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We investigate the chiral phase transition at finite temperature (T ) in colour SU(Nc = 3) Quantum
Chromodynamics (QCD) with a variable number of fermions N f in the fundamental representation
by using lattice QCD. For N f = 6 we study the approach to asymptotic scaling by considering
lattices with several temporal extensions Nt . We then extract the dimensionless ratio Tc/ΛL (ΛL =
lattice Lambda-parameter) for N f = 6 and N f = 8, the latter relying on our earlier results. Further, we
collect the (pseudo) critical couplings βc

L for the chiral phase transition at N f = 0 (quenched), and N f = 4
at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger N f . The ratio
Tc/ΛL depends very mildly on N f in the N f = 0–4 region, starts increasing at N f = 6, and becomes
significantly larger at N f = 8, close to the edge of the conformal window. We discuss interpretations
of these results as well as their possible interrelation with preconformal dynamics in the light of a
functional renormalization group analysis.

© 2012 Elsevier B.V. Open access under CC BY license.
1. Introduction

Conformal invariance is anticipated to emerge in asymptotically
free non-Abelian gauge theories when the number of flavours ex-
ceeds a critical value N f = Nc

f . The approach to conformality for
N f � Nc

f , close to the edge of the conformal window, is in princi-
ple associated with a walking behaviour of the running coupling,
which has been advocated as a basis for strongly interacting mech-
anisms of electroweak symmetry breaking [1].

Recent lattice studies [2] focused on the computation of Nc
f and

the analysis of the conformal window itself, either with fundamen-
tal fermions [3–10] or other representations [11–14]. Among the
many interesting results with fundamental fermions, we single out
the observation that QCD with three colours and eight flavours is
still in the hadronic phase [4,5], while N f = 12 seems to be close
to the critical number of flavours, with some groups favouring con-
formality [3,4,6,7], and others chiral symmetry breaking [9].

In comparison, much less effort has been devoted to the anal-
ysis of the phenomenologically relevant subcritical region [15–18].
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Here, we would like to learn where and how QCD at the edge of
the conformal window displays walking, and its associated man-
ifestations like separation of scales and approximate scale invari-
ance. This Letter is one step in this direction.

Building on the above mentioned results, we decided to con-
centrate ourselves on N f � 8, so to be safely in the hadronic
region, but not too far from the edge of the conformal window.
A recent study [15] noted an enhancement of the zero tempera-
ture ratio 〈ψ̄ψ〉/F 3, where F is the pseudo-scalar decay constant.
This suggests that N f = 6 might indeed be the onset of new strong
dynamics.

In this Letter we study the thermal transition of QCD with
N f = 0,4,6, and combine our findings with those of our early
work for N f = 8 [5]. We confirm the expected enhanced screening
when the number of flavours increases, and discuss the interrela-
tion of our results with a possible emergence of a new, preconfor-
mal dynamics.

As a general remark, we note that using the thermal transition
as a tool for investigating preconformal dynamics was largely in-
spired by a renormalization group analysis [19], as we will review
below. Further reasons of interest for finite temperature studies of
large N f include a connection between the quark–gluon plasma
phase and the cold conformal region, which might lend support to
analyses of quark–gluon plasma based on the AdS/CFT correspon-
dence.
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2. Brief overview of analytic results

A second zero of the two-loop beta-function of a non-Abelian
gauge theory implies, at least perturbatively, the appearance of an
infrared fixed point (IRFP) and the restoration of conformal sym-
metry [20,21]. In colour SU(3) gauge theory with N f massless
fermions in the fundamental representation, the second zero ap-
pears for N f � 8.05, before the loss of asymptotic freedom (LAF)
at NLAF

f = 16.5.
One expects that conformality should emerge when the renor-

malized coupling at the would be IRFP is not strong enough to
break chiral symmetry. This condition provides the lower bound
Nc

f of a so-called conformal window in N f . Analytic studies based
on the Schwinger–Dyson equation with rainbow resummations
[22–24] or the functional renormalization group method [19] sug-
gest Nc

f ∼ 12. An all-order perturbative beta-function [25] inspired
by the NSVZ beta-function of SQCD [26] has been conjectured,
leading to a bound Nc

f > 8.25; Nc
f has also been estimated for dif-

ferent fermion representations [27]. In addition to the lower bound
of the conformal window, walking dynamics in the preconformal
region is another interesting subject in relation to proposed sce-
narios of walking Technicolour. Instanton studies at large N f [28]
claimed a qualitative change of behaviour at N f = 6.

All the above phenomena happen well into the strong coupling
regime, rendering a perturbative prediction unreliable and a non-
perturbative analysis mandatory. The genuinely non-perturbative
lattice formulation of gauge theories is thus a natural candidate
for this study.

Recently, the functional renormalization group (FRG) method
has been applied to finite T QCD with varying number of flavours,
and the critical temperature for the chiral phase transition was ob-
tained as a function of N f [19]. In this T –N f phase diagram, the
onset of the conformal window has been estimated by locating the
vanishing critical temperature.

Most interestingly, the critical exponents associated with the
behaviour of the beta-function at the IRFP manifest themselves
also in the shape of the thermal critical line in the vicinity of
the critical number of flavours Nc

f . In more detail, the line is
almost linear with N f for small N f , and displays a singular be-
haviour when approaching Nc

f . As emphasised by the authors in
Ref. [19], the result clearly elucidates the universality of the crit-
ical behaviour at zero and non-zero temperature in the vicinity
of Nc

f . It thus seems a promising direction to extend the knowl-
edge of finite T lattice QCD to the larger N f region, by using the
FRG results as analytic guidance.

In this work we investigate the thermal chiral phase transition
for N f = 0,4,6,8 colour SU(Nc = 3) QCD by using lattice QCD
Monte Carlo simulations with staggered fermions. N f = 6 is ex-
pected to be in the important regime as suggested by the results
in Refs. [3,28]. This work includes the first study of N f = 6 stag-
gered fermions at finite T , and it provides an important ingredient
to a broader project that studies the emergence of the conformal
window in the T –N f phase diagram. In addition to N f = 6, we
compute the (pseudo) critical coupling for N f = 0 (quenched) and
N f = 4 at Nt = 6, and use the results from Ref. [5] for N f = 8.

In short, this work explores a largely uncharted territory: the
chiral transition of strong interactions at high temperature, and
large number of light flavours. Our goal is to observe, and un-
derstand possible qualitative differences with the very well known
behaviour of QCD thermodynamics. To this end, we have for the
first time collected and analysed results for different number of
flavours, and the same lattice action, so to be able to meaningfully
compare them. We ask the question: are we still finding just small
differences among theories with different number of flavours, or
are we going to observe some significant trend? As we will see,
our exploratory, and in many respects qualitative analysis, will in-
dicate that N f = 6, and even more N f = 8, are serious candidates
for a different chiral dynamics. Obviously, our observations call for
detailed quantitative studies which are already underway.

3. Setup

Simulations have been performed by utilising the publicly avail-
able MILC code [29]. The setup explained below is the same as the
one used for N f = 8 in Ref. [5]. We use an improved version of
the staggered action, the Asqtad action, with a one-loop Symanzik
[30,31] and tadpole [34] improved gauge action,

S = − N f

4
Tr log M[am, U , u0] +

∑
i=p,r,pg

βi
(

g2
L

)
Re[1 − UCi ], (1)

where gL is the lattice bare coupling, and βi are defined as

(βp, βr, βpg) =
(

10

g2
L

,−βp(1 − 0.4805αs)

20u2
0

,−βp

u2
0

0.03325αs

)
, (2)

αs = −4 log
u0

3.0684
, u0 = 〈UC p 〉1/4. (3)

The plaquette coupling βp = 10/g2
L ≡ βL is a simulation input. The

M[am, U , u0] in Eq. (1) denotes the matrix for a single flavour Asq-
tad fermion with bare lattice mass am, and UCi represents the
trace of the ordered product of link variables along Ci , for the 1×1
plaquettes (i = p), the 1 × 2 and 2 × 1 rectangles (i = r), and the
1 × 1 × 1 parallelograms (i = pg), respectively – all divided by the
number of colours. The tadpole factor u0 is determined by per-
forming zero temperature simulations on the 124 lattice, and used
as an input for finite temperature simulations.

To generate configurations with mass degenerate dynamical
flavours, we have used the rational hybrid Monte Carlo algorithm
(RHMC) [32], which allows to simulate an arbitrary number of
flavours through varying the number of pseudo-fermions. Simu-
lations for N f = 6 have been performed by using two pseudo-
fermions, and subsets of trajectories for the chiral condensates and
Polyakov loop have been compared with those obtained by using
three pseudo-fermions with the same Monte Carlo time step dτ
and total time length τ of a single trajectory. We have observed
very good agreement between the two cases for both evolution
and thermalization. We have monitored the Metropolis acceptance
and reject ratio, and adjusted τ = 0.2–0.24 and dτ = 0.008–0.018
to realize the best performance. For each parameter set, we have
collected a number of trajectories ranging from one thousand to
five thousand – the latter closer to the critical region.

The focus of this Letter is the analysis of the chiral transition.
The fundamental observable is then the order parameter for chiral
symmetry, the chiral condensate:

a3〈ψ̄ψ〉 = N f

4N3
s Nt

〈
Tr

[
M−1]〉, (4)

where Ns (Nt) represents the number of lattice sites in the spatial
(temporal) direction and U4,tx is the temporal link variable. We
have also measured connected and disconnected chiral susceptibil-
ities,

a2χconn = − N f

4N3
s Nt

〈
Tr

[
(MM)−1]〉,

a2χdisc = N2
f

16N3
s Nt

[〈
Tr

[
M−1]2〉 − 〈

Tr
[
M−1]〉2], (5)

and we have considered the logarithmic derivative,
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Fig. 1. The chiral condensate a3〈ψ̄ψ〉 for N f = 6 and am = 0.02 in lattice units, as a
function of βL , for Nt = 4, 6, 8, and 12. Error-bars are smaller than symbols.

Rπ ≡ χσ /χπ , (6)

where,

χσ ≡ χ = ∂〈ψ̄ψ〉
∂m

= χconn + χdisc, (7)

and

χπ = 〈ψ̄ψ〉
m

. (8)

As discussed in previous work [5,33], Rπ is a probe of chiral sym-
metry which is particularly useful for numerical investigations.
To further characterize the critical region, we also measured the
Polyakov loop,

L = 1

Nc N3
s

∑
x

Re

〈
trc

Nt∏
t=1

U4,tx

〉
, (9)

and trc denotes the trace in colour space.
The temperature T is related to the inverse of the lattice tem-

poral extension,

T ≡ 1

a(βL) · Nt
. (10)

We measure 〈ψ̄ψ〉, the chiral susceptibilities and L at various tem-
peratures. The output of this measurement is the (pseudo) critical
coupling βc

L for the chiral phase transition for a given value of Nt .
We underscore that all the measurements of the pseudo-critical
couplings which will be used in our discussion are only based on
fermionic observables.

4. Results

All results have been obtained for a fermion bare lattice mass
am = 0.02. In Figs. 1 and 2, the expectation values of the chiral
condensate a3〈ψ̄ψ〉, and the Polyakov loop L are displayed as a
function of βL for several Nt , respectively. It is found that different
Nt give a different behaviour of a3〈ψ̄ψ〉 and L. In particular, this
indicates that their rapid crossover with increasing βL is not to
be attributed to a bulk transition. The asymptotic scaling analysis
below will confirm that it corresponds instead to a thermal chiral
phase transition (or crossover) in the continuum limit.1

1 A note on the mass dependence is in order. According to the Pisarski–Wilczek
scenario, the most likely possibility for N f � 3 is a first order chiral transition in
the chiral limit. Standard arguments indicate that first order phase transitions are
Fig. 2. The Polyakov loop L for N f = 6 and am = 0.02 in lattice units, as a function
of βL , for Nt = 4, 6, 8, and 12. Error-bars are smaller than symbols.

Fig. 3. Zoom-in of the chiral condensate a3〈ψ̄ψ〉 and the Polyakov loop L shown in
Figs. 1 and 2 in the critical region at Nt = 8, with spatial volume 243.

For Nt = 4, it is possible to extract βc
L = 4.65(25) from the

peak position of the first derivative – a3 d〈ψ̄ψ〉/dβL. We note that
at this level of accuracy we cannot disentangle the peak position
for the derivatives of the chiral condensate and the Polyakov loop
dL/dβL.

For Nt = 6, we find a small jump between βL = 5.0 and 5.05,
where the Polyakov loop also shows a significant enhancement.

For Nt = 8, the Polyakov loop L shows a clear signal as indi-
cated in Fig. 3. In particular, we observe a drastic increase of the
Polyakov loop L around 5.2 < βL < 5.3. The histogram of the chi-
ral condensate around the rapid increase of the Polyakov loop is
shown in Fig. 4. At βL = 5.2, the histogram exhibits a broaden-
ing that suggests the increase of fluctuations around the pseudo-
critical point.

robust against explicit breaking: when introducing a bare quark mass, then, we ex-
pect a first order phase transition which will eventually end in a genuine singularity
at some critical point (Tc,mc ). By further increasing the bare mass, the transition
will turn into a crossover. In the unexpected situation of a second order transition
in the chiral limit, any non-zero quark mass will immediately produce a crossover.
Even in the case of a first order transition, though, a finite lattice will turn it into
a crossover. All in all, as in any lattice study, we are never dealing directly with
a genuine criticality. Rather, we are locating a pseudo-critical point, and only by
considering several masses and several volumes, we can assess with confidence the
nature of the phase transition in the infinite volume and in the chiral limit. Dis-
criminating among these different behaviours is however beyond the scope of this
study.
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Fig. 4. Distribution of the chiral condensate a3〈ψ̄ψ〉 for N f = 6, am = 0.02 and
spatial volume 243, in the vicinity of the chiral phase transition at Nt = 8.

For Nt = 12 the results are particularly smooth. Note that in
this case the aspect ratio is only two, and larger volumes would
be required to reach a comparable clarity in the signal, although
the onset for the Polyakov loop at β = 5.50(5) is still appreciable.

The results for Rπ are collected in Fig. 5. Rπ has a clear jump
for βc = (4.65(5),5.05(5),5.20(5)) for Nt = (4,6,8). For Nt = 12,
the behaviour is again rather smooth. We have then searched for
an inflection point in Rπ by fitting to a hyperbolic tangent in sev-
eral intervals, varying the extrema of the integrations. The results
are reasonably stable in the errors. We will quote as a central value
the average of the fit results within different intervals, and for the
error, we will use the conservative estimate of half the difference
between the largest and smallest result, obtaining βc = 5.46(14).
All values of the (pseudo) critical lattice coupling βc

L are summa-
rized in Table 1.

These results can be analyzed and interpreted in terms of the
two-loop asymptotic scaling law. Let us consider the two-loop lat-
tice beta-function,

β(g) = −(
b0 g3 + b1 g5), (11)

b0 = 1

(4π)2

(
11C2[G]

3
− 4T [F ]N f

3

)
, (12)

b1 = 1

(4π)4

(
34(C2[G])2

3
−

(
20C2[G]

3
+ 4C2[F ]

)
T [F ]N f

)
,

(13)

for fundamental fermions in SU(Nc) (C2[G], C2[F ], T [F ]) = (Nc,

(N2
c −1)/(2Nc),1/2). From Eq. (11) we obtain the well known two-

loop asymptotic scaling law,

ΛLa(βL) =
(

2Ncb0

βL

)−b1/(2b2
0)

exp

[ −βL

4Ncb0

]
. (14)

Here ΛL is the so-called lattice Lambda-parameter, and βL =
2Nc/g2.
Fig. 5. The ratio of scalar and pseudo-scalar contributions to the susceptibility, de-
fined in Eq. (6) as a function of βL .

The above relation is valid in the massless limit. In the follow-
ing, we will use it to analyze results obtained at finite mass. This
assumes that the shift of the (pseudo) critical coupling induced
by a non-zero mass is smaller than other errors. This assumption
should ultimately be tested by performing simulations with differ-
ent masses and extrapolating to the chiral limit.

Eq. (10) can be written as

1

Nt
= Tc

ΛL
× (

ΛLa
(
βc

L

))
. (15)

The left-hand side is a given number, and we have obtained the
corresponding βc

L by lattice simulations. Hence, the quantity Tc/ΛL
on the right-hand side of Eq. (15) can be extracted, and must be
unique as long as the asymptotic scaling law (14) is verified for a
given βc

L .
If we use the lattice bare coupling to carry out the above pro-

gram, we notice appreciable scaling violations. Indeed, Eq. (14)
holds true up to non-universal scaling-violating terms. One possi-
bility is then to follow earlier work [35] and to parametrize scaling
violations as

ΛLa(βL) ≡ [
ΛLa(βL)

]
2loops

(
1 + h

[
ΛLa(βL)

]2
2loops

)
, (16)

where [ΛLa(βL)]2loops is defined by Eq. (14).
Alternatively, we can trade the bare lattice coupling gL for

the boosted coupling introduced in our previous work [5] g =√
2Nc/10 · gL. We will show below that this prescription leads to

a rather accurate two-loop scaling, equivalent to the enhancement
of the scaling behaviour obtained by considering Eq. (14). Our pre-
scription is similar in spirit to the Parisi–Lepage–Mackenzie [34]
boosted coupling. Our boosted coupling, however, cannot be de-
rived in (tadpole improved) perturbation theory. In our future
work, we plan to perform zero temperature measurements which
will allow an independent estimate of the lattice spacing, and a
complete discussions of scaling, and asymptotic scaling. Hopefully,
this will shed light on the reasons why our simple approach works
so well. At this stage, admittedly, it remains a heuristic, ad-hoc
prescription which effectively incorporates the scaling violations in
Table 1
Summary of the (pseudo) critical lattice couplings βc

L for the theories with N f = 0,4,6,8, am = 0.02 and varying Nt = 4,6,8,12. All results are obtained using the same
lattice action.

N f \Nt 4 6 8 12

0 – 7.88 ± 0.05 – –
4 – 5.89 ± 0.03 –
6 4.65 ± 0.05 5.05 ± 0.05 5.2 ± 0.05 5.45 ± 0.15
8 – 4.1125 ± 0.0125 – 4.34 ± 0.04
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Fig. 6. The thermal scaling behaviour of the (pseudo) critical lattice coupling βc
L .

Data points for ΛL a(βc
L ) at a given 1/Nt are obtained by using βc

L from Table 1 as
input for extracting ΛL a(βc

L ) in the two-loop expression (14). The dashed line is a
linear fit with zero intercept to the data with Nt > 4.

the range we have explored. This warning issued, we will continue
the discussion by using our boosted coupling.

In Fig. 6, we show the N−1
t –ΛLa(βc

L ) plot. The slope of the line
connecting the origin and the data points corresponds to Tc/ΛL.
The Nt = 6, 8, and 12 points have a common slope to a very good
approximation, while the Nt = 4 result falls on a smaller slope.

The latter is interpreted as a scaling violation effect due to the
use of a too small Nt . The existence of a common Tc/ΛL for Nt � 6
indicates that the data are consistent with the two-loop asymptotic
scaling (14), confirms the thermal nature of the transition and that
N f = 6 is outside the conformal window, as expected from a previ-
ous N f = 8 study [5]. A linear fit provides Tc/ΛL = 1.02(12)× 103,
which can be interpreted as the value in the continuum limit for
N f = 6 QCD. Note that this compares very well with the result ob-
tained by using βc

L obtained by Nt = 8 simulations. In the follow-
ing, we can then use it as a representative result for six flavours.

In order to have a more complete overview, we have performed
simulations for the theory with N f = 0 (quenched) and N f = 4,
only at Nt = 6. These theories are of course very well investigated,
however we have not found in the literature results for the same
action as ours. Table 1 shows a summary of our results for the
(pseudo) critical coupling βc

L of the chiral phase transition at finite
temperature for N f = 0, 4, 6, and 8 – the latter from Ref. [5].

5. Discussion

In Fig. 7, we display the (pseudo) critical values of the lattice
coupling gc = √

2Nc/β
c
L from Table 1 in the Miransky–Yamawaki

phase diagram.
Consider the Nt = 6 results: it is expected that an increasing

number of flavours favours chiral symmetry restoration. Indeed, we
find that, on a fixed lattice, the (pseudo) critical coupling increases
with N f in agreement with early studies and naive reasoning. The
precise dependence of the (pseudo) critical coupling on N f at fixed
Nt is not known. It is, however, amusing to note that the results
seem to be smoothly connected by an almost straight line: the
brown line in the plot is a linear fit to the data. Comparing the
trend for N f = 6 to the one for N f = 8, for varying Nt one can
infer a decreasing in magnitude (and small) step scaling function,
hence a walking behaviour. Further study is needed at larger N f ,
and by using the same action used for N f = 0–8, to confirm or
disprove it.

Next, we study the N f dependence of the ratio Tc/ΛL and re-
lated quantities. We recall that the simulations for N f = 4 and
Fig. 7. (Pseudo) critical values of the lattice coupling gc = √
2Nc/β

c
L for theories

with N f = 0, 4, 6, 8 and for several values of Nt in the Miransky–Yamawaki phase
diagram. The dashed (brown) line is a linear fit to the Nt = 6 results.

N f = 0 have been performed by using only Nt = 6. Hence, in these
two cases, the results will hold true barring strong scaling vio-
lations at Nt = 6. We note that in a previous lattice study with
improved staggered fermions [36], asymptotic scaling was indeed
observed using a boosted coupling for Nt � 6 for 0 � N f � 4.

Ideally, we would like to convert our results to Tc/ΛMS. Un-
fortunately, to our knowledge, the conversion from ΛL to ΛMS
for a generic number of flavours is only available for Wilson
fermions [37].

Here we consider a simplified procedure, aiming at capturing
at least the basic features induced by setting a UV scale. For this
purpose, we introduce a reference coupling βref

L and an associated
reference energy scale Λref. Then Eq. (14) is generalized as

Λref
(
βref

L

)
a(βL) =

(
b1

b2
0

βL + 2Ncb1/b0

βref
L + 2Ncb1/b0

)b1/(2b2
0)

× exp

[
−βL − βref

L

4Ncb0

]
. (17)

At the leading order of perturbation theory b1 → 0, ΛL and Λref
are related via

Λref

ΛL
= exp

[
βref

L

4Ncb0

]
. (18)

This equation would be analogous of the ratio ΛL/ΛMS derived in
[37] for Wilson fermions up to a further linear dependence on N f
in the numerator of the exponent. In a nutshell, the difference
originates from the fact that we are fixing a bare reference cou-
pling βref

L , which will be specified later. Notice that by construction
Λref reproduces the lattice Lambda-parameter ΛL in the limit

Λref
(
βref

L → 0
) = ΛL

(
1 +O

(
1/βc

L

))
. (19)

In summary, when trading ΛL for Λref, we are moving towards a
more UV scale.

Let us consider first Tc/ΛL. The values of Tc/ΛL are summa-
rized in Table 2, and plotted in Fig. 8. The ratio does not show a
significant N f dependence in the region 0 � N f � 4, it starts in-
creasing at N f = 6, and undergoes a rapid rise around N f = 8.
The chiral phase transition would happen when T becomes com-
parable to a typical energy scale Mχ = CΛL. The nearly constant
nature of Tc/ΛL in the region N f � 4 indicates that the role of
such energy scale is not significantly changed by the variation of
N f (see [38] for a detailed discussion of this point). In turn, the
increase of Tc/ΛL in the region N f � 6 might well imply that the
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Table 2
Tc/ΛL for several N f . Results are obtained by
using the same lattice action. For N f = 6, we
have used the Nt = 8 result as a representative
value. The values for N f = 8 are extracted from
Ref. [5].

N f Tc/ΛL

0 600 ± 34
4 620 ± 28
6 1000 ± 92
8 2098 ± 191

Fig. 8. The ratio Tc/ΛL , for N f = 0, 4, 6 and 8 and lattice bare mass am = 0.02.

chiral dynamics becomes different from the one for N f � 4. In-
deed, a recent lattice study [15] indicates that N f = 6 is close to
the threshold for preconformal dynamics.

We now consider Tc/Λref. The N f dependence of the ratio
R(N f ) ≡ (Tc/Λref)(N f ) is shown for several βref

L in Fig. 9, where
the vertical axis is normalized by R(0) = (Tc/Λref)(N f = 0) for
each βref

L . Tc/Λref is now a decreasing function of N f for a larger
βref

L , i.e. for a more UV reference scale Λref. This result is consis-
tent with the FRG study [19], where the decreasing Tc(N f ) has
been obtained by using the τ -lepton mass mτ as a common UV
reference scale with a common coupling αs(mτ ).

The Λref scale associated with a βref
L 	 β∗ where β∗ is evalu-

ated at the infrared fixed point should provide a UV scale well-
separated from the IR dynamics. If we assume the lower bound of
the conformal window to be Nc

f 
 12, the two-loop beta-function
leads to β∗ = −2Ncb1/b0 
 0.63. Indeed Fig. 9 shows that the de-
creasing nature of (Tc/Λref)(N f ) is still weak at βref

L = 1.0. In the
limit βref

L → 0, Tc/Λref reproduces Fig. 8, and the resultant in-
creasing feature should be attributed to the vanishing of ΛL due
to infrared dynamics. We also notice that βref

L must always be
smaller than β at the UV cutoff, βUV = βc

L (N f ). As shown in Ta-
ble 1, the lowest value of the (pseudo) critical coupling is given
by βc

L (N f = 8, Nt = 6) = 4.1125 ± 0.0125, hence we constrain our
analyses to βref

L � 4.0. In summary, Figs. 8 and 9 together show the
effects of shifting the reference scales from the IR to the UV.

With the use of a UV reference scale, we should observe the
predicted critical behaviour [19]

Tc(N f ) = K
∣∣N f − Nc

f

∣∣−1/θ
. (20)

By choosing the critical exponent θ in the range predicted by FRG:
1.1 < 1/|θ | < 2.5, our data are consistent with the values Nc

f =
9(1) for βref

L = 4.0 and Nc
f = 11(2) for βref

L = 2. We plan to extend
and refine this analysis in the future, and here we only notice a
reasonable qualitative behaviour.
Fig. 9. The N f dependence of R(N f )/R(0) for several finite fixed βref
L . Here,

R(N f ) ≡ (Tc/Λref)(N f ). The limit βref
L → 0 reproduces the results shown in Fig. 8

up to a renormalization factor and up to a corrections O(1/βc
L ).

6. Summary

We have investigated the chiral phase transition and its asymp-
totic scaling for N f = 6 colour SU(3) QCD by using lattice QCD
Monte Carlo simulations with improved staggered fermions. This
study provides an important ingredient to a broader project that
studies the emergence of a conformal window in the T –N f phase
diagram. We have determined the (pseudo) critical lattice coupling
βc

L for several lattice temporal extensions Nt . We have extracted
the dimensionless ratio Tc/ΛL (ΛL = lattice Lambda-parameter)
for the theory with N f = 6 using two-loop asymptotic scaling.
The analogous result for N f = 8 has been extracted from Ref. [5].
Tc/ΛL for N f = 0 and N f = 4 has been measured at fixed Nt = 6,
barring asymptotic scaling violations. Then we have discussed the
N f dependence of the ratios Tc/ΛL and Tc/Λref, where Λref is a
UV reference energy scale, related to ΛL as in Eq. (18).

We have observed that Tc/ΛL shows an increase in the region
N f = 6–8, while it is approximately constant in the region N f � 4.
We have discussed this qualitative change for N f � 6 and a possi-
ble relation with a preconformal phase. We repeat that all results
have been obtained by working at one value of the quark mass and
this is a potential weakness of our calculations.

The ratio Tc/Λref is a decreasing function of N f . This behaviour
is consistent with the result obtained in the functional renormal-
ization group analysis [19], where a common UV reference scale
was used to study the chiral phase boundary in the T –N f phase
diagram.

Next steps of the current project involve a scale setting at zero
temperature by measuring a common UV observable. It would also
be desirable to have the relation between ΛL and ΛMS for our
action.

This, together with a more extended set of flavour numbers,
will allow a quantitative analysis of the critical behaviour. We ex-
pect the resultant Tc–N f phase diagram to play an essential role
in the study of the conformal window.
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