Ng(T)/T = Ng(A)/Cg(A) acts faithfully ond and|W| =1, 2, 3,
or 6.

Lemma6.19.If x € Ng(T)\ T is of order2 moduloT, thenxT = wT for some involution
w e I(G) \ I(5°)¢. For such aw, the subgrou~ of elements of" inverted byw is

connected and (wT) = w’. Furthermore, ifw centralizes the involutioty of T, then
wY% N Cq (i) = wh.

Proof. First note that we can apply Lemma 2.318% by Corollary 6.18. By Fact 2.5,
xT contains a 2-element. Now y2 € Csq(y), thus y2 = 52 for somes € Cs-(y) by
Lemma2.31. Thew = ys 1= (ys H)"LexT NI(G)\ 1(5°) by Lemma 6.12.

By Lemma 2.31, the Sylow 2-subgroup Bf" is connected and thus i ~)°. Then
T~ /(T~)° has odd order by Fact 2.5. Butife 7—, thent? = [w, 1] € [w, T] < (T™)°
(Fact 2.2); thug ~ is connected. In particulait is 2-divisible andl (wT) = w’ .

Assume now thatv centralizes; € I(T). Note thatCs (i;) = B; x (w) by the Frattini
argument. Ifw’ € w® N Cg(i;), thenw’ € Ng(5°)f = Ng(T)/ for somef € O(B;), and
w' € (Ng(T)\ T) N Cq (i), thusw’ € [ (wT)! = wT)f cwh. O

Corollary 6.20. The structure ofS and the conjugacy classes of involutions are the
following:

(@) If [W|=1o0r3,thenS = S° and
(i) if IW|=1,thenI(G) =if Lif uif;
(i) if [W|=3,thenI(G)=i{.

(b) If [W| =2 or 6, then there is an involutiow € Ng(A) \ Cg(A) andS = §° x (w). In
that case we may assume, changing indices if necessaryytbantralizes;. Then
(iii) if [W|=2,thenl(G)=i{ uif UwY (herei§ =if);
(iv) if |W] =6, thenI(G) =if LwC.

Proof. Everything is clear from Fact 2.33 and Lemmas 6.12 and 6.19.

After these investigations of the structure W&f, we now push further the analysis of
Borel subgroups of;. First note that we can compare the ranks ofs even if they are
not conjugate:

Lemma 6.21. rk(B1) = rk(B2) = rk(B3) andrk(O(B1)) =rk(O(B2)) =rk(O(B3)).

Proof. The second equality follows from the first one by Theorem 6.6.
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Assume toward a contradiction that(B¢) < rk(By) for somel, I’ € {1, 2,3}. Then
rk(G/By) < rk(i?) and by Lemma 2.36 there existsz iC \ Ng(By) such that

T(x) := {ococl: oy € ilG N Bl’}

is infinite. Asa normalizes!(T («)), we havdd(T («)), d(T ()] < F(By)NF(By)* =1
(Proposition 3.11), thug/(T(«x)) is an abelian group inverted by, and d(T («)) N
F(B;) = 1 by the same argument as before. Now the maximal 2-t6yusf d(T («))°
is nontrivial (Lemma 2.41). Bufy x (a) < $°% for someg € G (Lemma 6.12) and
centralizesl;, a contradiction. O

Let 9B be the set of Borel subgroups 6fnonconjugate ta; for all [ € {1, 2, 3}. Note
thatB might be empty here. We will see th# is not empty only at the very end of the
analysis of our final configuration, in Lemma 6.73.

This definition of B is different from the one in Section 5.2 (before Lemma 5.11),
but we will see throughout this section that Borel subgroup® ihave the same kind of
behavior as those in Section 5.2.

Lemma6.22.If B € 9B, thenF (B) = O(B) < B and B contains an involutiot conjugate
to i; for somel € {1, 2, 3}. Furthermore,k inverts O(B), B = O(B) x Cp(k), and
Pr(Cp(k)) =1.

Proof. If B= 0O(B), thenUgeG B$ is generic inG (Lemma 2.41 and ®position 3.11),
so there is by Fact 2.1 a nontrivial element T N B8 for someg € G. Now S° <
C¢ (1) < BE by Lemma 3.12, a contradiction. This shows theB) < B. Let nowS$; be a
Sylow 2-subgroup oB. As §; is connected$; < S°8 for someg € G andS; contains an
involutionk = if for somel € {1, 2, 3}. If F(B) has an involutiory, thenB = Cg,(j) by
Lemma 3.1 and thug € S1, so j = if for somes € {1, 2, 3} and B = Bf, a contradiction.
ThusF (B) has no involution; in particular, Lemma 2.41 implies t#&(B) = O (B) < B.
We will show later thatF(B) = O(B).

If an involution X’ in S1 has an infinite centralizer it (B), then B = C (k') by
Proposition 3.11(ii), a contradiction. Thus;P$1) = 1 andk is the unique involution in
S1 by Fact 2.37. Furthermoreinverts O (B) by Fact 2.25. Facts 2.15 and 2.27 also show
that B = O(B) x Cg(k), and it follows also tha€ g (k) is divisible abelian.

It remains to show tha¥'(B) = O(B), i.e., thatF(B) is connected. IO (B) < F(B),
then the finite grou gy (k) contains an elementof prime orderp # 2. As Cp(k) is
divisible, ¢ is in the maximalp-torus T, of Cp(k), and we havel,, < Cg (k). We claim
that T, centralizes a conjugate 6f: by Theorem 6.6 and Fact 2.10, the maxirpatiorus
of O(Cg(k)) is trivial and it follows thatT” contains a maximap-torus of C¢, (k). Thus
T, is in a conjugate of’, which proves our claim tha, centralizess®” for somen € G.
In particular,S°” < Cg(1). Butr € F(B), soC°O(B)(t) #1by Fact 2.7 and’;; () < B by
Proposition 3.11(ii). This is a contradictionasf@®) =1. O

Lemma 6.23. T = d(S°). For any involutioni € A, there is a definable connected
subgroup7; of T such thatS; = 7; N S° is a 2-torus of Prufer rankl, i € S;, and
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T; = d(S;). For i, j € A distinct involutions,T = T7; x T;, and T;, T, are definably
isomorphic.

Proof. Let M; be aT-minimal subgroup oD (B). Let T,* = Cr (M), S; = (T;" N 5°)°,
T = (T;")°. ThenT/T;" is isomorphic tok“ for some algebraically closed fiellf; of
characteristic not 2, and in particul&rhas Prifer 2-rank equal to 1.

Now Tfr acts faithfully onM>, as otherwise we again haves 7% with M1, M> < C(x),
leading toB1 = By, a contradiction. By tamenesk, ~ K, and71 has no infinite proper
definable subgroups. Thug = d(S1). Similarly 7> = d(S2). Looking at the action of
T on M1, we find ;" x T = T and T;" = T1 by connectedness. This=T1 x T =
d(81) x d(S2) < d(S°).

Changing notation, so th&; = 7; if i = i;, the remaining statements are simply a
paraphrase of the foregoing. The definable isomorphisms come from isomorphisms of,
e.g., 7> andT3 with K;*. Note however that we have not made any claims of “canonicity”
as far as the groupg ands; are concerned. O

Corollary 6.24. If R is an infinite proper definable subgroupBf thenrk(T) = 2rk(R).

Proof. By the proof of Lemma 6.23, we ha#e= T1 x T> for two definably isomorphic
definable subgroup%; and 7>, each having no infinite proper definable subgroups. If
R NT; isinfinite for some, thenT; < R < T; x T; andT; has a finite index irR, proving
our lemma in that case. Thus we may assukne 7; finite. ThenT = T; R and again
rk(T) =rk(T;) + rk(R), i.e., rtkR) =rk(T;). O

Lemma 6.25. The following properties are satisfied

(1) T isisomorphic to the product & split 1-dimensional tori, i.e.2 copies of the multi-
plicative group of some algebraically closed field, of characterigtig¢ 2.

(2) If p>0,thenO(By) is p-unipotentforl =1, 2, 3.

(3) If p=0, thenO(By) is torsion-free forl =1, 2, 3.

Proof. The first claim was seen in the proof of Lemma 6.23.

Observe that the divisible part @f(B;) is torsion free, as a maximaktorus in O (B;)
would have to be central iB;, which is impossible by Theorem 6.6.

Suppose that the maximatunipotent subgrou@/, of B; is nontrivial. Then in the
notation of the proof of Lemma 6.23, we may take < U,, and henceg = p. Similarly,
in the event that the divisible part 6f(B;) is nontrivial,p = 0. SinceO (By) # 1 for each,
and the value op is determined by the structure ®f all claims follow. O

Notation 6.26. Let p = charT denote the characteristic ofetalgebraically closed field
such thatl = K* x K* asin Lemma 6.25.

Lemma 6.27.If B € B, thenO(B) is a p-group(i.e., torsion-free ifp = 0).
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Proof. Letk be an involution inB as in Lemma 6.22. By conjugacy, we may assume that
k=1i; forsomel =1, 2, or 3. Letl}, = Cp(k) andM be aT;-minimal subgroup oD (B).
As O(Cr,(M)) < O(B) N T =1 and the unique involutiok in Ty invertsM, Cr, (M) is
finite of odd order. By tameness, we hayg Cr, (M) = K * for some algebraically closed
field K of characteristic not 2. Thus the torsion subgrdupof 7; contains a nontrivial
g-torus for everyy # chark). On the other hand}y < Cg, (k) = B; andT1 N O (B;) must
be finite by Lemma 6.25 and the fact that the divisible pa®oB;) is torsion free. Thus,
by Theorem 6.67 contains a nontriviag-torus for everyy # charK).

Assume now toward a contradiction that atiay # p. If p > 0, thenT contains a
nontrivial p-torus, a contradiction to Lemma 6.25. Thps= 0 and chafK) > 0. By
conjugacy, we may assun® < T. Then, by tameness, = d(T1) < T. This is a
contradiction as infinite definable subgroupgomust contain a nontrivial chék )-torus
by Lemmas 6.23, 6.25, tameness, and Fact 2(5.

We will now consider the different cases for the valueWf. The following lemma will
be useful.

Lemma 6.28. If e T* is inverted by an involutioi € A*®, thenr € I(T).

Proof. If j € Ng(T),thenj e T andr =t/ =1~1, sot € I(T). Assume nowj ¢ Ng(T).
ThenT, T/ < C&(1). O(CE(1)) # 1, as otherwis€g, (1) = T = T/ by Lemma 3.2, and
Cg (1) < B for somel =1, 2, or 3 by Fact 2.37 and Proposition 3.11(ii). 5a N¢ (B;)
by Proposition 3.11(ii) ang € B; by Lemma 6.12.

Computing modulaD (By), one sees that inverts: and centralizes, thust € I1(T) by
Theorem 6.6. O

6.1. Case{W|=2
We will eliminate this case.
Theorem 6.29. |W| £ 2.

So we assume now toward a contradiction thlt = 2 and we fix the notations as in
Corollary 6.20(iii):w € 1(S \ $°) centralizes; and/(G) =i{ uig LwC. Let also

S1=Cgso(w).

By Lemma 2.31j1 € Cgo(w) = Zooo.

To prove Theorem 6.29, we will get awctradiction by computing the rank 6f in two
different manners, using the Thompson R&ukmula in each case (see [3] for a general
discussion about this formula), and then by looking at the distribution of involutions in
cosets ofB1. We need the following preliminaries.

Lemma 6.30. Cg (w) NiS = 9.
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Proof. If Cg(w) N izG is nonempty, then there age # € G such that the four-group
(ih, w8)isin S. By Lemma 6.12w$ ¢ S° andis € $°. Thusil € 1(S1) = {i1} andi} = i1,
a contradiction. O

Lemma 6.31. C¢ (w) £ Bi1.

Proof. Assume toward a contradiction thag, (w) < Cg(i1). As w inverts a nontrivial
2-torus in $° (Lemma 2.31),Cg(w) < By. Thus, by Fact 2.36, there i’ € w® \
Cg(i1) such thatT (w') = {w'w”: w” € w’ By N wY} is infinite. Now w’ normalizes
[d(T(w)),d(Tw))] < F(By) N F(BYY =1 (Fact 2.15 and Proposition 3.11), thus
d(T(w")) is an infinite subgroup ofB; inverted by w’. Now Od(T(w"))) =1 (as
OW(T(w))) < F(B1) N F(BYY =1 by Lemma 2.41), thug (T (w’)) contains a 2-
torus of Priifer 2-rank 1. Its involutioh (e 7(5°)%) is centralized byw’, thusi ¢ i

by Lemma 6.30 and ilG N Cg(i1) = {i1} (Theorem 6.6). Sw’ € Cs(i1), a contradic-
tion. O

Corollary 6.32.If i’ € i andw’ € wY, thenO (CL (', ") = 1.

Proof. We may assumeé’ = i1. Now the statement follows from Proposition 3.11(ii),
Lemma 6.19, and the preceding lemman

Lemma 6.33. F°(CZ(w)) = O(Cg(w)).

Proof. By Lemma 2.41, it suffices to show thAf (C¢,(w)) has no involutions, so assume
toward a contradiction the contrary. Th&fi(C¢,(w)) contains a nontrivial 2-torug;. As
C¢(w) has Prifer 2-rank at most 1 by Lemma 6.12 and Proposition 6.17, it follows that
this 2-torus is maximal irCZ(w). So T1 = S1, and by Fact 2.10C¢ (w) < Cg(T1) =
C¢(S1) < By, a contradiction to Lemma 6.31.0

Corollary 6.34. Cg(w) < B for some unique Borel subgroup € 8. In particular,
i1 invertsO(B) = F(B).

Proof. By Proposition 3.11(ii)C¢ (w) < B for some unique Borel subgroup If B = Blg
for someg € G, theniy ¢ ilG by Proposition 3.11(ii) and Corollary 6.32. But central-
izes if, a contradiction to Lemma 6.30. Thuse 9B and everything follows now from
Lemma6.22. O

Lemma 6.35. Cg (w) = O(Cg(w)) x C3(w) andCy (w) = C§ (w).

Proof. Let B be the Borel subgroup containinf, (w), as in Corollary 6.34. By Lem-
ma 6.22,B = O(B) x Cp(i1). By tameness, one sees as in Lemma 6.27¢kdl1) has
no infinite proper definable subgroups. Bijt< Cg(w) N CE(i1), S0 S1 < Cy(i1) and
C3(i1) < C7(w). In particular, B = O(B)C;(w). If C(i1) < C7.(w), then C7.(w) N
O(B) # 1 and a nontrivial elemeny in this intersection is such thatg(f) < B
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(Lemma 3.12), implying” < B, a contradiction. Thu€'y (i1) = C7(w) andB = O(B) x
C7(w). Now O(B) = Co(py(w) x O(B)~ where O(B)~ is the subgroup of elements
of O(B) inverted byw (Fact 2.26) and the members in the product are connected. Thus
0(C(w)) = Co(p)(w) andCg (w) = O(CE(w)) x C3(w).

It remains to show thatf (w) = c;;l(w), so assume toward a contradiction that
Cr(w) < Cgl(w). Then Cgl(w) =U x Cj(w) whereU = Cgl(w) N Cocp)(w) is
nontrivial and connected. The®y, = B by Proposition 3.11(ii), a contradiction.

Lemma 6.36. Cg (w) N 1(S°)¢ =i10(Cg(w)).

Proof. Let B be the unique Borel subgroup containigg, (w), as in Corollary 6.34.
We haveCg(w) < Ng(B). Notice that there is no involution af($°)¢ in Ng(B) \ B:
otherwise Ng (B) would contain a conjugate of, a contradiction as the® ¢ 95 by
Fact 2.37 and Proposition 3.11(ii). ThugS°)® N Cg(w) = 1(5°)° N Cp(w). But it
is clear from the proof of Lemma 6.35 thatz(w) = C5(i1) X Co(p)(w), and that
Co)(w) = 0(Cg(w)), sol (Cp(w)) =i1Co(p)(w) =i10(Cg(w)). O

We are now ready to embark on a first computation 661k

Lemma 6.37. If i’ ilG and w’ € wY, thend(i’w’) contains a unique involution.

Furthermorez € w°.

Proof. Fact 2.32 shows that the elementary abelian 2-subgkoofpd (i’w’) is nontrivial.
As v’ invertsd(i'w’), X* Ni§ = ¢ by Lemma 6.30.

We claim also thatx” N i$ = @: for if i” € X* N i$, then[i”,i'] = 1 implies that
i' =i" (asi¥ NS =iy), thusi’ (e d(i'w")) is centralized by’ and X* = {i’w'} € w¢
(Lemma 6.19), a contradiction as we assun¥éd i & # .

Thus X* € w® and if X* contains two distinct involutions and z/, then zz’ €
X#nC°(@’) (Lemma 6.19), a contradiction.oo

Consider the definable map
vl xw’ —wl, @, w)—z,
wherez is the unique involution i (i'w’).
Lemma 6.38. If wo € w9, thenrk(¥ ~1(wop)) = 2rk(0 (C& (w))).
Proof. We may takewg = w. We will show that
vt w) = {Grf wirf): (f. f) e O(C%(w))2}~

The inclusion from right to left is clear: iff, f' € O(Cg(w)), theniyfwiif’ =
wfitf' = wf~tf" (Corollary 6.34) and(wf=1f)% = (f~1f")? € 0(C&(w)), thus
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d(i1fwirf") =dwf~1f’) contains a 2-element div) x O(C¢(w)) (Fact 2.5) which
is necessarily. Thus¥ (i1 f, wit f') = w.

We have now to prove the inclusion from left to right, so (€t w') € ilG x w9 be
such that¥ (i’, w’') = w. Theni’, w’ € Cg(w). By Lemma 6.36;' = i1 f for somef ¢
O(Cg(w)). Note thatw’ # w: otherwisei’'w’ = w’ andi’ = 1. Thusww' € Cg(w) N ilG
(Lemmas 6.19 and 6.30), sow’ = i1 f’ for some f’ € O(Cg(w)) by Lemma 6.36 and
w =witf. O

Corollary 6.39. rk(G) = rk(B1) + 2rk(O (C¢ (w))).
Proof. By conjugacy, Intw) = w9, thus rki¥ x w%) = rk(w%) + 2rk(0(Cg(w))), and
the corollary follows. O

We embark now on our second computation aik

Lemma 6.40. If j' € i$ and w’ € wY, thend(j'w’) contains a unique involution.

Furthermorez € i{.

Proof. By Fact 2.32, the elementary abelian 2-subgréugf d(j’w’) is nontrivial. Asw’
andj’ invertd(j'w’), X* € if by Lemma 6.30. But two distinct involutions iff cannot
commute (Lemma 6.12), &% =1. O

Consider the definable map

G G

v if xw’ — i, (j,w)—z,
wherez is the unique involution i (j'w’).
Lemma6.4l.If i € ilG, thenrk(¥ —1(i)) = rk(O(B1)) + rk(B1) — rk(Cgl(w)).

Proof. By conjugacy¥ has fibers of constant rank, so we just have to compute the rank of
w~1(iy). Foranyj’ € i NCg(i1) andw’ € w NCg (i1), the unique involution of (j'w")
is necessarily1, asCg (i1) Ni{ = {i1}. Thus¥ ~1(i1) = (i§ N Cg(i1) x WY N Cg(in)).

By Lemma 6.12 and Theorem 6.6 N Cg(i1) = i20(B1) U i30(B1), thus ki N
C:(i1) = rk(O(B1)). On the other handy® N Cg(i1) has rank rkBy) — rk(C;}l(w)) by
Lemma 6.19. Thus we get @ ~1(i1)) = rk(O(By1)) + rk(B1) — rk(C;’gl(w)). O

Corollary 6.42. rk(G) = rk(B2) + rk(Cg (w)) + rk(O (B1)) — rk(Cp, (w)).
Proof. As in Corollary 6.39, we get that

rk(i§ x w) =rk(i{’) + rk(0 (By)) + rk(B1) — rk(Cp, (w)),
thus it follows that

rk(G) = rk(B2) + rk(Cg (w)) + k(O (B1)) — 1k(Cg, (w)). O
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Proof of Theorem 6.29. As rk(B1) = rk(B2) by Lemma 6.21, Corollaries 6.39 and 6.42
give the equality

21k(O(C&(w))) = rk(CE (w)) +rk(O(B1)) — rk(C, (w)).

Thus, by Lemma 6.35 we get(® (C¢ (w))) =rk(O(B1)). By Lemma 6.35 again, we get
rk(Cg (w)) =rk(0(B1) x C7(w)) and, ar (w) < T, we have

rk(Ce (w)) < rk(B1).

It follows that rk(G/B1) < rk(w®). Now, by Fact 2.36, there exists; € w \ Ng(B1)
such thatl' (w1) = {wiwy: w2 € w1B1 NwC} is infinite. As usuald (T (w1)) is an infinite
group andd(T (w1))° contains a nontrivial 2-toru%;. If k is an involution inTy, then
k €if (Lemmas 6.12 and 6.30), thits= i1 (@sCq(i1) Ni{ = {i1}), andw; € Cg(i1) =
N (B1), a contradiction which ends the proof of Theorem 6.26.

6.2. Case]jW|=6
We will eliminate this case.
Theorem 6.43. |W| # 6.

So we assume now toward a contradiction th&t = 6 and we fix the notations
as in Corollary 6.20(iv)w € I(S \ S°) centralizesi; and I (G) = ilG U wC. Let also
S1=Cso(w). By Lemma 2.31j1 € Cso(w) = Zo.

To prove Theorem 6.43, we will compute the rank @fwith the Thompson Rank
Formula, and get a contradiction by looking at the distribution of involutions in cosets
of C& (w).

Lemma 6.44. If rk(C¢ (w)) < rk(By), thenrk(G) < rk(B1) + rk(0(By)) + rk(Cg (w)) —
rk(C3, (w)).

Proof. By assumption, kG /B1) < rk(w®) = rk(w® \ Ng (B1)). Forwy € w® \ NG (B1),
let T(w1) = {wia: « € wiB1NI(G)}. Letalso

C1={w1ew®\ Ng(By): T(wy) is finite} and
C2 = {w1 e w®\ Ng(By): T (wy) is infinite}.
ThenC; is generic inw® \ Ng (B1).
If w' € C2, then, as usuadl(T (w’)) is an infinite abelian group inverted ly/. Let now

M be aBi-minimal subgroup in0 (By). If t € d(T (w'))¥, thenCy; (1) = 1: otherwiseM,
M™ < Cg (1) by Fact 2.40 anab’ € N (B1) by Proposition 3.11(ii), a contradiction. Thus
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d(T (w")) N Cp, (M) = 1. On the other hand31/Cp, (M) has no infinite proper definable
subgroup by Fact 2.38 and tameness. TBus= Cp, (M) x d(T (w')). In particular,

d(T (w")) is connected and divisible

(Facts 2.1, 2.8, and 2.15). It follows also thatFk = 2 rk(d (T (w"))) by Corollary 6.24.
If w' € Ca, thenii ¢ d(T(w')) and d(T(w’)) has Priifer 2-rank 1, so its unique
involution j is inioO(B1) Uiz0(B1) (Theorem 6.6). We have shown that

CoC U (CG(j)ﬂwG).
J€(i20(B1)Vi30(B1))

But rk(Cg (j) Nw®) =rk(B1) — rk(Cg, (w)) by Lemma 6.19, thus
rk(G) — rk(Cg (w)) = rk(C2) < k(O (B1)) + rk(By) — rk(C}’gl(w)). O
Lemma 6.45. C¢ (w) £ Bi.

Proof. AssumeCg (w) < B1. ThenrkCg,(w)) = rk(C;;l(w)) < rk(B1) and the preceding
lemma gives rkG) < rk(B1) + rk(O(B1)) = rk(B1B2) < rk(G), i.e., TKG) = rk(B1) +
rk(O(B1)).

With the notations of the previous proof, if we piak € C», then

|| wa(rwH)) cc.

fe0(By)

(The union is disjoint: if f € O(B1) normalizes! (w’B1), then f is in the normalizer
in O(B1) of d(T(w")), and the latter subgroup is trivial.) Thus(€k) > rk(O(B1)) +
(1/2) rk(T) and the projection of’, over G/B1 is generic inG/B; (as rkd(T (w'))) =
rk(T (w")) = (1/2) rk(T) by the proof of the previous lemma).

Now the same argument as in Lemma 6.21 shows that cose’s distinct from B,
contain only finitely many involutions in’, thus the projection of’ over G/B is also
generic inG/B1. As G/B1 has Morley degree 1, there existse C> andj € ilG N w’Bi.
Thusw’j € d(T(w')) and as the latter subgroup is 2-divisible, and j are conjugate,
a contradiction. O

Corollary 6.46. If i’ € i¥ andw’ € wY, thenO(C (', w')) = 1.
Proof. Asin Corollary 6.32. O
Lemma 6.47. F°(C%(w)) = O(CZ (w)).

Proof. Asin Lemma6.33. O
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Corollary 6.48. CZ(w) < B for some unique Borel subgroup € B. In particular,
i1 invertsO(B) = F(B).

Proof. Asin Corollary 6.34. O
Lemma 6.49. Cg (w) = O(CE (w)) x C5.(w) and C5.(w) = C, (w).
Proof. Asin Lemma6.35. O
Lemma 6.50. Cg(w) N 1(5°)¢ = i10(CL(w)).
Proof. Asin Lemma6.36. O
Corollary 6.46 also has the following corollary.

Corollary 6.51. F°(B1) = O(B1) x T~, whereT~ is the subgroup of elements &f
inverted byw, and F°(B1) is inverted byw (and in particular is abeliai

Proof. Cg(Bl)(w) =1 by Corollary 6.46, sav inverts O(B1) by Fact 2.25. Noww has
a finite centralizer inO(B1) x T, sow invertsO(B1) x T~ by Fact 2.25 again (recall
from Lemma 6.19 thal'~ is connected), s60 (B1) x T~) < F°(B1) by Theorem 6.6. If
the containment is proper, th@h< F°(B1) by Corollary 6.24, a contradiction.O

We embark now on the computation of €K).
Lemma6.52.1f i’ € i andw’ € w, thend(i'w’) contains a unique involution

Proof. The statement is obvious|if’, w'] = 1, so we assumi’, w'] # 1. In particularj’,
w’ ¢d@i’w’). By Fact 2.32, it suffices to show thdt(d (i’w’))| < 1.

We first claim thatd(i’w’) N w%| < 1: otherwise we find two distinct involutions;
andw, € d(i’w’) NwC. Then the three distinct involutions;, wy, andw’ are in(S \ $°)”
for someh € G and commute, hence centralize sojne 1(A)". We havew; = wos for
somes € S°" inverted byws. As [w1, w2] = 1, s is also centralized by, sos = j. By
the same argumenty, = w’j. Thusw’ = wzj = w1, a contradiction which proves our
first claim.

Secondly, we claim that/(i'w’) N if| < 1: otherwise, by Lemma 6.12" < d(i'w’)
for someh € G. Thenw’ € Cg(A)" = T", a contradiction to Lemma 6.12 again.

Thus|I (d(i'w'a))| < 2 and henc¢l (d('w'))|=1. O

Consider the definable map

lI/:ifwa—ﬁfuwG, i, w)r— z,

where{z} = I(d(i’w")). Let
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Di={G" w)eif xwb: wi' w)eif} and
Dy ={({" v e if xwl v w) e wG}.

Theni{ x w = D; u D, and as¥ (i1, w) € w¢ and¥ (iz, w) =iy € i¥, D; andD,, are
both nonempty. By conjugacy, the fibers are of constant ranR;cend D, .

Lemma 6.53. rk(¥ ~1(w)) = 2rk(0(Cg (w))).
Proof. Asin Lemma 6.38, using Lemma 6.500
Corollary 6.54. rk(Dy) = rk(G) + rk(0 (Cg (w))) — (1/2) rk(T).

Proof. We have rkD,,) = rk(G) —rk(C¢, (w)) +2rk(O (Cg(w))), and it suffices to apply
Corollary 6.24 and Lemma 6.49.0

Lemma 6.55. rk(¥ ~(i1)) = 2 k(O (B1)) + (1/2) rk(T).

Proof. We have here, in some sense, to refine the proof of Lemma 6.41. For this we show
that

i) = {(jf. wn?): jeliz.is). f, f € OBy, reT ™},

whereT ~ is the subgroup of elements Bfinverted byw. Note thatl’~ = Z(B1).

Inclusion from right to left: if G/, w’) = (jf, (wt)'), theni’w’ = jff'‘wtf’. By
Corollary 6.51,w inverts O(By) x T, soi'w’ = jwf' f~Ltf’ = jwef2f~1. If we put
fi= 271 (e O(By), then

(@'w? = Gwifo)? = jwifijfy ™ w = jwfitji ™ e = jwfify
that is
(') = juffjw= jwffwk = jf %k = jkff =i f7,
wherek = j%. As i1 is the unique 2-element ifi1) x O(B1), Fact 2.5 shows that
i1ed((i'w)?) <d(i'w),i.e ¥ w)=i.

Inclusion from left to right: if (', w’) = i1, theni’ € Cg(i1) N ilG and w’ €
Cg(i1) NwY. Thusi’ = jf wherej € {io, i3} and f € O(B1) by Lemma 6.12 (note that
i’ # i1, as otherwise’w’ € wY, i.e.,w(i’, w’) # i1). By the proof of Lemma 6.19’ has
the desired form.

If (wr)! = (wr)/t, wherer, 1 € T~ and f, f1 € O(By), thenwry = (wo)(ff; H?
aswr inverts O(By) x T, thust 11, = (fffl)2 eTNO(B)=1andt =1, f= /1.

This shows that i ~1(i1)) = 2rk(O(B1)) + rk(T ) and it suffices now to apply Corol-
lary 6.24. O

Corollary 6.56. rk(D;) = rk(G) + rk(O (B1)) — (1/2) rk(T).
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Proof. We have rkD;) = rk(G) — rk(B1) + 2rk(0O(B1)) + (1/2)rk(T), so it suffices to
apply Theorem 6.6. O

Lemma 6.57. rk(O(B1)) < rk(O(Cg (w))).

Proof. As ilG x w’ = D; u D, has degree 1, Corollaries 6.54 and 6.56 show that
rk(O(B1)) # rk(0(C¢ (w))), so it suffices to show that (K (B1)) < k(O (Cg (w))).

So assume toward a contradiction that®k B1)) > rk(O (C¢;(w))). Then rk F(B1)) >
rk(C¢,(w)) (Corollaries 6.24, 6.51, and Lemma 6.49),G@F (B1) has rank strictly less
than rkw®). As usual, Fact 2.36 implies the existenceuafe w® \ Ng(B1) such that
w1 F (B1) contains infinitely many involutions, a contradiction as thene Ng(B1) by
Proposition 3.11. O

Corollary 6.58. rk(G) = rk(Bz) 4+ 2rk(O (Cg (w))).

Proof. By the preceding lemmap,, is generic ini{ x w, thus rki{) + rk(w?) =
rk(w9) + rk(¥ ~1(w)) and rkG) = rk(By) + 2 k(0 (CZ(w))) by Lemma 6.53. O

Lemma 6.59. If B is any Borel subgroup inG, thenrk(B) < rk(Bj1). In particular,
rk(CE’;(w)) < rk(By).

Proof. Otherwise, rkG/B) < rk(i{) and by Fact 2.36 there exisfss i¥ \ Ng(B) such
thatT (j) ={jj1: j1 € if N j B} is infinite. As usuald (7 (j)) is an abelian group inverted
by j.Also, 0(d(T(j))) < F(B)NF(B)/ = 1, thus;j inverts a nontrivial 2-torugy, a con-
tradiction asTy x (j) < §°¢ for someg € G by Lemma 6.12. O

Lemma 6.60. rk(Cg (w)) = rk(B1).

Proof. By the preceding lemma, we may assume toward a contradictionChéaib)
has rank strictly less than ¢B1). Then rkKG) < rk(B1) + rk(O(B1)) + rk(Cg (w)) —
rk(Cgl(w)) by Lemma 6.44. Now Lemmas 6.49 and 6.57 give

rk(G) < rk(B1) + rk(O(B1)) + rk(0(Cg(w))) < rk(B1) + 2rk(0(CZ (w))),
a contradiction to Corollary 6.58.0

We now look at the distribution of involutions i6r/C¢ (w) (left cosets). LetB be
the Borel subgroup o& containingC¢ (w), as in Corollary 6.48. By the preceding two
lemmas,B = C¢,(w). Let alsor denote the natural projection 6f overG/C¢, (w).

Lemma 6.61. 7 (wY \ N (B)) is generic inG /Cg (w).
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Proof. By Fact 2.36, rkw® \ Ng(B)) = rk(G) — rk(C¢g (w)). There is an integerand a
definable generic subs€t of wY \ N (B) such that rkr ~1( (w’)) NwY) =t for every
w’ € C,. It suffices now to show that= 0, as then

tk(G/Cg(w)) = rk(C,) = rk((Cy)) < rk(m (w® \ NG (B))).

So assume toward a contradiction that 1. For w’ € Cy, let T(w') = {w'w”:
w” ew’n w'Cg,(w)}. As usuald(T (w")) is an abelian group inverted hy and disjoint
from F(B) = O(B), and it has Prufer 2-rank 1. If; denotes its maximal 2-torus aikd
the unique involution irffy, thenw, w’ € Cg (k) = Cg(i1)8 for someg € G. Rephrasing
Corollary 6.51, withif and w’ instead ofi; and w, one sees thafy < F(B1)°%. But
w’ = wh for someh € Bf by Lemma 6.19. Ad1 < Z(B$), w also invertsTy, a contradic-
tionasTy < Cg(w). O

Lemma6.62.i N7 ~1(x(w’ \ NG (B))) is generic ini¥.

Proof. If j € if \ Ng(B), then the cosetjCg(w) cannot contain infinitely many
involutions. This can be seen as in the proof of Lemma 6.59: otherwiseuld invert

a nontrivial 2-torus. Thus, by Lemma 6.60 and Fact 2.36, there is a generic subset of cosets
in (G/Cg(w)) \ (G/Ng(B)) which all contain an involution in‘f. As G/C¢(w) has
Morley degree 1, it suffices now to apply Lemmas 6.60 and 6.61.

Proof of Theorem 6.43. Let I be the generic subset q‘? as in Lemma 6.62. We show
the following inclusion:

re J  czan’.

fe0(Cg(w))

So leti € 1. Theni ¢ Ng(B) and there exists’ € w? such thatiw’ € Cg(w). By
Corollary 6.48 and Lemma 6.49;7 (w) = Cp(i1) is a Carter subgroup of' g (w) =
O(Cg(w)) x C7(w). Note thatC"O(Cg(w))(iw/) =1, as otherwise ¥ O(Cg(iw")) <
O(B) andi € Ng(O(Cg(iw"))) < Ng(B) by Proposition 3.11(ii). Thus, by Corol-
lary 2.24,Ecg(w)(<iw’)) is a Carter subgroup afg (w), andEcg(w)(ﬁw’)) = C;(w)f
for somef € O(Cg (w)) by Fact 2.19. In particulaip’ € C5.(w)/ < T/ and Lemma 6.28
shows thatw’ € 1(C5(w)’) = {i{ }. Thusi € Cg(i{) andi € CZ(i1)/ by Lemma 6.12.
Our inclusion is shown.

The previous inclusion implies that

k(i) < rk(0(Cgw))) +rk(if N Cg i) =rk(0(C&w))) + rk(O(By))
(Theorem 6.6). Thus

rk(G) < rk(By) + k(O (Cg(w))) + rk(O(B1)) < rk(B1) + 2rk(0(Cg (w)))
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by Lemma 6.57. This is a contradiction to Corollary 6.58 which ends the proof of
Theorem 6.43. O

6.3. Case]W|=1
We will eliminate this case.
Theorem 6.63. |W| # 1.

So we assume now toward a contradiction tiat 1. Recall from Corollary 6.20 that,
in the caseW =1, S = $° andI(G) =i¥ uiF Li§. By the Frattini argument, it is also
clear that the thre®;’s are selfnormalizing.

Lemma 6.64. Any left coset ofB1 disjoint from B; cannot contain infinitely many
involutions.

Proof. This is what we actually have shown in the proof of Lemma 6.21, for involutions
in the connected component of a Sylow 2-subgrou@ of O

Corollary 6.65. For/ =1, 2, and3, (ilG \ B1)B1 is genericinG.

Proof. By Fact 2.36, Lemma 6.21, and the preceding lemma&G fi8;) = rk(ilG) =
rk(iZ \ By), and rk(i \ B1)B1) = k(i \ By) + rk(B1) =1k(G). O

As G/B1 has Morley degree 1, we get the following corollary.
Corollary 6.66. (N2_,(iC \ B1)Bu is generic inG.

Proof of Theorem 6.63. By Corollary 6.66, there existfy, j2, andjz € G \ Bi such that

jI € ilG and j1B1 = joB1 = j3B1. Let R = (j1j2, j1j3). As usual,ji inverts R which is

an abelian subgroup a®1. As Ep,(R) contains a Carter subgroup &4 by Fact 2.23,

it contains7/ for some f € O(B1) (Fact 2.19 and Theorem 6.6) and we claim that
Ep (R) = T/ otherwiseC"O(Bl)(R) # 1 by Corollary 2.24 andy € Ng(O(Cg(R))) <
Ng(B1) by Proposition 3.11(ii), a contradiction. Thus, (R) = T/ as claimed and in
particularR < T/. Now, by Lemma 6.28;1j> and j1jz € I(T)/, andR = A'. As j1
invertsR, j1 € R < Bj, a contradiction which ends the prooft

6.4. CasejW|=3

By the preceding results ware necessarily in the cas®| = 3, in which caséV acts
transitively onA” andI (G) = ilG by Corollary 6.20. Itis also clear by the Frattini argument
that the threeB;’s are selfnormalizing.

Itis now time to lift elements of order 3 frov.
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Lemma6.67.If o € Ng(A)\ Cg(A) is an element of orde8 moduloCg(A), theno® =1
andoT =oT.

Proof. The set of elements’ € o T such thato’ € ({(o)T)8 for someg € G \ Ng(T) is
genericino T by Lemma 3.4. For such an elemetitwe have that™® € C5(A)NCg(A)S.
We claim thatCg(A) N Cg(A)8 = 1. Otherwise,A and A8 have a common involution
k by Lemma 6.15 (and only one such, as¢ Ng(T)). Thenk® e k(o)1)* c A¢, so
ko e I1(A N A8) = {k}, andk is centralized by’, a contradiction.

We have shown that the elements of the cesgtare generically of order 3. Now, &5
is divisible, Lemma 3.7 shows that each element fhas a finite centralizer i and it
follows that these elements are @Hlconjugate, by connectednessiofind Fact 2.1. O

Recall from Notation 6.26 thap = cha7T) denotes the characteristic of the alge-
braically closed fieldK such thatT = K* x K*, and thatO(B) is p-unipotent (i.e.,
torsion-free ifp = 0) for every Borel subgroup in G (Lemmas 6.25 and 6.27). We will
show thatp = 3. First we show thaf; is covered by its Borel subgroups; more precisely:

Lemma6.68. G = (U,ci BY) U (Upem O(B)Y).

Proof. First remark that the union is disjoint: jf € O(B)* N By for someB € B, then
Cg(f)=0(B) (Lemmas 2.41,3.12, and 6.22), thugrgl(f) <B1NO(B) (Fact2.17)
andB1 = B by Proposition 3.11(ii), a contradiction.

For anyx € G, Cg(x) # 1 by Corollaries 2.18 and 6.11. @ (Cg(x)) = 1, then
x € Cg(i1)8 = Bf for someg € G as Sylow 2-subgroups af are connected ané;
is selfnormalizing. IfO(Cg (x)) # 1, thenx € Ng(B) where B is the unique Borel
subgroupB of G which containsC¢, (x) (Proposition 3.11(ii)). IfB is conjugate toBs,
thenx € Ng(B) = B, so we assume nol € 5. Note thatNg(B) = O(B) x Ty by the
Frattini argument and Lemma 6.22, whdte= Cy, () (k) andk is an involution ofB of
the formi$ for someg € G. As Cg(i1) = B1, T1 < B and it suffices now to show that
nOo(B) = tlo(B) foranyrn € Tf. For this it suffices to show that g (t1) is finite and
then to apply Fact 2.27. So assume now toward a contradictiom?@(%t)(tl) # 1. Then
C¢(t1) < B by Proposition 3.11(ii) and';, (#1) has Prifer 2-rank at most 1 by Lemma 6.22.
On the other handcg(Bl)g(tl) = 1 by Proposition 3.11(ii), thus, by Corollary 2.24,

ng((tl)) is a Carter subgroup oBf. In particular,#; is in a conjugate ofl’ and it
centralizes a 2-torus of Prifer 2-rank 2, a contradiction.

Fix o an element of order 3 such th&; (7)) =T x (o), asin Lemma 6.67.
Lemma6.69.0 ¢ (J,cq T4
Proof. Assumeo € TS for someg € G. By Lemma 6.25, the elementary abelian 3-
subgroupAs of T is isomorphic to(Z3)2. By the proof of Lemma 6.23, there are

three nontrivial elementsy, o2, andos of A3 such thatCp , (o) #1 ( =1,2,3).
Furthermore, the three subgrougs) are pairwise disjoint by Proposition 3.11(ii).



66 G. Cherlin, E. Jaligot / Journal of Algebra 276 (2004) 13-79

Now o cannot centralize a;, as otherwiser € Ng(O(C((01))) < Ng(B)) = B; by
Proposition 3.11(ii), a contradiction. Thas,(o) = (oo) for some elemenig € A§ such
that (op) is disjoint from the thredo;), and A3 is covered by the pairwise disjoiri;)
(1=0,1,2,3).

Remark thatC¢; (oo) = Cg(cro‘l) = T: otherwise O(C¢(00)) # 1 by Lemma 3.2,
and O(Cg(00)) < O(By) for somel = 1,2, or 3 (Fact 2.37 and Proposition 3.11(ii))
ando € Ng(B;) = B; by Proposition 3.11(ii), a contdéction. In particular,Cg(o0) =
Ng(T)=T x (o).

We claim now thatCg, (o) = T¢: otherwise we haved (Cg(0)) # 1 (Lemma 3.2),
0(Cg(0)) < Blg for somel = 1,2, or 3 (Fact 2.37 and Proposition 3.11(ii)) and
00 € Ng(Bf) = Bf by Proposition 3.11(ii). AsC(00) = T, Lemmas 6.4, 2.41, and
Corollary 2.24 show tha]EBIg((ao)) is a Carter subgroup oB?, i.e., T8/ for some
f € O(B). In particular,og € T8/. ThusT¢/ < Cg&(00) =T andT = T8/ < Bf. Now
0 € Ng(T)NT& < Ng(T) N Bf and asT is a Carter subgroup a8, we geto € T,

a contradiction. Thu€’;;, (o) = T4 as claimed.

We claim now thatop ¢ T¢: otherwise(og) < A5 and as the only proper nontrivial
subgroupX of A§ such thatO(Cg (X)) =1 is (of), we get(oo) = (o§) = (o) (as
O(Cg(0)) =0(Té) =1bylLemma6.4). Thusr) < T ando € T, a contradiction. Thus
oo ¢ T8 as claimed, and/g (T8) = T8 x {(o0p).

Our final argument is now inspired by [22]. By Lemma 6.6¢,and ocop are T8-
conjugate,oop and oo are T-conjugate, androZ and of are Té-conjugate. Thus
ot =0g = oll for someh € G, andh € Ng((00)) < NG (C&(00)) = NG(T) < Cg(00).
Thuso, ! = 09, a final contradiction. O

Corollary 6.70. 0 € O(B) for some Borel subgroup of G (here we do not know whether
B €8, or B is conjugate taB1).

Proof. By Lemma 6.68, we may assume toward a contradiction that we havéB; \
O(By))8 for someg € G. ThenT8 = Bf/O(Bl)g contains an element of order 3. By
Fact 2.5, chafl') # 3, i.e., p # 3. By Lemma 6.25, the Sylow 3-subgroup 6f(B;) is
trivial, thus Hall {2, 3}-subgroups ofB1 are abelian (a1’ < O(B1)) and conjugate to
the Hall{2, 3}-subgroup ofT" (Facts 2.5, 2.13, and 2.14). Thasis in a conjugate of’,

a contradiction to Lemma 6.69.0

Corollary 6.71. p = 3.
Proof. We apply the preceding corollary and Lemmas 6.25 and 6.27.

This ends the proof of part (2) of Theorem 1.8, and in fact much more, in the €ase “
not a Borel subgroup of.”
To complete our analysis, we now look at the geometry of involutions. Let

D={(j.k) e 1(G)* [j, k1 #1}.



G. Cherlin, E. Jaligot / Journal of Algebra 276 (2004) 13-79 67

By genericity and Fact 2.36, one sees as in the end of Section 52 thaeneric in/ (G)2.
By Lemma 6.68, we have a definable partition/dinto definable subset®; and D,
thatisD = D1 U D, where

D1={(j.k) € D: jke O(B) forsomeB € B} and
D2={(j.k) € D: jk € Bf for someg € G}.

Lemma 6.72. Let (j, k) € D. Then(j, k) € D> if and only if (jk)2 € O(B1)® for some
g€G.

Proof. Assume(j, k) € D, i.e., jk € B for someg € G. We claim thatj, k € Bf.
If C°0(Bl)g(jk) # 1, thenO(Cg (jk)) < O(B1)® and j, k € Ng(B1)8 = Bf by Proposi-
tion 3.11(ii). So we may assunte) p \; (jk) = 1 and the generalized centralizer df in
Bf is then a Carter subgroup ﬂ‘f by Corollary 2.24; in particularjk is in a conjugate
of T and jk € I(G) by Lemma 6.28, a contradiction gsandk do not commute. Thus
j.k € B as claimed and, computing iB{ modulo O (B1)¢, one sees with Theorem 6.6
that(jk)2 € O(B1)S.

Suppose now(jk)? € O(B1)$ for some g € G. Then O(C&((jk)?)) = O(B1)®
(Lemma 2.41 and Proposition 3.11(ii)) andk € Ng(O(B1)$) = Ng(Bf) = Bf. In
particular,jk € Bf and(j, k) isin D. O

Lemma 6.73. D1 is generic inD (and, thus, inf (G)?2). In particular, 98 is nonempty.

Proof. Assume toward a contradiction thBp is generic inD and, in particular, thab;
has Morley degree 1 a4G)? does. We will show thab, cannot have degree 1 and, thus,
get a contradiction.

Consider the definable map

wDZ—)lle (jsk)}—>zj,ks

wherez; ; is the unique involution in the center of the unique conjugatBofontaining
(jk)? as in the preceding lemma.
Notice that

v rin= || {Gfirf): £ €0, f#f} (+)

(1,1"e(2,3)2

Itis a routine matter to check equality) once one has noticed that a couple of involutions
(1 f,ip /) in By (with (1,7") € {2,3}2 and f, ' € O(B1)) is noncommuting if and only if

f # f'. By Theorem 6.6, this is clear if=1" and if | £ ', it follows from the following
equivalent equalities:

Lifirf1=1,  infirf' = flif,  infirf fr=fli, ainf U= fl
auf2f =fli, A =aflu,  fP=f7 0 f=f.
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The four piecesy, F», F3, and F4 in the decompositiolix) of ¥ ~1(i1) all have rank
2rk(O(By)) and degree 1, a9 (B1) has degree 1. It follows that—1(i1) has Morley rank
2rk(0O(B1)) and Morley degree 4. On the other hand, one checks easily with Theorem 6.6
that the four pieces in the decomposition of v ~1(i1) are invariant under conjugation
by elements o381 = C;(i1). As involutions are conjugate,

Dy= | | Wra¥)= || (FfuFSuFfuFy),

geG/By 8eG/B1

thusD, = LI?:l(ngeG/Bl F¥). As these four definable pieces in this decompositionf
have the same rani, cannot have degree 1, which gives the desired contradictian.

For (j, k) € D1, we havejk € O(B) for some Borel subgroup € 9, thus jk is a
3-element ap = 3 and O(B) is 3-unipotent. We finish our analysis by showing that,
generically,jk has exponent greater than 3.

Lemma 6.74. For (j, k) generic inD1 (and, thus, inf (G)?), jk is a3-element of order at
least9.

Proof. Assume toward a contradiction that the subBet of D1, consisting of couples
(j, k) such thatjk has order 3, is generic ilD1. Let 71 denote the first projection

of D1’ over I(G). As involutions are conjugate, our genericity assumption implies that
rk(nl‘l(i)) =rk(I(G)) for every involutioni € I(G). In particular, the set of involutions

z such that each of the three produgtshas order 3 is generic ih(G). But for such &,

if we letx = i1z, thenx® = 1 and(i2x)3 = (i32)® = 1. Thusliz, i3] is equal to

[i2, i3] = iox " ioxio)x ~tiox = ipx ™t (x TLiox ™) x Tipx = ipxioxipx = 1.

On the other hand;o, ié] = (i2z)* = iz, thusioz = 1; butisz has order 3, a contradic-
tion. O

7. Pr2(G) > 1and Cg;(A) aBore

In this final sectionG and the notations are fixed as always as in Theorem 1.8, and we
consider the only remaining case:

Pr(G) > 1 andC = C;(A) is a Borel subgroup of.

We will prove part (2b) of Theorem 1.8. We will also complete our proof that®y < 2
at the end of this section; recall that the atbase was treated already in Proposition 6.3.
Notice that our assumption implies thaiC) = A* by Fact 2.12.
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7.1. CaseC((A) a nonnilpotent Borel subgroup

We will eliminate this case (assuming, as always in this section, that the Prifer rank is
at least 2).

Theorem 7.1. If C is a Borel subgroup of;, then it is nilpotent.

So we assume toward a contradiction that > 4 and thatCg(A) is a nonnilpotent
Borel subgroup.

Lemma7.2. O(C) # 1.
Proof. This is a special case of Lemma 3.2,@s$s nonnilpotent. O
Lemma7.3.CNCE& =1foreachg € G\ Ng(C).

Proof. Assume thatC N C$ # 1 for someg € G\ Ng(C). As I(C) C Z(C) andC is a
Borel subgroup o6, the intersectiol N C¢ has no involutions. I{C NC#)° is nontrivial,
then by Proposition 3.11(ii) we haweé = C#, a contradiction. ThusC N C8)° =1 and
C N C8 isfinite.

Thus, there is an elementof prime orderp in C N C8%. We claim now thatF°(C)
contains no nontriviagb-unipotent subgroup: else, it would contain a maxiprlnipotent
subgroupU, normal inC (Corollary 2.16), andj;}p (x) # 1 (Fact 2.9(iii)), showing that
C¢(x) < C by Proposition 3.11(ii); but the@'¢, (x) < (C N C#)° = 1, which contradicts
Fact 2.17. The claim is proved.

We can now apply Corollary 2.20 toin C and inC#; this implies thatCZ, (x) contains
a Sylow 2-subgroup of’, say S1, as well as a Sylow 2-subgroup 6¥, sayS,. Let By
be a Borel subgroup of; containingCg, (x). If By is abelian, thers; = S> < CNCSE,
which contradicts the preceding remarks. THRisis not abelian and Lemma 3.2 shows
thatO(B1) # 1. As A% = 1(S3) consists of at least three involutions, theré is A* such
that C¢, p,, (k) # 1 by Fact 2.37. Thei© = B by Proposition 3.11(ii). By considering
the action ofA8 on O(B1), one sees in the same way tiat = B1. Thus againC = C8,

a contradiction. O

Corollary 7.4. Ugec C8 is generic inG.

Corollary 7.5.1f x isin Ng(C) \ C andx is of ordern moduloC, for some intege#, then
the elements of the cosef are generically of order.

Proof. It suffices to apply the preceding corollary and Lemma 3.4, and to remark that
an elementt; € Ng(C) \ C of ordern moduloC and such thak; € ({(x)C)$ for some
g€G\ Ng(C) satisfiesxf eCNCE=1. O

Proof of Theorem 7.1. We claim first thatNg (C) = C. If not, then there is an element
x € Ng(C) \ C of prime orderp. The preceding corollary shows that the elements of the
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cosetxC are generically of ordep. But then Fact 2.29 implies that must be nilpotent,
a contradiction to our assumption. Thigs selfnormalizing as claimed.

Now Lemma 7.3 shows that is strongly embedded i6 and Fact 2.35 implies that
has only one conjugacy class of involutions. Buf &) € Z(C), we have thaC has only
one involution andA*| = 1, which contradicts our assumption that the Priifer 2-rank is at
least2. O

7.2. CaseC((A) anilpotent Borel subgroup

If C is a nilpotent Borel subgroup af, thenT = C by Fact 2.8. We will show that
Ng(T) is strongly embedded iiG (Corollary 7.14), thaA| = 4, and that the Weyl
groupW = Ng(T)/T is cyclic of order 3 in Proposition 7.29. This will prove part (2)
of Theorem 1.8 in this caseC* a nilpotent Borel subgroup af,” and will complete our
proof that Ps(G) < 2. We will also obtain a detailed description Gfin the course of an
extended analysis.

Lemma7.6. T NT8 =1foreachg € G\ Ng(T).

Proof. Assume thal’ N T8 # 1, with g € G. Proposition 3.11 then shows th@t(7) =
O(T#) = 1. Butthen Lemma 3.2 implies thétis abelian, thug", 78 < C (T N T#) and
T=T¢=Cg(TNT?8)asT is aBorel subgroup of;. Thusg € Ng(T). O

Corollary 7.7. | J,c T¢ is generic inG.

Corollary 7.8. If x isin Ng(T) \ T andx is of ordern moduloT, then the elements of the
cosetx T are generically of order.

Proof. Asin Corollary 7.5, using Lemma 7.6 and Corollary 7. 72
Corollary 7.9. C(S°)=T.
Proof. This follows from Corollary 7.8 and Lemma 3.80

We now detail the general structure Gf Let B8 be the set of Borel subgroups 6f
nonconjugate t@" and having a nontrivial Sylow 2-subgroup. This definition is different
from the one in Section 6 (before Lemma 6.22), but the same as in Section 5.2 (before
Lemma 5.11). In the next lemmas we will see that Borel subgroufs ave the same
kind of behavior as those in the previous sections.

Lemma 7.10. B is nonempty, and every Borel subgrougibhonconjugate t@ is in 8. If

B € B contains an involutiort € A*, thenB = F(B) x Cy(k), F(B) = O(B) is inverted

by k, andCp (k) is a connected divisible abelian subgroupfosuch thatPra(Cpg (k)) = 1.
Furthermore,

G= ( U N(;(T)g) u( U NG(B)).

geG BeB
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Proof. We first show tha& contains no Borel subgroups without involutions. Suppose that
B is such a Borel subgroup &f. ThenB = O (B) is nilpotent as it interprets no bad fields,
and Proposition 3.11 shows that two distinct conjugates dfave a trivial intersection.
Thus|J,.; B® is generic inG by Lemma 3.3, as well agJ,.; 7¢. But then there exists
an elemenb € B which is in a conjugate of" by Fact 2.1. In particular; centralizes
a conjugate ofs°. This is a contradiction becausg; (b) < B (Lemma 3.12), and has
no involutions. Thus every Borel subgroup 6f has an involution. If every such Borel
subgroup is conjugate tB, thenG is a simple bad group, and it cannot have involutions
by Fact 1.3, a contradiction. Thé& is nonempty.

Now let B be a Borel subgroup i containing an involutio € A*. If k € F(B) then
k € Z(B) by Lemma 3.1. But is in a Sylow 2-subgroup oB which is connected by
Fact 2.12, thus ir§°¢ for someg € G. So B, T8 < C¢ (k), and B = T¢ by maximality,
a contradiction to the definition oB, which shows thatF'(B) has no involutions. In
particular, B is nonnilpotent, andF°(B) = O(B) by Lemma 3.2. Ascg(B)(k) is a
subgroup off’, if Cp, 5, (k) # 1 then Proposition 3.11(ii) implies thdt = B, a contra-
diction. ThusC"O(B)(k) is trivial and Fact 2.25 shows tha®(B) is inverted byk. As
B/O(B) is abelian by Fact 2.15, we conclude that= O(B) x Cpg(k) by Fact 2.27.
It follows then from Fact 2.1 tha€p (k) is connected and contained @f, (k) = T. As
Cp (k) is isomorphic toB/F(B), it is also divisible abelian by Fact 2.15. We now show
thatO(B) = F(B). If O(B) < F(B), then the finite groug's (k) N F(B) is nontrivial and
it contains an elementof prime orderp. As Cp (k) is divisible, Fact 2.12 shows thais
in a p-torus of Cp(k); so itis in ap-torus of T andt is central inT by Fact 2.10. Thus
T < Cg(t) < B by Lemma 3.12 and” = B by maximality, a contradiction which shows
that O(B) = F(B). If Cp(k) contains an elementary abelian 2-subgrauypof A order
four, then each involution id 1 invertsO (B), a contradiction. So B(Cg(k)) = 1.

It remains to show thaG = (UgeG Ng(T)®) U ((Ugess NG (B)). If g is any element
in G, theng has an infinite centralizer by Corollaries 7.7 and 2.18, thatdsg) # 1.
If Cg(g) contains an involution, then it contains a nontrivial 2-torus by Fact 2.12, so it
contains an element of the forkf for some involutiork € A* and some elemelite G.
Theng € NG(Cg(kh)) < Ng(D".If C¢(g) has noinvolutions, then itis in a unique Borel
subgroupB of G by Proposition 3.11(ii), angd € Ng(B). O

We now look at the structure of the finite grotyfe; (7)/ 7', which acts faithfully ons®.
In what follows the notation denotes the quotient L.

Lemma7.11. Ng(T) is nontrivial.

Proof. Otherwise Lemma 7.6 shows thétis strongly embedded it7, and hence has a
single conjugacy class of involutions. BlltcentralizesA, so this would forceA| =2. O

Lemma 7.12. Ng(T) contains at most one involutian. In that casew is the image of an
involutionw € G which invertsT, andwT = w” .
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Proof. Assume thatw € Ng(T) \ T is such thatw is an involution. Then elements of the
cosetwT are generically of order 2 by Corollary 7.8, and Fact 2.28 showsuhiatan
involution which invertsT. In that casevT = w’ becausd’ is 2-divisible.

It remains now to show that such a hypothetical involution is unique’! lis another
involution, thenw’ also invertsT, and ww’ € C¢(S°) = T by Corollary 7.9, that is
w=w'. O

Lemma7.13. Ng(T) is of odd order.

Proof. Assume that there is an involutiame Ng(T) \ T which invertsT. We have two
cases to consider, accordinguass, or is not, conjugate to an involution dff = 1(5°).

Assume first thatw = i¢ for some involutioni of S° and someg € G. We claim in
this case that all involutions of invert 78, which provides a contradiction. Lgte A.
Thenj centralizesw = i8. Thus;j normalizesT$ by Lemma 7.6. AZ N T8 is trivial by
Lemma 7.6, we havg € Ng(T$) \ T8. Then by Lemma 7.12 invertsTs.

It remains to treat the case in whiahis not conjugate to an involution &, which
we assume now. Notice thaly;, (w) # 1, as otherwis& would be abelian by Fact 2.25.
If w centralizes a nontrivial connected 2-subgrougioay S, then(w)S; is in a Sylow
2-subgroups, of G. As we assumev ¢ I(S°)¢, we have thaiv € S \ S5 andw inverts
S5 by Lemma 7.12, a contradiction as centralizesS;. ThusCg (w) has no involution.
Proposition 3.11(ii) then shows that};,(w) < B for a unique Borel subgroup of G.
In particular,Cg(w) < Ng(B). As w inverts S°, w centralizesA and thusA < Ng(B).
Notice thatB is not a conjugate of’, as otherwise Lemma 7.12 would show that
inverts B, a contradiction a€';(w) # 1. Thus Lemma 7.10 shows thatB) = O(B).
If k is any involution inA, thenC°O(B)(k) =1 by Proposition 3.11(ii), thuk inverts F (B)
by Fact 2.25. This contradicts our assumption f#at> 4. O

Corollary 7.14. Ng(T) is strongly embedded i@ (in particular, Ng (T) acts transitively
on A%).

Proof. If Ng(T) N Ng(T)# contains an involutiok for someg € G, thenkisinT N TS,
thusT = T8 by Lemma 7.6, ang € Ng(T). SO Ng(T) is strongly embedded i and

Fact 2.35 shows that it acts transitively by conjugation on the set of its involutions, that
isA*. O

Lemma 7.15. Assume that is a nontrivial element ofl(S°) such thatT < Cs(¢). Let
x € C(t) \ T. Thenx has finite order modul@, and if this order isz, thens" = 1.

Proof. Lets andx be as in the statement. A% (t) = T', we haveCg (1) < Ng(T) and
thusx has finite order moduld@'. Let its order ben. The elements of the cosefl are
generically of order by Corollary 7.8, so as in the proof of Lemma 3.8, we can find an
elementx; € xT of ordern such that the elements of the coset/(S°) are generically

of ordern. As d(S°) is divisible, it is the connected component of the definable group
d(S°) x (x1), and we can apply Lemma 3.6 to get that the elements of the eg#€8°)

are all of orden:. In particulars” = x7t" = (x11)" = 1, which proves our lemma.O
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Corollary 7.16. Cg (k) equalsT for each involutiork € A¥. In particular N (T)/ T acts
regularly by conjugation om*, and|Ng (T)/ T | = 2P2(¢) — 1.

Lemma 7.15 also allows us to make precise the structure of Borel subgro@ps in
refining Lemma 7.10.

Corollary 7.17. If B € B contains an involutiork € A, then CngB)(k) < Ng(B) is a
Frobenius group withD (B) as a Frobenius kernel, an@y, gy (k) < T. In particular,

NG(B)=0(B)u< U CNG(B>(1<>“#>,

ueO(B)

k is the unique involution irCy,g)(k), and I (Ng(B)) = kO(B). We also have that
Cg(f) = O(B) for every nontrivial elemenf of F(B) = O(B).

Proof. Let B andk be as in the statement. Lemma 7.10 tells us thatBr= 1. If

Ty is a Sylow 2-subgroup oB containingk, Ng(B) = Ny, ) (Tk)B by the Frattini
argument, that isNg(B) = Cy;(p)(k)B. Then Lemma 7.10 shows thaVg(B) =
CngB)(k)O(B) and ask inverts O(B), the product is semidirect. Corollary 7.16 tells
us thatCy.)(k) < T. If an elementu € O(B) is such thatCy, gy (k) N Cn, By k)"

is nontrivial, thenu € Ng(T) by Lemma 7.6, st € Ng(T N B) = Cp(k) andu €
Cp(k) N O(B) = 1. ThusCy, ) (k) < Ng(B) is a Frobenius group wittO(B) as a
Frobenius kernel.

If z is an involution inCy,; (g) (k) distinct fromk, thenz € I(T) = A* by Corollary 7.16
and there is an involution’ in the elementary abelian 2-groyp, z) of order 4 with
an infinite centralizer in0(B) by Fact 2.37. TherB = Cg(z) by Proposition 3.11(ii),
a contradiction a<’s(z’) = T by Corollary 7.16. Thus is the unique involution of
Cng(B) (k).

Let now f be a nontrivial element oD (B). We get as in Corollary 5.16, using
Lemma 7.10, thatCg (f) = O(B). In particular, we hav&s(f) < Ng(B) = O(B) x
(T N Ng(B)). As f is not in the Frobenius complemeift N Ng(B)) of Ng(B), we have
thatC(rnng 8y (f) =1. ThusCg(f) = O(B). O

Corollary 7.18. G = {1} U (Uei T4 U (Upess O (BN,

Proof. First note that the union of nontrivial elements in the statement is disjoint: if
u € O(B)* for someB € B, thenC¢ (1) = O(B) (Corollary 7.17) has no involution and
u cannot be in a conjugate @f.

If g is a nontrivial element oz, thenC; (g) is nontrivial by Corollaries 2.18 and 7.7. If
C¢ (g) contains an involution, then this involution is$h” for someh € G by Lemma 7.13
andg e T" by Corollary 7.16. Suppose now thag; (g) has no involution. The@'¢ (g) is
in a unique Borel subgroup of G by Proposition 3.11(ii), and € Ng(B). If B € B, then
g € O(B) or g is in a conjugate of by Corollary 7.17. IfB ¢ B, thenB = T for some
h € G by Lemma 7.10 and it remains to show tlga¢ 7" in that case. So we assume now
thatg € Ng(T") \ T" and we will get a contradiction.
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By conjugation, we assume thus th&t(7) \ T contains an element such that
Ce(x) < T. There is an integek such thatx* is of prime orderp modulo 7. Now
1# Cg(x) < C5.(x%). As cosets off" in T (x¥) (distinct fromT') are generically of order
p by Corollary 7.8, we can apply Lemma 3.7. So the maxiprainipotent subgroug@y/,
of T (which is unique by Fact 2.8) is nontrivial. One can find by Lemma 3.4 an element
x1 € x¥T N ((x¥)T) for somel € G \ Ng(T). Thusx! € TNT! = 1 and asc; normalizes
U, andU},, we haveCy, (x1) #1andCy, (x1) # 1 (Fact2.9). Then ¥ Cg(xp) < TN T!

by Proposition 3.11(ii), antie Ng(T) byp Lemma 7.6, a final contradiction.O
We now give a strong form of Corollary 7.8.

Lemma 7.19. If x isin Ng(T) \ T and is of ordemm moduloT, for some integer, then
xT =xT and every element in the coseX is of ordern.

Proof. By Corollary 7.8, it suffices to show thatl’ = x”. If x; € xT, thenC7 (x1) = 1;
this can be seen as in the end of the proof of Corollary 7.18. sa{yk: rk(x1T). As this
is valid for anyx; € xT, Fact 2.1 shows that7T =x’. O

We will now use our assumption thé&tinterprets no bad field in a critical manner.

Lemma 7.20. Letk € I1(A) and S; < S be a2-torus of Prifer2-rank one containing,

and assume that there is a Borel subgraBpn 9B containingSx. Then B interprets an
algebraically closed field in such a way that/(S) is interpretably isomorphic t& *.

Furthermore proper definable subgroupsdify) are finite.

Proof. Let U be a B-minimal subgroup ofB in O(B). Recall thatB = O(B) %

Cp(k) whereO(B) andCp (k) are abelian (Lemma 7.10), €6 is alsoCp (k)-minimal.
Corollary 7.17 shows thafs(U) = O(B), so the centralizer ot/ in Cp(k) is trivial.

By Fact 2.38 and the assumption thatinterprets no bad fieldl/ x Cg(k) interprets
an algebraically closed field in such a manner thay = K+, Cp(k) = K>, where
both isomorphisms are interpretable, and proper definable subgroufg(j are in
particular finite. AsCp(k) is definable and contain§;, we haved(Sy) < Cp(k), SO
d(Sx)=Cpk). O

Letn =Pr(G), and let{iy, ..., in_1} enumeratd (A) in such a way thatiy, ..., i,}
generatesi. Fix B a Borel subgroup if8 containingiy. Let 7;; = BN T = Cp(i1) and
Si, be the 2-torus of;, of Prifer 2-rank one (Corollary 7.17). Aéc (T) acts transitively
by conjugation on/ (4), there are 2 — 1 distinct conjugates; of S;, in S, each one
containing respectively; (1<s <2'—1). If s #, thenS; N S;, =1, as otherwise
iy = iy. By considering the Prifer 2-rank, we have thus

n
s=s°=@ps.. (1)
s=1
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It is then clear that

d(S)=[1d(s;,). (2)

s=1

We now apply Lemma 7.20 with, S;,, andB, and we letk be the field interpreted bj.
Let also

p = chark).
We will show later thatp > 0.

Lemma 7.21. Pr, (d(S°)) = n for every prime numbey different fromp, and if p # 0,
then the Sylow-subgroup ot (S°) is trivial.

Proof. If 1 <s < n, theniy is the unique involution in the conjugad&s;, ) of d(S;,), and
easilyi, ¢ [T d(S;,). Thus[[5 d(Si,) Nd(S;,) is a proper subgroup af(s;,) and
this intersection must be finite by Lemma 7.20.

The conjugated(S;,) of d(S;,) are all isomorphic t& *. If ¢ is now a prime number
different from p, then it follows from the preceding and an induction ovevarying
between 1 and that Py (d(S°)) = n by equality (2). If p # 0, thend(S;,) = K* has
a trivial Sylow p-subgroup, as well ag(S°) by equality (2) and Fact 2.5.0

We eventually derive the following farmation from the preceding lemma.

Corollary 7.22. O(B1) = F(B1) is torsion free or p-unipotent for everyB; € B,
depending on whethgr=0or p > 0.

Proof. First note that ifB1 € 9B, then O (B1) = F(B1) has trivialg-tori for every prime
numberg > 2, because such a maximgltorus is both central iB; by Fact 2.10 and
inverted by involutions inB; by Lemma 7.10. Thus Fact 2.8 shows that

OB1) =D xUp, x---xUp,

for finitely many prime numbers, ..., p;, where D is torsion free and/,, is ps-
unipotent for everyp; (1 < s <1).

Assume thap = 0. In that case we have to show th@tB1) = F(B) is torsion free,
that is that the factors of bounded exponenthe decomposition as above are trivial.
But if U,, # 1 for a prime numberp;, thenU,, contains aBi-minimal subgroupl/
(asU,, < By), which is an elementary abelign-subgroup. Of course we may assume
without loss of generality tha®; contains an involutiok € 7 (A). Now the same analysis
as in the proof of Lemma 7.20, with our assumption tBainterprets no bad field, shows
thatCp, (k) = K;* whereK is an interpretable algebraically closed field of characteristic
Ds, and thatCp, (k) = d(Sx) whereS; is a 2-torus of Prifer 2-rank one i1 Choosing
a suitable minimal set of generators Afcontainingk, one can then carry out the same
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analysis as in the proof of Lemma 7.21 wiBh, K1, andS; instead ofB, K andS;,, to
get that thep,-torus ofd(S°) is trivial. This is a contradiction to Lemma 7.21. Similarly,
if p+#0,thenU, =1forg # p.

Assume nowp # 0 and letB; € 98 contain an involutiork € 1(A). If O(B1) = F(B1)
is not p-unipotent, then as before one can intetpe algebraically closed field, which is
now of characteristic 0. Thus there are nontrivjetori in d(S°) for every primeg, again
providing a contradiction to Lemma 7.210

The following lemma is inspired by [22].

Lemma 7.23. Let g be the smallest prime divisor o#/|. Then no element AV (T)
representing an element &f of orderq lies in a conjugate of'".

Proof. Note thaty > 2. Letw = xT be an element o of orderq. Suppose that lies in
a conjugate’® of T. By Lemma 7.1% has ordey;. In particular? has a nontrivial Sylow
g-subgroup, say, .

As S, < T (Fact 2.8),x centralizes an elemeny of order g in S, N Z(T)
(Facts 2.12, 2.7, and 2.9). Lemma 7.19 tells us thaty, andxy? are T-conjugate. On
the other handy € Ng(T8) as[x,y] =1 (Lemma 7.6) and ¢ T8 (asT # T8). Thus
y is of orderg modulo7#8 and Lemma 7.19 applied ifi$ gives thaty andxy areT8-
conjugate in the cosétéy, and similarlyy? andxy? are conjugate in the cos&® y2. As
xy andxy? areT -conjugate, we conclude thatandy? are conjugate by some elemént
andh € Ng(T) asy, y2 € Z(T). As y is of orderg # 2 andh ¢ T, we have(y) = (y2)
and7 < Cg((y)) < Ng({y)) < Ng(T). But Ng((y))/Cs({y)) embeds into AuZ,) and
|Aut(Z,)| = q — 1, so there is a prime numbef dividing [Ng(T)/T| andg — 1. This
contradicts the minimality of. O

Lemma 7.24. p is the smallest prime divisor ¢W | (in particular p # 0).

Proof. Let g be the smallest prime divisor o#¥| and letx € Ng(T) \ T represent an
element of ordeg in W. Asx is notin a conjugate df (Lemma 7.23), by Corollaries 7.18
and 7.22y is ap-element. Hence = p. O

Corollary 7.25. The Sylowp-subgroup off’ is trivial.

Proof. Letu € Ng(T) \ T have orderp moduloT. By Lemma 7.1% has orderp. By
Corollaries 7.18 and 7.22,€ O(B1) for someB; € B.

Let S, be the Sylowp-subgroup off'. Corollary 7.17 shows thafs, (u) < Cg(u) =
O(B1). AsT N O(B1) = 1 by Corollary 7.18, we fincCsp (u) = 1. By Fact 2.9,5, is
trivial. O

Corollary 7.26. The centralizers of nontrivigh-elements oNg(T)/ T are p-groups.

Proof. Assume the contrary. The¥g(T)/T contains an element of ordey for an odd
primeg # p. SONg(T)\ T also contains an elemenbf orderpg by Corollary 7.8. Then
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X € UgeG T8 by Corollaries 7.18 and 7.22, sd is of orderp and in a conjugate df’,
a contradiction to Corollary 7.25.0

We now dramatically reduce the size & (T)/T.

Lemma7.27.|Ng(T)/T| = 2" — 1divides!” — 1 for every integef > 1 which is relatively
prime to2" — 1.

Proof. By Dirichlet’'s theorem on primes in arithmetic progression, we may suppose that
[ is prime. LetA; = {a € d(S°): a' = 1}. This is an elementary abelidrgroup of rankn

by Lemma 7.21, and by Lemma 7.15,/ds not a divisor off W|, the action ofW on A; is
semiregular. By Corollary 7.18V| = 2" — 1, and our claim follows. O

In view of Corollary 2.43 we conclude:
Coroallary 7.28. Only one of the following four cases can occur

(@ n=2and|Ng(T)/T|=3,

(b) n=4and|Ng(T)/T|=15=3-5,

(c) n=6and|Ng(T)/T|=63=32.7,

(d) n=12and|Ng(T)/T|=4095=32.5.7.13.

Finally we have the following proposition.
Proposition 7.29.n =2 and Ng (T)/ T is cyclic of order3.

Proof. By the preceding corollary, it suffices to eliminate the possibilities 4, 6, 12,
with the order ofW = N (T)/ T correspondingly:

3.5 32.7. 32.5.7.13

By Lemma 7.24 and Corollary 7.26, the centralizeMinof an element of order 3 is a
3-group. By elementary group theory, this cannot hold in the three cases mentioned.

If the order of F(W) is divisible by 3, then the same appliesZg¢F (W)) and hence
F (W) is a 3-group. By the Feit—-Thompson theorem (or direct examinating,solvable,
and hence by Fitting’s lemma its Fitting subgroBgW) contains its own centralizer.
Thus W/F (W) acts faithfully as a group of automorphisms B{W). However this is
a numerical impossibility: for example, in the second case it would fphes(F (W))| to
be divisible by 7, withF (W) either(Z/3Z)?, or Z,/9Z.

On the other hand, ifF (W)|3 = 1, then we get a similar contradiction by considering
the action of a Sylow 3-subgroup & on some Sylow subgroup &f(W). O

Corollary 7.30. If B € B, thenF(B) = O(B) is 3-unipotent.

Proof. This follows from the preceding proposition and Corollaries 7.24, 7.19, 7.22,
and 7.25. O
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Another way to handle the final analysis was suggested by Ron Solomon.

Proposition 7.31. Let W be a group acting regularly on an elementary abel2uwgroup
A of rankn. Suppose that there is a prime divisprof 2" — 1 such that for all elements
w € W of order p, Cw (w) is a p-group. ThenfW| is a Mersenne prime.

Proof. As W has odd order and acts without fixed pointsArby a theorem of Burnside
its Sylow subgroups are cyclic. (In particular, one may see Wiat solvable without
invoking Feit-Thompson.)

The main claim is:

no subgroup o#¥ is a Frobenius group

SupposeF = RS is such a group with Frobenius kernkland complemens§. Then the
faithful representation of' on A is a sum of irreducible constituents which are induced
representations associated to irreducimodules. But the restriction of such an induced
representation t§ gives a free module, s& has fixed points im, a contradiction.

If |W] is not a prime power, let, s be two primes dividingW|, such that is a divisor
of |[F(W)|, and either ors is p. As the Sylow subgroups &¥ are cyclic, there is a unique
subgroupR of F(W) of orderr, andR is normal inW. Let S be a subgroup of of order
s and consideR S. By our assumption op, the groupR S is nonabelian and is therefore a
Frobenius group. As this is a contradiction, we find that

Wi=p"=2"-1

for somem. Now an elementary number theoretic argument shaws 1. (z is a prime
powerl; p=2 —1;m=1) O

However, we still need the appeal to Corollary 2.43 to complete the analysis.
Finally, we can then conclude, as at the end of Section 6.4.

Lemma 7.32. For (j, k) generic inI(G)2, we have[j, k] # 1 and jk is a 3-element(of
O (B) for some Borel subgroup € B) of order at leas®.

Proof. Follow the line of the argument for Lemma 6.740
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