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Abstract

We consider tame minimal simple groups of finite Morley rank and of odd type. We show th
Prüfer 2-rank of such a group is bounded by 2. We also find all potential nonalgebraic configur
there are essentially four of them, and we delineate them with some precision.
 2004 Elsevier Inc. All rights reserved.

1. Introduction

The role of groups of finite Morley rank in model theory was first seen in the wor
Zilber onℵ1-categorical theories ([33], cf. [35]). Motivated by a sense that most intere
structures occur “in nature,” Cherlin and Zilber independently proposed:

Classification Conjecture. A simple infinite group of finite Morley rank is isomorphic
an abstract group to an algebraic group over an algebraically closed field.

To date there have been three fruitful lines of attack on this problem. First of all
may simply attempt to mimic the theory of algebraic groups. The second line of att
to embed the problem in model theory proper. The third line, taken here and in num
related recent articles, is to see what can be done by the methods of finite group
consisting of local geometrical analysis and some considerations involving involu
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(i.e., elements of order 2). These methods may serve to limit the Sylow 2-sub
structure severely.

In the classification of the finite simple groups, it was noticeable thatquite indirect and
subtle methods are usually required for the classification of “small” simple groups, wh
“generic” or “large” simple groups can be handled by more direct and elementary me
This holds with a vengeance in the case of groups of finite Morley rank. Accordingly
on simple groups of finite Morley rank has tended to focus on those which are la
some sense. Here we take up the problem from the other end, and attempt to brin
order into the study ofminimalsimple groups of finite Morley rank:

Definition 1.1. A minimalsimple group is a connected simple group of finite Morley ra
in which every proper definable connected subgroup is solvable.

Examples of such groups were encountered in the earliest work in this area,
extreme form:

Definition 1.2. A badgroup is a simple group of finite Morley rank for which every pro
definable connected subgroup is nilpotent.

The structure of Sylow 2-subgroups in a bad group is dramatically trivial:

Fact 1.3 [10,14,22].A simple bad group has no involutions.

Minimal simple groups were already considered in [21] (where they were calledFT-
groups) as a possible generalization of bad groups. The task we set ourselves he
determine the Sylow 2-subgroup structure of tame non-algebraic minimal simple g
of finite Morley rank as tightly as we can. The role of tameness in this enterprise
be discussed further below. Ideally one would like to eliminate involutions ent
reducing the problem to the analog of the Feit–Thompson theorem, whose proof
clearly require other methods entirely; but it is well known that there are some
configurations, such as cyclic or quasicyclic Sylow 2-subgroups, which offer little scope
for internal geometric analysis. As we will explain below, we encountered some additiona
configurations in Prüfer 2-rank 2 with a similar flavor, but using tameness we are
to exclude higher Prüfer 2-ranks, and at the same time severely limit the structure
Sylow 2-subgroups in Prüfer 2-ranks 1 and 2.

In general, theconnected componentof a Sylow 2-subgroupS of a group of finite
Morley rank is defined asS◦ = S ∩ d(S)◦, whered(S) denotes the definable closure ofS,
i.e., the smallest definable subgroup containingS. With this definition, one can say a goo
deal about the Sylow 2-subgroup structure in an arbitrary group of finite Morley rank

Fact 1.4 [11]. Let G be a group of finite Morley rank. Then its Sylow2-subgroups are
conjugate. The connected component of a Sylow2-subgroup is nilpotent, and is a centr
product, with finite intersection, of a2-unipotent subgroupU and a2-torusT .
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In this connection ap-unipotentsubgroup is a definable connectedp-subgroup of
bounded exponent, and ap-torus is a divisible abelianp-group. The terminology is
motivated by the situation in algebraic groups, in which a Sylow 2-subgroup is a
extension of a 2-torus in characteristic not equal to 2, and is 2-unipotent in bo
algebraic and model theoretic senses when the characteristic is 2. According
following terminology has been adopted.

Definition 1.5. Let G be a group of finite Morley rank, andS the connected component
a Sylow 2-subgroup ofG. ThenG is said to be:

(1) of degeneratetype if S = 1;
(2) of odd type if S is a nontrivial 2-torus;
(3) of eventype if S is a nontrivial 2-unipotent group;
(4) of mixedtype if S is a central product of a nontrivial 2-unipotent group and a nontr

2-torus.

Work on the structure of simple groups of finite Morley rank implies that there ar
minimal simple groups of finite Morley rank of mixed type, and none of even type o
than the algebraic groupSL2(K), with K an algebraically closed field of characteristic
These results have been proved in considerably greater generality, using the notion oK∗-
group, which is a groupG of finite Morley rank such that every infinite definable prop
simple section ofG is algebraic. This class would include any counterexample to the
conjecture of minimal rank, as well as all the minimal simple groups of finite Morley r

Building on earlier work in [2] about tameK∗-groups, it is shown in [19]:

Fact 1.6 [2,19]. Let G be a simple infiniteK∗-group of finite Morley rank. ThenG is not
of mixed type.

In addition, work in course of publication shows that allK∗-groups of even type ar
algebraic; in any case it is easy to deducefrom [3] that a minimal simple group of finit
Morley rank of even type is isomorphic toSL2(K) with K an algebraically closed field o
characteristic 2.

Hence, for the determination of minimal simple groups of finite Morley rank, it rem
to deal with the degenerate and odd type cases. The degenerate case is of su
interest, and while the connected component of a Sylow 2-subgroup is trivial in that
this does not sufficiently limit the Sylow structure, and one would hope eventually to
the 2-rank severely. Extreme forms of minimal simple groups, without involutions
also studied in [21]. However, we turn our attention here to the odd type case, in
case the connected component of a Sylow 2-subgroup is a 2-torusS, whose structure i
entirely determined by its so-called Prüfer 2-rank, which can be defined as the dimens
overF2 of the subgroupΩ1(S) = {x ∈ S: x2 = 1}, or more informatively as the number
quasicyclic factors in a direct product decomposition ofS (this number is finite accordin
to [11]). We will denote the Prüfer 2-rank by Pr2(S), or Pr2(G) if G is the ambient group
Under the assumption of tameness, we provethat the Prüfer 2-rank is at most 2, and
delineate the troublesome configurations with some precision.
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Tameness is defined as follows.

Definition 1.7. A bad field is a structure〈F,T ; . . .〉 of finite Morley rank in whichF

carries the structure of an algebraically closed field andT is an infinite proper subgroup o
the multiplicative group ofF . A group of finite Morley rank istameif it does not interpret
a bad field naturally. Here a natural interpretation of the bad field〈F,T ; . . .〉 in the group
G consists of a pair of definable sectionsA, B of G, with B acting naturally onA (the
action being induced by conjugation inG) so that

〈A,B; ·A, ·B,action〉 � 〈F,T ; ·F , ·T ,multiplication〉.

Work on groups of odd type has emphasized the tame case in the past, primarily b
of difficulties with signalizer functor theory, recently reworked by Jeff Burdges in [12].
need the tameness restriction for other reasons, as we are very much concerned with
structure of tori in our groups. This hypothesis is used quite heavily throughout the p
paper.

The main result of this paper is that the Prüfer 2-rank of a tame minimal simple grou
of finite Morley rank is at most 2. For the remaining cases, in which the Prüfer ran
or 2, we analyze the groups from various points of view, notably in terms of the stru
of Borel subgroups, i.e., the maximal proper definable connected (solvable) subgro
the ambient minimal simple group. We obtain in particular the following theorem.

Theorem 1.8. Let G be a tame minimal simple group of finite Morley rank and of o
type. LetS be a Sylow2-subgroup ofG, A = Ω1(S

◦), T = C◦
G(S◦), C = C◦

G(A), and
W = NG(T )/T , which is called theWeyl group. ThenPr2(G) � 2 and one has the
following two possibilities:

(1) Pr2(G) = 1:
(a) If C is not a Borel subgroup ofG, thenG is of the form PSL2(K) with K an

algebraically closed field of characteristic different from2.
(b) If C is a Borel subgroup ofG and if W 	= 1, thenC = T is 2-divisible abelian,

|W | = 2, W acts by inversion onT , andNG(T ) splits asT � Z2. All involutions
in G are conjugate.

(2) Pr2(G) = 2:
ThenT = C = CG(A) is nilpotent,|W | = 3, all involutions ofG are conjugate, and
G interprets an algebraically closed field of characteristic3. Furthermore:
(a) If C is not a Borel subgroup ofG, then T is divisible abelian, and for eac

involutioni in S◦, the subgroupBi = C◦
G(i) is a Borel subgroup ofG of the form

O(Bi) � T , whereO(Bi) is inverted by the two involutions inT different fromi.
(b) Otherwise,T is a nilpotent Borel subgroup ofG.

And without tameness? Burdges recently developed a new abstract notion of unip
tence, leading to a robust signalizer functor theory without the tameness assumptio
This allows one to prove a Trichotomy Theorem [7]: a simpleK∗-group of odd type is
either a Chevalley group, or has small Sylow 2-subgroups, or has a proper “2-gen
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core.” In the third case, the ambient group has recently been shown, without tam
to be minimal simple in [8], provided it has large enough Sylow 2-subgroups. Thu
problem of the limitation of the Prüfer 2-rank of a potential nonalgebraic simpleK∗-group
of odd type reduces to the case of minimal simple groups without tameness. Ass
tameness, our result gives thus an absolute bound: 2. Unfortunately, tameness is us
intensively in our proof. On the one hand, it is used heavily to analyze the interse
of Borel subgroups. On the other hand, it is used in a critical arithmetical argument
end of our proof that Pr2(G) � 2. Without tameness, such a bound remains a major o
problem. To be continued, thus.

The paper is organized as follows. In Section 2 we review known results (and
direct corollaries) needed here. Our main reference for the theory of groups of finite M
rank is [5] and our notations generally follow [5]; the reader can also refer to [27] for a
model theoretic introduction to the subject. In Section 3 we derive some additiona
familiar, results of a general nature. Notably, we prove in Proposition 3.11 the importa
consequences of tameness for intersections of Borel subgroups which are used heav
throughout the paper.

After these preparations we prove our main results in Sections 4–7. We deal w
case of Prüfer rank 1 in Sections 4 and 5, and with the case of Prüfer rank at least 2
Sections 6 and 7. The treatment is parallel in the two cases; in particular, the divisio
two subcases is the same in each case, and there are other parallels throughout. On
other hand, the case of Prüfer rank 1 is much briefer than the case of Prüfer rank at
which works out similar themes on a substantially larger scale. In particular, Sectio
quite elaborate.

In Section 4, dealing with a minimal simple groupG of finite Morley rank of Prüfer
2-rank 1 and in whichC is not a Borel subgroup, we prove part (1a) of Theorem 1.8.
is Theorem 4.1.

In Section 5 we assume that Pr2(G) = 1 and thatC is a Borel subgroup ofG, and
we prove statement (1b) of Theorem 1.8. We first suppose that the Borel subgrouC is
nonnilpotent in Section 5.1, showing that the Weyl groupW is trivial in that case, and the
we consider the case in whichC is nilpotent, in Section 5.2. In this case we also anal
the geometry of involutions inG, at the end of Section 5.2.

In Section 6 we assume thatG has Prüfer 2-rank at least 2 and thatC is not a Borel
subgroup. We show that Pr2(G) = 2 (Proposition 6.3), and prove part (2a) of Theorem
in Theorem 6.6. Then we show thatW acts faithfully onA (Corollary 6.18), obtaining, in
particular,|W | = 1,2,3, or 6. We show that the cases|W | = 2,6, and 1 do not occur
in Sections 6.1–6.3, respectively. We end the proof of the main statement of pa
of Theorem 1.8 in Section 6.4 (the remaining case:|W | = 3), and we also analyse th
geometry of involutions in this case.

In Section 7 we assume that Pr2(G) � 2 and thatC is a Borel subgroup. We the
show easily thatC is nilpotent in Section 7.1 (Theorem 7.1). In Section 7.2, withC = T

nilpotent, we obtain a very good description ofG and prove part (2) of Theorem 1.8.
this case, we find thatG has Prüfer 2-rank 2 at the very end of the analysis in Section
(Proposition 7.29), completing the proof of our main result that Pr2(G) � 2 in all cases.

We use the following notation throughout: ifX is any subset of a groupG, thenI (X)

denotes the set of involutions inX, andX# denotes the set of nontrivial elements ofX.
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To describe Borel subgroups, we will also use the notationB to denote a certain class
Borel subgroups in Sections 5.2, 6, and 7.2. The definition ofB will be slightly different
in Section 6, but we adopt the same terminology throughout as Borel subgroups frB

will always play the same role in the different cases considered.

2. Toolbox

The proofs of most of the following facts can be found in [5].

2.1. Generalities

Fact 2.1 [13]. A group of finite Morley rank is connected if and only if its Morley degre
one.

Fact 2.2 ([32], [5, Corollary 5.29]).LetH be a definable connected subgroup of a grou
finite Morley rankG. Then the subgroup[H,X] is definable and connected for any sub
X of G.

Fact 2.3 [5, Corollary 5.13].Let G be a connected group of finite Morley rank andX a
definable subset ofG. If X is generic inG, thenG = X · X.

If X is a subset of a group of finite Morley rank, then itsdefinable closure, denoted by
d(X), is the smallest definable subgroup ofG containingX.

Fact 2.4 [5, Exercise 2, p. 92].LetG be a group of finite Morley rank andX a subset ofG.
ThenCG(X) = CG(d(X)).

Fact 2.5 [9]. Let H be a group of finite Morley rank andN a normal definable subgrou
of H . If h is an element ofH such thath is a p-element ofH = H/N (p a prime), then
the cosethN contains ap-element.

2.2. Nilpotent groups

Fact 2.6 [5, Lemma 6.3].Let G be a nilpotent group of finite Morley rank. IfH < G is a
definable subgroup of infinite index inG, thenNG(H)/H is infinite.

Fact 2.7 [5, Exercise 5, p. 98].Let G be a nilpotent group of finite Morley rank. IfH is a
normal infinite subgroup ofG, thenH ∩ Z(G) is infinite.

Fact 2.8 [26]. LetG be a nilpotent group of finite Morley rank. ThenG is a central product
D ∗ C whereD andC are two definable characteristic subgroups,D is divisible andC is
of bounded exponent. IfT is the set of torsion elements ofD, thenT is central inD and
D = T ×N whereN is a divisible subgroup. Furthermore,C is the direct sum of its Sylow
p-subgroups.
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Fact 2.9 [11]. Let P be a locally finitep-subgroup of a group of finite Morley rank. The
P has the following properties:

(i) P ◦ is nilpotent andP ◦ = B ∗ T is the central product of a nilpotent subgroupB of
bounded exponent and ap-torusT .

(ii) Z(P) 	= 1 andP satisfies the normalizer condition: for Q < P , we haveQ < NP (Q).
(iii) If P is infinite and of finite exponent, thenP is nilpotent and its center contain

infinitely many elements of orderp.

The following result is calledrigidity of p-tori in groups of finite Morley rank.

Fact 2.10 [11]. If T is ap-torus in a group of finite Morley rankG, then[NG(T ) : CG(T )]
is finite.

Fact 2.11 [31, p. 146]. Aut(Z2n) is a 2-group for every positive integern.

2.3. Solvable groups

Fact 2.12 [5, Theorem 9.29].Let G be a connected solvable group of finite Morley ra
Then the Sylowp-subgroups ofG are connected.

If π is a set of prime numbers, then we call any maximalπ -subgroup of a solvabl
groupG aHall π -subgroup ofG.

Fact 2.13 [4]. Let G be a solvable group of finite Morley rank. Ifπ is a set of prime
numbers, then the Hallπ -subgroups ofG are conjugate inG.

Fact 2.14 ([4], [1, Fact 2.30]).Let G be a solvable group of finite Morley rank andN a
definable normal subgroup ofG. If π is a set of prime numbers, then a Hallπ -subgroup
of G/N is of the formHN/N for a Hall π -subgroupH of G.

For every groupH of finite Morley rank, itsFitting subgroup, denoted byF(H), is the
maximal normal nilpotent subgroup ofH . It is well-defined and definable inH (see [25]).

Fact 2.15 [24]. LetH be a connected solvable group of finite Morley rank. ThenH/F ◦(H)

is divisible abelian.

The preceding fact has the following corollary.

Corollary 2.16 [2, Fact 2.36].LetH be a connected solvable group of finite Morley ra
p a prime number, andUp a p-unipotent subgroup ofH . ThenUp � F ◦(H). In particular,
H contains a unique maximalp-unipotent subgroup, which is nilpotent and characteris
in H .

The following useful fact has been proved by several people; a simple proof, d
B. Poizat, can be found in [21].
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Fact 2.17. LetH be a nontrivial connected solvable group of finite Morley rank. Then
element ofH has an infinite centralizer inH .

Corollary 2.18. Let G be a nontrivial connected group of finite Morley rank with
definable connected solvable subgroupH such that

⋃
g∈G Hg is generic inG. Then any

element ofG has an infinite centralizer.

Proof. If g ∈ G has a finite centralizer, then its conjugacy class is generic inG andg is in
a conjugate ofH by Fact 2.1, a contradiction to Fact 2.17.�

A subgroup of a groupG which is nilpotent and selfnormalizing inG will be called a
Carter subgroup ofG.

Fact 2.19 [16,29].Let H be a connected solvable group of finite Morley rank. ThenH

contains Carter subgroups. Furthermore:

(i) If C is a definable nilpotent subgroup ofH of finite index in its normalizer inH , then
C is a Carter subgroup ofH .

(ii) Carter subgroups ofH areH -conjugate.
(iii) If C is a Carter subgroup ofH , thenH = F ◦(H)C.

The following corollary is due to O. Frécon.

Corollary 2.20 [17]. Let H be a connected solvable group of finite Morley rank of o
type with an elementx of prime orderp. If F ◦(H) contains no nontrivialp-unipotent
subgroup, thenx centralizes a Sylow2-subgroup ofH .

Proof. We first claim that ifTq is a maximalq-torus of H (q a prime), thenTq is
contained in a Carter subgroup ofH . For, letC be a Carter subgroup ofC◦

H (Tq). Then
Tq � C and Tq is the maximalq-torus of C as in Fact 2.8. Now Fact 2.10 shows th
N◦

H (C) � N◦
H (Tq) = C◦

H (Tq), thus N◦
H (C) � N◦

C◦
H (Tq)

(C) = C. HenceC is a Carter

subgroup ofH containingTq , which proves the claim.
By our assumption aboutH , Facts 2.9, 2.12, and 2.16 show that a Sylowq-subgroup

of H is aq-torus forq = 2 andq = p. Thus,x is in a maximalp-torus ofH , which is in
a Carter subgroup ofH by the claim. Similarly, a Sylow 2-subgroup ofH is in a Carter
subgroup ofH . We can now conclude by conjugacy of Carter subgroups (Fact 2.1
and Fact 2.8. �

We note that the first half of the above proof has recently been generalized by Fréc
Jaligot in the following way: ifG is any group of finite Morley rank, andT is a maximal
direct sum ofq-tori of G (q varies), thenT is contained in a nilpotent definable connec
subgroup ofG of finite index in its normalizer.

Fact 2.21 [16, Corollaire 5.20].LetH be a connected solvable group of finite Morley ra
andC a Carter subgroup ofH . Let N be a(not necessarily definable) normal subgroup
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of H . ThenCN/N is a Carter subgroup ofH/N and every Carter subgroup ofH/N has
this form.

If H is any group, we denote byHN the intersection of all normal subgroupsH1 of H

such thatH/H1 is nilpotent.HN is obviously a characteristic subgroup ofH .

Fact 2.22 [16, Corollary 7.7 and remarks following].LetH be a connected solvable grou
of finite Morley rank andC a Carter subgroup ofH . Assume thatH is solvable of class2.
ThenHN is definable inH andH = HN � C.

If H is a group andU a subset ofH , then thegeneralized centralizerof U in H , denoted
by EH(U), is defined as

EH(U) =
⋂
u∈U

( ⋃
n∈N

{
h ∈ H : (adu)n(h) = 1

})
,

where adu is the map

adu :H −→ H, h �−→ [h,u].

Fact 2.23 [16, Théorème 1.2, Corollaire 5.17 and 7.4].Let H be a connected solvab
group of finite Morley rank and letU be a nilpotent subgroup ofH . Then EH(U)

is a definable connected subgroup ofH which contains a Carter subgroup ofH , and
U � F(EH(U)).

Corollary 2.24. Let H be a connected solvable group of finite Morley rank of the fo
U � C, whereC is a Carter subgroup ofH and U is a nontrivial definable connecte
nilpotent subgroup normal inH . Let X be a nilpotent subgroup ofH . If EH(X) is not a
Carter subgroup ofH , thenC◦

U(X) 	= 1.

Proof. By Fact 2.23,EH(X) contains a Carter subgroup ofH , that isCu for someu ∈ U

by Fact 2.19. By assumption we have thusEH (X) = U1 � Cu, whereU1 = EH(X) ∩ U

is nontrivial and connected (Facts 2.1 and 2.23). AsU1 � EH(X), U1 � F(EH(X))

and U1 contains infinitely many elements in the center ofF(EH(X)) by Fact 2.7. But
X � F(EH(X)) by Fact 2.23, thus 1	= C◦

U1
(X) � C◦

U(X). �
2.4. Torsion and automorphisms

Fact 2.25 [23]. Let G be a group of finite Morley rank with a definable involutive au
morphismσ . If σ fixes only finitely many elements inG, thenG has a definable(abelian)
normal subgroup inverted byσ and of finite index inG.

Fact 2.26 [5, Exercise 14, p. 73].LetH be a group of finite Morley rank without involution
and with a definable involutory automorphismσ . If H− denotes the set of elements ofH

inverted byσ , thenH− is a 2-divisible subset ofH , H = CH (σ)H−, and each cose
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of CH(σ) contains a unique element ofH−. In particular, CH (σ) is connected ifH is
connected.

Fact 2.27 [5, Exercise 10, p. 98].Let G be a group of finite Morley rank,U � G a
connected definable nilpotent subgroup, andφ a definable automorphism ofG stabilizing
U and centralizing finitely many elements ofU . ThenU = {[u,φ]: u ∈ U}. Furthermore,
if [G,φ] ⊆ U , thenG = UCG(φ).

We give now a stronger form of Fact 2.25.

Fact 2.28 [23, Proposition 4.1].LetH be a group of finite Morley rank such thatH/H ◦ is
of order2 and such that the elements ofH \ H ◦ are generically of order2. ThenH splits
asH = H ◦ � 〈i〉 for some involutioni which invertsH ◦.

Proof. Let X = {x ∈ H \ H ◦: x2 = 1}, i ∈ X, andA = iX. By assumptionX is generic
in the cosetiH ◦, andA = iX is generic inH ◦. Note thati inverts by conjugation ever
element ofA: for if a ∈ A, thenia ∈ iA = X, so (ia)2 = 1 andai = a−1. We claim that
A ⊆ Z(H ◦). If g ∈ A andh ∈ A ∩ g−1A, theni invertsg, h, andgh, which shows thatg
commutes withh. Thusg commutes withA ∩ g−1A. But A ∩ g−1A is generic inH ◦ (by
genericity ofA and Fact 2.1), which implies thatH ◦ = (A ∩ g−1A)2 by Fact 2.3. Thus
g ∈ Z(H ◦) andA ⊆ Z(H ◦) as claimed. Now, asi invertsA, it also invertsA · A, i.e.,H ◦
by Fact 2.3. �

The following result provides a partial generalization of the foregoing for arbit
primes.

Fact 2.29 [18, Corollary 16].Let H be a group of finite Morley rank such thatH ◦ is
solvable. Assume that there is a primep and a cosetxH ◦ of H ◦ (x ∈ H \ H ◦) of orderp
moduloH ◦, such that the elements of the cosetxH ◦ are generically of orderp. ThenH ◦
is nilpotent.

Fact 2.29 has the following special case.

Fact 2.30 ([30, Theorem 2.4.7], [5, Exercise 14, p. 79]).Let H be a connected solvab
group of finite Morley rank with a definable automorphism of prime order which centra
only finitely many elements. ThenH is nilpotent.

We also prove here a lemma about automorphisms of order 2 of 2-tori of Prüfer 2-r

Lemma 2.31. LetT0 be a2-torus of Prüfer2-rank2 andα an involutive automorphism o
T0 which fixes only one involutionz of the three involutions ofT0. ThenT0 = CT0(α)T −

0
whereT −

0 is the set of elements ofT0 inverted byα. Furthermore, the two factors in thi
product are two2-tori of Prüfer 2-rank one and they intersect exactly in the subgroup
order2 generated byz.
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Proof. Let z1 andz2 = α(z1) be the two involutions ofT0 distinct fromz. Let T1 be a
2-torus inT0 of Prüfer 2-rank one containingz1, andT2 = α(T1). ThenI (T1 ∩T2) = ∅ and
T1 ∩ T2 = 1, soT0 = T1 × T2. Now it is easy to see that

CT0(α) = {
t1α(t1): t1 ∈ T1

}
and that T −

0 = {
t1α(t1)

−1: t1 ∈ T1
}
,

where both subgroups are isomorphic toT1. As T1 ∼= Z2∞ is 2-divisible, we findT0 =
T1 × T2 = CT0(α)T −

0 , which proves our lemma.�
2.5. Fusion

Fact 2.32 [5, Proposition 10.2].Let G be a group of finite Morley rank and leti, j be
two involutions ofG. Theni and j are d(ij)-conjugate or they both commute with
involution ind(ij).

As we will work only with groups of odd type, we will apply the following fact only
the case in whichS◦ = T is both the connected component of a Sylow 2-subgroup a
maximal 2-torus of the ambient group.

Fact 2.33 [5, Lemma 10.22].LetG be a group of finite Morley rank,S a Sylow2-subgroup
of G, andT the maximal2-torus ofS◦. If X andY are two subsets ofS◦ with X = Yg for
someg ∈ G, thenX = Yh for someh ∈ NG(T ) (that is,NG(T ) controls fusionin S◦).

Lemma 2.34. LetG be a group of finite Morley rank of odd type and of Prüfer2-rank one,
S a Sylow2-subgroup ofG, andi the unique involution ofS◦. ThenCG(S◦) ∩ iG = {i}.

Proof. If j is an involution inCG(S◦) ∩ iG, thenj = ig for someg ∈ G. Furthermore,S◦
andS◦g are both contained inC◦

G(j), so they are conjugate inC◦
G(j). As the Prüfer 2-rank

is one, this implies thati andj are conjugate inC◦
G(j), thusi = j . �

A proper definable subgroupM of a groupG of finite Morley rank is said to bestrongly
embeddedin G if M has an involution andM ∩Mg has no involution for everyg ∈ G \M.

Fact 2.35 [5, Theorem 10.19].Let G be a group of finite Morley rank with a strong
embedded subgroupM. Then involutions ofG andM are respectivelyG-conjugate and
M-conjugate.

Fact 2.36 [20, Lemme 2.13].LetG be a simple infinite group of finite Morley rank andM

a proper definable subgroup ofG. Thenrk(xG ∩ M) < rk(xG) for every nontrivial elemen
x of G.

As this last fact is not so well-known, we give the proof.

Proof. The intersection of the conjugates ofM is a proper normal subgroup ofG, hence
trivial. Hence, by the descending chain condition on definable subgroups, some fin
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intersectionMg1 ∩ · · · ∩ Mgk = 1. On the other hand,xG has Morley degree 1, as th
conjugacy class can be identified withG/C(x).

If rk(M ∩ xG) = rk(xG), thenM ∩ xG = xG modulo sets of lower rank, soxG =
(M ∩ xG)g1 ∩ · · · ∩ (M ∩ xG)gk = {1} modulo sets of lower rank, andx = 1, a contra-
diction. �
2.6. Generation

We call any elementary abelian 2-group of order 4 afour-group.

Fact 2.37 [6, Theorem 5.14].LetH be a group of finite Morley rank such thatH ◦ is solv-
able and without involutions. IfV is a four-subgroup ofH , thenH ◦ = 〈C◦

H ◦(v): v ∈ V #〉.

2.7. Tame solvable groups

Fields appear in connected solvable groups of finite Morley rank via the follo
fundamental result, called hereZilber’s Field Theorem.

For its statement, recall that a subgroupA of a groupH of finite Morley rank is said to
beH -minimal if it is infinite, definable, normal inH , and minimal with respect to thes
properties. Note thatA is then connected and abelian by Fact 2.2. Note also that ifH is
connected and solvable, thenA � Z(F(H)) by Fact 2.7.

Fact 2.38 (Zilber’s Field Theorem [5, Theorem 9.1]).Let G = A � H be a group of finite
Morley rank whereA andH are two infinite definable abelian subgroups,A is H -minimal
andCH (A) = 1. Then

(i) The subringK = Z[H ]/annZ[H ](A) of the setEnd(A) of endomorphisms ofA is a
definable algebraically closed field; in fact, there exists an integerl such that each
element ofK can be represented by an endomorphism of the form

∑l
i=1 hi , for some

elementshi ∈ H .
(ii) A ∼= K+, H is isomorphic to a subgroupT of K×, andH acts onA by multiplication,

i.e.,

G = A � H ∼=
{(

t a

0 1

)
: t ∈ T , a ∈ K

}
.

(iii) In particular, H acts freely onA, K = T + · · · + T (l times) and (with additive
notation) A = {∑l

i=1 hia: hi ∈ H } for eacha ∈ A#.

Zilber’s Field Theorem has the following important corollary.

Corollary 2.39 [34]. Let H be a solvable nonnilpotent connected group of finite Mo
rank. ThenH interprets an algebraically closed fieldK. More precisely, a definable sectio
of F(H) is isomorphic toK+ and a definable section ofH/F(H) is isomorphic to an
infinite definable subgroup ofK×.
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The following fact is also a direct corollary of Zilber’s Field Theorem.

Fact 2.40 [16]. Let H be a connected solvable group of finite Morley rank andA an H -
minimal subgroup ofH . ThenCH (a) = CH (A) for every nontrivial elementa ∈ A.

For any groupH of finite Morley rank we denote byO(H) its maximal norma
definable connected subgroup without involutions. (Note thatO(H) is well-defined by
Fact 2.5.)

Lemma 2.41. Let H be a connected solvable group of finite Morley rank of odd t
which does not interpret a bad field. IfU is a definable connected subgroup ofH without
involutions, thenU � O(F(H)) = O(H).

Proof. First note that, asH does not interpret a bad field,O(H) is nilpotent by Cor-
ollary 2.39 and Fact 2.14, thusO(H) = O(F(H)). Note also that the assumption abo
bad fields implies thatU � F ◦(H) (else Fact 2.15 and Corollary 2.39 would imply th
F ◦(H)U interprets an algebraically closed field of characteristic different from 2 asH is
of odd type, forcing a nontrivial 2-torus intoU by Fact 2.14).

It remains to show thatU � O(F ◦(H)) = O(F(H)). But the normalizer condition
in nilpotent groups of finite Morley rank (Fact 2.6) implies the existence of a fi
sequenceU = U0 � U1 � · · · � Uk−1 � Uk = F ◦(H) of definable connected subgrou
Ui (0� i � k), and we have clearlyU � O(U1) � · · · � O(Uk−1) � O(F ◦(H)). �
2.8. Around Zsigmondy’s theorem

We will use in the sequel a purely arithmetical result. Ifa andn are integers greate
than 1, then a primep is called aZsigmondy primefor 〈a,n〉 if p does not dividea anda

has ordern modulop, andp is called alarge Zsigmondy prime for〈a,n〉 if, in addition,
|an − 1|p > n + 1.

Couples〈a,n〉 without a large Zsigmondy prime were classified by W. Feit. Fora = 2
this gives:

Fact 2.42 [28, Theorem 6].Let n > 1 be an integer. Then there exists a large Zsigmo
prime for〈2, n〉 except exactly in the following cases: n = 2,4,6,10,12, or 18.

Corollary 2.43. Let n � 1 be an integer such that2n − 1 dividesdn − 1 for all integersd
relatively prime to2n − 1. Thenn = 1,2,4,6, or 12.

Proof. Let n be as in the statement. We first claim:

if pk = ∣∣2n − 1
∣∣
p

> 1, thenpk−1(p − 1) dividesn. (1)

So let pk = |2n − 1|p > 1. The subgroup of invertible elements modulopk has order
pk−1(p − 1) and asp is odd, it is well known that it is cyclic. Thus there existsd of
orderpk−1(p−1) modulopk , and we may furthermore assume by the Chinese Rema
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Theorem thatd is relatively prime to 2n −1. But now 2n −1 dividesdn −1 by assumption
thusdn = 1 modulopk . It follows that the orderpk−1(p − 1) of d modulopk dividesn,
and our first claim is proved. Now we claim:

there is no large Zsigmondy prime for〈2, n〉. (2)

If p is a Zsigmondy prime for〈2, n〉, then 2 has ordern modulop and it follows thatn
dividesp − 1. Let nowpk = |2n − 1|p. Thenpk−1(p − 1) dividesn by (1). Thusk = 1,
n = p − 1, andpk = p = n + 1. Therefore,p cannot be large and our claim (2) is prove

We are now in a position to apply Fact 2.42, thusn = 1,2,4,6,10,12, or 18, and it
suffices to eliminate the casesn = 10 and 18. But 210 − 1 = 31 · 11 · 3 and the prime 31
violates(1), and 218 − 1 = 262143= 73· 19· 7 · 33 and the prime 73 violates (1).�
2.9. Recognition

We use the following result to recognizePSL2(K) in the odd type setting.

Definition 2.44. A doubly transitive permutation groupG is:

(1) aZassenhaus groupif the stabilizer of any three points is trivial;
(2) split if the stabilizer of two pointsGx,y has a normal complement in the stabilizer

one pointGx .

Fact 2.45 ([5, Theorem 11.89], [15]).Let G be an infinite split Zassenhaus group of fin
Morley rank. If a two point stabilizerT contains an involution, thenG � PSL2(K) for
some algebraically closed field of characteristic not2.

3. General principles

In this section we will present some general results of a more specialized nature, us
for the analysis of Borel subgroups of tameminimal simple groups of odd type. Reca
that Borel subgroups of a given group of finite Morley rank are defined as the max
definable connected solvable subgroups. If the ambient group is minimal simple, then
subgroups are exactly the maximal proper definable connected subgroups.

3.1. Solvable groups of odd type

We begin with two lemmas about the structure of connected solvable groups of
Morley rank of odd type.

Lemma 3.1. Let H be a connected solvable group of finite Morley rank of odd type. T
the Sylow2-subgroup ofF(H) is in Z(H).

Proof. Let F(H) = D ∗ C be the decomposition ofF(H) into a central product o
definable characteristic subgroups as in Fact 2.8, whereD is divisible andC of bounded
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exponent. AsD is divisible, it is in particular connected and it contains a unique max
2-torus by Facts 2.12 and 2.8 again, which is central inH by Fact 2.10. Fact 2.8 als
shows thatC contains a unique Sylow 2-subgroupS, which is finite asH is of odd type.
SoH acts by conjugation on this finite Sylow 2-subgroupS, andH centralizesS asH is
connected. �
Lemma 3.2. Let H be a connected solvable group of finite Morley rank of odd typ
O(H) = 1, thenH is divisible abelian.

Proof. Let F = F ◦(H). As O(H) = 1, we haveO(F) = 1 and Fact 2.8 shows thatF

contains no nontrivialp-unipotent subgroups for any primep > 2, and in fact for any prime
p asF is of odd type. Thus, Fact 2.8 again shows thatF is divisible andF = Tor(F ) × U

where Tor(F ) denotes the subgroup of torsion elements ofF , which is central inF , andU

is a torsion free subgroup. Note that Tor(F ) is the product ofp-tori (p varies) which are
characteristic inH , thus central inH by rigidity of tori (Fact 2.10). It follows thatF ′ � U ,
and asF ′ is definable and connected by Fact 2.2, it must be trivial asO(F) = 1. SoF is
abelian and divisible.

To conclude it suffices to show thatF is central inH , because thenH is nilpotent
by Fact 2.15, and thus equal toF . For this, it suffices to show that[h,F ] = 1 for
any h ∈ H . But if h ∈ H , then [h,F ] � F/CF (h) is torsion free by Fact 2.14 (wit
π the set of all primes), since Tor(F ) is central inH . Thus Fact 2.2 again shows th
[h,F ] � O(F) = 1. �
3.2. Genericity

Lemmas 3.3 and 3.4 will be applied to suitable Borel subgroupsB of the ambient
groupG.

Lemma 3.3. LetG be a connected group of finite Morley rank andB a definable subgrou
of G of finite index in its normalizer. Assume that there is a definable subsetX of B, not
generic inB, such thatB ∩ Bg ⊆ X wheneverg ∈ G \ NG(B). Then

⋃
g∈G Bg is generic

in G.

Proof. An element ofB \ X cannot belong to a conjugate ofB distinct fromB. Thus

rk

( ⋃
g∈G

(B \ X)g
)

� rk
(
G/NG(B)

) + rk(B \ X).

But B is of finite index in its normalizer, so

rk
(
G/NG(B)

) + rk(B \ X) = rk(G)

and
⋃

g∈G Bg is generic inG. �
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Lemma 3.4. Let G be a connected group of finite Morley rank andB a proper definable
connected subgroup of finite index in its normalizer inG such that

⋃
g∈G Bg is generic

in G. Assume thatx ∈ NG(B) \ B is of ordern > 1 moduloB, and let〈x〉B be the union
xB ∪ x2B ∪ · · · ∪ xn−1B ∪ B . Then the definable subset

X1 = {
x1 ∈ xB: x1 ∈ (〈x〉B)g

for someg ∈ G \ NG(B)
}

of xB is generic inxB.

Proof. Assume thatX1 is not generic inxB. ThenxB \ X1 is generic inxB. So we have
that

rk
(
(xB \ X1)

G
)
� rk(G) − rk

(
NG(B)

) + rk(xB \ X1) = rk(G) − rk
(
NG(B)

) + rk(B),

and asB is of finite index in its normalizer, rk((xB \ X1)
G) = rk(G). But (xB \ X1)

G is
disjoint from

⋃
g∈G Bg , thusG cannot be connected by Fact 2.1, a contradiction.�

The following important lemma was proved by O. Frécon.

Lemma 3.5 [17]. Let H be a connected solvable group of finite Morley rank andC a
Carter subgroup ofH . Then

⋃
h∈H\C (C ∩ Ch) is not generic inC.

Proof. Assume toward a contradiction thatH is a counterexample of minimal rank, so th

⋃
h∈H\C

(
C ∩ Ch

) =
( ⋃

h∈H\CA

(
C ∩ Ch

)) ∪
( ⋃

h∈CA\C

(
C ∩ Ch

))

is generic inC, whereA is anH -minimal subgroup ofH . Let also the notation “” denote
the quotient byA.

As

⋃
h∈H\CA

(
C ∩ Ch

) ⊆
⋃

h∈H\C

(
C ∩ Ch

)
,

and asC is a Carter subgroup ofH (Fact 2.21), then the minimality implies th⋃
h∈H\CA (C ∩ Ch) is not generic inC. It follows that

⋃
h∈CA\C (C ∩ Ch) is generic in

C and the minimality again implies thatH = CA.
Note thatA � C, as otherwiseH = C. SoCC(A) < C and, in particular,CC(A) is not

generic inC. It is thus enough to show that

⋃
h∈CA\C

(
C ∩ Ch

) ⊆ CC(A)

to get a final contradiction.
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So letC1 = C∩Ch for someh ∈ CA\C. AsC is selfnormalizing and nilpotent, we hav
C1 � C < 〈C,Ch〉 � EH(C1), whereEH(C1) is the generalized centralizer ofC1 in H .
So the subgroupA1 = A ∩ EH(C1) is nontrivial. ButA1 is normal inEH(C1), soA1 �
F(EH(C1)). It follows that there exists a nontrivial elementa ∈ A1 ∩Z(F(EH(C1))). But
C1 � F(EH(C1)) by Fact 2.23, soC1 � CC(a) = CC(A) by Fact 2.40. The proof is now
complete. �
3.3. Automorphisms and torsion

Lemma 3.6. Let H be a group of finite Morley rank such thatH ◦ is abelian. Ifx is an
element inH \ H ◦ such that the elements of the cosetxH ◦ are generically of ordern for
some integern > 1, then every element inxH ◦ is of ordern.

Proof. Let X be a generic definable subset ofH ◦ such that every element ofxX is of
ordern. We may assume thatx is of ordern, and asH ◦ = X · X by Fact 2.3, it suffices
to show that(xx1x2)

n = 1 for all elementsx1, x2 ∈ X. But if x1 andx2 are such elements
then

(xx1x2)
n = xn(x1x2)

xn−1
(x1x2)

xn−2
. . . (x1x2),

that is

(xx1x2)
n = xxn−1

1 x2
xn−1

xxn−2

1 xxn−2

2 . . . x1x2

asxn = 1. AsH ◦ is abelian, we have thus

(xx1x2)
n = (

xxn−1

1 xxn−2

1 . . . x1
)(

xxn−1

2 xxn−2

2 . . . x2
)
.

But

(
xxn−1

1 xxn−2

1 . . . x1
) = xn

(
xxn−1

1 xxn−2

1 . . . x1
) = (xx1)

n = 1,

so the first factor in the product is trivial and similarly the second factor is trivial. T
(xx1x2)

n = 1. �
Lemma 3.7. LetH be a group of finite Morley rank such thatH ◦ is nilpotent,H/H ◦ is of
prime orderp, and the elements of each coset ofH ◦ distinct fromH ◦ are generically of
orderp. If some elementx ∈ H \ H ◦ has an infinite centralizer inH ◦, thenH ◦ contains a
nontrivial p-unipotent subgroup.

Proof. Suppose thatH is a counterexample of minimal rank and letx ∈ H \ H ◦ such that
C := C◦

H ◦(x) is nontrivial. We claim that the minimality ofH implies thatC � Z◦(H ◦).
Assume thatC � Z◦(H ◦) and let the notation “ ” denote the quotients byZ◦(H ◦). Then
the elements of the cosets ofH

◦
in H , distinct fromH

◦
, are still generically of orde

p and C = C
◦

is a nontrivial subgroup of the centralizer ofx in H
◦
. As Z◦(H ◦) 	= 1
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by Fact 2.7, rk(H) < rk(H) and the minimality implies thatH
◦

contains a nontrivialp-
unipotent subgroup, hence alsoH ◦ (Facts 2.14 and 2.8). This contradiction proves t
C � Z◦(H ◦). This implies thatC � Z(H).

The cosetxH ◦ is partitioned by the definable equivalence relation “being in the s
coset ofZ◦(H ◦),” so there isx1 ∈ xH ◦ such that the elements of the cosetx1Z

◦(H ◦) are
generically of orderp, and then each element ofx1Z

◦(H ◦) is of orderp by Lemma 3.6.
As C � Z(H), we then have thatcp = x

p
1 cp = (x1c)

p = 1 for everyc ∈ C. ThusC is a
connected elementary abelianp-subgroup ofZ◦(H ◦), a contradiction. �
Lemma 3.8. LetH be a group of finite Morley rank of odd type andS a Sylow2-subgroup
of H . Assume thatH ◦ � CH (S◦) (which is the case in particular ifH ◦ is nilpotent).
Assume also that for each elementx ∈ H \ H ◦ there is an integern > 1 such that the
elements of the cosetxH ◦ are generically of order bounded byn. ThenCH (S◦) = H ◦.

Proof. First note that ifH ◦ is nilpotent, thenH ◦ � CH(S◦) by Fact 2.8. Suppose th
H ◦ < CH (S◦). Then there is an elementx ∈ H \ H ◦ which centralizesS◦, hence also
d(S◦) by Fact 2.4, and there is an integern such that the elements of the cosetxH ◦ are
generically of order bounded byn. But xH ◦ is definably partitioned by the equivalen
relation of “being in the same coset ofd(S◦),” so we can findx1 ∈ xH ◦ such that the
elements of the cosetx1d(S◦) are generically of order bounded byn. As 〈x1〉d(S◦) is
abelian, Lemma 3.6 shows that each element ofx1d(S◦) is of order bounded byn, and
henced(S◦) has bounded exponent, a contradiction.�
Lemma 3.9. Let H be a group of finite Morley rank whereH ◦ is solvable, of odd type
and has Prüfer2-rank one. Assume thatH/H ◦ is of prime orderp and assume also tha
there is a finite subgroupT0 of H ◦ without involutions, disjoint fromF ◦(H ◦), such that the
definable subset

{
x1 ∈ xH ◦: x

p

1 ∈ T
F(H ◦)
0

}

of xH ◦ is generic inxH ◦ for eachx ∈ H \ H ◦. Thenp = 2 andH splits asH ◦ � 〈x〉 for
some involutionx ∈ H which invertsH ◦.

Proof. Let S be a Sylow 2-subgroup ofH ◦, that is a 2-torus of Prüfer rank 1. We fir
show thatp = 2.

The subgroup[S,H ◦] is definable and connected (Fact 2.2) and normalized byH ◦.
By a Frattini argument,H = H ◦NH(S). Hence,[S,H ◦] is normal inH . We claim that
[S,H ◦] contains no involutions. IfS � F ◦(H ◦), thenS is central inH ◦ by Lemma 3.1,
and[S,H ◦] = 1. Otherwise, asS has Prüfer rank 1, we haveS ∩F ◦(H ◦) = 1 by Fact 2.12
and again[S,H ◦] � F ◦(H ◦) (Fact 2.15) contains no involutions.

Let “ ” denote quotients by[S,H ◦]. As [S,H ◦] contains no involutions,H
◦

has Prüfer
2-rank 1. Forx /∈ H

◦
, the elements of the cosetxH are generically of order bounde

by p|T0|. By Lemma 3.8, we haveCH(S) = H
◦
, and it follows thatH/H

◦ ∼= Zp embeds
into Aut(Z2∞). By Fact 2.11, this forcesp = 2.
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Now let X1 be the generic subset ofxH ◦ consisting of elementsx1 such thatx2
1 ∈ T

f
0

for somef ∈ F(H ◦). We claim thatx2
1 = 1 for x1 ∈ X1.

For the remainder of the argument we use the bar notation “” to denote quotients
moduloF ◦(H ◦). Note thatH

◦
is divisible abelian by Fact 2.15.

First we show thatx1 has a finite centralizer inH
◦
. Let C denote the connecte

component of its centralizer inH
◦
. One can findx2 ∈ X1 such that the elements of th

cosetx2C are generically of order bounded byp|T0|, and Lemma 3.6 implies that eac
element inx2C has an order bounded byp|T0|. As 〈x2〉C is abelian, this implies thatC is
of bounded exponent and asH

◦
is divisible,C is trivial.

Now x1 induces by conjugacy an involutory automorphism ofH ◦ and Fact 2.25
shows thatx1 inverts H ◦. So x1

2 is equal to its inverse as it is both centralized a
inverted byx1. But x1

2 ∈ T0 which has no involutions by assumption; thusx1
2 = 1 and

x2
1 ∈ T

F(H ◦)
0 ∩ F ◦(H ◦) = 1. We have shown that the elements of the cosetxH ◦ are

generically of order 2, and we may conclude by invoking Fact 2.28.�
3.4. Borel subgroups

The next result shows that in a tame minimal simple group of odd type, the conn
components of centralizers of maximal 2-tori behave like tori in algebraic groups.

Lemma 3.10. LetG be a tame minimal simple group of odd type andS a Sylow2-subgroup
ofG. ThenC◦

G(S◦) is nilpotent and of finite index in its normalizer. In particular,C◦
G(S◦) is

a Carter subgroup of any connected definable proper subgroupL of G containingC◦
G(S◦).

Proof. First note thatd(S◦) is central inC◦
G(S◦) by Fact 2.4. Facts 2.12 and 2.14 show t

C◦
G(S◦)/d(S◦) has no involution and it is thus nilpotent by Lemma 2.41, asG interprets

no bad field. SoC◦
G(S◦) is central-by-nilpotent and it is nilpotent. We have also that

of finite index in its normalizer by Fact 2.10 and the fact thatNG(C◦
G(S◦)) � NG(S◦). The

last statement then follows from Fact 2.19.�
The next proposition, together with Lemma2.41, will be used intensively in ou

analysis based on the tameness assumption. We are not able to prove it without ta
Nevertheless, there are weak analogs thatmay be useful in the absence of tameness.

Proposition 3.11. LetG be a tame minimal simple group of odd type.

(i) Assume thatB1 andB2 are two distinct Borel subgroups ofG such thatO(B1) 	= 1
andO(B2) 	= 1. ThenF(B1) ∩ F(B2) = 1.

(ii) In particular, any nontrivial connected definable subgroup without involutionsU of G
is contained in a unique Borel subgroup ofG.

Proof. The second statement follows from the first one: by Lemma 2.41,U � F(B) for
any Borel subgroupB containingU .
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We prove now the first statement. We first show that(O(B1) ∩ O(B2))
◦ = 1. Assume

thatB1 andB2 are as in the statement and that

X := (
O(B1) ∩ O(B2)

)◦ 	= 1

is of maximal rank. LetB3 be a Borel subgroup ofG containingN◦
G(X). If X < O(B1),

then we can look atN◦
O(B1)

(X), which containsX as a subgroup of infinite index by th
normalizer condition (Fact 2.6), and the maximality of rk(X) together with Lemma 2.4
shows thatB1 = B3, and asB1 	= B2, we then have for the same reason thatO(B2) =
X � O(B1). But nowN◦

O(B1)
(O(B2)) � O(N◦

G(O(B2))) = O(B2) by Lemma 2.41, and
Fact 2.6 shows thatO(B1) = O(B2), and thusB1 = N◦

G(O(B1)) = N◦
G(O(B2)) = B2,

a contradiction. We have proved thatX = O(B1). Symmetrically we also have th
X = O(B2), thusO(B1) = X = O(B2), which implies as just seen thatB1 = B2, a contra-
diction. So(O(B1) ∩ O(B2))

◦ = 1 wheneverB1 andB2 are as in the first statement of th
proposition.

We now end the proof of the proposition. Assume that there is a nontrivial eleme
f ∈ F(B1) ∩ F(B2). Let B3 be a Borel subgroup ofG containingC◦

G(f ). Fact 2.7 and
Lemma 2.41 show that(O(B1) ∩ O(B3))

◦ is nontrivial, as well as(O(B2) ∩ O(B3))
◦,

thus what we have shown before implies thatB1 = B3 = B2, a final contradiction. �
Lemma 3.12. LetG be a tame minimal simple group of odd type andB a Borel subgroup
of G. ThenC◦

G(f ) � B for eachf ∈ F(B)#.

Proof. If O(B) = 1 thenB is abelian by Lemma 3.2, soB = C◦
G(f ).

AssumeO(B) 	= 1. ThenO(B) = O(F(B)) by Lemma 2.41, and Fact 2.7 shows th
C◦

O(B)(f ) is nontrivial. By Proposition 3.11,B is the unique Borel subgroup containi
C◦

O(B)(f ), soB containsC◦
G(f ). �

To conclude this section, we remark that ifG is a tame minimal simple group o
degeneratetype, then its Borel subgroups are without involutions by Fact 2.12 and
nilpotent by the proof of Lemma 2.41. ThusG is a bad group and it again satisfi
Proposition 3.11 and Lemma 3.12 by the well-known structural properties of bad g
(cf. [5, Chapter 13]).

4. Pr2(G) = 1 and C◦
G(A) not a Borel

In this section, as well as in the next ones, we assume thatG is a tame minimal simple
group of odd type and we fix the notations as in Theorem 1.8:

S is a fixed Sylow 2-subgroup ofG,

A = 〈
I (S◦)

〉
, C = C◦

G(A), T = C◦
G(S◦), and W = NG(T )/T .
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In this section we assume furthermore,

Pr2(G) = 1 andC◦
G(A) is not a Borel subgroup ofG,

and we will prove part (1a) of Theorem 1.8.

Theorem 4.1. Assume thatPr2(G) = 1 and thatC is not a Borel subgroup ofG. Then
G ∼= PSL2(K) for some algebraically closed fieldK of characteristic different from2.

We embark now on the proof of Theorem 4.1. We leti denote the unique involutio
of A, so thatA = 〈i〉. We will compute the rank ofG and eventually show thatG is a split
Zassenhaus group.

Lemma 4.2. F(B) has no involution for any Borel subgroupB of G.

Proof. If a Borel subgroupB has an involution, then one can assume, by conjugac
Sylow 2-subgroups and Fact 2.12, that this involution isi. If i ∈ F(B), then Lemma 3.1
shows thatB = C◦

G(i), a contradiction to our assumption thatC◦
G(i) is not a Borel

subgroup. �
Corollary 4.3. B1 ∩ F ◦(B2) is finite andF(B1) ∩ F(B2) = 1 for every pair of distinct
Borel subgroupsB1 andB2 of G.

Proof. This follows from Lemma 2.41 and Proposition 3.11.�
Fix B a Borel subgroup ofG containingC = C◦

G(i). Note then thatS◦ � T � C < B,
and thatS◦ is a Sylow 2-subgroup ofB by Fact 2.12. Let alsoM = NG(B). Then(iG \M)

is generic iniG by Fact 2.36, so

rk
(
iG \ M

) = rk
(
iG

) = rk(G) − rk(C).

We define an equivalence relation∼ on iG \ M by w1 ∼ w2 if and only if w1 andw2 are
in the same coset ofB. Let

p :
(
iG \ M

) −→ (
iG \ M

)
/∼

be the natural (definable) projection, and for 0� k � rk(B), let

Xk = {
w ∈ (

iG \ M
)
: rk

(
p−1(p(w)

)) = k
}
.

As iG \ M is partitioned by the (finite number of)Xk ’s, there existsk0 such thatXk0 is
generic iniG \ M, and such ak0 is unique, since the definable set(iG \ M) has degree 1.

Lemma 4.4. k0 � 1.
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Proof. If k0 = 0, then rk(G)− rk(CG(i)) = rk(X0/∼) � rk(G)− rk(B), so rk(B) � rk(C)

andB = C, contradicting our assumption.�
For every involutionw in iG \ M, let

T (w) = {
ww1: w1 ∈ (

iG ∩ wB
)}

.

Lemma 4.5. If w ∈ Xk0, thenT (w) is an infinite definable abelian subgroup ofB which
intersectsF ◦(B) trivially, and contains a uniqueB-conjugate ofS◦.

Proof. Let Tw be the set of all elements ofB inverted byw. Corollary 4.3 and the fact tha
w /∈ NG(B) shows thatTw ∩F ◦(B) is trivial. As 〈Tw〉′ is included inF ◦(B) (by Fact 2.15)
and normalized byw, Corollary 4.3 again shows that〈Tw〉′ must be trivial asw /∈ NG(B).
Thus Tw is an abelian subgroup ofB. It is also obviously definable, and infinite as
containsT (w).

We claim thatT (w) = Tw . For this it suffices to show that each involution ofwTw is
Tw-conjugate tow. Let wt be such an involution for somet ∈ Tw. It suffices to show tha
Tw is 2-divisible, as thenwt = wt ′2 = t ′−1wt ′ for some elementt ′ ∈ Tw such thatt ′2 = t .

Claim 4.6. Tw is 2-divisible.

Proof of claim. First note thatTw is definably isomorphic to a subgroup ofB/F ◦(B) as it
is disjoint fromF ◦(B). Facts 2.8 and 2.15 show thatTw = T ◦

w ∗C, whereT ◦
w is divisible and

C is a direct product of finitep-groups for some prime numbersp. As T ◦
w 	= 1 is disjoint

from F ◦(B) = O(B) (Lemmas 2.41 and 4.2), one sees with the same kind of argum
as in the proof of Lemma 2.41, given the absence of bad fields, thatT ◦

w contains a Sylow
2-subgroup ofB. Thus a Sylow 2-subgroup ofTw is in T ◦

w and one can assume thatC is
the direct product of finitep-groups for some prime numbersp > 2. It follows thatC is
2-divisible andTw is also 2-divisible. �

We have now thatT (w) = Tw is an infinite definable abelian subgroup ofB disjoint
from F ◦(B). The fact that it contains aB-conjugate ofS◦ has been shown in the proof
the claim. This conjugate is unique as it is a Sylow 2-subgroup of the abelian groupT (w),
ending the proof of Lemma 4.5.�
Lemma 4.7. C = T is abelian.

Proof. Pick an elementw ∈ Xk0 (asXk0 	= ∅!) which invertsS◦. Thenw centralizesi,
so w normalizesC as well as its commutator subgroupC′ which is contained inF ◦(B)

(Fact 2.15), and must then be trivial by Corollary 4.3. SoC is abelian and asS◦ � T � C,
we have thatC = T . �
Corollary 4.8. F ◦(B) is inverted byi andB = F ◦(B) � T .
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Proof. If C◦
F ◦(B)(i) 	= 1, then 1	= O(C◦

G(i)) � F(B) by Corollary 4.3 and Lemma 2.4
and if we pickw ∈ Xk0 which invertsS◦, thenw ∈ NG(B) by Corollary 4.3, a contradic
tion. ThusC◦

F ◦(B)(i) = 1 andi invertsF ◦(B) by Fact 2.25.
One sees then easily thatCB/F ◦(B)(i) = CB(i)F ◦(B)/F ◦(B). As B/F ◦(B) is abelian,

this gives thatB = F ◦(B)CB(i) = F ◦(B) � CB(i) and the connectedness ofB implies
thatB = F ◦(B) � C◦

B(i) = F ◦(B) � C. �
At this point, we can conclude the proof of Theorem 4.1 as follows: we takeB-

minimal subgroupU of F(B) and we remark thatC◦
C(U) has no involution (as the uniqu

involution i of C invertsU by the preceding corollary). SoF ◦(B)C◦
C(U) is nilpotent and

included inF ◦(B) = O(B) by Lemma 2.41, andC◦
C(U) � C ∩ F ◦(B) = 1. So we can

apply the result of [20], without further use of the assumption on bad fields.
To keep this text self-contained, we may proceed as follows, first embarking on the ra

computation of the groupG. As T � B andT is of finite index inNG(S◦) by rigidity of S◦
(Fact 2.10), the equivalence classes of the definable equivalence relation≈ on Xk0/∼,
defined by(w1/∼) ≈ (w2/∼) if and only if w1 andw2 invert the sameB-conjugate ofS◦,
are all finite. So

rk(Xk0/∼) � rk(B) − rk
(
NB(S◦)

) = rk(B) − rk(T ).

Finally, as

rk(G) − rk(C) = rk(Xk0) = k0 + rk(Xk0/∼),

we get that

rk(G) � k0 + rk(B) − rk(T ) + rk(C),

and Lemma 4.7 shows that

rk(G) � rk(B) + k0.

Corollary 4.9. rk(F ◦(B)) � k0.

Proof. Pick an elementg ∈ G \ M. As B ∩ F ◦(B)g is finite, we have that rk(B) +
rk(F ◦(B)g) � rk(G). So rk(F ◦(B)) = rk(F ◦(B)g) � k0. �

Let U be aB-minimal subgroup ofB. ThenZ := CT (U) is finite by Corollary 4.8 and
Lemma 2.41. So we have that

U � (T /Z) ∼= K+ � K∗

for some algebraically closed fieldK by the field theorem (Fact 2.38) and the absenc
bad fields. Thus

rk(T ) = rk(U) � rk
(
F ◦(B)

)
� k0.
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So rk(T ) = k0, andT is entirely inverted by an involution inXk0 by connectedness. W
also have thatk0 = rk(U) � rk(F ◦(B)) � k0, so F ◦(B) = U . Note now thatZ(B) = Z

is inverted by an involution inXk0, so it must be trivial (otherwise this involution wou
normalizeC◦

G(Z) = B).
To summarize, we have thatB = K+ � K∗ andF(B) = F ◦(B).

Lemma 4.10. F(B)g ∩ M = 1 for every elementg ∈ G \ M.

Proof. F(B)g ∩ M is finite by Corollary 4.3. If it is nontrivial, thenK must be of
characteristicp > 0. If y is an element of orderp in this intersection, thenC◦

M◦(y) �
(F (B)g ∩ M◦)◦ by Corollary 4.3, thusC◦

M◦(y) is trivial by the same corollary. Asy
normalizesB, Fact 2.30 implies thatM◦ is nilpotent, a contradiction. ThusF(B)g ∩ M

is trivial. �
Lemma 4.11. M = B andG = B � F(B)wB, wherew is an involution ofG \ B which
invertsT .

Proof. If g is in G \ M, then the map(f,m) �→ fgm from F(B) × M to F(B)gM is an
interpretable bijection by the preceding lemma. Its image, of rank 3k0, is generic inG, so it
must be of degree one, as well asF(B) × M. In particular,M is connected and thus equ
to B. By connectedness again,G = B � F(B)gB. �
Proof of Theorem 4.1. To conclude the proof of Theorem 4.1, it remains to show thatG is
a split Zassenhaus group and to apply Fact 2.45. The groupG, acting by left multiplication
on the left coset space ofB, is a split doubly transitive group; the stabilizer ofB andwB

is T = C = B ∩ Bw . This stabilizerT contains an involution. It remains to show that t
stabilizer of three points is trivial: ift ∈ T stabilizes a third pointfwB, wheref is a
nontrivial element ofF(B), thenf wB = tfwB and tf ∈ T f ∩ Bw � T f ∩ B ∩ Bw �
T f ∩ T = 1. Theorem 4.1 is proved.�

5. Pr2(G) = 1 and C◦
G(A) a Borel

In this section we assume thatG is fixed as in Theorem 1.8, and we adopt all
associated notation from the statement of that theorem. We assume furthermore,

Pr2(G) = 1 andC = C◦
G(A) is a Borel subgroup ofG.

We will prove part (1b) of Theorem 1.8. As in the last section, we leti denote the uniqu
involution generatingA. Notice thatI (C) = {i} by Fact 2.12, as Pr2(G) = 1.

5.1. Case:C◦
G(A) a nonnilpotent Borel subgroup

We assume here thatC is a nonnilpotent Borel subgroup ofG and we will show that
CG(i) = C and thatW = NG(T )/T = 1 in that case.
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Lemma 5.1. O(B) = F ◦(B) ( 	= 1) for every Borel subgroupB of G.

Proof. If F ◦(B) has an involution for some Borel subgroupB of G, thenF ◦(B) contains
an infinite Sylow 2-subgroup which is a conjugate ofS◦ by Fact 2.12, as Pr2(G) = 1.
This conjugate ofS◦ is characteristic inB by Fact 2.8, and central inB by Fact 2.10.
This shows thatC◦

G(S◦) is a Borel subgroup ofG, thus equal toC◦
G(A). But C◦

G(S◦) is
nilpotent by Lemma 3.10, a contradiction to our assumption, which shows thatF ◦(B) has
no involutions. ThusF ◦(B) = O(B) by Lemma 2.41. �
Lemma 5.2. There is a finite subgroupT0 of odd order ofC, disjoint fromF ◦(C), and
such thatC ∩ Cg is F(C)-conjugate to a subgroup ofT0 for every g ∈ G \ NG(C).
Furthermore,CF(C)(t0) is finite for every nontrivial elementt0 belonging toC ∩ Cg for
someg ∈ G \ NG(C).

Proof. Let g ∈ G \ NG(C) and assume thatTg := C ∩ Cg is nontrivial. If Tg has an
involution, then it is the unique involutioni of C and ig of Cg , respectively, soi = ig ,
a contradiction to our assumption thatg /∈ NG(C). Thus Tg has no involutions and
T ◦

g = O(Tg) must be trivial by Lemma 2.41 and Proposition 3.11. The family of subgro
Tg of G is thus a uniformly definable family of finite subgroups. It follows that there
uniform boundn on the order of eachTg , by elimination of infinite quantifiers (cf. [27
Introduction]).

We now claim thatTg intersects triviallyF(C), as well asF(Cg). If t ∈ T #
g is in F(C),

thenC◦
G(t) � C by Lemma 3.12 (asO(C) = F ◦(C) 	= 1 by the preceding lemma) an

C◦
Cg (t) � Cg ∩ C is finite, a contradiction to Fact 2.17. ThusTg intersectsF(C) trivially,

and we get in the same way thatTg ∩ F(Cg) is trivial.
Let t be a nontrivial element ofTg . If C◦

F(C)(t) 	= 1, then Lemma 5.1 shows th
C◦

G(t) � C by Proposition 3.11(ii). ThusC◦
Cg(t) � T ◦

g = 1, a contradiction to Fact 2.17
Thus any nontrivial element ofTg has a finite centralizer inF(C).

Let now π be the set of prime numbers dividing|Tg| for someg ∈ G \ NG(C). The
preceding, together with Facts 2.8, 2.10, and 2.9 shows that the Hallπ -subgroup ofF ◦(C)

is trivial. Let nowSπ be a Hallπ -subgroup ofC. Note thatSπ is a direct product ofp-
tori (p ∈ π ), disjoint fromF ◦(C). EachTg is, after conjugacy by an element ofF ◦(C) if
necessary (Fact 2.13), inSπ . LetT0 be the subgroup ofSπ generated by all these conjuga
of theTg ’s. As Sπ is divisible abelian and the exponent of theTg ’s is uniformly bounded
T0 is the product of finitely many conjugates of theTg ’s, andT0 satisfies all the require
properties. �

The preceding lemma allows us to apply Lemma 3.3 and to get the following corollar

Corollary 5.3.
⋃

g∈G Cg is generic inG.

Corollary 5.4. If x is an element ofNG(C) \ C and is of ordern moduloC, for some
integern > 1, then the conditionxn

1 ∈ T
F(C)
0 is satisfied for everyx1 in a definable generic

subsetX1 of xC.
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Proof. Let X1 be the definable subset ofxC of elementsx1 ∈ xC such thatx1 ∈ (〈x〉C)g

for someg ∈ G \ NG(C). ThenX1 is generic inxC by Lemma 3.4 and ifx1 ∈ X1, then
x1 ∈ (〈x〉C)g for someg ∈ G \ NG(C) andxn

1 ∈ C ∩ Cg ⊆ T
F(C)
0 by Lemma 5.2. �

Corollary 5.5. CG(i) is connected(in particular, S = S◦).

Proof. Use the preceding corollary, Lemma 3.9, and the fact thatC is nonnilpotent. �
Corollary 5.6. The Weyl groupW = NG(T )/T is trivial.

Proof. T is a Carter subgroup ofC by Lemma 3.10, so it is selfnormalizing inC. But
NG(T ) � CG(i) = C by the preceding corollary, soNG(T ) = NC(T ) = T andW = 1. �
5.2. Case:C◦

G(A) a nilpotent Borel subgroup

We assume here thatC = C◦
G(A) is a nilpotent Borel subgroup ofG. As S◦ � C◦

G(A),
Fact 2.8 then shows thatC = C◦

G(A) = C◦
G(S◦) = T . We will show that the Weyl group

W = NG(T )/T is either trivial or of order 2 (Corollary 5.13 below) and that involutio
in G are all conjugate (Lemma 5.14). If|W | = 2, then we will show in Corollary 5.15 tha
NG(T ) splits asT � Z2, proving the statement (1b) of Theorem 1.8. We will also ob
a good algebraic description ofG in Lemma 5.11 and Corollaries 5.16 and 5.17. After
that, we will finally analyze the geometry of involutions inG.

Lemma 5.7. T ∩ T g = 1 for eachg ∈ G \ NG(T ).

Proof. Assume thatT ∩T g 	= 1 for someg ∈ G. Proposition 3.11 then shows thatO(T ) =
O(T g) = 1. But then Lemma 3.2 implies thatT is abelian, thusT , T g � C◦

G(T ∩ T g) and
T = T g = C◦

G(T ∩ T g) asT is a Borel subgroup ofG. Thusg ∈ NG(T ). �
Corollary 5.8.

⋃
g∈G T g is generic inG.

Proof. This follows immediately from the preceding lemma.�
Corollary 5.9. If x is in NG(T ) \ T and is of ordern moduloT , for some integern > 1,
then the elements of the cosetxT are generically of ordern.

Proof. It suffices to apply the preceding corollary and Lemma 3.4, and to remark
an elementx ∈ NG(T ) \ T of ordern modulo T and such thatx ∈ (〈x〉T )g for some
g ∈ G \ NG(T ) satisfiesxn ∈ T ∩ T g = 1. �
Corollary 5.10. CG(S◦) = T .

Proof. This follows from Corollary 5.9 and Lemma 3.8.�



G. Cherlin, E. Jaligot / Journal of Algebra 276 (2004) 13–79 39

in
eless,
en

ose
,
.
s

o
el
ns

f

in
5.

t

.12,
We now detail the general structure ofG. Let B be the set of Borel subgroups ofG

nonconjugate toT and having a nontrivial Sylow 2-subgroup, that is a conjugate ofS◦ by
Fact 2.12, as Pr2(G) = 1.

The same notationB will be introduced in Section 6 (before Lemma 6.22) and
Section 7.2 (before Lemma 7.10), but with a different definition in Section 6. Neverth
Borel subgroups in each version ofB will all have analogous properties, as will be se
throughout the paper.

Lemma 5.11. B is nonempty and every Borel subgroup ofG nonconjugate toT is in B. If
B ∈ B contains the involutioni ∈ A#, thenB = F(B) � CB(i), F(B) = O(B) is inverted
by i, andCB(i) is a connected divisible abelian subgroup ofT containingS◦. Furthermore

G =
( ⋃

g∈G

NG(T )g
)

∪
( ⋃

B∈B

NG(B)

)
.

Proof. We first show thatG contains no Borel subgroups without involutions. Supp
that B is such a Borel subgroup ofG. ThenB = O(B) is nilpotent by Lemma 2.41
and Proposition 3.11 shows that two distinct conjugates ofB have a trivial intersection
Thus

⋃
g∈G Bg is generic inG by Lemma 3.3, as well as

⋃
g∈G T g . But then there exist

an elementb ∈ B# which is in a conjugate ofT by Fact 2.1. In particular,b centralizes
a conjugate ofS◦. This is a contradiction becauseC◦

G(b) � B (Lemma 3.12) has n
involutions. Thus every Borel subgroup ofG has an involution. If every such Bor
subgroup is conjugate toT , thenG is a simple bad group, and it cannot have involutio
by Fact 1.3, a contradiction which ends the proof of our first sentence.

Let now B be a Borel subgroup inB containing the involutioni ∈ A#. If k is an
involution in F(B), thenk ∈ Z(B) by Lemma 3.1. Butk is in a Sylow 2-subgroup o
B which is connected by Fact 2.12, thus inS◦g for someg ∈ G. SoB, T g � C◦

G(k), and
B = T g by maximality, a contradiction to the definition ofB, which shows thatF(B) has
no involutions. Notice then thatB is in particular nonnilpotent, and thatF ◦(B) = O(B) by
Lemma 3.2. IfC◦

O(B)(i) 	= 1, then as this is a subgroup ofT , Proposition 3.11(ii) implies
that T = B, a contradiction. ThusC◦

O(B)(i) is trivial and Fact 2.25 shows thatO(B) is
inverted byi. As B/O(B) is abelian by Fact 2.15, we conclude thatB = O(B) � CB(i)

with Fact 2.27. It follows then from Fact 2.1 thatCB(i) is connected and contained
C◦

G(i) = T . As CB(i) is isomorphic toB/F(B), it is also divisible abelian by Fact 2.1
We now show thatO(B) = F(B). If O(B) < F(B), then the finite groupCB(i) ∩ F(B) is
nontrivial and it contains an elementt of prime orderp. As CB(i) is divisible, Fact 2.12
shows thatt is in a p-torus ofCB(i); so it is in ap-torus ofT and t is central inT by
Fact 2.10. ThusT � C◦

G(t) � B by Lemma 3.12 andT = B by maximality, a contradiction
which shows thatO(B) = F(B).

It remains to show thatG = (
⋃

g∈G NG(T )g) ∪ (
⋃

B∈B NG(B)). If g is any elemen
in G, theng has an infinite centralizer by Corollaries 5.8 and 2.18, that isC◦

G(g) 	= 1.
If C◦

G(g) contains an involution, then it contains a nontrivial 2-torus by Fact 2
so it contains an involutionih for some elementh ∈ G. Then g ∈ NG(C◦ (ih)) �
G
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NG(T )h. If C◦
G(g) has no involutions, then it is in a unique Borel subgroupB of G by

Proposition 3.11(ii), andg ∈ NG(B). �
We now look at the structure of the finite groupNG(T )/T . In what follows the nota

tion “ ” denotes the quotients byT .

Lemma 5.12. NG(T ) is trivial or NG(T ) = w for some involutionw ∈ G which invertsT
andwT = wT .

Proof. Assume thatNG(T ) is nontrivial. ThenNG(T ) embeds into a finite subgroup
Aut(S◦) by Corollary 5.10. But finite subgroups of Aut(S◦) ∼= Aut(Z2∞) are 2-groups by
Fact 2.11, thusNG(T ) is a 2-group.

Assume thatw ∈ NG(T ) \ T is such thatw is an involution. Then elements of the cos
wT are generically of order 2 by Corollary 5.9, and Fact 2.28 shows thatw is an involution
which invertsT . If w′ is another involution ofNG(T ), thenw′ is also an involution which
invertsT , andww′ ∈ CG(S◦) = T by the preceding lemma, that isw = w′. This shows
thatNG(T ) is a 2-group with a unique involution.

To show thatNG(T ) is cyclic of order 2, it remains to show that it cannot contain
element of order 4. Assume thatx is an element of order 4 inNG(T ), for somex ∈ NG(T ).
Let Y be the subgroup of elementst ∈ T such thatt4 = 1. Y is cyclic of order 4, thus
Y = {1, y, i, y−1} for some generatory such thaty2 = i. As x acts by conjugation ony,
we haveyx = y or yx = y−1. In any case,x2 centralizes the generatory of Y . But x2

has an image of order 2 inNG(T ), so it is an involution which invertsT by the preceding
remarks and it must in particular inverty. Thus the elementy of order 4 is both centralize
and inverted byx2, a contradiction.

This shows thatNG(T ) = 〈w〉 for some involutionw, andw is an involution ofG which
invertsT . Furthermore,wT = wT becauseT is 2-divisible. �
Corollary 5.13. CG(A) is connected orCG(A) = T � 〈w〉 wherew is an involution which
invertsT and such thatwT = wT .

Lemma 5.14. All involutions inG are conjugate.

Proof. Lemma 5.12 shows thatS = S◦ or S = S◦ � 〈w〉, wherew invertsS◦. In the first
case we have nothing to prove because then each involution ofG is conjugate toi which is
the unique involution ofS◦. So we assume now thatS = S◦ � 〈w〉; Lemma 5.12 also tells
us that involutions of the cosetwS◦ are allS◦-conjugate asS◦ is 2-divisible. The conjugac
of Sylow 2-subgroups inG then shows thatG possesses at most two conjugacy classe
involutions:iG andwG. It suffices thus to show thatwG = iG.

Suppose, in order to get a contradiction, thatwG 	= iG. Notice then thatw is never in
the connected component of a Borel subgroup ofG, by Fact 2.12 and our assumptio
that Pr2(G) = 1. Notice also thatC◦

G(w) 	= 1, as otherwiseG would be abelian by
Fact 2.25. IfC◦

G(w) has an involution, then it contains a conjugateS◦g of S◦ for some
g ∈ G, by Fact 2.12 and our assumption that Pr2(G) = 1. But thenS◦g〈w〉 = S◦g × 〈w〉
(as Pr2(G) = 1 and wg 	= ig) is in a Sylow 2-subgroupSh of G, for someh ∈ G.
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As Pr2(G) = 1 again,S◦g = (Sh)◦ and w invertsS◦g by Lemma 5.12, a contradictio
which shows thatC◦

G(w) has no involution. Proposition 3.11(ii) then shows thatC◦
G(w) is

contained in a unique Borel subgroupB of G. If B = T g for someg ∈ G, thenw is not
in T g , sow invertsT g , a contradiction asC◦

G(w) � T g . ThusB is not conjugate toT and
it is in B by Lemma 5.11. It is in particular clear from the proof of Lemma 5.11 thatB is
nonnilpotent.

We now claim thatiG ⊆ NG(B), which will contradict the simplicity ofG. Let j = ig

for someg ∈ G. If [j,w] = 1, thenj normalizesC◦
G(w) andj ∈ NG(B). Assume now tha

[j,w] 	= 1. Asj andw are not conjugate, there is a third involutionz of G which commutes
with bothj andw by Fact 2.32. Notice thatz is not conjugate toj , as otherwise it is equa
to j which then commutes withw. Thusz = wh for someh ∈ G andC◦

G(z) is in particular
without involutions. Asz normalizesC◦

G(w), it also normalizesB, andz ∈ NG(B) \ B.
As B is nonnilpotent, Fact 2.25 shows thatC◦

B(z) 	= 1. ButC◦
B(z) has no involution, as i

is conjugate to a subgroup ofC◦
G(w), and is in a unique Borel subgroupB1 of G. Now

Proposition 3.11(ii) shows thatB = B1, andC◦
G(z) � O(B). As j normalizesC◦

G(z), it
also normalizesB, and we are done.�
Corollary 5.15. CG(A) is connected orCG(A) = T � 〈w〉 where w is an involution
conjugate toi which invertsT and such thatwT = wT .

We can now refine Lemma 5.11.

Corollary 5.16. G = {1} � (
⋃

g∈G T g)# � (
⋃

B∈B O(B))#.

Proof. Corollary 5.15 tells us that
⋃

g∈G NG(T )g = ⋃
g∈G T g . If a nontrivial element

f ∈ G is in O(B) for someB ∈ B, thenC◦
G(f ) � B by Lemmas 5.11 and 3.12 an

O(B) � C◦
G(f ). But C◦

G(f ) has no involution by Lemma 5.11 again, soC◦
G(f ) = O(B)

by Lemma 2.41. In particular,f cannot be in a conjugate ofT , so the second union in th
statement of the corollary is disjoint.

Let nowB be a Borel subgroup inB containing the involutioni, as in Lemma 5.11. Not
thatNG(B) = NNG(B)(S

◦)B by the Frattini argument, that isNG(B) = CNG(B)(i)B. Then
Lemma 5.11 shows thatNG(B) = CNG(B)(i)O(B) and asi invertsO(B), the product is
semidirect. If a nontrivial elementf ∈ O(B) centralizes a nontrivial elementc ∈ CG(i) =
NG(T ), thenf is in the normalizer of a conjugateT h of T which containsc, thus in a
conjugate ofT , a contradiction. This shows, with Fact 2.27, thatcO(B) = (c)O(B), so
elements ofNG(B) \O(B) are all in conjugates ofT . Our statement follows by conjugac
of Sylow 2-subgroups. �

We can also obtain some additional information on Borel subgroups inB:

Corollary 5.17. If B ∈ B contains the involutioni, then CNG(B)(i) < NG(B) is a
Frobenius group withO(B) as a Frobenius kernel, andCNG(B)(i) � T . In particular,
i is the unique involution inCNG(B)(i) and I (NG(B)) = iO(B). We also have tha
rk(O(B)) � rk(T ).
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Proof. We know from the proof of Corollary 5.16 thatNG(B) = O(B)�CNG(B)(i). If z is
an involution inCNG(B)(i) different fromi, then there is an involutionz′ in the elementary
abelian 2-group〈i, z〉 of order 4 with an infinite centralizer inO(B) by Fact 2.37. Then
B = C◦

G(z′) by Proposition 3.11(ii) asz′ is conjugate toi, a contradiction. Thusi is
the unique involution ofCNG(B)(i), and Corollary 5.15 shows thatCNG(B)(i) � T . If
f ∈ O(B) andCNG(B)(i) ∩ CNG(B)(i)

f is nontrivial, thenf ∈ NG(T ) ∩ O(B) = 1.
It remains to show the last point. Assume that rk(T ) < rk(O(B)). Then rk(G/O(B)) <

rk(iG), and by Fact 2.36, there is an involutionw ∈ G \ NG(B) such thatwO(B) contains
infinitely many involutions. Thenw ∈ NG(B), a contradiction. �

We now analyze the geometry of involutions ofG. Let

D = {
(j, k) ∈ iG × iG: [j, k] 	= 1

}
.

If CG(A) is connected, thenI (CG(A)) = I (T ) = {i}, so in that caseD is simply the set
of pairs of distinct involutions ofG. Notice that, in any case,D is generic iniG × iG, as
otherwise there would be an involutionj commuting with a generic subset ofiG, which is
impossible by Fact 2.36. Letψ be the definable map

ψ :D −→ G, (j, k) �−→ jk.

By Corollary 5.16, we have a definable partition ofD into definable subsetsD1 andD2,
that isD = D1 � D2, where

D1 = {
(j, k) ∈ D: jk ∈ O(B) for someB ∈ B

}
and

D2 = {
(j, k) ∈ D: jk ∈ T g for someg ∈ G

}
.

Lemma 5.18. D1 	= ∅ and(j, k) ∈ D is in D1 if and only ifj , k ∈ NG(B) for some Borel
subgroupB ∈ B. In particular,ψ(D1) = ∪B∈BO(B).

Proof. Obvious from Lemma 5.11 and Corollaries 5.16 and 5.17.�
Lemma 5.19. D2 	= ∅ if and only ifCG(A) is not connected. Then(j, k) ∈ D is in D2 if
and only ifj , k ∈ CG(z) for a third involutionz ∈ iG. In particular, ψ(D2) = ⋃

g∈G T g

whenCG(A) is not connected.

Proof. Obvious from Lemma 5.11 and Corollaries 5.16 and 5.17.�
Lemma 5.20. If CG(A) is not connected, thenD2 is generic inD (and, thus, iniG × iG).

Proof. If (j, k) ∈ D1, thenjk ∈ O(B) for a uniqueB ∈ B and we claim thatψ−1(jk) =
{(jf, jfjk): f ∈ O(B)}. If (j ′, k′) ∈ ψ−1(jk), thenj ′ andk′ invert j ′k′ = jk, soj ′ and
k′ normalizeC◦

G(jk) = O(B) andj ′, k′ ∈ NG(B). Thus(j ′, k′) = (jf, jf ′) wheref and
f ′ are in O(B) by Corollary 5.17. Then(j ′, k′) = (jf, jf (jfjf ′)) = (jf, jf (j ′k′)) =
(jf, jfjk), which proves the claim. In particular, rk(ψ−1(jk)) = rk(O(B)).
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Let ψ(D1) = U1 � U2 � · · · � Us be a finite partition ofψ(D1) into definable setsUs ′ ,
such that the fibers ofψ are of constant ranks′ in eachUs ′ , and lets0 such thatψ−1(Us0)

is generic inD1. Note then thats0 = rk(O(B)) for someB ∈ B. By additivity of the rank,
we have

rk

( ⋃
B∈B

O(B)

)
= rk

(
ψ(D1)

)
� rk

(
ψ

(
ψ−1(Us0)

)) = rk
(
ψ−1(Us0)

) − s0

= rk(D1) − rk
(
O(B)

)
.

We can also compute rk(
⋃

g∈G T g) usingD2. If (j, k) ∈ D2, then(j ′, k′) ∈ D2 satisfies
ψ(j ′, k′) = jk if and only if (j ′, k′) = (j t, j tjk) wheret varies over the conjugate ofT
which containsjk. So the fibers ofψ restricted toD2 have a constant rank equal to rk(T ).
Thus we have rk(

⋃
g∈G T g) = rk(D2) − rk(T ).

As rk(
⋃

B∈B O(B)) < rk(
⋃

g∈G T g) by Corollary 5.16, we get that rk(D1) −
rk(O(B)) < rk(D2)−rk(T ), that is rk(D1)−rk(D2) < rk(O(B))−rk(T ). But Lemma 5.17
shows that rk(O(B)) − rk(T ) � 0, so rk(D1) − rk(D2) < 0 and rk(D1) < rk(D2). �

6. Pr2(G) > 1 and C◦
G(A) not a Borel

In this section we again assume thatG is fixed as in Theorem 1.8, and we adopt all
associated notation from the statement of that theorem. We assume furthermore,

Pr2(G) > 1 andC = C◦
G(A) is not a Borel subgroup ofG.

Note that|A| = 2Pr2(G) � 4 in the case considered. We will prove part (2a) of Theorem
We will first prove that Pr2(G) = 2 in this case (Proposition 6.3 below). Then we w
show part (2a) of Theorem 1.8 in Lemma 6.4 and Theorem 6.6 below. After that, the
point will be to show thatW acts faithfully onA (Proposition 6.17 below), obtaining i
particular|W | = 1,2,3, or 6 (Corollary 6.18 below). The cases|W | = 2,6, and 1 will
be removed from the horizon in Section 6.1 (Theorem 6.29), Section 6.2 (Theorem
and Section 6.3 (Theorem 6.63), respectively. After this lengthy analysis, the rem
statements of part (2) of Theorem 1.8 will be shown in Section 6.4.

Lemma 6.1. Assume that there are two distinct Borel subgroupsB1 and B2 of G, each
containing a conjugate ofS◦, and with a nontrivial intersection. ThenPr2(G) = 2 .

Proof. Fix two distinct Borel subgroupsB1 andB2 of G so thatX := B1 ∩B2 is nontrivial
and of maximal rank.

We first claim

X is infinite.

Suppose the contrary, and pick an elementx of prime orderp in X. We will eventually
apply Corollary 2.20 tox in bothB1 andB2.
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We show thatF ◦(B1) has no nontrivialp-unipotent subgroup. Suppose on the contr
that the maximal (normal)p-unipotent subgroupUp of F ◦(B1) (Corollary 2.16) is
nontrivial. ThenC◦

Up
(x) is nontrivial (Fact 2.9) and ifB3 is a Borel subgroup ofG

containingC◦
G(x), then B3 = B1 by Proposition 3.11(ii). We then get thatC◦

B2
(x) �

B2 ∩ B1 is finite, a contradiction to Fact 2.17. Thusp-unipotent subgroups ofF ◦(B1) and,
similarly, F ◦(B2) are trivial and we can apply Corollary 2.20 to see thatC◦

G(x) contains
a Sylow◦ 2-subgroup of bothB1 andB2. If B3 is now a Borel subgroup ofG containing
C◦

G(x), then we get thatB1 = B3 = B2 by the maximality of rk(X). This final contradiction
proves thatX is infinite.

If O(X) 	= 1, thenB1 = B2 by Proposition 3.11(ii). ThusO(X) = 1 andX◦ is abelian
divisible by Lemma 3.2. LetSX be the (nontrivial) maximal 2-torus ofX, and letS◦

1
(respectivelyS◦

2) be a Sylow◦ 2-subgroup ofB1 (respectivelyB2) such thatSX � S◦
1

(respectivelySX � S◦
2). If SX is not a Sylow◦ 2-subgroup ofG, then we can consider

Borel subgroupB3 of G containingN◦
G(d(SX)); it containsX, as well asS◦

1 (> SX) and
S◦

2 (> SX), thus the maximality of rk(X) implies B1 = B3 = B2, a contradiction which
shows thatS◦

1 = SX = S◦
2.

We now claim thatO(B1) 	= 1 andO(B2) 	= 1. If these are both trivial, thenB1 and
B2 are abelian by Lemma 3.2, thus included inC◦

G(X) and equal, a contradiction. W
may assume therefore thatO(B1) 	= 1. If O(B2) = 1, then by Fact 2.37 one can find
involution i ∈ SX such thatC◦

O(B1)(i) 	= 1; butC◦
O(B1)

(i) � C◦
G(i) = B2 asB2 is abelian

by Lemma 3.2, a contradiction to Lemma 2.41, asO(B2) = 1.
Proposition 3.11(ii) shows that any involution inSX cannot have an infinite centraliz

both inO(B1) andO(B2). Thus any such involution invertsO(B1) or O(B2) by Fact 2.25.
We can now conclude that the Prüfer 2-rank ofSX is two. Suppose on the contrary thatSX

contains an elementary abelian 2-subgroup of order eight, that is seven distinct invol
This is then the union of two sets of involutions, those which invertO(B1) and those
which invertO(B2), and neither set contains three linearly dependent elements; but
impossible. �
Corollary 6.2. Suppose〈C◦

G(i): i ∈ A#〉 = G. ThenPr2(G) = 2.

Proof. The hypothesis implies that there are involutionsi, j ∈ A# such thatC◦(i) and
C◦(j) are contained in distinct Borel subgroups, so the preceding lemma applies.�
Proposition 6.3. 〈C◦

G(i): i ∈ A#〉 = G. In particular,Pr2(G) = 2 by Corollary 6.2.

Proof. Suppose〈C◦
G(i): i ∈ A#〉 < G. Let B be a Borel subgroup ofG containing

〈C◦
G(i): i ∈ A#〉. As C < B, there is an involutioni ∈ A# such thatC◦

G(i) < B. In
particular,B is not abelian, and thusO(B) 	= 1 by Lemma 3.2.

Let T (w) denote the set{ww1: w1 ∈ iG ∩ wB} for eachw ∈ iG \ NG(B). Note
that rk(iG \ NG(B)) = rk(iG) = rk(G/C◦

G(i)) by Fact 2.36. AsC◦
G(i) < B, we have

rk(G/B) < rk(G/C◦
G(i)) = rk(iG \ NG(B)). Thus there is a coset ofB disjoint from

NG(B) containing infinitely many involutions ofiG, and if w is such an involution, the
T (w) is infinite. Asw /∈ NG(B), F(B) ∩ F(B)w is trivial by Proposition 3.11 and on
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sees as in the proof of Lemma 4.5 thatd(T (w))′ � F(B) ∩ F(B)w = 1. Thusd(T (w))

is an infinite abelian subgroup ofB inverted byw, and it is necessarily disjoint from
F(B). Notice that, conjugating by an element ofB if necessary, we may assume witho
loss of generality that the Sylow 2-subgroup ofd(T (w)) is contained inS◦. If d(T (w))

contains a four-subgroup ofA, then there is by Fact 2.37 an involutionk ∈ A such that
C◦

O(B)(k) 	= 1, and then 1	= O(C◦
G(k)) � O(B) by Lemma 2.41 and Proposition 3.11(

and askw = k, w ∈ NG(B) by Proposition 3.11(ii), a contradiction. Thusd(T (w)) has at
most one involution and has Prüfer 2-rank at most 1. On the other hand,O(d(T (w))) �
O(B) ∩ O(B)w = 1 by Lemma 2.41. Thus Pr2(d(T (w))◦) = 1.

Let j be the unique involution ofd(T (w))◦. As w ∈ CG(j), w acts by conjugacy
on C◦

G(j) � B. If O(C◦
G(j)) 	= 1, then, as this is normalized byw, Proposition 3.11(ii)

would show thatB = Bw, a contradiction. ThusO(C◦
G(j)) = 1 andC◦

G(j) is abelian by
Fact 3.2. But thenS◦ is the unique Sylow 2-subgroup ofC◦

G(j), andw acts by conjugacy
on I (S◦) = A#. As above there isk ∈ A# such that 1	= O(C◦

G(k)) � O(B). As kw ∈ A,
we have 1	= O(C◦

G(kw)) � O(B)w ∩ O(B) by the definition ofB. ThusB = Bw by
Proposition 3.11(ii), a final contradiction.�

Now let i1, i2, andi3 = i1i2 be the three involutions ofA#.

Lemma 6.4. O(C) = 1 andT = C is abelian divisible.

Proof. If O(C) 	= 1, andBi1, Bi2, andBi3 are Borel subgroups ofG containingC◦
G(i1),

C◦
G(i2), andC◦

G(i3), respectively, then Proposition 3.11(ii) implies thatBi1 = Bi2 = Bi3.
Thus〈C◦

G(i): i ∈ A#〉 < G, a contradiction. SoO(C) = 1, andC is abelian divisible by
Lemma 3.2. AsS◦ � C◦

G(S◦) = T � C, T = C. �
Lemma 6.5. If a Borel subgroupB ofG containsT , thenO(B) is nontrivial and is inverted
by an involution ofA. FurthermoreB = O(B) � T .

Proof. If O(B) = 1, thenB is abelian by Lemma 3.2, soB = C is a Borel subgroup ofG,
a contradiction to our assumption. ThusO(B) 	= 1. If C◦

O(B)(k) 	= 1 for each involution
k ∈ I (A), thenC◦

G(k) � B for eachk ∈ I (A) by Proposition 3.11(ii), a contradiction. Thu
there is an involutionk0 ∈ I (A) such thatC◦

O(B)(k0) = 1, andk0 invertsO(B) by Fact 2.25.
It remains to show thatB = O(B) � T . As T is nilpotent and of finite index in its

normalizer by Lemma 3.10, it is a Carter subgroup ofB by Fact 2.19. AsO(B/O(B)) = 1,
B/O(B) is abelian by Lemma 3.2 and asO(B) is also abelian by the preceding,B is
solvable of class 2. ThusB = BN � T by Fact 2.22 and it suffices now to show th
BN = O(B). ButBN � O(B) asB/O(B) is abelian and thusO(B) = BN � (T ∩O(B)).
As O(B) is connected, this shows that(T ∩ O(B)) is connected. Then Lemma 6.4 sho
that(T ∩ O(B)) � O(T ) = 1, andO(B) = BN . �
Theorem 6.6. For eachk ∈ I (A), C◦

G(k) = O(C◦
G(k))�T is a Borel subgroup ofG, where

O(C◦
G(k)) is nontrivial and inverted by the two involutions inI (A) \ {k}.

The proof will depend on the three following lemmas.
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Lemma 6.7. There is an involutionk ∈ I (A) such thatC◦
G(k) is a Borel subgroup ofG

andO(C◦
G(k)) 	= 1.

Proof. By Lemma 6.5, it suffices to show that there is a Borel subgroupB of G containing
T and such that an involutionk ∈ S◦ centralizesO(B). Assume toward a contradiction th
C◦

O(B)(k) < O(B) for each Borel subgroupB of G containingT and eachk ∈ I (A), and
fix such a Borel subgroupB.

By Lemma 6.5, there is an involutionk0 ∈ I (A) which invertsO(B). As O(B) is
in particular abelian, we haveO(B) = C◦

O(B)(k1) × C◦
O(B)(k2) by Fact 2.26, wherek1

andk2 = k0k1 are the two other involutions inI (A). Our assumption shows that the tw
factors in the product are proper inO(B) and nontrivial. ThusC◦

G(k1) andC◦
G(k2) are both

contained inB by Proposition 3.11(ii). ThusC◦
G(k0) � B by Proposition 6.3. LetB0 be a

Borel subgroup ofG containingC◦
G(k0). Note thatO(B0) 	= 1 by Lemma 6.5. AsB0 	= B,

we haveC◦
O(B0)

(k1) = C◦
O(B0)

(k2) = 1 by Proposition 3.11(ii). Butk1 andk2 are inB0,
so they normalizeO(B0) and they invertO(B0) by Fact 2.25. Thusk0 = k1k2 centralizes
O(B0), as well asB0 = O(B0) � T (Lemma 6.5). Nowk0 is central in a Borel subgrou
and our claim is proved. �

To prove Theorem 6.6, we can now assume, in view of the preceding lemma, tha

C◦
G(i1) is a Borel subgroup ofG. (∗)

LetB1 denote this Borel subgroup. There is an involutionk ∈ I (A) such thatC◦
O(B1)

(k) = 1,
as otherwise〈C◦

G(k): k ∈ I (A)〉 � B1 by Proposition 3.11(ii). Then this involutionk in-
vertsO(B1) by Fact 2.25, as doesi1k. Thusi2 andi3 invertO(B1).

If O(C◦
G(i2)) = 1 andO(C◦

G(i3)) = 1, thenC◦
G(i2) andC◦

G(i3) are abelian by Lem
ma 3.2, thus equal toT and contained inB1, a contradiction. Thus for the proof of The
rem 6.6, we may suppose that

O
(
C◦

G(i2)
) 	= 1.

By Proposition 3.11(ii),C◦
G(i2) is contained in a unique Borel subgroupB2 of G. Note that

if C◦
O(B2)

(i1) is nontrivial, thenB1 = B2 by Proposition 3.11(ii), andO(C◦
G(i2)) � O(B1)

by Lemma 2.41, a contradiction asi2 invertsO(B1). Thus, asi1 normalizesB2, i1 inverts
O(B2) by Fact 2.25.

Lemma 6.8. C◦
G(i2) = B2.

Proof. Suppose thatC◦
G(i2) < B2. ThenC◦

O(B2)
(i2) < O(B2) by Lemma 6.5. AsO(B2)

is inverted byi1, it is abelian and Fact 2.26 implies that

O(B2) = C◦
O(B2)

(i2) × C◦
O(B2)

(i3),

where both factors in the product are nontrivial. Then Proposition 3.11(ii) shows th
C◦ (i3) is contained in a unique Borel subgroupB3, and thatB2 = B3.
O(B2)
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As C◦
G(i2) < B2, we have rk(G/B2) < rk(iG2 ) and there is a cosetwB2 of B2, for

somew ∈ iG2 \ NG(B2), containing infinitely many involutions ofiG2 . Let thenT (w) =
{ww′: w′ ∈ iG2 ∩ wB2}. We can see as in the proof of Proposition 6.3 thatd(T (w)) is
an infinite abelian subgroup ofB2 disjoint from F(B2). FurthermoreO(d(T (w))) = 1
andd(T (w)) contains a nontrivial 2-torusT1 by Fact 2.12, which is inverted byw. Now
T1 � 〈w〉 is in a Sylow 2-subgroupS1 of G, andw ∈ S1 \ S◦

1 (as connected componen
of Sylow 2-subgroups ofG are abelian). Thus there is an involutionw′ ∈ S \ S◦ which is
conjugate toi2 and which inverts a nontrivial 2-torusTw′ of S◦.

We claim now thatw′ ∈ NG(B2)\B2. As we assume thatC◦
G(i2) is not a Borel subgrou

of G, i2 is not conjugate toi1 andiw
′

2 is equal toi2 or to i3. But O(C◦
G(i2)) andO(C◦

G(i3))

are both contained inB2 = B3 by Proposition 3.11(ii). With Proposition 3.11(ii) aga
we findw′ ∈ NG(B2) in each case. Furthermorew′ /∈ B2 as Sylow 2-subgroups ofB2 are
abelian by Fact 2.12.

Now w′ normalizesO(B2) and in factw′ inverts O(B2): else C◦
O(B2)(w

′) 	= 1 by
Fact 2.25, which shows thatC◦

G(w′) � B2 by Proposition 3.11(ii), and asw′ ∈ C◦
G(w′),

this is a contradiction.
Now asw′ also invertsd(Tw′), it invertsO(B2)�d(Tw′)◦ (Fact 2.25) which is therefor

abelian, and is normal inB2 by Lemma 6.5. In particular,d(Tw′)◦ � F ◦(B2) andF ◦(B2)

contains an involution which is central inB2 by Lemma 3.1. Asi1 invertsO(B2), this
involution is eitheri2 or i3, a final contradiction. �
Lemma 6.9. T < C◦

G(i3).

Proof. Assume thatT = C◦
G(i3). ThenC◦

G(i3) is a proper subgroup ofB1 by Lemma 6.5,
and one can see as in the preceding lemma that there is an involutionw ∈ iG3 \ NG(B1)

such thatT (w) = {ww′: w′ ∈ iG3 ∩wB1} is infinite andd(T (w)) is an abelian subgroup o
B1 inverted byw and containing a nontrivial 2-torus. As before, we can find an involu
w′ ∈ S \ S◦ which is conjugate toi3 and which inverts a nontrivial 2-torusTw′ in S◦.

We claim that Pr2(C◦
d(S◦)(w

′)) = 1. First we show thatC◦
d(S◦)(w

′) 	= 1: otherwisew′
invertsd(S◦) by Fact 2.25, sow′ centralizesi1 andi2, and it normalizesO(B1) andO(B2).
As w′ is conjugate toi3, we haveO(C◦

G(w′)) = 1 by Lemma 6.4, thusC◦
O(B1)

(w′) =
C◦

O(B2)
(w′) = 1 by Lemma 2.41 andw′ inverts O(B1) and O(B2) by Fact 2.25. As

w′ also invertsd(S◦), it inverts O(B1) � d(S◦) (Fact 2.25) which is therefore abelia
and contained inF(B1) by Lemma 6.4 and Lemma 6.5. This shows thatS◦ � F(B1)

is central inB1 by Lemma 3.1, andi3 ∈ Z(B1), a contradiction. ThusC◦
d(S◦)(w

′) 	= 1
andO(C◦

d(S◦)(w
′)) � O(C◦

G(w′)) = 1. ThusC◦
d(S◦)(w

′) contains a nontrivial 2-torus b
Fact 2.12. If the Prüfer 2-rank ofC◦

d(S◦)(w
′) is two, then the 2-torus involved isS◦, a con-

tradiction asw′ inverts the nontrivial 2-torusTw′ � S◦.
We now show thatw′ centralizesA. Let T1 be the 2-torus of Prüfer 2-rank one

C◦
d(S◦)(w

′). We haveT1 � C◦
G(w′) and asw′ is conjugate toi3, w′ is the only involution of

C◦
G(w′) whose centralizer is not a Borel subgroup ofG. ThusI (T1) 	= {i3}, as otherwise

w′ = i3 ∈ S◦, a contradiction asw′ ∈ S \ S◦. ThereforeI (T1) = {i1} or I (T1) = {i2} and as
i3 is conjugate to neitheri1 nor i2, w′ centralizesA.
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Sow′ normalizesO(B1) andO(B2). As O(C◦
G(w′)) = 1, Fact 2.25 and Lemma 2.4

show thatw′ inverts O(B1) and O(B2). As w′ also invertsd(Tw′) � T , w′ inverts
O(B1) � d(Tw′) andO(B2) � d(Tw′) by Fact 2.25. These subgroups are therefore abe
and contained inF(B1) andF(B2), respectively, by Lemma 6.5. Thusd(Tw′) � F(B1) ∩
F(B2) and asO(B1) andO(B2) are both nontrivial, Proposition 3.11 shows thatB1 = B2,
a contradiction. �
Proof of Theorem 6.6. The statement of Theorem 6.6 is proved fori1 and i2 by Lem-
mas 6.5, 6.7, and 6.8, and it remains only to prove thatC◦

G(i3) is a Borel subgroup ofG.
Note thatO(C◦

G(i3)) 	= 1, as otherwiseC◦
G(i3) = T by Lemma 3.2, which contradic

Lemma 6.9. Hence Lemma 6.8 applies toi3 in place ofi2. �
This proves the statement of part (2a) of Theorem 1.8. We will now analyze the

group W = NG(T )/T . Note thatT � CG(A) � NG(A) = NG(T ) as T = C◦
G(A) by

Lemma 6.4. Note also thatNG(A)/CG(A) acts faithfully onA, so embeds intoS3, and
|NG(A)/CG(A)| = 1, 2, 3, or 6. Our target is now to show thatT = CG(A), i.e., that
W = NG(A)/CG(A), which will be obtained in Proposition 6.17 below.

We setBl = C◦
G(il) for l = 1,2,3; these are three distinct Borel subgroups.

Lemma 6.10. There is a definable nongeneric subsetX of T such thatT ∩ T g ⊆ X for
eachg ∈ G \ NG(T ).

Proof. For eachg ∈ NG(T ) \ T , let Tg = T ∩ T g . If Tg 	= 1, then〈T ,T g〉 � C◦
G(Tg).

Note thatO(C◦
G(Tg)) is nontrivial, as otherwiseC◦

G(Tg) is abelian by Lemma 3.2 and the
S◦ = S◦g andg ∈ NG(T ). As A � C◦

G(Tg), there is by Fact 2.37 an involutionk ∈ A# with
an infinite centralizer inO(C◦

G(Tg)). Now Theorem 6.6 and Proposition 3.11(ii) show t
C◦

G(Tg) � C◦
G(k). SoT andT g are two Carter subgroups ofC◦

G(k) and one can assum
thatg ∈ C◦

G(k) \ T by Fact 2.19. We have shown that

Tg ⊆
3⋃

l=1

[ ⋃
h∈Bl\T

(
T ∩ T h

)]
.

It suffices now to apply Lemma 3.5.�
Corollary 6.11.

⋃
g∈G T g is generic inG.

Proof. We apply the preceding lemma and Lemma 3.3.�
Lemma 6.12. If w is an involution inS \ S◦, thenw /∈ C◦

G(w). In particular, (S \ S◦) ∩
I (S◦)G = ∅.

Proof. Suppose toward a contradiction thatw ∈ I (S), w /∈ S◦, but w ∈ C◦
G(w). Thenw

centralizes an involutionil ∈ A#, for somel = 1, 2, or 3. We will show thatw ∈ Bl , which
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gives a contradiction:S◦ is a Sylow 2-subgroup ofBl by Fact 2.12, andw normalizesS◦,
sow ∈ S◦.

If w does not invertO(Bl) thenw has an infinite centralizer inO(Bl) by Fact 2.25, and
C◦

G(w) � Bl by Proposition 3.11(ii), sow ∈ Bl . So suppose

w invertsO(Bl).

Thenw does not invertS◦, as otherwisew would invertO(Bl) � d(S◦) by Fact 2.25. As
O(d(S◦)) = 1 by Lemma 6.4, it follows thatC◦

S◦(w) is nontrivial. We may suppose th
il ∈ C◦

S◦(w).
Let P ⊇ C◦

S◦(w) be a Sylow 2-subgroup ofC◦
G(w) containing〈w,C◦

S◦(w)〉. Then
w ∈ P � Bl , as claimed. �
Lemma 6.13. Let l ∈ {1,2,3} and assume thatx is an element inNG(T ) \ T . Then the
definable setXl = {y ∈ xT : C◦

O(Bl)
(y) = 1} is generic inxT .

Proof. As xT has Morley degree one, we may assume toward a contradiction thatYl =
xT \ Xl is generic inxT . It follows thatPl = YlO(Bl) is also generic inx(T � O(Bl)) =
xBl . As O(Bl) is abelian, any element ofPl has an infinite centralizer inO(Bl).

If g1, g2 ∈ G are such thatg1NG(Bl) 	= g2NG(Bl), thenP
g1
l ∩ P

g2
l is empty: otherwise

an elementx in this intersection would have an infinite centralizer in bothO(Bl)
g1

and O(Bl)
g2, and thusB

g1
l = B

g2
l by Proposition 3.11(ii). It follows that rk(PG

l ) �
rk(Pl) + rk(G) − rk(NG(Bl)) = rk(G). Now Corollary 6.11 together with Fact 2.1 sho
that there is an elementy ∈ Pl ∩ T g for someg ∈ G. Then y ∈ T g � C◦

G(y) � Bl

(Proposition 3.11(ii)). ThusxBl ⊆ Bl andx ∈ NBl (T ) = T , a contradiction. �
Corollary 6.14. Assume thatx is an element inNG(T ) \ T . Then the definable set

X = {
y ∈ xT : C◦

O(B1)
(y) = C◦

O(B2)
(y) = C◦

O(B3)
(y) = 1

}

is generic inxT .

Proof. This follows from the preceding lemma and the fact thatxT has Morley degree
one. �
Lemma 6.15. If CG(A)∩CG(A)g is nontrivial, withg ∈ G, thenA∩Ag is also nontrivial.

Proof. Suppose thatx is a nontrivial element ofCG(A) ∩ CG(A)g . Note thatC◦
G(x) 	= 1

by Corollary 2.18 and the genericity of
⋃

g∈G T g , and thatA, Ag � CG(x). If the maximal
2-torusT1 of F(C◦

G(x)), which is characteristic inCG(x), is nontrivial, then it has Prüfe
2-rank 1 or 2. If Pr2(T1) = 2, thenA = Ω1(T1) = Ag , by Lemma 6.12. If Pr2(T1) = 1,
thenA andAg have in common the unique involution ofT1, by Lemma 6.12 again. S
we can assume thatF ◦(C◦

G(x)) has no involution by Fact 2.12, and by Fact 2.37 there
involutionsk ∈ A andk′ ∈ Ag such thatC◦

F(C◦
G(x))

(k) andC◦
F(C◦

G(x))
(k′) are both nontrivial.

Now C◦
G(k) = C◦

G(k′) by Theorem 6.6 and Proposition 3.11(ii), and Theorem 6.6 sh
thatk = k′. �
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Lemma 6.16. Assumex ∈ CG(A)\T and letX be the definable generic subset ofxT as in
Corollary 6.14. Fix y ∈ X. Then there is a finite subsetFy of

⋃3
l=1 O(Bl), depending only

ony, with the property that for everyy1 ∈ X andg ∈ G, y = y
g
1 implies thatT g = T f for

somef ∈ Fy .

Proof. We show that the setFy = ⋃3
l=1 Cy,l , where

Cy,l = {
f ∈ O(Bl): f 2 ∈ CO(Bl)(y)

}
,

has the required properties. First, remark thatFy is finite: for eachl, CO(Bl)(y) is finite (by
definition ofX, asy ∈ X), and as any element of the abelian groupO(Bl) (Theorem 6.6)
has at most one square root,Cy,l is also a finite subgroup ofO(Bl).

Suppose now thaty1 ∈ X and g ∈ G satisfy y = y
g

1 . Then y ∈ CG(A) ∩ CG(A)g

andA ∩ Ag is nontrivial by Lemma 6.15. IfA = Ag, thenT g = T = T 1, and 1∈ Fy .
Assume nowA 	= Ag . ThenA ∩ Ag = 〈il〉 for somel ∈ {1,2,3}, andT andT g are two
Carter subgroups ofC◦

G(il) = Bl , i.e., T g = T f for somef ∈ O(Bl) by Theorem 6.6
It suffices now to show that such anf necessarily belongs toCy,l . For, notice thatCG(A)

is characteristic inNG(T ), thusCG(A)g = CG(A)f andy = y
g

1 ∈ CG(A)f centralizesA

andAf . In particular,y centralizesil′ andi
f

l′ wherel′ ∈ {1,2,3} \ {l}; but if
l′ = il′f 2 by

Theorem 6.6, thusy centralizesf 2 andf ∈ Cy,l . �
Proposition 6.17. CG(A) = T .

Proof. Assume toward a contradiction thatx is an element inCG(A) \ T and letX be the
definable generic subset ofxT as in Corollary 6.14. Consider the definable map

Ψ :X × G −→ G, (y,g) �−→ yg.

Fory ∈ X andg ∈ G, we claim that

Ψ −1(yg
) ⊆

⋃
f∈Fy

{(
yf −1t−1

, tfg
)
: t ∈ NG(T )

}
, (∗)

whereFy is the finite subset of
⋃3

l=1 O(Bl) depending only ony as in Lemma 6.16

So let (y1, g1) be in the fiber ofyg . Then y = y
g1g

−1

1 and T g1g
−1 = T f for some

f ∈ Fy by Lemma 6.16. Then the elementt = g1g
−1f −1 is in NG(T ) and g1 = tfg,

y1 = ygg1
−1 = yf −1t−1

, which proves inclusion(∗).
Clearly, each member in the finite union of the right side of inclusion(∗) has a rank

equal to rk(NG(T )) = rk(T ), thus rk(Ψ −1(yg)) � rk(T ). We have shown that the fibe
of elements of the image ofΨ have a rank uniformly bounded by rk(T ). It follows that
rk(X × G) � rk(Ψ (X × G)) + rk(T ), i.e.,

rk
(
XG

) = rk
(
Ψ (X × G)

)
� rk(X × G) − rk(T ) = rk(X) + rk(G) − rk(T ) = rk(G)
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as rk(X) = rk(xT ) = rk(T ). ThusXG is generic inG.
Now, by Fact 2.1 and Corollary 6.11, there existsx ∈ X andg ∈ G such thatx ∈ T g . But

thenT g � C◦
G(il) for somel ∈ {1,2,3} (Lemma 6.15). Asx ∈ T g � Bl , x ∈ NBl (T ) = T ,

a contradiction. �
Corollary 6.18. W = NG(T )/T = NG(A)/CG(A) acts faithfully onA and|W | = 1, 2, 3,
or 6.

Lemma 6.19. If x ∈ NG(T )\T is of order2 moduloT , thenxT = wT for some involution
w ∈ I (G) \ I (S◦)G. For such aw, the subgroupT − of elements ofT inverted byw is
connected andI (wT ) = wT . Furthermore, ifw centralizes the involutionil of T , then
wG ∩ CG(il) = wBl .

Proof. First note that we can apply Lemma 2.31 toS◦ by Corollary 6.18. By Fact 2.5
xT contains a 2-elementy. Now y2 ∈ CS◦(y), thus y2 = s2 for somes ∈ CS◦(y) by
Lemma 2.31. Thenw = ys−1 = (ys−1)−1 ∈ xT ∩ I (G) \ I (S◦)G by Lemma 6.12.

By Lemma 2.31, the Sylow 2-subgroup ofT − is connected and thus in(T −)◦. Then
T −/(T −)◦ has odd order by Fact 2.5. But ift ∈ T −, thent2 = [w, t] ∈ [w,T ] � (T −)◦
(Fact 2.2); thusT − is connected. In particular, it is 2-divisible andI (wT ) = wT .

Assume now thatw centralizesil ∈ I (T ). Note thatCG(il) = Bl � 〈w〉 by the Frattini
argument. Ifw′ ∈ wG ∩ CG(il), thenw′ ∈ NG(S◦)f = NG(T )f for somef ∈ O(Bl), and
w′ ∈ ((NG(T ) \ T ) ∩ CG(il))

f , thusw′ ∈ I (wT )f = (wT )f ⊆ wBl . �
Corollary 6.20. The structure ofS and the conjugacy classes of involutions are
following:

(a) If |W | = 1 or 3, thenS = S◦ and
(i) if |W | = 1, thenI (G) = iG1 � iG2 � iG3 ;
(ii) if |W | = 3, thenI (G) = iG1 .

(b) If |W | = 2 or 6, then there is an involutionw ∈ NG(A) \ CG(A) andS = S◦ � 〈w〉. In
that case we may assume, changing indices if necessary, thatw centralizesi1. Then
(iii) if |W | = 2, thenI (G) = iG1 � iG2 � wG (hereiG2 = iG3 );
(iv) if |W | = 6, thenI (G) = iG1 � wG.

Proof. Everything is clear from Fact 2.33 and Lemmas 6.12 and 6.19.�
After these investigations of the structure ofW , we now push further the analysis

Borel subgroups ofG. First note that we can compare the ranks of theBi ’s even if they are
not conjugate:

Lemma 6.21. rk(B1) = rk(B2) = rk(B3) andrk(O(B1)) = rk(O(B2)) = rk(O(B3)).

Proof. The second equality follows from the first one by Theorem 6.6.
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Assume toward a contradiction that rk(Bl) < rk(Bl′) for somel, l′ ∈ {1,2,3}. Then
rk(G/Bl′) < rk(iGl ) and by Lemma 2.36 there existsα ∈ iGl \ NG(Bl′) such that

T (α) := {
αα1: α1 ∈ iGl ∩ Bl′

}

is infinite. Asα normalizesd(T (α)), we have[d(T (α)), d(T (α))] � F(Bl′)∩F(Bl′)α = 1
(Proposition 3.11), thusd(T (α)) is an abelian group inverted byα, and d(T (α)) ∩
F(Bl′) = 1 by the same argument as before. Now the maximal 2-torusT1 of d(T (α))◦
is nontrivial (Lemma 2.41). ButT1 � 〈α〉 � S◦g for someg ∈ G (Lemma 6.12) andα
centralizesT1, a contradiction. �

Let B be the set of Borel subgroups ofG nonconjugate toBl for all l ∈ {1,2,3}. Note
thatB might be empty here. We will see thatB is not empty only at the very end of th
analysis of our final configuration, in Lemma 6.73.

This definition ofB is different from the one in Section 5.2 (before Lemma 5.1
but we will see throughout this section that Borel subgroups inB have the same kind o
behavior as those in Section 5.2.

Lemma 6.22. If B ∈ B, thenF(B) = O(B) < B andB contains an involutionk conjugate
to il for some l ∈ {1,2,3}. Furthermore,k inverts O(B), B = O(B) � CB(k), and
Pr2(CB(k)) = 1.

Proof. If B = O(B), then
⋃

g∈G Bg is generic inG (Lemma 2.41 and Proposition 3.11),
so there is by Fact 2.1 a nontrivial elementt ∈ T ∩ Bg for someg ∈ G. Now S◦ �
C◦

G(t) � Bg by Lemma 3.12, a contradiction. This shows thatO(B) < B. Let nowS1 be a
Sylow 2-subgroup ofB. As S1 is connected,S1 � S◦g for someg ∈ G andS1 contains an
involution k = i

g
l for somel ∈ {1,2,3}. If F(B) has an involutionj , thenB = C◦

G(j) by
Lemma 3.1 and thusj ∈ S1, soj = i

g
s for somes ∈ {1,2,3} andB = B

g
s , a contradiction

ThusF(B) has no involution; in particular, Lemma 2.41 implies thatF ◦(B) = O(B) < B.
We will show later thatF(B) = O(B).

If an involution k′ in S1 has an infinite centralizer inO(B), then B = C◦
G(k′) by

Proposition 3.11(ii), a contradiction. Thus Pr2(S1) = 1 andk is the unique involution in
S1 by Fact 2.37. Furthermorek invertsO(B) by Fact 2.25. Facts 2.15 and 2.27 also sh
thatB = O(B) � CB(k), and it follows also thatCB(k) is divisible abelian.

It remains to show thatF(B) = O(B), i.e., thatF(B) is connected. IfO(B) < F(B),
then the finite groupCF(B)(k) contains an elementt of prime orderp 	= 2. As CB(k) is
divisible, t is in the maximalp-torusTp of CB(k), and we haveTp � C◦

G(k). We claim
thatTp centralizes a conjugate ofS◦: by Theorem 6.6 and Fact 2.10, the maximalp-torus
of O(C◦

G(k)) is trivial and it follows thatT contains a maximalp-torus ofC◦
G(k). Thus

Tp is in a conjugate ofT , which proves our claim thatTp centralizesS◦h for someh ∈ G.
In particular,S◦h � C◦

G(t). But t ∈ F(B), soC◦
O(B)

(t) 	= 1 by Fact 2.7 andC◦
G(t) � B by

Proposition 3.11(ii). This is a contradiction as Pr2(B) = 1. �
Lemma 6.23. T = d(S◦). For any involution i ∈ A, there is a definable connecte
subgroupTi of T such thatSi = Ti ∩ S◦ is a 2-torus of Prüfer rank1, i ∈ Si , and
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Ti = d(Si). For i, j ∈ A distinct involutions,T = Ti × Tj , and Ti, Tj are definably
isomorphic.

Proof. Let Ml be aT -minimal subgroup ofO(Bl). Let T +
l = CT (Ml), Sl = (T +

l ∩ S◦)◦,
Tl = (T +

l )◦. ThenT/T +
l is isomorphic toK×

l for some algebraically closed fieldKl of
characteristic not 2, and in particularSl has Prüfer 2-rank equal to 1.

NowT +
1 acts faithfully onM2, as otherwise we again havex ∈ T # with M1,M2 � C(x),

leading toB1 = B2, a contradiction. By tameness,T1 � K×
2 , andT1 has no infinite prope

definable subgroups. ThusT1 = d(S1). Similarly T2 = d(S2). Looking at the action o
T2 on M1, we findT +

1 × T2 = T andT +
1 = T1 by connectedness. ThusT = T1 × T2 =

d(S1) × d(S2) � d(S◦).
Changing notation, so thatTi = Tl if i = il , the remaining statements are simply

paraphrase of the foregoing. The definable isomorphisms come from isomorphis
e.g.,T2 andT3 with K×

1 . Note however that we have not made any claims of “canonic
as far as the groupsTi andSi are concerned. �
Corollary 6.24. If R is an infinite proper definable subgroup ofT , thenrk(T ) = 2 rk(R).

Proof. By the proof of Lemma 6.23, we haveT = T1 × T2 for two definably isomorphic
definable subgroupsT1 and T2, each having no infinite proper definable subgroups
R ∩ Ti is infinite for somei, thenTi � R < Ti × Tj andTi has a finite index inR, proving
our lemma in that case. Thus we may assumeR ∩ Ti finite. ThenT = TiR and again
rk(T ) = rk(Ti) + rk(R), i.e., rk(R) = rk(Ti). �
Lemma 6.25. The following properties are satisfied:

(1) T is isomorphic to the product of2 split 1-dimensional tori, i.e.,2 copies of the multi-
plicative group of some algebraically closed field, of characteristicp 	= 2.

(2) If p > 0, thenO(Bl) is p-unipotent forl = 1,2,3.
(3) If p = 0, thenO(Bl) is torsion-free forl = 1,2,3.

Proof. The first claim was seen in the proof of Lemma 6.23.
Observe that the divisible part ofO(Bl) is torsion free, as a maximalq-torus inO(Bl)

would have to be central inBl , which is impossible by Theorem 6.6.
Suppose that the maximalq-unipotent subgroupUq of Bl is nontrivial. Then in the

notation of the proof of Lemma 6.23, we may takeMl � Uq , and henceq = p. Similarly,
in the event that the divisible part ofO(Bl) is nontrivial,p = 0. SinceO(Bl) 	= 1 for eachl,
and the value ofp is determined by the structure ofT , all claims follow. �
Notation 6.26. Let p = charT denote the characteristic of the algebraically closed fieldK
such thatT ∼= K× × K× as in Lemma 6.25.

Lemma 6.27. If B ∈ B, thenO(B) is ap-group(i.e., torsion-free ifp = 0).
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Proof. Let k be an involution inB as in Lemma 6.22. By conjugacy, we may assume
k = il for somel = 1, 2, or 3. LetTk = CB(k) andM be aTk-minimal subgroup ofO(B).
As O(CTk (M)) � O(B) ∩ Tk = 1 and the unique involutionk in Tk invertsM, CTk (M) is
finite of odd order. By tameness, we haveTk/CTk (M) ∼= K× for some algebraically close
field K of characteristic not 2. Thus the torsion subgroupT1 of Tk contains a nontrivia
q-torus for everyq 	= char(K). On the other hand,T1 � C◦

G(k) = Bl andT1 ∩ O(Bl) must
be finite by Lemma 6.25 and the fact that the divisible part ofO(Bl) is torsion free. Thus
by Theorem 6.6,T contains a nontrivialq-torus for everyq 	= char(K).

Assume now toward a contradiction that char(K) 	= p. If p > 0, thenT contains a
nontrivial p-torus, a contradiction to Lemma 6.25. Thusp = 0 and char(K) > 0. By
conjugacy, we may assumeT1 � T . Then, by tameness,Tk = d(T1) � T . This is a
contradiction as infinite definable subgroups ofT must contain a nontrivial char(K)-torus
by Lemmas 6.23, 6.25, tameness, and Fact 2.5.�

We will now consider the different cases for the value of|W |. The following lemma will
be useful.

Lemma 6.28. If t ∈ T # is inverted by an involutionj ∈ A#G
, thent ∈ I (T ).

Proof. If j ∈ NG(T ), thenj ∈ T andt = tj = t−1, sot ∈ I (T ). Assume nowj /∈ NG(T ).
ThenT , T j � C◦

G(t). O(C◦
G(t)) 	= 1, as otherwiseC◦

G(t) = T = T j by Lemma 3.2, and
C◦

G(t) � Bl for somel = 1, 2, or 3 by Fact 2.37 and Proposition 3.11(ii). Soj ∈ NG(Bl)

by Proposition 3.11(ii) andj ∈ Bl by Lemma 6.12.
Computing moduloO(Bl), one sees thatj invertst and centralizest , thust ∈ I (T ) by

Theorem 6.6. �
6.1. Case:|W | = 2

We will eliminate this case.

Theorem 6.29. |W | 	= 2.

So we assume now toward a contradiction that|W | = 2 and we fix the notations as
Corollary 6.20(iii):w ∈ I (S \ S◦) centralizesi1 andI (G) = iG1 � iG2 � wG. Let also

S1 = CS◦(w).

By Lemma 2.31,i1 ∈ CS◦(w) ∼= Z2∞ .
To prove Theorem 6.29, we will get a contradiction by computing the rank ofG in two

different manners, using the Thompson RankFormula in each case (see [3] for a gene
discussion about this formula), and then by looking at the distribution of involution
cosets ofB1. We need the following preliminaries.

Lemma 6.30. CG(w) ∩ iG = ∅.
2
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Proof. If CG(w) ∩ iG2 is nonempty, then there areg, h ∈ G such that the four-grou
〈ih2 ,wg〉 is in S. By Lemma 6.12,wg /∈ S◦ andih2 ∈ S◦. Thusih2 ∈ I (S1) = {i1} andih2 = i1,
a contradiction. �
Lemma 6.31. C◦

G(w) � B1.

Proof. Assume toward a contradiction thatC◦
G(w) � C◦

G(i1). As w inverts a nontrivial
2-torus in S◦ (Lemma 2.31),C◦

G(w) < B1. Thus, by Fact 2.36, there isw′ ∈ wG \
CG(i1) such thatT (w′) = {w′w′′: w′′ ∈ w′B1 ∩ wG} is infinite. Now w′ normalizes
[d(T (w′)), d(T (w′))] � F(B1) ∩ F(B1)

w′ = 1 (Fact 2.15 and Proposition 3.11), th
d(T (w′)) is an infinite subgroup ofB1 inverted by w′. Now O(d(T (w′))) = 1 (as
O(d(T (w′))) � F(B1) ∩ F(B1)

w′ = 1 by Lemma 2.41), thusd(T (w′)) contains a 2-
torus of Prüfer 2-rank 1. Its involutioni (∈ I (S◦)G) is centralized byw′, thus i /∈ iG2
by Lemma 6.30 andi ∈ iG1 ∩ C◦

G(i1) = {i1} (Theorem 6.6). Sow′ ∈ CG(i1), a contradic-
tion. �
Corollary 6.32. If i ′ ∈ iG1 andw′ ∈ wG, thenO(C◦

G(i ′,w′)) = 1.

Proof. We may assumei ′ = i1. Now the statement follows from Proposition 3.11(
Lemma 6.19, and the preceding lemma.�
Lemma 6.33. F ◦(C◦

G(w)) = O(C◦
G(w)).

Proof. By Lemma 2.41, it suffices to show thatF ◦(C◦
G(w)) has no involutions, so assum

toward a contradiction the contrary. ThenF ◦(C◦
G(w)) contains a nontrivial 2-torusT1. As

C◦
G(w) has Prüfer 2-rank at most 1 by Lemma 6.12 and Proposition 6.17, it follows

this 2-torus is maximal inC◦
G(w). So T1 = S1, and by Fact 2.10,C◦

G(w) � C◦
G(T1) =

C◦
G(S1) � B1, a contradiction to Lemma 6.31.�

Corollary 6.34. C◦
G(w) � B for some unique Borel subgroupB ∈ B. In particular,

i1 invertsO(B) = F(B).

Proof. By Proposition 3.11(ii),C◦
G(w) � B for some unique Borel subgroupB. If B = B

g

l

for someg ∈ G, theni
g

l /∈ iG1 by Proposition 3.11(ii) and Corollary 6.32. Butw central-
izes i

g
l , a contradiction to Lemma 6.30. ThusB ∈ B and everything follows now from

Lemma 6.22. �
Lemma 6.35. C◦

G(w) = O(C◦
G(w)) � C◦

T (w) andC◦
T (w) = C◦

B1
(w).

Proof. Let B be the Borel subgroup containingC◦
G(w), as in Corollary 6.34. By Lem

ma 6.22,B = O(B) � CB(i1). By tameness, one sees as in Lemma 6.27 thatCB(i1) has
no infinite proper definable subgroups. ButS1 � C◦

G(w) ∩ C◦
G(i1), so S1 � C◦

B(i1) and
C◦

B(i1) � C◦
T (w). In particular,B = O(B)C◦

T (w). If C◦
B(i1) < C◦

T (w), then C◦
T (w) ∩

O(B) 	= 1 and a nontrivial elementf in this intersection is such thatC◦ (f ) � B
G
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(Lemma 3.12), implyingT � B, a contradiction. ThusC◦
B(i1) = C◦

T (w) andB = O(B) �
C◦

T (w). Now O(B) = CO(B)(w) × O(B)− whereO(B)− is the subgroup of elemen
of O(B) inverted byw (Fact 2.26) and the members in the product are connected.
O(C◦

G(w)) = CO(B)(w) andC◦
G(w) = O(C◦

G(w)) � C◦
T (w).

It remains to show thatC◦
T (w) = C◦

B1
(w), so assume toward a contradiction th

C◦
T (w) < C◦

B1
(w). Then C◦

B1
(w) = U � C◦

T (w) where U = C◦
B1

(w) ∩ CO(B)(w) is
nontrivial and connected. ThenB1 = B by Proposition 3.11(ii), a contradiction.�
Lemma 6.36. CG(w) ∩ I (S◦)G = i1O(C◦

G(w)).

Proof. Let B be the unique Borel subgroup containingC◦
G(w), as in Corollary 6.34

We haveCG(w) � NG(B). Notice that there is no involution ofI (S◦)G in NG(B) \ B:
otherwiseNG(B) would contain a conjugate ofA, a contradiction as thenB /∈ B by
Fact 2.37 and Proposition 3.11(ii). ThusI (S◦)G ∩ CG(w) = I (S◦)G ∩ CB(w). But it
is clear from the proof of Lemma 6.35 thatCB(w) = C◦

B(i1) � CO(B)(w), and that
CO(B)(w) = O(C◦

G(w)), soI (CB(w)) = i1CO(B)(w) = i1O(C◦
G(w)). �

We are now ready to embark on a first computation of rk(G).

Lemma 6.37. If i ′ ∈ iG1 and w′ ∈ wG, then d(i ′w′) contains a unique involutionz.
Furthermorez ∈ wG.

Proof. Fact 2.32 shows that the elementary abelian 2-subgroupX of d(i ′w′) is nontrivial.
As w′ invertsd(i ′w′), X# ∩ iG2 = ∅ by Lemma 6.30.

We claim also thatX# ∩ iG1 = ∅: for if i ′′ ∈ X# ∩ iG1 , then [i ′′, i ′] = 1 implies that
i ′ = i ′′ (as iG1 ∩ S = i1), thusi ′ (∈ d(i ′w′)) is centralized byw′ andX# = {i ′w′} ⊆ wG

(Lemma 6.19), a contradiction as we assumedX# ∩ iG1 	= ∅.
Thus X# ⊆ wG and if X# contains two distinct involutionsz and z′, then zz′ ∈

X# ∩ C◦(i ′) (Lemma 6.19), a contradiction.�
Consider the definable map

Ψ : iG1 × wG −→ wG, (i ′,w′) �−→ z,

wherez is the unique involution ind(i ′w′).

Lemma 6.38. If w0 ∈ wG, thenrk(Ψ −1(w0)) = 2 rk(O(C◦
G(w))).

Proof. We may takew0 = w. We will show that

Ψ −1(w) = {
(i1f,wi1f

′): (f,f ′) ∈ O
(
C◦

G(w)
)2}

.

The inclusion from right to left is clear: iff , f ′ ∈ O(C◦
G(w)), then i1f wi1f

′ =
wf i1f ′ = wf −1f ′ (Corollary 6.34) and(wf −1f ′)2 = (f −1f ′)2 ∈ O(C◦ (w)), thus
G
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d(i1f wi1f
′) = d(wf −1f ′) contains a 2-element of〈w〉 × O(C◦

G(w)) (Fact 2.5) which
is necessarilyw. ThusΨ (i1f,wi1f

′) = w.
We have now to prove the inclusion from left to right, so let(i ′,w′) ∈ iG1 × wG be

such thatΨ (i ′,w′) = w. Theni ′, w′ ∈ CG(w). By Lemma 6.36,i ′ = i1f for somef ∈
O(C◦

G(w)). Note thatw′ 	= w: otherwisei ′w′ = w′ andi ′ = 1. Thusww′ ∈ CG(w) ∩ iG1
(Lemmas 6.19 and 6.30), soww′ = i1f

′ for somef ′ ∈ O(C◦
G(w)) by Lemma 6.36 and

w′ = wi1f
′. �

Corollary 6.39. rk(G) = rk(B1) + 2 rk(O(C◦
G(w))).

Proof. By conjugacy, Im(Ψ ) = wG, thus rk(iG1 × wG) = rk(wG) + 2 rk(O(CG(w))), and
the corollary follows. �

We embark now on our second computation of rk(G).

Lemma 6.40. If j ′ ∈ iG2 and w′ ∈ wG, then d(j ′w′) contains a unique involutionz.
Furthermorez ∈ iG1 .

Proof. By Fact 2.32, the elementary abelian 2-subgroupX of d(j ′w′) is nontrivial. Asw′
andj ′ invertd(j ′w′), X# ⊆ iG1 by Lemma 6.30. But two distinct involutions iniG1 cannot
commute (Lemma 6.12), so|X#| = 1. �

Consider the definable map

Ψ : iG2 × wG −→ iG1 , (j ′,w′) �−→ z,

wherez is the unique involution ind(j ′w′).

Lemma 6.41. If i ∈ iG1 , thenrk(Ψ −1(i)) = rk(O(B1)) + rk(B1) − rk(C◦
B1

(w)).

Proof. By conjugacy,Ψ has fibers of constant rank, so we just have to compute the ra
Ψ −1(i1). For anyj ′ ∈ iG2 ∩CG(i1) andw′ ∈ wG ∩CG(i1), the unique involution ofd(j ′w′)
is necessarilyi1, asCG(i1) ∩ iG1 = {i1}. ThusΨ −1(i1) = (iG2 ∩ CG(i1)) × (wG ∩ CG(i1)).

By Lemma 6.12 and Theorem 6.6,iG2 ∩ CG(i1) = i2O(B1) � i3O(B1), thus rk(iG2 ∩
CG(i1)) = rk(O(B1)). On the other hand,wG ∩ CG(i1) has rank rk(B1) − rk(C◦

B1
(w)) by

Lemma 6.19. Thus we get rk(Ψ −1(i1)) = rk(O(B1)) + rk(B1) − rk(C◦
B1

(w)). �
Corollary 6.42. rk(G) = rk(B2) + rk(CG(w)) + rk(O(B1)) − rk(CB1(w)).

Proof. As in Corollary 6.39, we get that

rk
(
iG2 × wG

) = rk
(
iG1

) + rk
(
O(B1)

) + rk(B1) − rk
(
CB1(w)

)
,

thus it follows that

rk(G) = rk(B2) + rk
(
C◦

G(w)
) + rk

(
O(B1)

) − rk
(
C◦

B (w)
)
. �
1
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Proof of Theorem 6.29. As rk(B1) = rk(B2) by Lemma 6.21, Corollaries 6.39 and 6.
give the equality

2 rk
(
O

(
C◦

G(w)
)) = rk

(
C◦

G(w)
) + rk

(
O(B1)

) − rk
(
C◦

B1
(w)

)
.

Thus, by Lemma 6.35 we get rk(O(C◦
G(w))) = rk(O(B1)). By Lemma 6.35 again, we ge

rk(C◦
G(w)) = rk(O(B1) � C◦

T (w)) and, asCT (w) < T , we have

rk
(
CG(w)

)
< rk(B1).

It follows that rk(G/B1) < rk(wG). Now, by Fact 2.36, there existsw1 ∈ wG \ NG(B1)

such thatT (w1) = {w1w2: w2 ∈ w1B1 ∩ wG} is infinite. As usual,d(T (w1)) is an infinite
group andd(T (w1))

◦ contains a nontrivial 2-torusT1. If k is an involution inT1, then
k ∈ iG1 (Lemmas 6.12 and 6.30), thusk = i1 (asCG(i1) ∩ iG1 = {i1}), andw1 ∈ CG(i1) =
NG(B1), a contradiction which ends the proof of Theorem 6.29.�
6.2. Case:|W | = 6

We will eliminate this case.

Theorem 6.43. |W | 	= 6.

So we assume now toward a contradiction that|W | = 6 and we fix the notation
as in Corollary 6.20(iv):w ∈ I (S \ S◦) centralizesi1 and I (G) = iG1 � wG. Let also
S1 = CS◦(w). By Lemma 2.31,i1 ∈ CS◦(w) ∼= Z2∞ .

To prove Theorem 6.43, we will compute the rank ofG with the Thompson Ran
Formula, and get a contradiction by looking at the distribution of involutions in co
of C◦

G(w).

Lemma 6.44. If rk(C◦
G(w)) < rk(B1), thenrk(G) � rk(B1) + rk(O(B1)) + rk(C◦

G(w)) −
rk(C◦

B1
(w)).

Proof. By assumption, rk(G/B1) < rk(wG) = rk(wG \NG(B1)). Forw1 ∈ wG \NG(B1),
let T (w1) = {w1α: α ∈ w1B1 ∩ I (G)}. Let also

C1 = {
w1 ∈ wG \ NG(B1): T (w1) is finite

}
and

C2 = {
w1 ∈ wG \ NG(B1): T (w1) is infinite

}
.

ThenC2 is generic inwG \ NG(B1).
If w′ ∈ C2, then, as usual,d(T (w′)) is an infinite abelian group inverted byw′. Let now

M be aB1-minimal subgroup inO(B1). If t ∈ d(T (w′))#, thenCM(t) = 1: otherwiseM,
Mw � C◦ (t) by Fact 2.40 andw′ ∈ NG(B1) by Proposition 3.11(ii), a contradiction. Thu
G
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d(T (w′)) ∩ CB1(M) = 1. On the other hand,B1/CB1(M) has no infinite proper definab
subgroup by Fact 2.38 and tameness. ThusB1 = CB1(M) � d(T (w′)). In particular,

d
(
T (w′)

)
is connected and divisible

(Facts 2.1, 2.8, and 2.15). It follows also that rk(T ) = 2 rk(d(T (w′))) by Corollary 6.24.
If w′ ∈ C2, then i1 /∈ d(T (w′)) and d(T (w′)) has Prüfer 2-rank 1, so its uniqu

involutionj is in i2O(B1) ∪ i3O(B1) (Theorem 6.6). We have shown that

C2 ⊆
⋃

j∈(i2O(B1)∪i3O(B1))

(
CG(j) ∩ wG

)
.

But rk(CG(j) ∩ wG) = rk(B1) − rk(C◦
B1

(w)) by Lemma 6.19, thus

rk(G) − rk
(
C◦

G(w)
) = rk(C2) � rk

(
O(B1)

) + rk(B1) − rk
(
C◦

B1
(w)

)
. �

Lemma 6.45. C◦
G(w) � B1.

Proof. AssumeC◦
G(w) � B1. Then rk(C◦

G(w)) = rk(C◦
B1

(w)) < rk(B1) and the precedin
lemma gives rk(G) � rk(B1) + rk(O(B1)) = rk(B1B2) � rk(G), i.e., rk(G) = rk(B1) +
rk(O(B1)).

With the notations of the previous proof, if we pickw′ ∈ C2, then

⊔
f∈O(B1)

(
w′d

(
T (w′)

))f ⊆ C2.

(The union is disjoint: iff ∈ O(B1) normalizesI (w′B1), thenf is in the normalizer
in O(B1) of d(T (w′)), and the latter subgroup is trivial.) Thus rk(C2) � rk(O(B1)) +
(1/2) rk(T ) and the projection ofC2 overG/B1 is generic inG/B1 (as rk(d(T (w′))) =
rk(T (w′)) = (1/2) rk(T ) by the proof of the previous lemma).

Now the same argument as in Lemma 6.21 shows that cosets ofB1 distinct fromB1
contain only finitely many involutions iniG1 , thus the projection ofiG1 overG/B1 is also
generic inG/B1. As G/B1 has Morley degree 1, there existsw′ ∈ C2 andj ∈ iG1 ∩ w′B1.
Thusw′j ∈ d(T (w′)) and as the latter subgroup is 2-divisible,w′ and j are conjugate
a contradiction. �
Corollary 6.46. If i ′ ∈ iG1 andw′ ∈ wG, thenO(C◦

G(i ′,w′)) = 1.

Proof. As in Corollary 6.32. �
Lemma 6.47. F ◦(C◦

G(w)) = O(C◦
G(w)).

Proof. As in Lemma 6.33. �
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Corollary 6.48. C◦
G(w) � B for some unique Borel subgroupB ∈ B. In particular,

i1 invertsO(B) = F(B).

Proof. As in Corollary 6.34. �
Lemma 6.49. C◦

G(w) = O(C◦
G(w)) � C◦

T (w) andC◦
T (w) = C◦

B1
(w).

Proof. As in Lemma 6.35. �
Lemma 6.50. CG(w) ∩ I (S◦)G = i1O(C◦

G(w)).

Proof. As in Lemma 6.36. �
Corollary 6.46 also has the following corollary.

Corollary 6.51. F ◦(B1) = O(B1) × T −, whereT − is the subgroup of elements ofT

inverted byw, andF ◦(B1) is inverted byw (and in particular is abelian).

Proof. C◦
O(B1)

(w) = 1 by Corollary 6.46, sow invertsO(B1) by Fact 2.25. Noww has
a finite centralizer inO(B1) � T −, sow invertsO(B1) � T − by Fact 2.25 again (reca
from Lemma 6.19 thatT − is connected), so(O(B1) × T −) � F ◦(B1) by Theorem 6.6. If
the containment is proper, thenT � F ◦(B1) by Corollary 6.24, a contradiction.�

We embark now on the computation of rk(G).

Lemma 6.52. If i ′ ∈ iG1 andw′ ∈ wG, thend(i ′w′) contains a unique involutionz.

Proof. The statement is obvious if[i ′,w′] = 1, so we assume[i ′,w′] 	= 1. In particular,i ′,
w′ /∈ d(i ′w′). By Fact 2.32, it suffices to show that|I (d(i ′w′))| � 1.

We first claim that|d(i ′w′) ∩ wG| � 1: otherwise we find two distinct involutionsw1
andw2 ∈ d(i ′w′)∩wG. Then the three distinct involutionsw1, w2, andw′ are in(S \S◦)h
for someh ∈ G and commute, hence centralize somej ∈ I (A)h. We havew1 = w2s for
somes ∈ S◦h inverted byw2. As [w1,w2] = 1, s is also centralized byw2, sos = j . By
the same argument,w2 = w′j . Thusw′ = w2j = w1, a contradiction which proves ou
first claim.

Secondly, we claim that|d(i ′w′) ∩ iG1 | � 1: otherwise, by Lemma 6.12,Ah � d(i ′w′)
for someh ∈ G. Thenw′ ∈ CG(A)h = T h, a contradiction to Lemma 6.12 again.

Thus|I (d(i ′w′a))| � 2 and hence|I (d(i ′w′))| = 1. �
Consider the definable map

Ψ : iG1 × wG −→ iG1 � wG, (i ′,w′) �−→ z,

where{z} = I (d(i ′w′)). Let
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Di = {
(i ′,w′) ∈ iG1 × wG: Ψ (i ′,w′) ∈ iG1

}
and

Dw = {
(i ′,w′) ∈ iG1 × wG: Ψ (i ′,w′) ∈ wG

}
.

TheniG1 × wG = Di � Dw and asΨ (i1,w) ∈ wG andΨ (i2,w) = i1 ∈ iG1 , Di andDw are
both nonempty. By conjugacy, the fibers are of constant rank onDi andDw .

Lemma 6.53. rk(Ψ −1(w)) = 2 rk(O(C◦
G(w))).

Proof. As in Lemma 6.38, using Lemma 6.50.�
Corollary 6.54. rk(Dw) = rk(G) + rk(O(C◦

G(w))) − (1/2) rk(T ).

Proof. We have rk(Dw) = rk(G)− rk(C◦
G(w))+2 rk(O(C◦

G(w))), and it suffices to apply
Corollary 6.24 and Lemma 6.49.�
Lemma 6.55. rk(Ψ −1(i1)) = 2 rk(O(B1)) + (1/2) rk(T ).

Proof. We have here, in some sense, to refine the proof of Lemma 6.41. For this we
that

Ψ −1(i1) = {(
jf, (wt)f

′)
: j ∈ {i2, i3}, f, f ′ ∈ O(B1), t ∈ T −}

,

whereT − is the subgroup of elements ofT inverted byw. Note thatT − = Z(B1).
Inclusion from right to left: if (i ′,w′) = (jf, (wt)f

′
), then i ′w′ = jff ′−1wtf ′. By

Corollary 6.51,w invertsO(B1) × T −, so i ′w′ = jwf ′f −1tf ′ = jwtf ′2f −1. If we put
f1 = f ′2f −1 (∈ O(B1)), then

(i ′w′)2 = (jwtf1)
2 = jwtf1jf

−1
1 t−1w = jwf1tj t−1f −1

1 w = jwf1jf
−1
1 w,

that is

(i ′w′)2 = jwf 2
1 jw = jwf 2

1 wk = jf −2
1 k = jkf 2

1 = i1f
2
1 ,

where k = jw. As i1 is the unique 2-element in〈i1〉 × O(B1), Fact 2.5 shows tha
i1 ∈ d((i ′w′)2) � d(i ′w′), i.e.,Ψ (i ′,w′) = i1.

Inclusion from left to right: if Ψ (i ′,w′) = i1, then i ′ ∈ CG(i1) ∩ iG1 and w′ ∈
CG(i1) ∩ wG. Thusi ′ = jf wherej ∈ {i2, i3} andf ∈ O(B1) by Lemma 6.12 (note tha
i ′ 	= i1, as otherwisei ′w′ ∈ wG, i.e.,Ψ (i ′,w′) 	= i1). By the proof of Lemma 6.19,w′ has
the desired form.

If (wt)f = (wt1)
f1, wheret , t1 ∈ T − andf , f1 ∈ O(B1), thenwt1 = (wt)(ff −1

1 )2

aswt invertsO(B1) × T −, thust−1t1 = (ff −1
1 )2 ∈ T ∩ O(B1) = 1 andt = t1, f = f1.

This shows that rk(Ψ −1(i1)) = 2 rk(O(B1)) + rk(T −) and it suffices now to apply Coro
lary 6.24. �
Corollary 6.56. rk(Di) = rk(G) + rk(O(B1)) − (1/2) rk(T ).
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Proof. We have rk(Di) = rk(G) − rk(B1) + 2 rk(O(B1)) + (1/2) rk(T ), so it suffices to
apply Theorem 6.6. �
Lemma 6.57. rk(O(B1)) < rk(O(C◦

G(w))).

Proof. As iG1 × wG = Di � Dw has degree 1, Corollaries 6.54 and 6.56 show
rk(O(B1)) 	= rk(O(C◦

G(w))), so it suffices to show that rk(O(B1)) � rk(O(C◦
G(w))).

So assume toward a contradiction that rk(O(B1)) > rk(O(C◦
G(w))). Then rk(F (B1)) >

rk(C◦
G(w)) (Corollaries 6.24, 6.51, and Lemma 6.49), soG/F(B1) has rank strictly less

than rk(wG). As usual, Fact 2.36 implies the existence ofw1 ∈ wG \ NG(B1) such that
w1F(B1) contains infinitely many involutions, a contradiction as thenw1 ∈ NG(B1) by
Proposition 3.11. �
Corollary 6.58. rk(G) = rk(B1) + 2 rk(O(C◦

G(w))).

Proof. By the preceding lemma,Dw is generic iniG1 × wG, thus rk(iG1 ) + rk(wG) =
rk(wG) + rk(Ψ −1(w)) and rk(G) = rk(B1) + 2 rk(O(C◦

G(w))) by Lemma 6.53. �
Lemma 6.59. If B is any Borel subgroup inG, then rk(B) � rk(B1). In particular,
rk(C◦

G(w)) � rk(B1).

Proof. Otherwise, rk(G/B) < rk(iG1 ) and by Fact 2.36 there existsj ∈ iG1 \ NG(B) such
thatT (j) = {jj1: j1 ∈ iG1 ∩ jB} is infinite. As usual,d(T (j)) is an abelian group inverte
by j . Also,O(d(T (j))) � F(B)∩F(B)j = 1, thusj inverts a nontrivial 2-torusT1, a con-
tradiction asT1 � 〈j 〉 � S◦g for someg ∈ G by Lemma 6.12. �
Lemma 6.60. rk(C◦

G(w)) = rk(B1).

Proof. By the preceding lemma, we may assume toward a contradiction thatC◦
G(w)

has rank strictly less than rk(B1). Then rk(G) � rk(B1) + rk(O(B1)) + rk(C◦
G(w)) −

rk(C◦
B1

(w)) by Lemma 6.44. Now Lemmas 6.49 and 6.57 give

rk(G) � rk(B1) + rk
(
O(B1)

) + rk
(
O

(
C◦

G(w)
))

< rk(B1) + 2 rk
(
O

(
C◦

G(w)
))

,

a contradiction to Corollary 6.58.�
We now look at the distribution of involutions inG/C◦

G(w) (left cosets). LetB be
the Borel subgroup ofG containingC◦

G(w), as in Corollary 6.48. By the preceding tw
lemmas,B = C◦

G(w). Let alsoπ denote the natural projection ofG overG/C◦
G(w).

Lemma 6.61. π(wG \ NG(B)) is generic inG/C◦ (w).
G
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Proof. By Fact 2.36, rk(wG \ NG(B)) = rk(G) − rk(C◦
G(w)). There is an integert and a

definable generic subsetCt of wG \ NG(B) such that rk(π−1(π(w′)) ∩ wG) = t for every
w′ ∈ Ct . It suffices now to show thatt = 0, as then

rk
(
G/C◦

G(w)
) = rk(Ct ) = rk

(
π(Ct)

)
� rk

(
π

(
wG \ NG(B)

))
.

So assume toward a contradiction thatt � 1. For w′ ∈ Ct , let T (w′) = {w′w′′:
w′′ ∈ wG ∩ w′C◦

G(w)}. As usual,d(T (w′)) is an abelian group inverted byw′ and disjoint
from F(B) = O(B), and it has Prüfer 2-rank 1. IfT1 denotes its maximal 2-torus andk
the unique involution inT1, thenw, w′ ∈ CG(k) = CG(i1)

g for someg ∈ G. Rephrasing
Corollary 6.51, withi

g

1 and w′ instead ofi1 and w, one sees thatT1 � F(B1)
◦g . But

w′ = wh for someh ∈ B
g
1 by Lemma 6.19. AsT1 � Z(B

g
1 ), w also invertsT1, a contradic-

tion asT1 � C◦
G(w). �

Lemma 6.62. iG1 ∩ π−1(π(wG \ NG(B))) is generic iniG1 .

Proof. If j ∈ iG1 \ NG(B), then the cosetjC◦
G(w) cannot contain infinitely man

involutions. This can be seen as in the proof of Lemma 6.59: otherwisej would invert
a nontrivial 2-torus. Thus, by Lemma 6.60 and Fact 2.36, there is a generic subset of
in (G/C◦

G(w)) \ (G/NG(B)) which all contain an involution iniG1 . As G/C◦
G(w) has

Morley degree 1, it suffices now to apply Lemmas 6.60 and 6.61.�
Proof of Theorem 6.43. Let I be the generic subset ofiG1 as in Lemma 6.62. We sho
the following inclusion:

I ⊆
⋃

f ∈O(C◦
G(w))

C◦
G(i1)

f .

So let i ∈ I . Then i /∈ NG(B) and there existsw′ ∈ wG such thatiw′ ∈ C◦
G(w). By

Corollary 6.48 and Lemma 6.49,C◦
T (w) = CB(i1) is a Carter subgroup ofC◦

G(w) =
O(C◦

G(w)) � C◦
T (w). Note thatC◦

O(C◦
G(w))

(iw′) = 1, as otherwise 1	= O(C◦
G(iw′)) �

O(B) and i ∈ NG(O(C◦
G(iw′))) � NG(B) by Proposition 3.11(ii). Thus, by Coro

lary 2.24,EC◦
G(w)(〈iw′〉) is a Carter subgroup ofC◦

G(w), andEC◦
G(w)(〈iw′〉) = C◦

T (w)f

for somef ∈ O(C◦
G(w)) by Fact 2.19. In particular,iw′ ∈ C◦

T (w)f � T f and Lemma 6.28

shows thatiw′ ∈ I (C◦
T (w)f ) = {if1 }. Thusi ∈ CG(i

f
1 ) andi ∈ C◦

G(i1)
f by Lemma 6.12

Our inclusion is shown.
The previous inclusion implies that

rk
(
iG1

)
� rk

(
O

(
C◦

G(w)
)) + rk

(
iG1 ∩ C◦

G(i1)
) = rk

(
O

(
C◦

G(w)
)) + rk

(
O(B1)

)

(Theorem 6.6). Thus

rk(G) � rk(B1) + rk
(
O

(
C◦

G(w)
)) + rk

(
O(B1)

)
< rk(B1) + 2 rk

(
O

(
C◦

G(w)
))
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by Lemma 6.57. This is a contradiction to Corollary 6.58 which ends the proo
Theorem 6.43. �
6.3. Case:|W | = 1

We will eliminate this case.

Theorem 6.63. |W | 	= 1.

So we assume now toward a contradiction thatW = 1. Recall from Corollary 6.20 tha
in the caseW = 1, S = S◦ andI (G) = iG1 � iG2 � iG3 . By the Frattini argument, it is als
clear that the threeBi ’s are selfnormalizing.

Lemma 6.64. Any left coset ofB1 disjoint from B1 cannot contain infinitely man
involutions.

Proof. This is what we actually have shown in the proof of Lemma 6.21, for involut
in the connected component of a Sylow 2-subgroup ofG. �
Corollary 6.65. For l = 1, 2, and3, (iGl \ B1)B1 is generic inG.

Proof. By Fact 2.36, Lemma 6.21, and the preceding lemma, rk(G/Bl) = rk(iGl ) =
rk(iGl \ B1), and rk((iGl \ B1)B1) = rk(iGl \ B1) + rk(B1) = rk(G). �

As G/B1 has Morley degree 1, we get the following corollary.

Corollary 6.66.
⋂3

l=1(i
G
l \ B1)B1 is generic inG.

Proof of Theorem 6.63. By Corollary 6.66, there existsj1, j2, andj3 ∈ G \ B1 such that
jl ∈ iGl andj1B1 = j2B1 = j3B1. Let R = 〈j1j2, j1j3〉. As usual,j1 invertsR which is
an abelian subgroup ofB1. As EB1(R) contains a Carter subgroup ofB1 by Fact 2.23,
it containsT f for somef ∈ O(B1) (Fact 2.19 and Theorem 6.6) and we claim t
EB1(R) = T f : otherwiseC◦

O(B1)
(R) 	= 1 by Corollary 2.24 andj1 ∈ NG(O(CG(R))) �

NG(B1) by Proposition 3.11(ii), a contradiction. ThusEB1(R) = T f as claimed and in
particularR � T f . Now, by Lemma 6.28,j1j2 and j1j3 ∈ I (T )f , andR = Af . As j1
invertsR, j1 ∈ R � B1, a contradiction which ends the proof.�
6.4. Case:|W | = 3

By the preceding results weare necessarily in the case|W | = 3, in which caseW acts
transitively onA# andI (G) = iG1 by Corollary 6.20. It is also clear by the Frattini argum
that the threeBi ’s are selfnormalizing.

It is now time to lift elements of order 3 fromW .
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Lemma 6.67. If σ ∈ NG(A) \CG(A) is an element of order3 moduloCG(A), thenσ 3 = 1
andσT = σT .

Proof. The set of elementsσ ′ ∈ σT such thatσ ′ ∈ (〈σ 〉T )g for someg ∈ G \ NG(T ) is
generic inσT by Lemma 3.4. For such an elementσ ′ we have thatσ ′3 ∈ CG(A)∩CG(A)g .
We claim thatCG(A) ∩ CG(A)g = 1. Otherwise,A andAg have a common involutio
k by Lemma 6.15 (and only one such, asg /∈ NG(T )). Then kσ ′ ∈ k(〈σ 〉T )g ⊆ Ag , so
kσ ′ ∈ I (A ∩ Ag) = {k}, andk is centralized byσ ′, a contradiction.

We have shown that the elements of the cosetσT are generically of order 3. Now, asT
is divisible, Lemma 3.7 shows that each element ofσT has a finite centralizer inT and it
follows that these elements are allT -conjugate, by connectedness ofT and Fact 2.1. �

Recall from Notation 6.26 thatp = char(T ) denotes the characteristic of the alg
braically closed fieldK such thatT ∼= K× × K×, and thatO(B) is p-unipotent (i.e.,
torsion-free ifp = 0) for every Borel subgroupB in G (Lemmas 6.25 and 6.27). We w
show thatp = 3. First we show thatG is covered by its Borel subgroups; more precise

Lemma 6.68. G = (
⋃

g∈G B
g

1 ) � (
⋃

B∈B O(B)#).

Proof. First remark that the union is disjoint: iff ∈ O(B)# ∩ B1 for someB ∈ B, then
C◦

G(f ) = O(B) (Lemmas 2.41, 3.12, and 6.22), thus 1	= C◦
B1

(f ) � B1 ∩O(B) (Fact 2.17)
andB1 = B by Proposition 3.11(ii), a contradiction.

For any x ∈ G, C◦
G(x) 	= 1 by Corollaries 2.18 and 6.11. IfO(C◦

G(x)) = 1, then
x ∈ CG(i1)

g = B
g

1 for someg ∈ G as Sylow 2-subgroups ofG are connected andB1
is selfnormalizing. IfO(C◦

G(x)) 	= 1, then x ∈ NG(B) where B is the unique Bore
subgroupB of G which containsC◦

G(x) (Proposition 3.11(ii)). IfB is conjugate toB1,
thenx ∈ NG(B) = B, so we assume nowB ∈ B. Note thatNG(B) = O(B) � T1 by the
Frattini argument and Lemma 6.22, whereT1 = CNG(B)(k) andk is an involution ofB of
the formi

g

1 for someg ∈ G. As CG(i1) = B1, T1 � B
g

1 and it suffices now to show tha

t1O(B) = t
O(B)
1 for any t1 ∈ T #

1 . For this it suffices to show thatCO(B)(t1) is finite and
then to apply Fact 2.27. So assume now toward a contradiction thatC◦

O(B)(t1) 	= 1. Then
C◦

G(t1) � B by Proposition 3.11(ii) andC◦
G(t1) has Prüfer 2-rank at most 1 by Lemma 6.

On the other hand,C◦
O(B1)g (t1) = 1 by Proposition 3.11(ii), thus, by Corollary 2.2

EB
g
1
(〈t1〉) is a Carter subgroup ofBg

1 . In particular, t1 is in a conjugate ofT and it
centralizes a 2-torus of Prüfer 2-rank 2, a contradiction.�

Fix σ an element of order 3 such thatNG(T ) = T � 〈σ 〉, as in Lemma 6.67.

Lemma 6.69. σ /∈ ⋃
g∈G T g .

Proof. Assumeσ ∈ T g for someg ∈ G. By Lemma 6.25, the elementary abelian
subgroupA3 of T is isomorphic to(Z3)

2. By the proof of Lemma 6.23, there a
three nontrivial elementsσ1, σ2, and σ3 of A3 such thatC◦

O(Bl)
(σl) 	= 1 (l = 1,2,3).

Furthermore, the three subgroups〈σl〉 are pairwise disjoint by Proposition 3.11(i
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Now σ cannot centralize aσl , as otherwiseσ ∈ NG(O(C◦
G(σl))) � NG(Bl) = Bl by

Proposition 3.11(ii), a contradiction. ThusCA3(σ ) = 〈σ0〉 for some elementσ0 ∈ A#
3 such

that 〈σ0〉 is disjoint from the three〈σl〉, andA3 is covered by the pairwise disjoint〈σl〉
(l = 0,1,2,3).

Remark thatC◦
G(σ0) = C◦

G(σ−1
0 ) = T : otherwiseO(C◦

G(σ0)) 	= 1 by Lemma 3.2,
and O(C◦

G(σ0)) � O(Bl) for some l = 1,2, or 3 (Fact 2.37 and Proposition 3.11(i
and σ ∈ NG(Bl) = Bl by Proposition 3.11(ii), a contradiction. In particular,CG(σ0) =
NG(T ) = T � 〈σ 〉.

We claim now thatC◦
G(σ) = T g : otherwise we haveO(C◦

G(σ)) 	= 1 (Lemma 3.2),
O(C◦

G(σ)) � B
g

l for some l = 1,2, or 3 (Fact 2.37 and Proposition 3.11(ii)) a
σ0 ∈ NG(B

g
l ) = B

g
l by Proposition 3.11(ii). AsC◦

G(σ0) = T , Lemmas 6.4, 2.41, an
Corollary 2.24 show thatEB

g
l
(〈σ0〉) is a Carter subgroup ofBg

l , i.e., T gf for some

f ∈ O(B
g
l ). In particular,σ0 ∈ T gf . ThusT gf � C◦

G(σ0) = T andT = T gf � B
g
l . Now

σ ∈ NG(T ) ∩ T g � NG(T ) ∩ B
g
l and asT is a Carter subgroup ofBg

l , we getσ ∈ T ,
a contradiction. ThusC◦

G(σ) = T g as claimed.
We claim now thatσ0 /∈ T g : otherwise〈σ0〉 � A

g
3 and as the only proper nontrivi

subgroupX of A
g

3 such thatO(C◦
G(X)) = 1 is 〈σg

0 〉, we get 〈σ0〉 = 〈σg

0 〉 = 〈σ 〉 (as
O(C◦

G(σ)) = O(T g) = 1 by Lemma 6.4). Thus〈σ 〉 � T andσ ∈ T , a contradiction. Thu
σ0 /∈ T g as claimed, andNG(T g) = T g � 〈σ0〉.

Our final argument is now inspired by [22]. By Lemma 6.67,σ0 and σσ0 are T g-
conjugate,σσ0 and σσ 2

0 are T -conjugate, andσσ 2
0 and σ 2

0 are T g-conjugate. Thus

σ−1
0 = σ 2

0 = σh
0 for someh ∈ G, andh ∈ NG(〈σ0〉) � NG(C◦

G(σ0)) = NG(T ) � CG(σ0).
Thusσ−1

0 = σ0, a final contradiction. �
Corollary 6.70. σ ∈ O(B) for some Borel subgroupB of G (here we do not know whethe
B ∈ B, or B is conjugate toB1).

Proof. By Lemma 6.68, we may assume toward a contradiction that we haveσ ∈ (B1 \
O(B1))

g for someg ∈ G. ThenT g ∼= B
g

1/O(B1)
g contains an element of order 3. B

Fact 2.5, char(T ) 	= 3, i.e.,p 	= 3. By Lemma 6.25, the Sylow 3-subgroup ofO(B1) is
trivial, thus Hall {2,3}-subgroups ofB1 are abelian (asB1

′ � O(B1)) and conjugate to
the Hall {2,3}-subgroup ofT (Facts 2.5, 2.13, and 2.14). Thusσ is in a conjugate ofT ,
a contradiction to Lemma 6.69.�
Corollary 6.71. p = 3.

Proof. We apply the preceding corollary and Lemmas 6.25 and 6.27.�
This ends the proof of part (2) of Theorem 1.8, and in fact much more, in the caC

not a Borel subgroup ofG.”
To complete our analysis, we now look at the geometry of involutions. Let

D = {
(j, k) ∈ I (G)2: [j, k] 	= 1

}
.
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By genericity and Fact 2.36, one sees as in the end of Section 5.2 thatD is generic inI (G)2.
By Lemma 6.68, we have a definable partition ofD into definable subsetsD1 andD2,

that isD = D1 � D2, where

D1 = {
(j, k) ∈ D: jk ∈ O(B) for someB ∈ B

}
and

D2 = {
(j, k) ∈ D: jk ∈ B

g

1 for someg ∈ G
}
.

Lemma 6.72. Let (j, k) ∈ D. Then(j, k) ∈ D2 if and only if (jk)2 ∈ O(B1)
g for some

g ∈ G.

Proof. Assume(j, k) ∈ D2, i.e., jk ∈ B
g

1 for someg ∈ G. We claim thatj, k ∈ B
g

1 .
If C◦

O(B1)
g (jk) 	= 1, thenO(C◦

G(jk)) � O(B1)
g and j, k ∈ NG(B1)

g = B
g

1 by Proposi-
tion 3.11(ii). So we may assumeC◦

O(B1)
g (jk) = 1 and the generalized centralizer ofjk in

B
g

1 is then a Carter subgroup ofB
g

1 by Corollary 2.24; in particular,jk is in a conjugate
of T andjk ∈ I (G) by Lemma 6.28, a contradiction asj andk do not commute. Thu
j, k ∈ B

g

1 as claimed and, computing inBg

1 moduloO(B1)
g , one sees with Theorem 6

that(jk)2 ∈ O(B1)
g .

Suppose now(jk)2 ∈ O(B1)
g for some g ∈ G. Then O(C◦

G((jk)2)) = O(B1)
g

(Lemma 2.41 and Proposition 3.11(ii)) andj, k ∈ NG(O(B1)
g) = NG(B

g

1 ) = B
g

1 . In
particular,jk ∈ B

g

1 and(j, k) is in D2. �
Lemma 6.73. D1 is generic inD (and, thus, inI (G)2). In particular,B is nonempty.

Proof. Assume toward a contradiction thatD2 is generic inD and, in particular, thatD2
has Morley degree 1 asI (G)2 does. We will show thatD2 cannot have degree 1 and, thu
get a contradiction.

Consider the definable map

ψ :D2 −→ iG1 , (j, k) �−→ zj,k,

wherezj,k is the unique involution in the center of the unique conjugate ofB1 containing
(jk)2 as in the preceding lemma.

Notice that

ψ−1(i1) =
⊔

(l,l′)∈{2,3}2

{
(ilf, il′f

′): f,f ′ ∈ O(B1), f 	= f ′}. (∗)

It is a routine matter to check equality(∗) once one has noticed that a couple of involutio
(ilf, il′f ′) in B1 (with (l, l′) ∈ {2,3}2 andf,f ′ ∈ O(B1)) is noncommuting if and only i
f 	= f ′. By Theorem 6.6, this is clear ifl = l′ and if l 	= l′, it follows from the following
equivalent equalities:

[ilf, il′f
′] = 1, i1f il′f

′ = f ′ilf, i1f il′f
′f −1 = f ′il , i1il′f

−1f ′f −1 = f ′il,

ilf
−2f ′ = f ′il, f −2f ′ = ilf

′il, f 2 = f ′2, f = f ′.
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The four piecesF1, F2, F3, andF4 in the decomposition(∗) of ψ−1(i1) all have rank
2 rk(O(B1)) and degree 1, asO(B1) has degree 1. It follows thatψ−1(i1) has Morley rank
2 rk(O(B1)) and Morley degree 4. On the other hand, one checks easily with Theore
that the four pieces in the decomposition(∗) of ψ−1(i1) are invariant under conjugatio
by elements ofB1 = CG(i1). As involutions are conjugate,

D2 =
⊔

g∈G/B1

(
ψ−1(i1)

g
) =

⊔
g∈G/B1

(
F

g

1 � F
g

2 � F
g

3 � F
g

4

)
,

thusD2 = ⊔4
s=1(

⊔
g∈G/B1

F
g
s ). As these four definable pieces in this decomposition ofD2

have the same rank,D2 cannot have degree 1, which gives the desired contradiction.�
For (j, k) ∈ D1, we havejk ∈ O(B) for some Borel subgroupB ∈ B, thusjk is a

3-element asp = 3 andO(B) is 3-unipotent. We finish our analysis by showing th
generically,jk has exponent greater than 3.

Lemma 6.74. For (j, k) generic inD1 (and, thus, inI (G)2), jk is a 3-element of order a
least9.

Proof. Assume toward a contradiction that the subsetD1
′ of D1, consisting of couple

(j, k) such thatjk has order 3, is generic inD1. Let π1 denote the first projectio
of D1

′ over I (G). As involutions are conjugate, our genericity assumption implies
rk(π−1

1 (i)) = rk(I (G)) for every involutioni ∈ I (G). In particular, the set of involution
z such that each of the three productsilz has order 3 is generic inI (G). But for such az,
if we let x = i1z, thenx3 = 1 and(i2x)3 = (i3z)

3 = 1. Thus[i2, iz2] is equal to

[
i2, i

x
2

] = i2x
−1(i2xi2)x

−1i2x = i2x
−1(x−1i2x

−1)x−1i2x = i2xi2xi2x = 1.

On the other hand,[i2, iz2] = (i2z)
4 = i2z, thusi2z = 1; but i2z has order 3, a contradic

tion. �

7. Pr2(G) > 1 and C◦
G(A) a Borel

In this final section,G and the notations are fixed as always as in Theorem 1.8, an
consider the only remaining case:

Pr2(G) > 1 andC = C◦
G(A) is a Borel subgroup ofG.

We will prove part (2b) of Theorem 1.8. We will also complete our proof that Pr2(G) � 2
at the end of this section; recall that the other case was treated already in Proposition 6
Notice that our assumption implies thatI (C) = A# by Fact 2.12.
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7.1. Case:C◦
G(A) a nonnilpotent Borel subgroup

We will eliminate this case (assuming, as always in this section, that the Prüfer r
at least 2).

Theorem 7.1. If C is a Borel subgroup ofG, then it is nilpotent.

So we assume toward a contradiction that|A| � 4 and thatC◦
G(A) is a nonnilpoten

Borel subgroup.

Lemma 7.2. O(C) 	= 1.

Proof. This is a special case of Lemma 3.2, asC is nonnilpotent. �
Lemma 7.3. C ∩ Cg = 1 for eachg ∈ G \ NG(C).

Proof. Assume thatC ∩ Cg 	= 1 for someg ∈ G \ NG(C). As I (C) ⊆ Z(C) andC is a
Borel subgroup ofG, the intersectionC ∩ Cg has no involutions. If(C ∩Cg)◦ is nontrivial,
then by Proposition 3.11(ii) we haveC = Cg , a contradiction. Thus(C ∩ Cg)◦ = 1 and
C ∩ Cg is finite.

Thus, there is an elementx of prime orderp in C ∩ Cg . We claim now thatF ◦(C)

contains no nontrivialp-unipotent subgroup: else, it would contain a maximalp-unipotent
subgroupUp normal inC (Corollary 2.16), andC◦

Up
(x) 	= 1 (Fact 2.9(iii)), showing tha

C◦
G(x) � C by Proposition 3.11(ii); but thenC◦

Cg(x) � (C ∩ Cg)◦ = 1, which contradicts
Fact 2.17. The claim is proved.

We can now apply Corollary 2.20 tox in C and inCg ; this implies thatC◦
G(x) contains

a Sylow 2-subgroup ofC, sayS1, as well as a Sylow 2-subgroup ofCg , sayS2. Let B1
be a Borel subgroup ofG containingC◦

G(x). If B1 is abelian, thenS1 = S2 � C ∩ Cg ,
which contradicts the preceding remarks. ThusB1 is not abelian and Lemma 3.2 show
thatO(B1) 	= 1. AsA# = I (S◦

1) consists of at least three involutions, there isk ∈ A# such
that C◦

O(B1)
(k) 	= 1 by Fact 2.37. ThenC = B1 by Proposition 3.11(ii). By considerin

the action ofAg on O(B1), one sees in the same way thatCg = B1. Thus againC = Cg ,
a contradiction. �
Corollary 7.4.

⋃
g∈G Cg is generic inG.

Corollary 7.5. If x is in NG(C) \C andx is of ordern moduloC, for some integern, then
the elements of the cosetxC are generically of ordern.

Proof. It suffices to apply the preceding corollary and Lemma 3.4, and to remark
an elementx1 ∈ NG(C) \ C of ordern moduloC and such thatx1 ∈ (〈x〉C)g for some
g ∈ G \ NG(C) satisfiesxn

1 ∈ C ∩ Cg = 1. �
Proof of Theorem 7.1. We claim first thatNG(C) = C. If not, then there is an eleme
x ∈ NG(C) \ C of prime orderp. The preceding corollary shows that the elements of
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cosetxC are generically of orderp. But then Fact 2.29 implies thatC must be nilpotent
a contradiction to our assumption. ThusC is selfnormalizing as claimed.

Now Lemma 7.3 shows thatC is strongly embedded inG and Fact 2.35 implies thatC
has only one conjugacy class of involutions. But asI (C) ⊆ Z(C), we have thatC has only
one involution and|A#| = 1, which contradicts our assumption that the Prüfer 2-rank
least 2. �
7.2. Case:C◦

G(A) a nilpotent Borel subgroup

If C is a nilpotent Borel subgroup ofG, thenT = C by Fact 2.8. We will show tha
NG(T ) is strongly embedded inG (Corollary 7.14), that|A| = 4, and that the Wey
groupW = NG(T )/T is cyclic of order 3 in Proposition 7.29. This will prove part (
of Theorem 1.8 in this case “C a nilpotent Borel subgroup ofG,” and will complete our
proof that Pr2(G) � 2. We will also obtain a detailed description ofG in the course of an
extended analysis.

Lemma 7.6. T ∩ T g = 1 for eachg ∈ G \ NG(T ).

Proof. Assume thatT ∩ T g 	= 1, with g ∈ G. Proposition 3.11 then shows thatO(T ) =
O(T g) = 1. But then Lemma 3.2 implies thatT is abelian, thusT , T g � C◦

G(T ∩ T g) and
T = T g = C◦

G(T ∩ T g) asT is a Borel subgroup ofG. Thusg ∈ NG(T ). �
Corollary 7.7.

⋃
g∈G T g is generic inG.

Corollary 7.8. If x is in NG(T ) \ T andx is of ordern moduloT , then the elements of th
cosetxT are generically of ordern.

Proof. As in Corollary 7.5, using Lemma 7.6 and Corollary 7.7.�
Corollary 7.9. CG(S◦) = T .

Proof. This follows from Corollary 7.8 and Lemma 3.8.�
We now detail the general structure ofG. Let B be the set of Borel subgroups ofG

nonconjugate toT and having a nontrivial Sylow 2-subgroup. This definition is differ
from the one in Section 6 (before Lemma 6.22), but the same as in Section 5.2 (
Lemma 5.11). In the next lemmas we will see that Borel subgroups inB have the same
kind of behavior as those in the previous sections.

Lemma 7.10. B is nonempty, and every Borel subgroup ofG nonconjugate toT is in B. If
B ∈ B contains an involutionk ∈ A#, thenB = F(B) � CB(k), F(B) = O(B) is inverted
byk, andCB(k) is a connected divisible abelian subgroup ofT such thatPr2(CB(k)) = 1.

Furthermore,

G =
( ⋃

NG(T )g
)

∪
( ⋃

NG(B)

)
.

g∈G B∈B
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Proof. We first show thatG contains no Borel subgroups without involutions. Suppose
B is such a Borel subgroup ofG. ThenB = O(B) is nilpotent as it interprets no bad field
and Proposition 3.11 shows that two distinct conjugates ofB have a trivial intersection
Thus

⋃
g∈G Bg is generic inG by Lemma 3.3, as well as

⋃
g∈G T g . But then there exist

an elementb ∈ B# which is in a conjugate ofT by Fact 2.1. In particular,b centralizes
a conjugate ofS◦. This is a contradiction becauseC◦

G(b) � B (Lemma 3.12), andB has
no involutions. Thus every Borel subgroup ofG has an involution. If every such Bor
subgroup is conjugate toT , thenG is a simple bad group, and it cannot have involutio
by Fact 1.3, a contradiction. ThusB is nonempty.

Now letB be a Borel subgroup inB containing an involutionk ∈ A#. If k ∈ F(B) then
k ∈ Z(B) by Lemma 3.1. Butk is in a Sylow 2-subgroup ofB which is connected by
Fact 2.12, thus inS◦g for someg ∈ G. SoB, T g � C◦

G(k), andB = T g by maximality,
a contradiction to the definition ofB, which shows thatF(B) has no involutions. In
particular,B is nonnilpotent, andF ◦(B) = O(B) by Lemma 3.2. AsC◦

O(B)(k) is a
subgroup ofT , if C◦

O(B)(k) 	= 1 then Proposition 3.11(ii) implies thatT = B, a contra-
diction. ThusC◦

O(B)(k) is trivial and Fact 2.25 shows thatO(B) is inverted byk. As
B/O(B) is abelian by Fact 2.15, we conclude thatB = O(B) � CB(k) by Fact 2.27.
It follows then from Fact 2.1 thatCB(k) is connected and contained inC◦

G(k) = T . As
CB(k) is isomorphic toB/F(B), it is also divisible abelian by Fact 2.15. We now sh
thatO(B) = F(B). If O(B) < F(B), then the finite groupCB(k)∩F(B) is nontrivial and
it contains an elementt of prime orderp. As CB(k) is divisible, Fact 2.12 shows thatt is
in a p-torus ofCB(k); so it is in ap-torus ofT andt is central inT by Fact 2.10. Thus
T � C◦

G(t) � B by Lemma 3.12 andT = B by maximality, a contradiction which show
that O(B) = F(B). If CB(k) contains an elementary abelian 2-subgroupA1 of A order
four, then each involution inA1 invertsO(B), a contradiction. So Pr2(CB(k)) = 1.

It remains to show thatG = (
⋃

g∈G NG(T )g) ∪ (
⋃

B∈B NG(B)). If g is any elemen
in G, theng has an infinite centralizer by Corollaries 7.7 and 2.18, that isC◦

G(g) 	= 1.
If C◦

G(g) contains an involution, then it contains a nontrivial 2-torus by Fact 2.12,
contains an element of the formkh for some involutionk ∈ A# and some elementh ∈ G.
Theng ∈ NG(C◦

G(kh)) � NG(T )h. If C◦
G(g) has no involutions, then it is in a unique Bor

subgroupB of G by Proposition 3.11(ii), andg ∈ NG(B). �
We now look at the structure of the finite groupNG(T )/T , which acts faithfully onS◦.

In what follows the notation denotes the quotient byT .

Lemma 7.11. NG(T ) is nontrivial.

Proof. Otherwise Lemma 7.6 shows thatT is strongly embedded inG, and hence has
single conjugacy class of involutions. ButT centralizesA, so this would force|A| = 2. �
Lemma 7.12. NG(T ) contains at most one involutionw. In that casew is the image of an
involutionw ∈ G which invertsT , andwT = wT .
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Proof. Assume thatw ∈ NG(T ) \ T is such thatw is an involution. Then elements of th
cosetwT are generically of order 2 by Corollary 7.8, and Fact 2.28 shows thatw is an
involution which invertsT . In that casewT = wT becauseT is 2-divisible.

It remains now to show that such a hypothetical involution is unique. Ifw′ is another
involution, thenw′ also invertsT , and ww′ ∈ CG(S◦) = T by Corollary 7.9, that is
w = w′. �
Lemma 7.13. NG(T ) is of odd order.

Proof. Assume that there is an involutionw ∈ NG(T ) \ T which invertsT . We have two
cases to consider, according asw is, or is not, conjugate to an involution ofA# = I (S◦).

Assume first thatw = ig for some involutioni of S◦ and someg ∈ G. We claim in
this case that all involutions ofA invert T g , which provides a contradiction. Letj ∈ A.
Thenj centralizesw = ig . Thusj normalizesT g by Lemma 7.6. AsT ∩ T g is trivial by
Lemma 7.6, we havej ∈ NG(T g) \ T g . Then by Lemma 7.12j invertsT g .

It remains to treat the case in whichw is not conjugate to an involution ofS◦, which
we assume now. Notice thatC◦

G(w) 	= 1, as otherwiseG would be abelian by Fact 2.2
If w centralizes a nontrivial connected 2-subgroup ofG, sayS1, then〈w〉S1 is in a Sylow
2-subgroupS2 of G. As we assumew /∈ I (S◦)G, we have thatw ∈ S2 \ S◦

2 andw inverts
S◦

2 by Lemma 7.12, a contradiction asw centralizesS1. ThusC◦
G(w) has no involution.

Proposition 3.11(ii) then shows thatC◦
G(w) � B for a unique Borel subgroupB of G.

In particular,CG(w) � NG(B). As w invertsS◦, w centralizesA and thusA � NG(B).
Notice thatB is not a conjugate ofT , as otherwise Lemma 7.12 would show thatw

invertsB, a contradiction asC◦
G(w) 	= 1. Thus Lemma 7.10 shows thatF(B) = O(B).

If k is any involution inA, thenC◦
O(B)(k) = 1 by Proposition 3.11(ii), thusk invertsF(B)

by Fact 2.25. This contradicts our assumption that|A| � 4. �
Corollary 7.14. NG(T ) is strongly embedded inG (in particular, NG(T ) acts transitively
onA#).

Proof. If NG(T ) ∩ NG(T )g contains an involutionk for someg ∈ G, thenk is in T ∩ T g ,
thusT = T g by Lemma 7.6, andg ∈ NG(T ). SoNG(T ) is strongly embedded inG and
Fact 2.35 shows that it acts transitively by conjugation on the set of its involutions
is A#. �
Lemma 7.15. Assume thatt is a nontrivial element ofd(S◦) such thatT < CG(t). Let
x ∈ C(t) \ T . Thenx has finite order moduloT , and if this order isn, thentn = 1.

Proof. Let t andx be as in the statement. AsC◦
G(t) = T , we haveCG(t) � NG(T ) and

thusx has finite order moduloT . Let its order ben. The elements of the cosetxT are
generically of ordern by Corollary 7.8, so as in the proof of Lemma 3.8, we can find
elementx1 ∈ xT of ordern such that the elements of the cosetx1d(S◦) are generically
of ordern. As d(S◦) is divisible, it is the connected component of the definable gr
d(S◦) � 〈x1〉, and we can apply Lemma 3.6 to get that the elements of the cosetx1d(S◦)
are all of ordern. In particular,tn = xn

1 tn = (x1t)
n = 1, which proves our lemma.�
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Corollary 7.16. CG(k) equalsT for each involutionk ∈ A#. In particular NG(T )/T acts
regularly by conjugation onA#, and|NG(T )/T | = 2Pr2(G) − 1.

Lemma 7.15 also allows us to make precise the structure of Borel subgroupsB,
refining Lemma 7.10.

Corollary 7.17. If B ∈ B contains an involutionk ∈ A#, thenCNG(B)(k) < NG(B) is a
Frobenius group withO(B) as a Frobenius kernel, andCNG(B)(k) � T . In particular,

NG(B) = O(B) �
( ⋃

u∈O(B)

CNG(B)(k)u
#
)

,

k is the unique involution inCNG(B)(k), and I (NG(B)) = kO(B). We also have tha
CG(f ) = O(B) for every nontrivial elementf of F(B) = O(B).

Proof. Let B and k be as in the statement. Lemma 7.10 tells us that Pr2(B) = 1. If
Tk is a Sylow 2-subgroup ofB containingk, NG(B) = NNG(B)(Tk)B by the Frattini
argument, that isNG(B) = CNG(B)(k)B. Then Lemma 7.10 shows thatNG(B) =
CNG(B)(k)O(B) and ask inverts O(B), the product is semidirect. Corollary 7.16 te
us thatCNG(B)(k) � T . If an elementu ∈ O(B) is such thatCNG(B)(k) ∩ CNG(B)(k)u

is nontrivial, thenu ∈ NG(T ) by Lemma 7.6, sou ∈ NG(T ∩ B) = CB(k) and u ∈
CB(k) ∩ O(B) = 1. ThusCNG(B)(k) < NG(B) is a Frobenius group withO(B) as a
Frobenius kernel.

If z is an involution inCNG(B)(k) distinct fromk, thenz ∈ I (T ) = A# by Corollary 7.16
and there is an involutionz′ in the elementary abelian 2-group〈k, z〉 of order 4 with
an infinite centralizer inO(B) by Fact 2.37. ThenB = C◦

G(z′) by Proposition 3.11(ii)
a contradiction asCG(z′) = T by Corollary 7.16. Thusk is the unique involution o
CNG(B)(k).

Let now f be a nontrivial element ofO(B). We get as in Corollary 5.16, usin
Lemma 7.10, thatC◦

G(f ) = O(B). In particular, we haveCG(f ) � NG(B) = O(B) �
(T ∩ NG(B)). As f is not in the Frobenius complement(T ∩ NG(B)) of NG(B), we have
thatC(T ∩NG(B))(f ) = 1. ThusCG(f ) = O(B). �
Corollary 7.18. G = {1} � (

⋃
g∈G T g)# � (

⋃
B∈B O(B))#.

Proof. First note that the union of nontrivial elements in the statement is disjoin
u ∈ O(B)# for someB ∈ B, thenCG(u) = O(B) (Corollary 7.17) has no involution an
u cannot be in a conjugate ofT .

If g is a nontrivial element ofG, thenC◦
G(g) is nontrivial by Corollaries 2.18 and 7.7.

C◦
G(g) contains an involution, then this involution is inS◦h for someh ∈ G by Lemma 7.13

andg ∈ T h by Corollary 7.16. Suppose now thatC◦
G(g) has no involution. ThenC◦

G(g) is
in a unique Borel subgroupB of G by Proposition 3.11(ii), andg ∈ NG(B). If B ∈ B, then
g ∈ O(B) or g is in a conjugate ofT by Corollary 7.17. IfB /∈ B, thenB = T h for some
h ∈ G by Lemma 7.10 and it remains to show thatg ∈ T h in that case. So we assume no
thatg ∈ NG(T h) \ T h and we will get a contradiction.
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By conjugation, we assume thus thatNG(T ) \ T contains an elementx such that
C◦

G(x) � T . There is an integerk such thatxk is of prime orderp modulo T . Now
1 	= C◦

G(x) � C◦
T (xk). As cosets ofT in T 〈xk〉 (distinct fromT ) are generically of orde

p by Corollary 7.8, we can apply Lemma 3.7. So the maximalp-unipotent subgroupUp

of T (which is unique by Fact 2.8) is nontrivial. One can find by Lemma 3.4 an ele
x1 ∈ xkT ∩ (〈xk〉T )l for somel ∈ G \ NG(T ). Thusx

p

1 ∈ T ∩T l = 1 and asx1 normalizes
Up andUl

p , we haveC◦
Up

(x1) 	= 1 andC◦
Ul

p
(x1) 	= 1 (Fact 2.9). Then 1	= C◦

G(x1) � T ∩T l

by Proposition 3.11(ii), andl ∈ NG(T ) by Lemma 7.6, a final contradiction.�
We now give a strong form of Corollary 7.8.

Lemma 7.19. If x is in NG(T ) \ T and is of ordern moduloT , for some integern, then
xT = xT and every element in the cosetxT is of ordern.

Proof. By Corollary 7.8, it suffices to show thatxT = xT . If x1 ∈ xT , thenC◦
T (x1) = 1;

this can be seen as in the end of the proof of Corollary 7.18. So rk(xT
1 ) = rk(x1T ). As this

is valid for anyx1 ∈ xT , Fact 2.1 shows thatxT = xT . �
We will now use our assumption thatG interprets no bad field in a critical manner.

Lemma 7.20. Let k ∈ I (A) andSk < S be a2-torus of Prüfer2-rank one containingk,
and assume that there is a Borel subgroupB in B containingSk . ThenB interprets an
algebraically closed fieldK in such a way thatd(Sk) is interpretably isomorphic toK×.
Furthermore proper definable subgroups ofd(Sk) are finite.

Proof. Let U be a B-minimal subgroup ofB in O(B). Recall thatB = O(B) �
CB(k) whereO(B) andCB(k) are abelian (Lemma 7.10), soU is alsoCB(k)-minimal.
Corollary 7.17 shows thatCG(U) = O(B), so the centralizer ofU in CB(k) is trivial.
By Fact 2.38 and the assumption thatB interprets no bad field,U � CB(k) interprets
an algebraically closed fieldK in such a manner thatU ∼= K+, CB(k) ∼= K×, where
both isomorphisms are interpretable, and proper definable subgroups ofCB(k) are in
particular finite. AsCB(k) is definable and containsSk , we haved(Sk) � CB(k), so
d(Sk) = CB(k). �

Let n = Pr2(G), and let{i1, . . . , i2n−1} enumerateI (A) in such a way that{i1, . . . , in}
generatesA. Fix B a Borel subgroup inB containingi1. Let Ti1 = B ∩ T = CB(i1) and
Si1 be the 2-torus ofTi1 of Prüfer 2-rank one (Corollary 7.17). AsNG(T ) acts transitively
by conjugation onI (A), there are 2n − 1 distinct conjugatesSis of Si1 in S, each one
containing respectivelyis (1 � s � 2n − 1). If s 	= s′, thenSis ∩ Sis′ = 1, as otherwise
is = is ′ . By considering the Prüfer 2-rank, we have thus

S = S◦ =
n⊕

Sis . (1)

s=1
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It is then clear that

d(S) =
n∏

s=1

d(Sis ). (2)

We now apply Lemma 7.20 withi1, Si1, andB, and we letK be the field interpreted byB.
Let also

p = char(K).

We will show later thatp > 0.

Lemma 7.21. Prq(d(S◦)) = n for every prime numberq different fromp, and if p 	= 0,
then the Sylowp-subgroup ofd(S◦) is trivial.

Proof. If 1 < s � n, thenis is the unique involution in the conjugated(Sis ) of d(Si1), and
easily is /∈ ∏s−1

s ′=1 d(Sis′ ). Thus
∏s−1

s ′=1 d(Sis′ ) ∩ d(Sis ) is a proper subgroup ofd(Sis ) and
this intersection must be finite by Lemma 7.20.

The conjugatesd(Sis ) of d(Si1) are all isomorphic toK×. If q is now a prime numbe
different from p, then it follows from the preceding and an induction overs varying
between 1 andn that Prq (d(S◦)) = n by equality (2). Ifp 	= 0, thend(Si1)

∼= K× has
a trivial Sylowp-subgroup, as well asd(S◦) by equality (2) and Fact 2.5.�

We eventually derive the following information from the preceding lemma.

Corollary 7.22. O(B1) = F(B1) is torsion free orp-unipotent for everyB1 ∈ B,
depending on whetherp = 0 or p > 0.

Proof. First note that ifB1 ∈ B, thenO(B1) = F(B1) has trivialq-tori for every prime
numberq > 2, because such a maximalq-torus is both central inB1 by Fact 2.10 and
inverted by involutions inB1 by Lemma 7.10. Thus Fact 2.8 shows that

O(B1) = D × Up1 × · · · × Upl

for finitely many prime numbersp1, . . . , pl , whereD is torsion free andUps is ps -
unipotent for everyps (1� s � l).

Assume thatp = 0. In that case we have to show thatO(B1) = F(B1) is torsion free,
that is that the factors of bounded exponent inthe decomposition as above are trivi
But if Ups 	= 1 for a prime numberps , then Ups contains aB1-minimal subgroupU
(asUps � B1), which is an elementary abelianps -subgroup. Of course we may assu
without loss of generality thatB1 contains an involutionk ∈ I (A). Now the same analys
as in the proof of Lemma 7.20, with our assumption thatB1 interprets no bad field, show
thatCB1(k) ∼= K×

1 whereK1 is an interpretable algebraically closed field of character
ps , and thatCB1(k) = d(Sk) whereSk is a 2-torus of Prüfer 2-rank one inS. Choosing
a suitable minimal set of generators ofA containingk, one can then carry out the sam
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analysis as in the proof of Lemma 7.21 withB1, K1, andSk instead ofB, K andSi1, to
get that theps -torus ofd(S◦) is trivial. This is a contradiction to Lemma 7.21. Similar
if p 	= 0, thenUq = 1 for q 	= p.

Assume nowp 	= 0 and letB1 ∈ B contain an involutionk ∈ I (A). If O(B1) = F(B1)

is notp-unipotent, then as before one can interpret an algebraically closed field, which
now of characteristic 0. Thus there are nontrivialq-tori in d(S◦) for every primeq , again
providing a contradiction to Lemma 7.21.�

The following lemma is inspired by [22].

Lemma 7.23. Let q be the smallest prime divisor of|W |. Then no element ofNG(T )

representing an element ofW of orderq lies in a conjugate ofT .

Proof. Note thatq > 2. Letw = xT be an element ofW of orderq . Suppose thatx lies in
a conjugateT g of T . By Lemma 7.19x has orderq . In particularT has a nontrivial Sylow
q-subgroup, saySq .

As Sq � T (Fact 2.8), x centralizes an elementy of order q in Sq ∩ Z(T )

(Facts 2.12, 2.7, and 2.9). Lemma 7.19 tells us thatx, xy, andxy2 areT -conjugate. On
the other hand,y ∈ NG(T g) as [x, y] = 1 (Lemma 7.6) andy /∈ T g (asT 	= T g). Thus
y is of orderq moduloT g and Lemma 7.19 applied inT g gives thaty andxy areT g-
conjugate in the cosetT gy, and similarlyy2 andxy2 are conjugate in the cosetT gy2. As
xy andxy2 areT -conjugate, we conclude thaty andy2 are conjugate by some elementh,
andh ∈ NG(T ) asy, y2 ∈ Z(T ). As y is of orderq 	= 2 andh /∈ T , we have〈y〉 = 〈y2〉
andT � CG(〈y〉) < NG(〈y〉) � NG(T ). But NG(〈y〉)/CG(〈y〉) embeds into Aut(Zq ) and
|Aut(Zq)| = q − 1, so there is a prime numberq ′ dividing |NG(T )/T | andq − 1. This
contradicts the minimality ofq . �
Lemma 7.24. p is the smallest prime divisor of|W | (in particular p 	= 0).

Proof. Let q be the smallest prime divisor of|W | and letx ∈ NG(T ) \ T represent an
element of orderq in W . Asx is not in a conjugate ofT (Lemma 7.23), by Corollaries 7.1
and 7.22,x is ap-element. Henceq = p. �
Corollary 7.25. The Sylowp-subgroup ofT is trivial.

Proof. Let u ∈ NG(T ) \ T have orderp moduloT . By Lemma 7.19u has orderp. By
Corollaries 7.18 and 7.22,u ∈ O(B1) for someB1 ∈ B.

Let Sp be the Sylowp-subgroup ofT . Corollary 7.17 shows thatCSp(u) � CG(u) =
O(B1). As T ∩ O(B1) = 1 by Corollary 7.18, we findCSp(u) = 1. By Fact 2.9,Sp is
trivial. �
Corollary 7.26. The centralizers of nontrivialp-elements ofNG(T )/T arep-groups.

Proof. Assume the contrary. ThenNG(T )/T contains an element of orderpq for an odd
primeq 	= p. SoNG(T )\T also contains an elementx of orderpq by Corollary 7.8. Then
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g∈G T g by Corollaries 7.18 and 7.22, soxq is of orderp and in a conjugate ofT ,

a contradiction to Corollary 7.25.�
We now dramatically reduce the size ofNG(T )/T .

Lemma 7.27. |NG(T )/T | = 2n −1 dividesln −1 for every integerl > 1 which is relatively
prime to2n − 1.

Proof. By Dirichlet’s theorem on primes in arithmetic progression, we may suppose
l is prime. LetAl = {a ∈ d(S◦): al = 1}. This is an elementary abelianl-group of rankn
by Lemma 7.21, and by Lemma 7.15, asl is not a divisor of|W |, the action ofW onAl is
semiregular. By Corollary 7.16|W | = 2n − 1, and our claim follows. �

In view of Corollary 2.43 we conclude:

Corollary 7.28. Only one of the following four cases can occur:

(a) n = 2 and|NG(T )/T | = 3,
(b) n = 4 and|NG(T )/T | = 15= 3 · 5,
(c) n = 6 and|NG(T )/T | = 63= 32 · 7,
(d) n = 12 and|NG(T )/T | = 4095= 32 · 5 · 7 · 13.

Finally we have the following proposition.

Proposition 7.29. n = 2 andNG(T )/T is cyclic of order3.

Proof. By the preceding corollary, it suffices to eliminate the possibilitiesn = 4, 6, 12,
with the order ofW = NG(T )/T correspondingly:

3 · 5; 32 · 7; 32 · 5 · 7 · 13.

By Lemma 7.24 and Corollary 7.26, the centralizer inW of an element of order 3 is
3-group. By elementary group theory, this cannot hold in the three cases mentioned

If the order ofF(W) is divisible by 3, then the same applies toZ(F(W)) and hence
F(W) is a 3-group. By the Feit–Thompson theorem (or direct examination),W is solvable,
and hence by Fitting’s lemma its Fitting subgroupF(W) contains its own centralize
ThusW/F(W) acts faithfully as a group of automorphisms ofF(W). However this is
a numerical impossibility: for example, in the second case it would force|Aut(F (W))| to
be divisible by 7, withF(W) either(Z/3Z)2, or Z/9Z.

On the other hand, if|F(W)|3 = 1, then we get a similar contradiction by consider
the action of a Sylow 3-subgroup ofW on some Sylow subgroup ofF(W). �
Corollary 7.30. If B ∈ B, thenF(B) = O(B) is 3-unipotent.

Proof. This follows from the preceding proposition and Corollaries 7.24, 7.19, 7
and 7.25. �
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Another way to handle the final analysis was suggested by Ron Solomon.

Proposition 7.31. Let W be a group acting regularly on an elementary abelian2-group
A of rankn. Suppose that there is a prime divisorp of 2n − 1 such that for all element
w ∈ W of orderp, CW(w) is ap-group. Then|W | is a Mersenne prime.

Proof. As W has odd order and acts without fixed points onA, by a theorem of Burnsid
its Sylow subgroups are cyclic. (In particular, one may see thatW is solvable without
invoking Feit–Thompson.)

The main claim is:

no subgroup ofW is a Frobenius group.

SupposeF = RS is such a group with Frobenius kernelR and complementS. Then the
faithful representation ofF on A is a sum of irreducible constituents which are indu
representations associated to irreducibleR-modules. But the restriction of such an induc
representation toS gives a free module, soS has fixed points inA, a contradiction.

If |W | is not a prime power, letr, s be two primes dividing|W |, such thatr is a divisor
of |F(W)|, and eitherr or s is p. As the Sylow subgroups ofW are cyclic, there is a uniqu
subgroupR of F(W) of orderr, andR is normal inW . Let S be a subgroup ofW of order
s and considerRS. By our assumption onp, the groupRS is nonabelian and is therefore
Frobenius group. As this is a contradiction, we find that

|W | = pm = 2n − 1

for somem. Now an elementary number theoretic argument showsm = 1. (n is a prime
powerlk ; p = 2l − 1; m = 1.) �

However, we still need the appeal to Corollary 2.43 to complete the analysis.
Finally, we can then conclude, as at the end of Section 6.4.

Lemma 7.32. For (j, k) generic inI (G)2, we have[j, k] 	= 1 and jk is a 3-element(of
O(B) for some Borel subgroupB ∈ B) of order at least9.

Proof. Follow the line of the argument for Lemma 6.74.�
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