
Effectivity on Continuous Functions in
Topological Spaces

Tanja Grubba1

University of Hagen
Hagen,Germany

Klaus Weihrauch2

University of Hagen
Hagen,Germany

Yatao Xu3

Nanjing University
Nanjing,China

Abstract

In this paper we investigate aspects of effectivity and computability on partial continuous functions in
topological spaces. We use the framework of TTE, where continuity and computability on finite and infinite
sequences of symbols are defined canonically and transferred to abstract sets by means of notations and
representations. We generalize the representations introduced in [14] for the Euclidean case to computable
T0-spaces and computably locally compact Hausdorff spaces respectively. We show their equivalence and
in particular, prove an effective version of the Stone-Weierstrass approximation theorem.

Keywords: Computable Analysis, TTE, Stone-Weierstrass approximation theorem, Representations of
Continuous Functions

1 Introduction

Computable Analysis connects Computability/Computational Complexity with
Analysis/Numerical Computation by combining concepts of approximation and of
computation. During the last 70 years various mutually non-equivalent models of
real number computation have been proposed (Chap. 9 in [14]). Among these

1 Email:tanja.grubba@fernuni-hagen.de
2 Email:klaus.weihrauch@fernuni-hagen.de
3 Email:yataoxu@gmail.com

Electronic Notes in Theoretical Computer Science 202 (2008) 237–254

1571-0661© 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.018
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82306644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:tanja.grubba@fernuni-hagen.de
mailto:klaus.weihrauch@fernuni-hagen.de
mailto:yataoxu@gmail.com
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

models the representation approach (Type-2 Theory of Effectivity, TTE) proposed
by Grzegorczyk and Lacombe [8,10] seems to be particularly realistic, flexible and
expressive. So far the study of computability on sets of points, sets (open, closed,
compact) and continuous functions has developed mainly bottom-up, i.e., from the
real numbers to Euclidean space and metric spaces [18,2,16,14,19,1,20]. But often
generalizations to more general spaces are needed (locally compact Hausdorff spaces
[4], non-metrizable spaces [17], second countable T0-spaces [11,7]).

In this article we investigate various representations of continuous functions in
a general setting. In Section 2, we sketch some basic notions on TTE and provide
some fundamental definitions and properties of representations of points and sets
in computable T0-spaces. In Section 3, we introduce some equivalent chacteriza-
tions of the representation η of the partial continuous functions on Cantor space.
In Section 4 we introduce three multi-representations (open-open, via realization
and via pointwise continuity) of the set of the partial continuous functions in com-
putable T0-spaces, we define the compact-open representation for total continuous
functions in computably locally compact spaces and show their equivalences. In the
last section we prove an effective version of the Stone-Weierstrass approximation
theorem. For a compact space K we construct a notation νK of a dense subset
DK⊆C(K) and a metric dK such that the metric space MK = (C(K), dK , DK , νK)
is semi-computable for κ-computable K, computable for κmc-computable K and
the Cauchy representation is equivalent to the open-open representation.

2 Preliminaries

This section consists of two parts. In Section 2.1, we sketch some concepts of TTE.
In Section 2.2, we introduce computable T0-spaces and the underlying representa-
tions of points and sets.

2.1 Type-2 Theory of Effectivity (TTE)

In this article we use the framework of TTE (Type-2 theory of effectivity). For
more details see [14]. We assume that Σ is a fixed finite alphabet containing the
symbols 0 and 1 and consider computable functions on finite and infinite sequences
of symbols Σ∗ and Σω, respectively, which can be defined, for example, by Type-2
machines, i.e., Turing machines reading from and writing on finite or infinite tapes.
We use the “wrapping function” ι : Σ∗ → Σ∗, ι(a1a2 . . . ak) := 110a10a20 . . . ak011
for coding words such that ι(u) and ι(v) cannot overlap properly. We consider
standard functions for finite or countable tupling on Σ∗ and Σω denoted by 〈 · 〉 .
By “�” we denote the subword relation. For p ∈ Σω let p<i ∈ Σ∗ be the prefix of p

of length i ∈ N. We write x � y if x is a prefix of y and x � y if x is a proper prefix
of y.

We use the concept of multi-functions. A multi-valued partial function, or multi-
function for short, from A to B is a triple f = (A, B,Rf) such that Rf⊆A×B (the
graph of f). Usually we will denote a multi-function f from A to B by f : ⊆A ⇒ B.
For X⊆A let f [X] := {b ∈ B | (∃a ∈ X)(a, b) ∈ Rf} and for a ∈ A define

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254238

f(a) := f [{a}]. Notice that f is well-defined by the values f(a)⊆B for all a ∈ A.
We define dom(f) := {a ∈ A | f(a) 	= ∅}. In the applications we have in mind,
for a multi-function f : ⊆A ⇒ B, f(a) is interpreted as the set of all results which
are “acceptable” on input a ∈ A. Any concrete computation will produce on input
a ∈ dom(f) some element b ∈ f(a), but usually there is no method to select a
specific one. In accordance with this interpretation the “functional” composition
g ◦ f : ⊆A ⇒ D of f : ⊆A ⇒ B and g : ⊆C ⇒ D is defined by dom(g ◦ f) := {a ∈
A | a ∈ dom(f) and f(a)⊆dom(g)} and g ◦ f(a) := g[f(a)] (in contrast to “non-
deterministic” or “relational” composition gf defined by g f(a) := g[f(a)] for all
a ∈ A). A partial function from X to Y , denoted by f : ⊆X → Y , is a single-valued
multi-function.

Notations ν : ⊆ Σ∗ → M and representations δ : ⊆ Σω → M are used for
introducing relative continuity and computability on “abstract” sets M . For a
representation δ : ⊆Σω → M , if δ(p) = x then the point x ∈ M can be identified by
the “name” p ∈ Σω. We will have applications where a sequence p ∈ Σω contains
information about a point x, which is sufficient for some computation, although p

does not identify x. We arrive at the concept of multi-notation ν : ⊆Σ∗ ⇒ M and
multi-representation δ : ⊆Σω ⇒ M . A multi-representation can be considered as a
naming system for the points of a set M where each name can encode many points.
It can be interpreted also as a naming system of an attribute on M . We generalize the
concept of realization of a function or multi-function w.r.t. (single-valued) naming
systems [14] to “naming systems”, i.e., multi-notations or multi-representations, as
follows [15]:

Definition 2.1 For naming systems γi : ⊆ Yi ⇒ Mi (i = 0, . . . , k), abbreviate
Y := Y1 × . . .× Yk, M := M1 × . . .×Mk, and γ(y1, . . . , yk) := γ1(y1)× . . .× γk(yk).
Then a function h : ⊆Y → Y0 is a (γ, γ0)-realization of a multi-function f : ⊆M ⇒
M0, iff for all p ∈ Y and x ∈ M ,

x ∈ γ(p) ∩ dom(f) =⇒ f(x) ∩ γ0 ◦ h(p) 	= ∅ .(1)

The multi-function f is
– (γ, γ0)-continuous, if it has a continuous (γ, γ0)-realization,
– (γ, γ0)-computable, if it has a computable (γ, γ0)-realization.
(We will say (γ1, . . . γk, γ0)-computable instead of (γ, γ0)-computable, etc.)

Fig. 1 illustrates the definition. Whenever p is a γ-name of x ∈ dom(f), then
h(p) is a γ0-name of some y ∈ f(x).

We introduce reduction and equivalence [13,12].

Definition 2.2 [reducibility, equivalence] For multi-representations γ : ⊆Y ⇒ M

and γ′ : ⊆ Y ′ ⇒ M ′ (Y, Y ′ ∈ {Σ∗, Σω}), let γ ≤t γ′ (t-reducible) and γ ≤ γ′

(reducible), iff the identity id : a �→ a (a ∈ M) is (γ, γ′)-continuous and (γ, γ′)-
computable, respectively. Define t-equivalence and equivalence by
γ ≡t γ′ ⇐⇒ (γ ≤t γ′ and γ′ ≤t γ) and γ ≡ γ′ ⇐⇒ (γ ≤ γ′ and γ′ ≤ γ),
respectively.

Two representations induce the same continuity or computability, iff they are

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 239

�

�

�

�

����������

�����������

�

�
�
�
�
�
�
�
�	

�

�

�

�
�
�
�
�
�
�
�	

�

p h(p)

x ∃ y ∈ f(x) ∩ γ0 ◦ h(p)

h

f

γ γ0

Fig. 1. h(p) is a name of some y ∈ f(x), if p is a name of x ∈ dom(f).

t-equivalent or equivalent, respectively. If multi-functions on represented sets have
realizations, then their composition is realized by the composition of the realiza-
tions. In particular, the computable multi-functions on represented sets are closed
under composition. Much more generally, the computable multi-functions on multi-
represented sets are closed under flowchart programming with indirect addressing
[15]. This result allows convenient informal construction of new computable func-
tions on multi-represented sets from given ones.

For multi-representations δ : ⊆ Σω ⇒ M and δ′ : ⊆ Σω ⇒ M ′ define [δ, δ′] :
⊆ Σω ⇒ M × M ′ by [δ, δ′]〈p, p′〉 := δ(p) × δ(p′), δ ∧ δ : ⊆ Σω ⇒ M ∩ M ′ by
δ ∧ δ′〈p, p′〉 := δ(p) ∩ δ′(p′) and [δ]ω : ⊆Σω ⇒ Mω by [δ]ω〈p0, p1, p2, . . .〉 := (δ(p0) ×
δ(p1) × δ(p2) × . . .) .

Let ρ be the standard representation of R. A ρ<-name represents a real number
by lower rational bounds. ρ<(p) = x, if p is a list of all rational numbers a < x and
ηab a standard representation of F ab, the partial continuous functions f : ⊆Σa → Σb

with open or Gδ domain, if b = ∗ or b = ω respectively, with properties utm(ηab)
and smn(ηab).

A computable metric space [13,14] is a tuple M = (M,d, A, α) such that (M, d)
is a metric space and α : ⊆ Σ∗ → A is a notation with recursive domain of a
(countable) dense subset A⊆M such that the distance on A, (a, b) �→ d(a, b), is
(α, α, ρ)–computable. If dK is (νK , νK , ρ>)-computable, then M is called semi-
computable. The canonical representation of a semi-computable metric space is the
Cauchy representaion defined by δC(p) = x, iff p = ι(u0)ι(u1)ι(u2) . . . such that
(∀i)d(x, α(ui)) ≤ 2−i. In particular, the elments a ∈ A are δC–computable.

2.2 Representations of Points and Sets in Computable T0-spaces

In this Section we introduce computable T0-spaces together with some fundamental
representations of points and sets ([9]).

A topological space X = (X, τ) is a T0-space, if for all x, y ∈ X such that
x 	= y, there is an open set O ∈ τ such that x ∈ O ⇐⇒ y 	∈ O. In a T0-space,
every point can be identified by the set of its neighborhoods O ∈ τ . X is called
second-countable, if it has a countable base [5].

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254240

In the following we consider only second countable T0-spaces. For introducing
concepts of effectivity we assume that some notation ν of a base β with recursive
domain is given. The notation is partial as well as in many applications.

Definition 2.3 [computable T0-space]

A computable T0-space is a tuple X = (X, τ, β, ν) such that (X, τ) is a second
countable T0-space and ν : ⊆Σ∗ → β is a notation of a base β of τ with recursive
domain, U 	= ∅ for U ∈ β and X has computable intersection: there is a computable
function h : ⊆Σ∗ × Σ∗ → Σω such that for all u, v ∈ dom(ν),

ν(u) ∩ ν(v) =
⋃

{ν(w) | w ∈ dom(ν) and ι(w) � h(u, v)} .(2)

Call two computable T0-spaces X1 = (X, τ, β1, ν1) and X2 = (X, τ, β2, ν2) re-
cursively related, if and only if there are computable functions g, g′ : ⊆ Σ∗ → Σω

such that

ν1(u) =
⋃

ι(w)�g(u)

ν2(w) and ν2(v) =
⋃

ι(w)�g′(v)

ν1(w) .(3)

We are interested in computability concepts which are “robust”, that is, which
do not change if a space is replaced by a recursively related one.

In the following let X = (X, τ, β, ν) be a computable T0-space. Now we introduce
the standard representation of X.

Definition 2.4 [standard representation δ of X] Define the standard representation
δ : ⊆Σω → X as follows: δ(p) = x iff

• u ∈ dom(ν) if ι(u) � p

• {u ∈ dom(ν) | x ∈ ν(u)} = {u | ι(u) � p}.
A δ-name p of an element x ∈ X is a list of all words u such that x ∈ ν(u).

The definition of δ corresponds to the definition of δ′S in Lemma 3.2.3 of [14], in
particular, δ is admissible with final topology τ (Sec. 3.2 in [14]).

Definition 2.5 [union representation of open and closed sets]

(i) Define the union representation θ : ⊆Σω → τ of the set of open subsets by

dom(θ) := {q ∈ Σω|u ∈ dom(ν) if ι(u) � q} and θ(p) :=
⋃

ι(u)�p

ν(u) .

(ii) Define the union representation ψ : ⊆Σω → τ c of the set of closed subsets by
ψ(p) := X \ θ(p) .

Thus, θ(p) is the union of all ν(u) such that u is listed by p. The union represen-
tation of the closed sets is defined by the union representation of their complements.

For technical reasons we define a notation ν∗ : ⊆Σ∗ → {M⊆β | M is finite} of
all finite sets of base elements by dom(ν∗) := {w ∈ Σ∗ | u ∈ dom(ν) if ι(u) � w}
and

ν∗(w) := {ν(u) | ι(u) � w}

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 241

and a notation θ∗ : ⊆Σ∗ → τ fin of all open sets that can be written as the union of
finitely many base elements by

θ∗(w) :=
⋃

ν∗(w).

The representations δ and θ are not only very natural, but they can be charac-
terized up to equivalence as maximal elements among representations for which the
element relation is open or r.e., respectively. Furthermore “O 	= ∅” is θ-r.e., count-
able union on τ is ([θ]ω, θ)-computable and intersection is (θ, θ, θ)-computable. Also
finite intersection on the base is computable:⋂

ν∗ ≤ θ .(4)

where
⋂

ν∗ is a notation of the set of all open sets which equal to an intersection
of finitely many base elements ([9]). Since w ∈ Σ∗ is a prefix of some p ∈ dom(δ) iff⋂

ν∗(w) 	= ∅, the set of all finite prefixes of δ-names

P := {w ∈ Σ∗ | (∃ p ∈ dom(δ))w � p} is r.e. .(5)

Definition 2.6 [inner representation of closed sets] Define the inner representation
ψ< : ⊆Σω → τc as follows: ψ<(p) = A iff

• u ∈ dom(ν) if ι(u) � p,
• {w | ι(w) � p} = {w | ν(w) ∩ A 	= ∅} .

A topological space is a T2-space (also called Hausdorff space), if for all x, y ∈ X

such that x 	= y, there are disjoint open sets O,O′ ∈ τ such that x ∈ O and y ∈ O′.
A subset K ∈ X of a Hausdorff space (X, τ) is compact, if every open cover of X

by elements of the base has a finite subcover. Let

K(X) := {K⊆X | K compact}
denote the set of all compact subsets of a Hausdorff space (X, τ). We write K
instead of K(X), if there is no need to specify the space or if it’s obvious which
space we refer to.

The following definitions are generalizations of the cover representations of the
compact sets in R introduced in [14], see also [7] and [9].

Definition 2.7 [representations of compact sets] Let X = (X, τ, β, ν) be a com-
putable T0-space and let (X, τ) be a Hausdorff space.

(i) Define the cover representation κ : ⊆Σω → K as follows: K = κ(p) iff
• w ∈ dom(θ∗) if ι(w) � p,
• {w ∈ Σ∗ | ι(w) � p} = {w ∈ Σ∗ | K⊆θ∗(w)}.

(ii) Define the minimal cover representation κmc : ⊆ Σω → K as follows: K =
κmc(p) iff
• w ∈ dom(θ∗) if ι(w) � p,
• {w ∈ Σ∗ | ι(w) � p} = {w ∈ Σ∗ | K⊆θ∗(w) and (∀ι(u) � w) ν(u) ∩ K 	= ∅}.

For compact K and open O, “K⊆O” is (κ, θ)-r.e., on compact sets, union
is (κ, κ, κ)-computable and countable intersection is ([κ]ω, κ)-computable and for

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254242

closed A and compact K the mapping (A, K) → A ∩ K is (ψ, κ, κ)-computable.
Finally, κmc ≡ κ ∧ ψ<.

Next we introduce an effective version of the Hausdorff property and an effective
version of locally compactness.

Definition 2.8 [computably Hausdorff] A computable T0-space X = (X, τ, β, ν) is
called computably Hausdorff if there exists an r.e. set H⊆dom(ν) × dom(ν) such
that

(∀(u, v) ∈ H) ν(u) ∩ ν(v) = ∅,(6)
(∀x, y ∈ X with x 	= y) (∃(u, v) ∈ H) x ∈ ν(u) ∧ y ∈ ν(v).(7)

It can be shown that X is computably Hausdorff iff

{(x, y) ∈ X × X | x 	= y} is (δ, δ) − r.e..

Furthermore, for computably Hausdorff spaces it is κ ≤ ψ.
A topological space (X, τ) is called locally compact, if for every point x ∈ X,

there exists a neighborhood O of x such that the closure Ō is compact. Next we
introduce an effective version of locally compactness by means of the representation
κ of the compact subsets of a Hausdorff space.

Definition 2.9 [computably locally compact] A computable T0-space X′ =
(X, τ, β′, ν′) is called computably locally compact if (X, τ) is a Hausdorff space and
there is some computable T0-space X = (X, τ, β, ν) such that CLS : β → K(X)
defined by CLS(U) := Ū is (ν, κ)-computable and X′ and X are recursively related.

The definition of computably locally compactness ensures its robustness. In the
following if X = (X, τ, β, ν) is a computably locally compact space, we suppose CLS
to be (ν, κ)-computable (without changing the base or its notation).

If X is a computably locally compact space, then it is locally compact since the
closure of each base element is compact. Therefore X is Tychonoff, thus regular
(and a Hausdorff space) and even metrizable since X is second countable ([5]).

For computably locally compact spaces, “Ū⊆O” is (ν, θ)-r.e., “Ō⊆O′” is (θ∗, θ)-
r.e and the multi-function F : ⊆K × τ ⇒ τ defined by

U ∈ F(K, O) : ⇐⇒ K⊆U⊆Ū⊆O

is (κ, θ, θ∗)-computable. For more details see [9].

3 Representations of Fωω

In [14], Def. 2.3.10 a representation ηωω : Σω → Fωω of the set Fωω of the partial
continuous functions f : ⊆Σω → Σω with Gδ-domain (i.e., dom(f) is a countable
intersection of open sets) is introduced, which can be considered as a Type-2 version
of an “admissible Gödel numbering” of the computable number functions. In the
following let η := ηωω. Since its definition is too abstract for some applications we
introduce other equivalent ones.

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 243

Definition 3.1 [representations of Fωω]

(i) Let M be a Type-2 machine which on input 〈p, q〉, p, q ∈ Σω works in stages
n = 0, 1, . . . as follows: In Stage 0 it does nothing. For n ≥ 1 let zn−1 be
the word on the output tape before Stage n. Then in Stage n the machine M
searches for the first subword ι〈y, z〉, y, z ∈ Σ∗, of p with y � q and zn � z and
extends zn−1 on the output tape to z. (If there are no such words y, z then the
machine remains in Stage n forever) Define a representation η̄ : Σω → Fωω by
η̄p(q) := fM 〈p, q〉.

(ii) Let η′ be η̄ restricted to those r ∈ Σω listing some consistent set V ⊆Σω × Σω,
where consistent means(

(u, v) ∈ V ∧ (u′, v′) ∈ V ∧ u � u′
)

=⇒ v � v′

(iii) Let η̂ be η̄ restricted to those r ∈ Σω that list the graph of some monotone
total function h : Σ∗ → Σ∗.

By [14], Thm. 2.3.7, f ∈ Fωω iff there is some monotone function h : Σ∗ → Σ∗

such that f = hω, i.e., f(p) = q ⇐⇒ q = sup{h(w) | w � p}. If p lists the graph
of some monotone total function h : Σ∗ → Σ∗, then η̄r = hω.

Lemma 3.2 η ≡ η̂ ≡ η′ ≡ η̄.

Proof of Lemma 3.2 In the following let ξx := ξωω
x : ⊆ Σω → Σω be the

function computed by the Type-2 machine with canonical code x ∈ Σ∗.
η̂ ≤ η′: η̂p = η′p for all p ∈ dom(η̂).

η′ ≤ η̄: η′p = η̄p for all p ∈ dom(η′).
η̄ ≤ η: Let x be a codeword for the machine M defining η̄, thus fM = ξx, then

p → 〈x, p〉
is a computable translation from η̄ to η:

η̄p(q) = fM 〈p, q〉 = ξx〈p, q〉 = η〈x,p〉(q).

η ≤ η̂: We define a Type-2 machine N such that fN translates η to η̂. On input
〈x, p〉 with x ∈ Σ∗, p ∈ Σω N works in stages k = 0, 1, . . . as follows: Let vk ∈
Σ∗ be the output of the universal machine U of ξ after |νΣ∗(k)| steps on input
(x, 〈p, νΣ∗(k)0ω〉). Then on stage k N writes ι〈νΣ∗(k), vk〉.
fN is total and fN 〈x, p〉 lists the graph of some monotone total function.

η〈x,p〉(q) = η̂fN 〈x,p〉(q) for all q ∈ Σω :

Let η〈x,p〉(q) = s. If v � s there exist t, k ∈ N such that U es v after t steps on
input (x, 〈p, νΣ∗(k)0ω〉) with t = |νΣ∗(k)| and νΣ∗(k) � q . Therefore ι〈νΣ∗(k), v〉 is
a subword of fN 〈x, p〉 and v � η̂fN 〈x,p〉(q). If q 	∈ dom(η〈x,p〉), then the output of
the universal machine U of ξ on input (x, 〈p, q〉) is not infinite. By definition of N
there exist n ∈ N and v ∈ Σ∗ such that

ι〈u, v′〉 � fN 〈x, p〉 =⇒ v′ = v

for all u ∈ Σ∗ with u � q and |u| ≥ n. Therefore q 	∈ dom(η̂fN 〈x,p〉). �

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254244

4 Representations of Functions in Computable T0-
spaces

For computable T0-spaces X and X′ let

C(X,Y) := {f : X → Y | f continuous} and(8)
Cp(X,Y) := {f : ⊆X → Y | f continuous}(9)

be the set of all continuous total and partial functions, respectively, from X to
Y . We will introduce three representations of Cp(X,Y) and compare them w.r.t.
reducibility. The following representation has already been used in [13] (only for
metric spaces) and in [7].

Definition 4.1 [open-open multi-representation] Let X and X′ be computable T0-
spaces. Define the multi-representation δoo : ⊆Σω ⇒ Cp(X,X′) by

(r ∈ dom(δoo) and ι〈u, v〉 � r) =⇒ (u, v) ∈ dom(ν) × dom(ν ′) ,(10)

f ∈ δoo(r) : ⇐⇒ (∀ v ∈ dom(ν ′))f−1[ν ′(v)] =
⋃

ι〈u,v〉�r

ν(u) ∩ dom(f)(11)

Notice that every continuous function f : ⊆X → Y has at least one δoo-name and
that every δoo-name p of f is also a δoo-name of each restriction of f .

Lemma 4.2 (robustness of δoo) Suppose X = (X, τ, β, ν),X′ = (X, τ, β′, ν′)
Y = (Y, σ, α, μ),Y′ = (Y, σ, α′, μ′) are computable T0-spaces with open-open multi-
representation δoo of Cp(X,Y) and δ′oo of Cp(X′,Y′) respectively.

(i) δoo ≡ δ′oo, if X and X′ are recursively related and Y and Y′ are recursively
related.

(ii) δoo ≡t δ′oo

Proof:

(i) We show δoo ≤ δ′oo. Suppose f ∈ δoo(r), then

f−1[μ′(v′)] = f−1[
⋃

(v,v′)∈B′
μ(v)]

=
⋃

(v,v′)∈B′
f−1[μ(v)]

=
⋃

(v,v′)∈B′

⋃
ι〈u,v〉�r ν(u) ∩ dom(f)

=
⋃

(v,v′)∈B′

⋃
ι〈u,v〉�r

⋃
(u,u′)∈A

ν ′(u′) ∩ dom(f)

holds for all v′ ∈ dom(μ′) and u′ ∈ dom(ν ′). There is a Type-2 machine that

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 245

on input r computes a sequence s such that ι〈u′, v′〉 � s iff

(∃u, v)(ι〈u, v〉 � r ∧ (u, u′) ∈ A′ ∧ (v, v′) ∈ B′).

For δ′oo ≤ δoo a similar argument holds.

(ii) For δoo ≤t δ′oo use A and B′ of the previous proof as oracles.

�

For a continuous function the preimage of an open set is open. We prove a fully
computable version for partial functions.

Lemma 4.3 (pre-image of open sets) Let X1 and X2 be computable T0-spaces.
Then PI : Cp(X1,X2) × τ2 ⇒ τ1 defined by

U ∈ PI(f, V) : ⇐⇒ U ∩ dom(f) = f−1(V)

is (δoo, θ2, θ1)-computable.

Proof: Suppose f ∈ δoo(p) and V = θ2(q), then

f−1[θ2(q)] = f−1[
⋃

ι(v)�q

ν2(v)]

=
⋃

ι(v)�q

f−1[ν2(v)]

=
⋃

ι(v)�q

⋃
ι〈u,v〉�p

ν1(u) ∩ dom(f).

There is a Type-2 machine that on input p and q computes a sequence r such that
ι(u) � r iff

(∃v)(ι(v) � q ∧ ι〈u, v〉 � p).

�

The next lemma is a generalization of [14, Lemma 6.2.4.4]. Notice that we
consider only total continuous functions f : X1 → X2.

Lemma 4.4 (image of closed sets) Let X1 and X2 be computable T0-spaces.
Then IM : C(X1,X2) × τ c

1 → τ c
2 defined by IM(f, A) := f [A] is (δoo, ψ

<
1 , ψ<

2)-
computable.

Proof: Let f = δoo(p) and A = ψ<
1 (q). Then

ν2(v) ∩ f [A] 	= ∅ ⇐⇒ ν2(v) ∩ f [A] 	= ∅
⇐⇒ f−1[ν2(v)] ∩ A 	= ∅
⇐⇒ ⋃

ι〈u,v〉�p

ν1(u) ∩ A 	= ∅.

There is a Type-2 machine that on input p and q computes a sequence r such that

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254246

ι(v) � r iff

(∃u)(ι(u) � q ∧ ι〈u, v〉 � p).

�

Since the standard representation δ of a computable T0-space is admissible, by
the main theorem ([14], Thm. 3.2.11) a partial function f : ⊆ X → X ′ between
computable T0-spaces is topological continuous iff it has a continuous realization
f ∈ Fωω. In the following any η-name of a realization of f is a name of f .

Definition 4.5 [multi-representation via realization] Let X and X′ be computable
T0-spaces with standard representations δ and δ′ respectively. Define the multi-
representation δ→ : ⊆Σω ⇒ Cp(X,X′) by

f ∈ δ→(r) : ⇐⇒
(
f ◦ δ(p) = δ′ ◦ ηr(p) whenever δ(p) ∈ dom(f)

)

where η is the standard representation of Fωω (Def. 2.3.10 in [14]).

� �

�

�
� �

�

�

Σω Σω

X X ′

ηr

f

δ δ′

p ηr(p)

x f(x)

ηr

f

δ δ′
f ◦ δ(p)

=
δ′ ◦ ηr(p)

Fig. 2. f ∈ δ→(r)

The representation η can be replaced by any equivalent one. Notice that the
restrictions of δ→ and δoo to the set C(X,X′) of the total continuous functions are
single-valued representations.

Theorem 4.6 (equivalence) δ→ ≡ δoo, if X,X′ are computable T0-spaces.

Proof: δ→ ≤ δoo:
Let h : ⊆Σ∗ → Σω be a computable translation from

⋂
ν∗ to θ (4), let P be the

r.e. set of all prefixes of elements in dom(δ) (5) and let U be a universal machine
of ηωω.

Suppose ηp realizes f and δ(p) ∈ dom(f). If the machine U on input (p, q)
after some t steps has read the prefix y of q and has written the word z, then
f [

⋂
ν∗(y)]⊆ν′(v) whenever ι(v) � z. Since the set P is r.e. and

⋂
ν∗ ≤ θ for every

v we can list words u0, u1, . . . such that f−1[ν ′(v)] = dom(f) ∩ ⋃
i ν(ui). More

precisely, there is a Type-2 machine M that on input p computes a sequence r such
that ι〈u, v〉 � r iff for some t ∈ N and some y ∈ P

– on input (p, y0ω) in t steps U reads exactly y

from the 2nd input tape and writes z on the output tape and
– ι(u) � h(y) and ι(v) � z.

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 247

Now let f ∈ δ(p) and r = fM (p). Suppose ι〈u, v〉 � r. Then for some t, y the
above conditions hold true. We can conclude f [ν(u)]⊆ν ′(v), hence

dom(f) ∩
⋃

ι〈u,v〉�r

ν(u)⊆f−1[ν ′(v)].

On the other hand suppose x ∈ f−1[ν ′(v)]. Then x ∈ dom(f) and δ(q) = x for
some q ∈ dom(δ). There are some t, y such that the machine U on input (p, q) in t

steps has written ι(v) (somewhere on its output tape) and reads exactly the prefix
y form the 2nd input tape. Then the machine U also on input (p, y0ω) in t steps
writes ι(v) and reads exactly the prefix y form the 2nd input tape. Since

x = δ(q) ∈
⋂

{ν(w) | ι(w) � y} =
⋃

{ν(w) | ι(w) � h(y)} ,

there is some u such that x ∈ ν(u) and ι(u) � h(y), hence some u such that ι〈u, v〉
is listed by M on input p. Therefore,

f−1[ν ′(v)]⊆dom(f) ∩
⋃

{ν(u) | ι〈u, v〉 � r .

This shows that the machine M translates δ→ δoo.
δoo ≤ δ→: There is a Type-2 machine M , which on input (p, q) ∈ Σω × Σω

computes a list of all ι(v) such that for some u, ι〈u, v〉 � p and ι(u) � q.
If f ∈ δoo(p) and x = δ(q) ∈ dom(f) then f(x) = δ′(fM (p, q)). By the smn-

theorem for η there is a computable function h : Σω → Σω such that fM (p, q) =
ηh(p)(q). The function h translates δoo to δ→. �

For all f ∈ Cp(X,X′) the following holds:

(∀x ∈ dom(f))(∀V ∈ β′, f(x) ∈ V)(∃U ∈ β) (x ∈ U ∧ f [U] ⊆ V).

The open set U does not depend continuously on x and V , there is, however, a
continuous multi-function.

Lemma 4.7 In general, for f ∈ Cp(X,X′) there is no continuous (single-valued)
function f̂ : ⊆X × β′ → β with

dom(f̂) := {(x, V) ∈ X × β′ | x ∈ dom(f) ∧ f(x) ∈ V }(12)

(∀(x, V) ∈ dom(f̂))[x ∈ f̂(x, V) ∧ f [f̂(x, V)] ⊆ V](13)

Proof: Let X = X′ := (R, τR, β, ν) where ν is a standard notation of all rational
intervals. Let f(x) := x3 and suppose f̂ : ⊆R × Cb(1) → Cb(1) such that (12,13)
is (δ, ν, ν)-continuous. Then g : ⊆ R → β defined by g(x) := f̂(x, (0; 2)) is (ρ, ν)-
continuous and therefore constant on its domain (0; 3

√
2) (Lemma 4.3.15 in [14]).

Therefore, there are rational numbers a, b such that f̂(x, (0; 2)) = (a; b) for all
x ∈ (0; 3

√
2). Then (0; 3

√
2)⊆(a; b) and (a3; b3)⊆(0; 2). This cannot be true for

ratinal numbers a, b. �

Lemma 4.8 Let X,X′ be computable T0-spaces. For f ∈ Cp(X,X′) define f̂ :
⊆X × β′ ⇒ β by

dom(f̂) := {(x, V) ∈ X × β′ | x ∈ dom(f) ∧ f(x) ∈ V }(14)

U ∈ f̂(x, V) : ⇐⇒ x ∈ U ∧ f [U] ⊆ V.(15)

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254248

Then f̂ is (δ, ν ′, ν)-continuous.

Proof: Consider the oracle-machine M that on input 〈p, w〉 ∈ Σω and oracle
o ∈ Σω, where ι〈u, v〉 � o ⇐⇒ f [ν(u)] ⊆ ν ′(v) in stage k works as follows:
if ι〈u, w〉�o<k and ι(u)�p<k then M writes u. Then fM is a continuous realization
of f̂ . �

Definition 4.9 [multi-representation via pointwise continuity] Let X and X′ be
computable T0-spaces and let δ be the standard representation of X. Define the
pointwise multi-representation δ̂→ : ⊆Σω ⇒ Cp(X,X′) by f ∈ δ̂→(r), iff

ν ◦ ηr〈p, w〉 ∈ f̂ ◦ [δ, ν ′]〈p, w〉, whenever (δ(p), ν ′(w)) ∈ dom(f̂)

or equivalently,

(δ(p) ∈ ν ◦ ηr〈p, w〉 and f [ν ◦ ηr〈p, w〉]⊆ν ′(w) for δ(p) ∈ ν ′(w) .

Theorem 4.10 (equivalence) δ̂→ ≡ δoo.

Proof. δoo ≤ δ̂→: Let f ∈ δoo(r) and let t be a codeword for the oracle-machine
M described in the proof of Lemma 4.8, thus fM = ξt. Then

r → 〈t, r〉
is a computable translation from δoo to δ̂→:

fM 〈r, 〈p, w〉〉 = ξt〈r, 〈p, w〉〉 = η〈t,r〉〈p, w〉.
δ̂→ ≤ δoo: Let f ∈ δ̂→(r), where r lists the graph of some monoton function
h : Σ∗ → Σ∗. The machine M works on stage k as follows: if ι〈x, y〉� r<k and there
exist subwords ι(v) � x ∧ ι(u) � y such that ν(v) ∈ dom(ν ′) ∧ ν(u) ∈ dom(ν) then
M writes ι〈u, v〉. �

Next we define a compact-open representation of the set of total continuous
functions.

Definition 4.11 [compact-open representation] Let X be a computably locally
compact space and X′ a computable T0-space. Define the compact-open repre-
sentation δco : ⊆Σω → C(X,X′) by

δco(p) := f ⇐⇒ {(u, v)|ι〈u, v〉 � p} = {(u, v)|f [ν(u)] ⊆ ν′(v)}
Theorem 4.12 (equivalence) Let X be a computably locally compact space and
X′ a computable T0-space. Restricted to C(X,X′) the following equivalences hold
true

δoo ≡ δco ≡ δ→.

Proof.

(i) δoo ≤ δco :

Let f = δoo(p). It is

f [ν(u)] ⊆ ν′(v) ⇐⇒ ν(u) ⊆ f−1[ν ′(v)] =
⋃

ι〈uv ,v〉�p

ν(uv)

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 249

There is a Type-2 machine that on input p computes a sequence r such that
ι〈u, v〉 � r iff

(∃w)(∀ι(uv) � w)(ι〈uv, v〉 � p ∧ ι(w) � q)

where q is a κ-name of ν(u).

(ii) δco ≤ δ→ :

Let f = δco(p) and δ(q) = x. It is

f(x) ∈ ν ′(v) ⇐⇒ (∃u)(x ∈ ν(u) and f [ν(u)]⊆ν′(v))

as X is regular.
There is a Type-2 machine M that on input p and q computes a sequence r

such that ι(v) � r iff

(∃u)(ι(u) � q ∧ ι〈u, v〉 � p) .

By smn-Theorem there is a function r such that fM (p, q) = ηr(p)(q), that is r

translates δco to δ→.

(iii) δ→ ≤ δoo :

Since δ→ ≡ δoo holds for computable T0-spaces, δ→ ≤ δoo holds for com-
putably locally compact spaces obviously.

�

5 Stone-Weierstrass Representation

By the Weierstrass approximation theorem the set of polynomial functions f :
[0; 1] → R is dense in the space C[0; 1] of real valued continuous functions on the
unit interval with the metric d(f, g) := maxx∈[0;1] |f(x)− g(x)|. Obviously, also the
countable set Pn of polynomial functions with rational coefficients is dense in the
space C[0; 1].

For a natural notation νPn of the set Pn, X := (C[0; 1], d, Pn, νPn) is a com-
putable metric space [14, Section 8.1]. By [14, Section 6.1] the Cauchy representa-
tion δ

[0;1]
C of X is equivalent to the representation [ρ → ρ][0;1] (where ρ is the stadard

representation of the real numbers). This is a computable version of the Weierstrass
approximation theorem.

In this section we prove a computable version of the more general Stone-
Weierstrass approximation theorem for compact Hausdorff spaces. A set A of
real-valued functions on a set X is an algebra if f · g ∈ A and af + bg ∈ A for
all a, b ∈ R, whenever f, g ∈ A. A separates the points of X, if for all x, y ∈ X such
that x 	= y there is some function f ∈ A such that f(x) 	= g(x)

Theorem 5.1 (Stone-Weierstrass [3]) Let X be a compact Hausdorff space. If
A is an algebra of continuous real-valued functions on X that contains the constant
functions and separates the points of X, then A is dense in the space C(X) of
continuous real-valued functions on X with metric d(f, g) = maxx∈X |f(x) − g(x)|.

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254250

In the following let X = (X, τ, β, ν) be a computable T0-space that is computably
Hausdorff and computably locally compact with standard representations δ, θ, ψ

and κ of the points, the open sets, the closed sets and the compact sets, respectively.
Furthermore, let κmc be the minimal-cover representation of the compact sets. The
support supp(f) of a function f : X → R is the closure of {x|f(x) 	= 0}.

First, we show that there is a computable sequence of continuous functions with
compact support, which separates the points of X.

Lemma 5.2 There is a sequence (ei)i of continuous functions ei : X → R such
that

(i) {ei | i ∈ N} separates the points of X,

(ii) there is a (νN, κ)-computable function h such that supp(ei)⊆κ ◦ h(i),

(iii) the function (i, x) �→ ei(x) is (νN, δ, ρ)-computable.

Proof. In [9] it is shown that the space X is computably regular. This means that
there is a computable function t3 : ⊆ Σ∗ × Σ∗ → Σω such that R := dom(t3) is
recursively enumerable,

(∀v ∈ dom(ν)), ν(v) =
⋃

(u,v)∈R

ν(u), and(16)

(∀(u, v) ∈ R) ν(u)⊆ψ(t3 (u, v))⊆ ν(v) .(17)

In [6] for for a computably regular space from a computable enumeration (ui, vi)i

of R a sequence of continuous functions (fi)i is constructed such that

(∀ i, x) 0≤ fi(x) ≤ 1 ,(18)

(∀ i) fi(x) =

⎧⎨
⎩

0 if x ∈ ν(ui)

1 if x 	∈ ν(vi) .
(19)

(i, x) �→ fi(x) is (νN, δ, ρ)-computable(20)

Define ei(x) := 1 − fi(x).
If x 	= y then by (16) and the Hausdorff property there is some i such that

x ∈ ν(ui) and y 	∈ ν(vi). By (19), ei(x) = 1 and ei(y) = 0. Therefore, {ei | i ∈ N}
separates the points of X.

By (18) ei(x) = 0 for x 	∈ ν(vi), hence the support of ei is in the compact set
h(i) := ν(vi). The function h is (νN, κ)-computable as the space is computably
locally compact.

Finally (iii) follows from (20). �

For K⊆X let δK : ⊆Σω → K be the restriction of δ to K and let C(K) be the
set continuous real functions f : K → R. Since δ is admissible also δK is admissible
and so [δK → ρ] is a representation of C(K) [14, Sections 3.2, 3.3]. For the set
Cp(X, R) of partial continuous functions we use the multi-representation [δ →p ρ].

Define the “restriction” operator resK : ⊆ Cp(X, R) → C(K) by dom(resK) =
{f ∈ Cp(X, R) | K⊆dom(f)} and graph(resK(f)) := graph(f) ∩ K × R (abbrevia-
tion: fK := resK(f)). Define the “embedding” operator embK : C(K) → Cp(X, R)

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 251

by graph(embK(g)) := graph(g).

Lemma 5.3 (i) The restriction resK is ([δ →p ρ], [δK → ρ])-computable.

(ii) The embedding embK is ([δK → ρ], [δ →p ρ])-computable.
In both cases the identity on Σω is a realizaton.

Proof: Suppose K⊆dom(f). Then

f ∈ [δ →p ρ](p)
=⇒ (∀ q, δ(q) ∈ dom(f)) fδ(q) = ρηp(q)
=⇒ (∀ q, q ∈ dom(δK)) fδK(q) = ρηp(q)
=⇒ resK(f) = [δK → ρ](p) .

On the other hand,

g = [δK → ρ](p)
=⇒ (∀ q ∈ dom(δK)) gδK(q) = ρηp(q)
=⇒ (∀ q, δ(q) ∈ K) gδ(q) = ρηp(q)
=⇒ embK(g) ∈ [δ →p ρ](p) .

�

Let M = (M, d, D, α) such that (M,d) is a metric space and α is a notation
with recursive domain of the dense set D. According to [14, Section 8.1], M is
a semi-computable metric space if the distance d is (α, α, ρ>)-computable on D

and a computable metric space if d is (α, α, ρ)-computable on D. The Cauchy
representation δC of M is defined by

δC(p) = y ⇐⇒ p = ι(u0)ι(u1) . . . such that (∀ i) d(α(ui), y) ≤ 2−i .

For compact K⊆X define a metric dK : C(K) × C(K) → R on C(K) by

dK(f, g) := max
x∈K

|f(x) − g(x)| .

Lemma 5.4 The function dK is ([δK → ρ], [δK → ρ], ρ>)-computable for κ-
computable K and ([δK → ρ], [δK → ρ], ρ)-computable for κmc-computable K.

Proof: For the compact subsets of the real numbers let κR be the cover repre-
sentation and let let κR

mc be the minimal-cover representation (called κc and κmc,
respectively, in [14, Section 5.2]). By [14, Lemma 5.2.6], L �→ max L for compact
L ∈ R is (κR, ρ>)-computable and (κR

mc, ρ)-computable.
Since evaluation (f, x) �→ f(x) is ([δK → ρ], δK , ρ)-computable, the function

(f, g, x) �→ |f(x) − g(x)| is ([δK → ρ], [δK → ρ], δK , ρ)-computable. Therefore, the
function (f, g) �→ h, h(x) := |f(x) − g(x)|, is ([δK → ρ], [δK → ρ], [δK → ρ])-
computable. By lemma 5.3 the function (f, g) �→ embK(h) is ([δK → ρ], [δK →
ρ], [δ →p ρ])-computable and hence ([δK → ρ], [δK → ρ], δoo)-computable by Theo-
rem 4.6.

For r : ⊆ X → R and compact K ′⊆dom(r), the function (r, K ′) �→ r[K ′]
is (δoo, κ, κR)-computable by [7, Lemma 12]. From Lemma 4.4 we can conclude
that the function is also (δoo, κmc, κ

R
mc)-computable. Therefore, r �→ max r[K]

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254252

is (δoo, ρ>)-computable for κ-computable K and (δoo, ρ)-computable for κmc-
computable K.

Since dK(f, g) = max(|f−g|[K]), the lemma follows by composition of the above
functions. �

Theorem 5.5 (computable Stone-Weierstrass) For every κ-computable set K

there is a notation νK : ⊆ Σ∗ → DK such that MK = (C(K), dK , DK , νK) is a
semi-computable metric space, the Cauchy representation δC

K of which is equivalent
to [δK → ρ]. Furthermore, if K is κmc-computable then MK is a computable metric
space.

Proof. Let (ei)i be the sequence of functions from Lemma 5.2. Define a canonical
notation ν1 of the finite products of the ei with rational coefficients by

ν1(ι(w))(x) := νQ(w)
ν1(ι(w)0n11 . . . 0nk1 := νQ(w) · en1 · . . . · enk

and the notation α : ⊆Σ∗ → D of the rational linear span D of the {ei} and the
constant 1 function on X by

α(ι(v1) . . . ι(vm)) := ν1(v1) + . . . + ν1(vm) .

From Lemma 5.2(iii) we obtain

α ≤ [δ → ρ] .(21)

Define a notation νK : ⊆Σ∗ → DK (with recursive domain) by

DK := {fK | f ∈ D}, νK(u) := α(u)K(= resK(α(u))) .(22)

By Lemma 5.2(i), the set DK separates the points of K. The set DK is dense
(with respect to dK) in the linear span A of the eiK and the constant 1 function on
K. By the (classical) Stone-Weierstrass theorem, A is dense in C(K). Therefore,
DK is dense in C(K).

By (21) there is a computale function h such that α(u) = [δ → ρ]h(u), hence
α(u) ∈ [δ →p ρ]h(u). By Lemma 5.3, νK(u) = resK(α(u)) = [δK → ρ]h(u), hence

νK ≤ [δK → ρ].(23)

It follows from Lemma 5.4 that dK is (νK , νK , ρ>)-computable for κ-computable
K and (νK , νK , ρ)-computable for κmc-computable K. Therefore, the metric space
MK is semi-computable for κ-computable Kand computable for κmc-computable
K.
Finally, we have to show δC

K ≡ [δK → ρ].
“[δK → ρ] ≤ δC

K”: By Lemma 5.4 and since νK ≤ [δK → ρ], the relation
{(f, g, i) ∈ C(K) × DK × N | dK(f, g) < 2−i} is ([δK → ρ], νK , νN)-recursively
enumerable. Therefore, for every f ∈ C(K) and every i some u can be computed
such that dK(f, νK(u)) < 2−i. We conclude [δK → ρ] ≤ δC

K .
“δC

K ≤ [δK → ρ]”: By the definition of the Cauchy representation, the multi-
function f |⇒ (gi)i such that |f(x)−gi(x)| for all x is (δC

K , [νK]ω)-computable. Since
νK ≤ [δK → ρ], the function ((gi)i, x) �→ (gi(x))i is ([δK → ρ], δK , ρ)-computable.
Since the limit of real Cauchy sequences is computable by [14, Theorem 4.3.7], the

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254 253

function (f, x) �→ f(x) is (δC
K , δK , ρ)-computable, hence f �→ f is (δC

K , [δK → ρ])-
computable. This means δC

K ≤ [δK → ρ].
�

References

[1] Brattka, V. and G. Presser, Computability on subsets of metric spaces, Theoretical Computer Science
305 (2003), pp. 43–76.
URL http://dx.doi.org/10.1016/S0304-3975(02)00693-X

[2] Brattka, V. and K. Weihrauch, Computability on subsets of Euclidean space I: Closed and compact
subsets, Theoretical Computer Science 219 (1999), pp. 65–93.
URL http://dx.doi.org/10.1016/S0304-3975(98)00284-9

[3] Cohn, D. L., “Measure Theory,” Birkhäuser, Boston, 1980.

[4] Collins, P., Continuity and computability on reachable sets, Theoretical Computer Science 341 (2005),
pp. 162–195.

[5] Engelking, R., “General Topology,” Sigma series in pure mathematics 6, Heldermann, Berlin, 1989.

[6] Grubba, T. , M. Schröder and K. Weihrauch. Computable metrization. Submitted to Mathematical
Logic Quaterly 2007.

[7] Grubba, T. and K. Weihrauch, A computable version of Dini’s theorem for topological spaces, in:

P. Yolum, T. Güngör, F. Gürgen and C. Özturan, editors, Computer and Information Sciences - ISCIS
2005, Lecture Notes in Computer Science 3733 (2005), pp. 927–936, 20th International Symposium,
ISCIS, Istanbul, Turkey, October 2005.

[8] Grzegorczyk, A., Computable functionals, Fundamenta Mathematicae 42 (1955), pp. 168–202.

[9] Grubba, T. and Y. Xu. Computability on subsets of locally compact spaces. In preparation.

[10] Lacombe, D., Classes récursivement fermés et fonctions majorantes, Comptes Rendus Académie des
Sciences Paris 240 (1955), pp. 716–718, théorie des fonctions.

[11] Schröder, M., Effective metrization of regular spaces, in: K.-I. Ko, A. Nerode, M. B. Pour-El,
K. Weihrauch and J. Wiedermann, editors, Computability and Complexity in Analysis, Informatik
Berichte 235 (1998), pp. 63–80, cCA Workshop, Brno, Czech Republic, August, 1998.

[12] Schröder, M., Admissible representations for continuous computations, Informatik Berichte 299,
FernUniversität Hagen, Hagen (2003), dissertation.

[13] Weihrauch, K., Computability on computable metric spaces, Theoretical Computer Science 113 (1993),
pp. 191–210, fundamental Study.

[14] Weihrauch, K., “Computable Analysis,” Springer, Berlin, 2000.

[15] Weihrauch, K., Multi-functions on multi-represented sets are closed under flowchart programming,
in: T. Grubba, P. Hertling, H. Tsuiki and K. Weihrauch, editors, Computability and Complexity in
Analysis, Informatik Berichte 326 (2005), pp. 267–300, proccedings, Second International Conference,
CCA 2005, Kyoto, Japan, August 25–29, 2005.

[16] Yasugi, M., T. Mori and Y. Tsujii, Effective properties of sets and functions in metric spaces with
computability structure, Theoretical Computer Science 219 (1999), pp. 467–486.

[17] Zhong, N. and K. Weihrauch, Computability theory of generalized functions, Journal of the Association
for Computing Machinery 50 (2003), pp. 469–505.

[18] Zhou, Q., Computable real-valued functions on recursive open and closed subsets of Euclidean space,
Mathematical Logic Quarterly 42 (1996), pp. 379–409.

[19] Ziegler, M., Computability on regular subsets of Euclidean space, Mathematical Logic Quarterly 48
(2002), pp. 157–181.

[20] Ziegler, M., Computable operators on regular sets, Mathematical Logic Quarterly 50 (2004), pp. 392–
404.

T. Grubba et al. / Electronic Notes in Theoretical Computer Science 202 (2008) 237–254254

http://dx.doi.org/10.1016/S0304-3975(02)00693-X
http://dx.doi.org/10.1016/S0304-3975(98)00284-9

	Introduction
	Preliminaries
	Type-2 Theory of Effectivity (TTE)
	Representations of Points and Sets in Computable T0-spaces

	Representations of F
	Representations of Functions in Computable T0-spaces
	Stone-Weierstrass Representation
	References

