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Abstract

In this paper, as a first step towards frame-like gauge invariant formulation for massive mixed symmetry
bosonic fields, we consider mixed tensors, corresponding to Young tableau with two rows with k � 2 boxes
in the first row and only one box in the second row. We construct complete Lagrangian and gauge trans-
formations describing massive particles in (anti) de Sitter space–time with arbitrary dimension d � 4 and
investigate all possible massless and partially massless limits.
© 2008 Elsevier B.V. All rights reserved.

0. Introduction

As is well known, in d = 4 dimensions for the description of arbitrary spin particles it is
enough to consider completely symmetric (spin-)tensor fields only. At the same time, in dimen-
sions greater than four in many cases like supergravity theories, superstrings and higher spin
theories, one has to deal with mixed symmetry (spin-)tensor fields [1–4]. There are different
approaches to investigation of such fields both light-cone [5,6], as well as explicitly Lorentz co-
variant ones (e.g. [7–13]). For the investigation of possible interacting theories for higher spin
particles as well as of gauge symmetry algebras behind them it is very convenient to use so-
called frame-like formulation [14–16] (see also [17–19]) which is a natural generalization of
well-known frame formulation of gravity in terms of veilbein eμ

a and Lorentz connection ωμ
ab .

Till now, most of the papers on frame-like formulation for mixed symmetry fields deal with
massless case [20–25] (see however [26]). The aim of this work is to start an extension of
frame-like formulation to the case of massive mixed symmetry fields. Namely, we will begin
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construction of gauge invariant formulation for such mixed symmetry massive fields in general
(A)dSd space–times with non-zero cosmological constant and arbitrary space–time dimension
d � 4. There are two general approaches to gauge invariant description of massive fields. One of
them uses powerful BRST approach [11,12,27–30]. Another one, which we will follow in this
work, [19,31–34] (see also [9,26,35–37]) is a generalization to higher spin fields of well-known
mechanism of spontaneous gauge symmetry breaking. In this, one starts with appropriate set of
massless fields with all their gauge symmetries and obtain gauge invariant description of massive
field as a smooth deformation.

One of the nice feature of gauge invariant formulation for massive fields is that it allows us
effectively use all known properties of massless fields serving as building blocks. There are two
different frame-like formulations for massless mixed symmetry bosonic fields. For simplicity,
let us restrict ourselves with mixed symmetry tensors corresponding to Young tableau with two
rows. In what follows we will denote Y(k, l) a tensor Φa1...ak,b1...bl which is symmetric both
on first k as well as last l indices, completely traceless on all indices and satisfies a constraint
Φ(a1...ak,b1)b2...bl = 0, where round brackets mean symmetrization. In the first approach [21–24]
for the description of Y(k, l) tensor (k �= l) one use a one-form eμ

Y(k−1,l) as a main physical
field. In this, only one of two gauge symmetries is realized explicitly and such approach is very
well adapted for the (A)dS spaces. Another formulation [25] uses two-form eμν

Y (k−1,l−1) as a
main physical field in this, both gauge symmetries are realized explicitly. Such formalism works
in flat Minkowski space while deformations into (A)dS space requires introduction of additional
fields [38]. In this paper we will use the second formalism. As we have already seen in all cases
considered previously and we will see again in this paper, gauge invariant description of massive
fields always allows smooth deformation into (A)dS space without introduction of any additional
fields besides those that are necessary in flat Minkowski space so that restriction mentioned above
will not be essential for us.

Mixed symmetry tensor fields have more gauge symmetries compared with well-known case
of completely symmetric tensors and, as a result, gauge invariant formulation for them requires
more additional fields making construction much more involved. In this paper, as a first step
towards gauge invariant frame-like formulation of mixed symmetry bosonic fields, we consider
Y(k,1) tensors for arbitrary k � 2. This case turns out to be special and anyway requires sep-
arate consideration. Indeed, in general case Y(k, l), l > 1, auxiliary field analogous to Lorentz
connection has to be a two-form ωμν

Y(k−1,l−1,1), while for the Y(k,1) case one has to intro-
duce one-form ωμ

Y(k−1,1,1) instead. Thus this case turns out to be a natural generalization of the
simplest model for Y(2,1) tensor constructed by us before [26]. The structure of the paper is
simple. In Section 1 we reproduce our results for simplest Y(2,1) tensor. Then, in Section 2 we
consider more complicated case – Y(3,1) which shows practically all general features. At last, in
Section 3 we construct massive theory for general Y(k,1) tensor field. In all cases we construct
complete Lagrangian and gauge transformations describing massive particles in (A)dSd spaces
with arbitrary cosmological constant and arbitrary space–time dimension d � 4 and investigate
all possible massless and partially massless limits [17,33,39–41].

1. Tensor Y(2,1)

In this case frame-like formulation requires two tensors [20]: two-form Φμν
a as a main phys-

ical field and one-form Ωμ
abc , antisymmetric on abc, as analogue of Lorentz connection. To

describe correct number of physical degrees of freedom, massless Lagrangian has to be invariant
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under the following gauge transformations:

(1)δΦμν
a = ∂[μξν]a + ημν

a, δΩμ
abc = ∂μηabc,

where ηabc is completely antisymmetric. Note that ξ -transformations are reducible, i.e.

ξμ
a = ∂μχa ⇒ δΦμν

a = 0.

One of the advantages of frame-like formulation is the possibility to construct an object
(“torsion”) out of first derivatives of main physical field Φμν

a which is invariant under ξ -
transformations

Tμνα
a = ∂μΦνα

a + ∂αΦμν
a + ∂νΦαμ

a = ∂[μΦνα].

To find a correct form of massless Lagrangian one can use the following simple trick. Let us
consider an expression

{μναβ
abcd

}Ωμ
abcTναβ

d, {μναβ
abcd

} = δ[μ
a δ

μ
b δα

c δ
β]
d

and make a substitution Tμνα
a → Ω[μ,να]a . We obtain

{μναβ
abcd

}Ωμ
abcTναβ

d ⇒ {μναβ
abcd

}Ωμ
abcΩν,αβ

d ⇒ {μν
ab

}Ωμ
acdΩν

bcd .

Thus we will look for massless Lagrangian in the form

L0 = a1{μν
ab

}Ωμ
acdΩν

bcd + a2{μναβ
abcd

}Ωμ
abcTναβ

d .

It is (by construction) invariant under the ξ -transformations, while invariance under η-transfor-
mations requires a1 = −9a2. We choose a1 = −3, a2 = 1

3 and obtain finally

(2)L0 = −3{μν
ab

}Ωμ
acdΩν

bcd + {μναβ
abcd

}Ωμ
abc∂νΦαβ

d .

All things are very simple in a flat Minkowski space, but if one tries to consider a deforma-
tion of this theory into (A)dS space then it turns out to be impossible [38]. Thus we turn to the
massive particle and consider the most general case – massive particle in (A)dS space with arbi-
trary cosmological constant. First of all, we have to determine which additional fields we need
to construct gauge invariant formulation of such massive particle. In general, for each gauge
transformation of main physical field we need appropriate Goldstone field but in most cases this
Goldstone field turns out to be gauge field by itself so we need Goldstone fields of second order
and so on. But for the mixed symmetry bosonic fields one has to take into account reducibility
of gauge transformations. Let us illustrate this procedure on our present (simplest) case [9]. Our
main physical field Y(2,1) has two gauge transformations with parameters which are symmet-
ric Y(2,0) and antisymmetric Y(1,1) tensors respectively. Thus we need two primary Goldstone
fields corresponding to Y(2,0) and Y(1,1). Both have their own gauge transformations with vec-
tor parameter Y(1,0), but due to reducibility of gauge transformations of the main field, we have
to introduce one secondary Goldstone field Y(1,0) only. This field has its own gauge transforma-
tion with parameter Y(0,0), but due to reducibility of gauge transformations of antisymmetric
second rank tensor Y(1,1), the procedure stops here. It is natural to use frame-like formulation
for all fields, so we introduce four pairs of tensors: (Ωμ

abc , Φμν
a), (ωμ

ab , hμ
a), (Ωabc , Φμν )

and (ωab , hμ).
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We start with the sum of kinetic terms for all fields

L0 = −3{μν
ab

}Ωμ
acdΩν

bcd + {μναβ
abcd

}Ωμ
abcDνΦαβ

d

+ {μν
ab

}ωμ
acων

bc − {μνα
abc

}ωμ
abDνhα

c

(3)− Ωabc
2 + {μνα

abc
}ΩabcDμΦνα + ωab

2 − 2{μν
ab

}ωabDμhν

as well as appropriate set of initial gauge transformations

δ0Φμν
a = D[μξν]a + ημν

a, δ0Ωμ
abc = Dμηabc,

δ0hμ
a = Dμζa + χμ

a, δ0ωμ
ab = Dμχab,

(4)δ0Φμν = D[μξν], δ0hμ = Dμζ,

where all partial derivatives are replaced by (A)dS covariant ones. Here and in what follows, we
will use the following convention on covariant derivatives:

(5)[Dμ,Dν]ξa = −κ
(
eμ

aξν − eν
aξμ

)
, κ = 2Λ

(d − 1)(d − 2)
.

Note, that due to non-commutativity of covariant derivatives such Lagrangian is not invariant
under the initial gauge transformations

δ0 L0 = κ{μν
ab

}[3(d − 3)
(
2Ωμ

abcξν
c + ηabcΦμν

c
) − (d − 2)

(
ωμ

abζν − χabhμν

)]
,

so we have to take this non-invariance into account later on. Now to proceed with the construction
of gauge invariant formulation for massive particle, we have to add to the Lagrangian all possible
cross terms of order m (i.e. with the coefficients having dimension of mass). Moreover, as our
previous experience shows, we need to introduce cross terms for the nearest neighbours only, i.e.
main field with primary Goldstone fields, primary fields with secondary ones and so on. For the
case at hands all possible such terms could be written as follows:

L1 = {μνα
abc

}[a1ωμ
abΦνα

c + a2Ωμ
abcΦνα

] + {μν
ab

}[a3Ωμ
abchν

c + a4Ω
abcΦμν

c
]

(6)+ {μν
ab

}[a5ωμ
abhν + a6ω

abΦμν

] + a7{μa }ωabhν
b.

Non-invariance of these terms under the initial gauge transformations could be compensated by
the following corrections to gauge transformations:

δ1Φμν
a = β1

12(d − 3)
e[μaζν] − 3α1

(d − 3)
e[μaξν], δ1Ωμ

abc = β1

6(d − 3)
eμ

[aχbc],

δ1hμ
a = β1ξμ

a + 4ρ0

d − 2
eμ

aζ, δ1ωμ
ab = −β1

2
ημ

ab,

δ1Φμν = α1ξ[μ,ν], δ1Ω
abc = −3α1η

abc,

(7)δ1hμ = ρ0ζμ + β0ξμ, δ1ω
ab = −2ρ0χ

ab,

provided

a1 = a3 = β1

2
, a2 = a4 = −3α1, a5 = a7 = 4ρ0, a6 = β0.
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Fig. 1. General massive theory for Y (2,1) tensor.

Thus we have δ0 L1 +δ1 L0 = 0 and this leaves us with variations of order m2 (taking into account
non-invariance of kinetic terms due to non-commutativity of covariant derivatives) δ0 L0 + δ1 L1.
In general, to compensate this non-invariance one has to introduce mass-like terms into the La-
grangian as well as appropriate corrections for gauge transformations. But in this case there are
no possible mass-like terms (the only possible term {μν

ab
}hμ

ahν
b is forbidden by ζ -invariance).

Note that if we go from frame-like to metric-like formulation by solving algebraic equations for
auxiliary fields Ωμ

abc , ωμ
ab and Ωabc then we obtain mass-like terms exactly as in [9]. Never-

theless, it turns out to be possible to achieve complete invariance without any explicit mass-like
terms just by adjusting the values for our four main parameters α1, β1, β0 and ρ0. We obtain

ρ0 =
√

3(d − 2)

4(d − 3)
α1, β0 = −

√
3(d − 2)

4(d − 3)
β1, β2

1 − 36α2
1 = −12κ(d − 3).

Now we are ready to analyze results obtained. First of all, recall that there is no strict defini-
tion of what is mass in (A)dS space (see e.g. discussion in [42]). Working with gauge invariant
description of massive particles it is natural to define massless limit as a limit where all Gold-
stone fields decouple from the main gauge field. Such a limit, if it exists at all, leads to the
particle having exactly the same number of physical degrees of freedom as massless particle in
flat Minkowski space. To make analyze more transparent, let us give here a Fig. 1 showing the
roles played by our four parameters. One can easily see that massless limit is a limit where both
α1 → 0 and β1 → 0 simultaneously. But from the last relation above it is immediately follows
that such a limit is possible in flat Minkowski space (κ = 0) only. For non-zero values of cosmo-
logical constant one can obtain partially massless limits instead.1 Indeed, in AdS space (κ < 0)
one can put α1 = 0 (and this gives ρ0 = 0). Then our system decomposes into two disconnected
subsystems. One of them with the fields Φμν

a and hμ
a describe partially massless theory [38]

with the Lagrangian

(8)L = L0
(
Φμν

a
) + L0

(
hμ

a
) + β1

2
{μνα
abc

}ωμ
abΦνα

c + β1

2
{μν
ab

}Ωμ
abchν

c,

which is invariant under the following gauge transformations:

δΦμν
a = D[μξν]a + ημν

a + β1

12(d − 3)
e[μaζν],

δΩμ
abc = Dμηabc + β1

6(d − 3)
eμ

[aχbc],

1 Here and in what follows we will call particle to be partially massless if its number of physical degrees of freedom
lies between that of massless and massive one. Such particles correspond to irreducible representations of (anti) de Sitter
group that have no analogue among irreducible representations of Poincaré group.
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(9)δhμ
a = Dμζa + χμ

a + β1ξμ
a, δωμ

ab = Dμχab − β1

2
ημ

ab,

where β1
2 = −12κ(d − 3). In this, two other fields Φμν and hμ provide gauge invariant de-

scription of massive antisymmetric second rank tensor field. In turn, in dS space (κ > 0) one
can put β1 = 0 (and this gives β0 = 0). In this case our system also decompose into two discon-
nected subsystems. One of them with the fields Φμν

a and Φμν gives another example of partially
massless theory with the Lagrangian

(10)L = L0
(
Φμν

a
) + L0(Φμν) − 3α1{μνα

abc
}Ωμ

abcΦνα − 3α1{μν
ab

}ΩabcΦμν
c,

which is invariant under the following gauge transformations:

δΦμν
a = D[μξν]a + ημν

a − 3α1

(d − 3)
e[μaξν], δΩμ

abc = Dμηabc,

(11)δΦμν = D[μξν] + α1ξ[μ,ν], δΩabc = −3α1η
abc,

where 3α1
2 = κ(d − 3). In this, two other fields hμ

a and hμ provide gauge invariant description
of partially massless spin 2 particle [17,19,26].

2. Tensor Y(3,1)

As we have already mentioned in the Introduction, frame-like formulation for massless
Y(k,1) tensors turns out to be special because it requires that auxiliary field be one form and not
two form field. The Lagrangian for such massless Y(k,1) tensors could be, in principle, extracted
from the general formula (3.21) of [25], though the only explicit example given there deals with
Y(2,1) case. Anyway, it can be easily constructed as a natural generalization of the simplest ex-
ample given above. Namely, we introduce two-form Φμν

ab which is symmetric and traceless on
ab as a main physical field as well as auxiliary one-form Ωμ

abc,d which is completely antisym-
metric on abc, traceless and satisfies a constraint Ωμ

[abc,d] = 0. To provide correct number of
physical degrees of freedom massless Lagrangian has to be invariant under the following gauge
transformations:

(12)δΦμν
ab = ∂[μξν]ab + ημν

(a,b), δΩμ
abc,d = ∂μηabc,d .

Here ξμ
ab is symmetric and traceless on ab, while ηabc,d has the same properties on local indices

as Ωμ
abc,d . Note, that these gauge transformations are also reducible

ξμ
ab = ∂μχab ⇒ δΦμν

ab = 0.

To construct appropriate massless Lagrangian we will use the same trick as before. We introduce
a “torsion” tensor Tμνα

ab = ∂[μΦνα]ab which is invariant under ξ -transformations, consider an

expression {μναβ
abcd

}Ωμ
abc,eTναβ

de and make a substitution Tμνα
ab ⇒ Ω[μ,να](a,b). We obtain

{μναβ
abcd

}Ωμ
abc,eTναβ

de ⇒ {μναβ
abcd

}Ωμ
abc,e

(
Ων,αβ

d,e + Ων,αβ
e,d

)
⇒ {μν

ab
}[3Ωμ

acd,eΩν
bcd,e + Ωμ

cde,aΩν
cde,b

]
.

Thus we will look for the massless Lagrangian in the form

L0 = a1{μν
ab

}[3Ωμ
acd,eΩν

bcd,e + Ωμ
cde,aΩν

cde,b
] + a2{μναβ

abcd
}Ωμ

abc,eTναβ
de.
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This Lagrangian is (by construction) invariant under ξ -transformations, while invariance under
η-transformations requires a1 = −3a2. We choose a1 = 1, a2 = − 1

3 and finally obtain

(13)L0
(
Φμν

ab
) = {μν

ab
}[3Ωμ

acd,eΩν
bcd,e + Ωμ

cde,aΩν
cde,b

] − {μναβ
abcd

}Ωμ
abc,e∂νΦαβ

de.

As in the previous case, it is not possible to deform this massless Lagrangian into (A)dS space
without introduction of additional fields. Thus we turn to the general case – massive particle in
(A)dS space with arbitrary cosmological constant. First of all, we have to determine the set of
additional fields which is necessary for gauge invariant description of such massive particle. Our
main gauge field Y(3,1) has two gauge transformations (combined into one ξμ

ab transformation
in frame-like formalism) with parameters corresponding to Y(2,1) and Y(3,0). Recall that these
transformations are reducible with the reducibility parameter Y(2,0). Thus we have to introduce
two primary Goldstone fields – Y(2,1) and Y(3,0). The first one also has two gauge transfor-
mations with parameters Y(1,1) and Y(2,0) with the reducibility Y(1,0), while the second field
has one gauge transformation Y(2,0) only. Taking into account reducibility of main field gauge
transformations it is enough to introduce two secondary fields Y(1,1) and Y(2,0) only. Both
have gauge transformations with parameters Y(1,0), but due to reducibility of gauge transfor-
mations for Y(2,1) field it is enough to introduce one additional field Y(1,0). It has its own
gauge transformation Y(0,0), but due to reducibility of gauge transformations for Y(1,1) field,
the procedure stops here. Thus we need six fields – Y(l,1), Y(l,0), 1 � l � 3.

Again we will use frame-like formalism for the description of all fields and introduce six pairs:
(Ωμ

abc,d , Φμν
ab), (ωμ

a,bc , hμ
ab), (Ωμ

abc , Φμν
a), (ωμ

ab , hμ
a), (Ωabc , Φμν ) and (ωab, hμ).

Note, that here and in what follows we use the same conventions for the frame-like formulation
of Y(k,0) fields as in [19]. We start with the sum of kinetic terms for all six fields

L0 = {μν
ab

}[3Ωμ
acd,eΩν

bcd,e + Ωμ
cde,aΩν

cde,b
] − {μναβ

abcd
}Ωμ

abc,eDνΦαβ
de

− {μν
ab

}
[

1

2
ωμ

a,cdων
b,cd + ωμ

c,adων
c,bd

]
+ 2{μνα

abc
}ωμ

a,bdDνhα
cd

− 3{μν
ab

}Ωμ
acdΩν

bcd + {μναβ
abcd

}Ωμ
abcDνΦαβ

d

+ {μν
ab

}ωμ
acων

bc − {μνα
abc

}ωμ
abDνhα

c

(14)− Ωabc
2 + {μνα

abc
}Ωabc∂μΦνα + 1

2
ωab

2 − {μν
ab

}ωab∂μhν

as well as with appropriate set of initial gauge transformations

δ0Φμν
ab = D[μξν]ab + ημν

(a,b), δ0Ωμ
abc,d = Dμηabc,d ,

δ0Φμν
a = D[μξν]a + ημν

a, δ0Ωμ
abc = Dμηabc,

δ0hμ
ab = Dμζab + χμ

ab, δ0ωμ
a,bc = Dμχa,bc,

δ0hμ
a = Dμζa + χμ

a, δ0ωμ
ab = Dμχab,

(15)δ0Φμν = D[μξν], δ0hμ = Dμζ,

where all derivatives are now (A)dS covariant ones. As usual, due to non-commutativity of co-
variant derivatives this Lagrangian is not invariant under the initial gauge transformations
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δ0 L0 = −3κ(d − 2){μν
ab

}(2Ωμ
abc,dξν

cd − ηabc,dΦμν
cd

)
+ 3κ(d − 1)

(
ωμ

μ,abζ ab − χμ,abhμ
ab

)
+ κ{μν

ab
}[3(d − 3)

(
2Ωμ

abcξν
c + ηabcΦμν

c
) − (d − 2)

(
ωμ

abζν − χabhμν

)]
,

but we will take this non-invariance into account later on.
To construct gauge invariant description of massive particles we proceed by adding cross

terms of order m (i.e. terms with the coefficients with dimension of mass) to the Lagrangian.
As we have already noted, one has to introduce such cross terms for the nearest neighbours
only, i.e. main gauge field with primary ones, primary with secondary and so on. To simplify the
presentation we consider these terms step by step.

Φμν
ab ⇔ Φμν

a,hμ
ab . In this case additional terms to the Lagrangian could be written in the

following form:

L1 = {μνα
abc

}[a1Ωμ
abc,dΦνα

d + a2Φμν
adΩα

bcd + a3Φμν
adωα

b,cd
]

(16)+ {μν
ab

}a4Ωμ
abc,dhν

cd .

As usual, their non-invariance under the initial gauge transformations could be compensated by
appropriate corrections to gauge transformations

δ1Φμν
ab = − 4α2

d − 2

[
e[μ(aξν]b) + 2

d
gabξ[μ,ν]

]
+ β2

6(d − 2)
e[μ(aζν]b),

δ1Ωμ
abc,d = −α2

d

[
3eμ

dηabc + eμ
[aηbc]d − 4

(d − 2)
gd[aηbc]

μ

]

+ β2

3(d − 3)

[
eμ

[aχb,c]d − 1

d − 2
gd[aχb,c]

μ

]
,

δ1Φμν
a = α2ξ[μ,ν]a, δ1Ωμ

abc = −4α2η
abc

μ,

(17)δhμ
ab = β2ξμ

ab, δ1ωμ
a,bc = −β2

2
ημ

a(b,c),

provided a1 = 4α2, a2 = 3α2, a3 = a4 = −β2.
Φμν

a,hμ
ab ⇔ Φμν,hμ

a . Now additional terms to the Lagrangian have the form

�L1 = {μνα
abc

}[a5ωμ
abΦνα

c + a6Ωμ
abcΦνα

] + {μν
ab

}[a7Ωμ
abchν

c + a8Ω
abcΦμν

c
]

(18)+ {μν
ab

}[a9ωμ
a,bchν

c + a10hμ
acων

bc
]
.

To compensate their non-invariance under the initial gauge transformations we introduce the
following corrections to gauge transformations:

δ1Φμν
a = β1

12(d − 3)
e[μaζν] − 3α1

d − 3
e[μaξν], δ1Ωμ

abc = β3

6(d − 3)
eμ

[aχbc],

δ1hμ
ab = ρ1

d − 1

[
e(a
μ ζ b) − 2

d
gabζμ

]
,

δ1ωμ
a,bc = ρ1

[
χa(beμ

c) + 1 (
2gbcχμ

a − ga(bχμ
c)

)]
,

d d − 1
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δ1hμ
a = β1ξμ

a + ρ1ζμ
a, δ1ωμ

ab = −β1

2
ημ

ab + ρ1χ
[a,b]

μ,

(19)δ1Φμν = α1ξ[μ,ν], δ1Ω
abc = −3α1η

abc,

where a5 = a7 = β1/2, a6 = a8 = −3α1, a9 = a10 = −2ρ1.
Φμν,hμ

a ⇔ Φμν,hμ. Finally, we add to the Lagrangian terms (we already familiar with)

(20)�L1 = {μν
ab

}[a11ωμ
abhν + a12ω

abΦμν

] + a13ω
abhab

and corresponding corrections to gauge transformations

(21)δhμ
a = 2ρ0

d − 2
eμ

aζ, δhμ = ρ0ζμ + β0ξμ, δωab = −2ρ0χ
ab,

where a11 = a13 = 2ρ0, a12 = β0/2.
Collecting all pieces together, we obtain complete set of cross terms

L1 = {μνα
abc

}[4α2Ωμ
abc,dΦνα

d + 3α2Φμν
adΩα

bcd

− β2Φμν
adωα

b,cd
] − β2{μν

ab
}Ωμ

abc,dhν
cd + {μνα

abc
}
[
β1

2
ωμ

abΦνα
c − 3α1Ωμ

abcΦνα

]

+ {μν
ab

}
[
β1

2
Ωμ

abchν
c − 3α1Ω

abcΦμν
c

]
+ {μν

ab
}
[
−2ρ1ωμ

a,bchν
c − 2ρ1hμ

acων
bc

(22)

+ 2ρ0ωμ
abhν + β0

2
ωabΦμν

]
+ 2ρ0ω

abhab.

Now, as we have achieved cancellation of all variations of order m, i.e. δ0 L1 + δ1 L0 = 0, we
have to take care on variations of order m2 (including contribution from kinetic terms due to
non-commutativity of covariant derivatives) δ0 L0 + δ1 L1. As in the previous case, there are no
any explicit mass-like terms allowed here, but complete invariance of the Lagrangian could be
achieved just by adjusting the values of remaining free parameters α1,2, β0,1,2 and ρ0,1

β1 = −2

√
d − 1

d − 2
β2, β0 = −

√
6(d − 1)

d − 3
β2,

ρ1 = 2

√
d − 1

d − 2
α2, ρ0 =

√
3(d − 2)

2(d − 3)
α1,

24α2
2 − β2

2 = 6(d − 2)κ, 12(d + 1)α2
2 − 3dα2

1 = d(d + 1)κ.

The role that each of the parameters plays could be easily seen from Fig. 2. Now we are ready
to analyze the results obtained. First of all, note that the massless limit (i.e. decoupling of main
gauge fields from all others) requires α2 = β2 = 0. As the first of last two relations clearly shows
this is possible in flat Minkowski space (κ = 0) only. In this, for non-zero values of cosmological
constant there exists a number of partially massless limits.

In dS space (κ > 0) one can put β2 = 0 (and this simultaneously gives β1 = β0 = 0). In this
complete system decompose into two disconnected subsystems, as shown on Fig. 3. One of them,
with the fields Φμν

ab , Φμν
a and Φμν gives new example of partially massless theory with the

Lagrangian
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Fig. 2. General massive theory for Y (3,1) tensor.

Fig. 3. Partially massless limit in dS space.

Fig. 4. Non-unitary partially massless theory.

L = L0
(
Φμν

ab
) + L0

(
Φμν

a
) + L0(Φμν)

+ α2{μνα
abc

}[4Ωμ
abc,dΦνα

d + 3Φμν
adΩα

bcd
]

(23)− 3α1
[{μνα

abc
}Ωμ

abcΦνα + {μν
ab

}ΩabcΦμν
c
]
,

where 4α2
2 = (d − 2)κ , 3dα2

1 = 2(d + 1)(d − 3)κ , which is invariant under the following gauge
transformations (for simplicity we reproduce here gauge transformations for physical fields
only):

δΦμν
ab = D[μξν]ab + ημν

(a,b) − 4α2

d − 2
e[μ(aξν]b),

δΦμν
a = D[μξν]a + ημν

a + α2ξ[μ,ν]a − 3α1

d − 3
e[μaξν],

(24)δΦμν = D[μξν] + α1ξ[μ,ν].

At the same time, three other fields hμ
ab , hμ

a and hμ give gauge invariant description of partially
massless spin 3 particle [17,19].

One more example of partially massless theory appears if one put α1 = 0 (and hence ρ0 = 0).
In this, complete system also decompose into two disconnected subsystems as shown on Fig. 4.
Note, however that in this case we obtain 12α2

2 = dκ , β2
2 = −4(d − 3)κ , so that such theory (as

is often to be the case) “lives” inside unitary forbidden region.
From the other hand, in AdS space (κ < 0) one can put α2 = 0 (and hence ρ1 = 0). In this,

decomposition into two subsystems looks as shown on Fig. 5. Thus we obtain one more example
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Fig. 5. Partially massless limit in AdS space.

of partially massless theory with two fields Φμν
ab and hμ

ab . The Lagrangian

(25)L = L0
(
Φμν

ab
) + L0

(
hμ

ab
) − β2{μνα

abc
}Φμν

adωα
b,cd − β2{μν

ab
}Ωμ

abc,dhν
cd ,

where β2
2 = −6(d − 2)κ , is invariant under the following gauge transformations:

δΦμν
ab = D[μξν]ab + ημν

(a,b) + β2

6(d − 2)
e[μ(aζν]b),

(26)δhμ
ab = Dμζab + χμ

ab + β2ξμ
ab.

In this, four remaining fields Φμν
a , hμ

a , Φμν and hμ just gives the same gauge invariant massive
theory as in the previous section.

3. Tensor Y(k,1)

For the description of massless particles we introduce main physical field – two-form
Φμν

a1...ak−1 = Φμν
(k−1) (here and in what follows we will use the same condensed notations

for tensor objects as in [19]) which is completely symmetric and traceless on local indices and
auxiliary one-form Ωμ

abc,(k−2) which is completely antisymmetric on abc, traceless on all local
indices and satisfies a constraint Ωμ

[abc,d](k−3) = 0. To have correct number of physical degrees
of freedom massless Lagrangian has to be invariant under the following gauge transformations:

(27)δΦμν
(k−1) = ∂[μξν](k−1) + ημν

(1,k−2), δΩμ
abc,(k−2) = ∂μηabc,(k−2),

where properties of parameters ξ and η correspond to that of Φμν and Ωμ. To find appro-
priate Lagrangian, we introduce a tensor Tμνα

(k−1) = ∂[μΦνα](k−1), which is invariant under

ξ -transformations, consider an expression {μναβ
abcd

}Ωμ
abc,(k−2)Tναβ

d(k−2) and make a substitution

Tμνα
(k−1) → Ω[μ,να](1,k−2). We obtain

{μναβ
abcd

}Ωμ
abc,(k−2)Tναβ

d(k−2)

⇒ {μναβ
abcd

}Ωμ
abc,(k−2)Ων,αβ

(d,k−2)

⇒ {μν
ab

}[3Ωμ
acd(k−2)Ων

bcd,(k−2) + (k − 2)Ωμ
cde,a(k−3)Ων

cde,b(k−3)
]
.

Thus we will look for massless Lagrangian in the form

L0 = a1{μν
ab

}[3Ωμ
acd,(k−2)Ων

bcd,(k−2) + (k − 2)Ωμ
cde,a(k−3)Ων

cde,b(k−3)
]

+ a2{μναβ
abcd

}Ωμ
abc,(k−2)Tναβ

d(k−2).
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It is by construction invariant under the ξ -transformations, while invariance under the η-
transformations requires a1 = −3a2. We choose a1 = (−1)k−1, a2 = −(−1)k−1/3 and obtain
finally

(−1)k−1 L0 = {μν
ab

}[3Ωμ
acd,(k−2)Ων

bcd,(k−2) + (k − 2)Ωμ
cde,a(k−3)Ων

cde,b(k−3)
]

(28)− {μναβ
abcd

}Ωμ
abc,(k−2)∂νΦαβ

d(k−2).

As in the previous cases, it is not possible to deform this massless theory into (A)dS space
without introduction of additional fields, so we will turn to the general case – massive particle
in (A)dS space with arbitrary cosmological constant. Our first task – to determine the set of
additional fields which are necessary for gauge invariant description of such massive particle.
Our main gauge field Y(k,1) has two gauge transformations with parameters Y(k − 1,1) and
Y(k,0) with the reducibility Y(k − 1,0), thus we need two primary Goldstone fields Y(k − 1,1)

and Y(k,0). The first one has two own gauge transformations with parameters Y(k − 2,1) and
Y(k − 1,0) with reducibility Y(k − 2,0), while the second one has one gauge transformation
with parameter Y(k − 1,0) only. So we need two secondary fields Y(k − 2,1) and Y(k − 1,0)

and so on. As in the previous cases, this procedure stops at vector field Y(1,0), thus we totally
have to introduce fields Y(l,1) and Y(l,0) with 1 � l � k.

Let us start with the sum of kinetic terms for all these fields

L0 =
k∑

l=2

L0
(
Φμν

(l−1)
) − Ωabc

2 + {μνα
abc

}ΩabcDμΦνα

+
k∑

l=2

L0
(
hμ

(l−1)
) + 1

2
ωab

2 − {μν
ab

}ωabDμhν,

(−1)l L0
(
Φμν

(l)
) = {μν

ab
}[3Ωμ

acd,(l−1)Ων
bcd,(l−1) + (l − 1)Ωμ

cde,a(l−2)Ων
cde,b(l−2)

]
− {μναβ

abcd
}Ωμ

abc,(l−1)DνΦαβ
d(l−1),

(−1)l L0
(
hμ

(l)
) = −{μν

ab
}
[
ωμ

c,a(l−1)ων
c,b(l−1) + 1

l
ωμ

a,(l)ων
b,(l)

]

(29)+ 2{μνα
abc

}ωμ
a,b(l−1)Dνhα

c(l−1),

as well as appropriate set of initial gauge transformations

δΦμν
(l) = D[μξν](l) + ημν

(1,l−1), δΩμ
abc,(l−1) = Dμηabc,(l−1), δΦμν = D[μξν],

(30)δhμ
(l) = Dμζ (l) + χμ

(l), δωμ
a,(l) = Dμχa,(l), δhμ = Dμζ,

where all derivatives are now (A)dS covariant ones. Due to non-commutativity of covariant
derivatives this Lagrangian is not invariant under the initial gauge transformations

δ0 L0 =
k∑

l=2

(−1)lκ{μν
ab

}
[

3(d + l − 4)
(−2Ωμ

abc,(l−1)ξν
c(l−1) + ηabc,(l−1)Φμν

c(l−1)
)

+ 2(d + l − 3)

(
ωμ

a,b(l−1)ζν
(l−1) − l + 1

l
χμ,(l)hμ

(l)

)]
,

but we will take this non-invariance into account later on.
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To proceed with the construction of gauge invariant description of massive particle, we have
to add to the Lagrangian cross terms of order m (i.e. with the coefficients having dimension of
mass). As we have already noted above, one has to introduce such cross terms for the nearest
neighbours only (i.e. main field with primary ones, primary with secondary and so on). For
the case at hands, this means introduction cross terms between pairs Y(l + 1,1), Y(l + 2,0)

and Y(l,1), Y(l + 1,0). Moreover, due to symmetry and tracelessness properties of the fields,
there exists such terms for three possible cases Y(l + 1,1) ⇔ Y(l,1), Y(l + 1,1) ⇔ Y(l + 1,0),
Y(l + 2,0) ⇔ Y(l + 1,0) only. We consider these three possibilities in turn.

Ωμ
abc,(l−1),Φμν

(l) ⇔ Ωμ
abc,(l−2),Φμν

(l−1). Here additional terms to the Lagrangian could
be written as follows:

(31)L1 = (−1)l{μνα
abc

}[a1lΩμ
abc,(l−1)Φνα

(l−1) + a2lΩμ
abd,(l−2)Φνα

cd(l−2)
]
.

Their non-invariance under the initial gauge transformations could be compensated by the fol-
lowing corrections to gauge transformations:

δ1Φμν
(l) = − (l + 2)αl

(l − 1)(d + l − 4)

[
e[μ(1ξν]l−1) + 2

d + 2l − 4
ξ[μ,ν](l−2g12)

]
,

δ1Ωμ
abc,(l−1) = − αl

(l − 1)d

[
3ηabc,(l−2e1)

μ + eμ
[aηbc](1,l−2) − Tr

]
,

(32)δ1Φμν
(l−1) = αlξ[μ,ν](l−1), δ1Ωμ

abc,(l−2) = − (l + 2)αl

l − 1
ηabc,(l−2)

μ,

provided

a1l = (l + 2)

(l − 1)
αl, a2l = 3αl.

Ωμ
abc,(l−1),Φμν

(l) ⇔ ωμ
a,(l), hμ

(l). This time additional terms to the Lagrangian have the
form

(33)L1 = (−1)l
[
a3l{μν

ab
}Ωμ

abc,(l−1)hν
c(l−1) + a4l{μνα

abc
}ωμ

a,b(l−1)Φνα
c(l−1)

]
and their non-invariance under the initial gauge transformations could be compensated by

δ1Φμν
(l) = βl

6(d + l − 4)
e[μ(1ζν]l−1),

δ1Ωμ
abc,(l−1) = βl

3(d − 3)

[
eμ

[aχb,c](l−1) − Tr
]
,

(34)δ1hμ
(l) = βlξμ

(l), δ1ωμ
a,(l) = −βl

2
ημ

a(1,l−1),

provided a3l = a4l = −βl .
ωμ

a,(l+1), hμ
(l+1) ⇔ ωμ

a,(l), hμ
(l). This case (that has already been considered in [19]) re-

quires additional terms to the Lagrangian in the form

(35)L1 = (−1)l{μν
ab

}[a5lωμ
a,b(l)hν

(l) + a6lωμ
a,(l)hν

b(l)
]

as well as the following corrections to gauge transformations

δ1hμ
(l+1) = (l + 1)ρl [

eμ
(1ξ l) − Tr

]
, δ1ωμ

a,(l+1) = (l + 1)ρl [
ηa,(leμ

1) − Tr
]
,

l(d + l − 2) l(d + l − 1)
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(36)δ1hμ
(l) = ρlξμ

(l), δ1ωμ
a,(l) = ρl

l

[
ημ

a(l) + (l + 1)ηa,(l)
μ − Tr

]
,

where a5l = a6l = 2(l+1)
l

ρl .
Collecting all pieces together, we obtain finally

L1 =
k−1∑
l=2

(−1)l
[
{μνα
abc

}αl

[
l + 2

l − 1
Ωμ

abc,(l−1)Φνα
(l−1) + 3Ωμ

abd,(l−2)Φνα
cd(l−2)

]

− βl

[{μν
ab

}Ωμ
abc,(l−1)hν

c(l−1) + {μνα
abc

}ωμ
a,b(l−1)Φνα

c(l−1)
]

+ 2(l + 1)

l
ρl{μν

ab
}[ωμ

a,b(l)hν
(l) + ωμ

a,(l)hν
b(l)

]]

+ {μν
ab

}[−3α1Ω
abcΦμν

c + 2ρ0ωμ
abhν + β0ω

abΦμν

]
(37)− 3α1{μνα

abc
}Ωμ

abcΦνα + 2ρ0ω
abhab.

As for the corrections to gauge transformations, we once again restrict ourselves with the trans-
formations for physical fields only

δ1Φμν
(l) = αl+1ξ[μ,ν](l) − (l + 2)αl

(l − 1)(d + l − 4)

[
e[μ(1ξν]l−1) − Tr

]
+ βl

6(d + l − 4)
e[μ(1ζν]l−1),

δ1Φμν
a = α2ξ[μ,ν]a − 3α1

d − 3
e[μaξν] + β1

6(d − 3)
e[μaζν], δ1Φμν = α1ξ[μ,ν],

δ1hμ
(l) = βlξμ

(l) + ρlζμ
(l) + lρl−1

(l − 1)(d + l − 3)

[
eμ

(1ζ l−1) − Tr
]
,

(38)δ1hμ
a = β1ξμ

a + ρ1ζμ
a + ρ0

d − 2
eμ

aζ, δ1hμ = β0ξμ + ρ0ζμ.

Now, having achieved cancellation of all variations of order m δ0 L1 + δ1 L0 = 0, we have
to take care on variations of order m2 (including contribution of kinetic terms due to non-
commutativity of covariant derivatives) δ0 L0 + δ1 L1. As in the previous cases, complete invari-
ance of the Lagrangian could be achieved without introduction of any explicit mass-like terms
into the Lagrangian (and appropriate corrections to gauge transformations). Indeed, rather long
calculations give four relations

αlβl−1 = −βlρl−1,

(l + 1)(d + l − 3)βlρl = −(l + 3)(d + l − 2)αl+1βl+1,

−6(l + 3)(d + l − 4)(d + 2l)

l(d + l − 3)(d + 2l − 2)
α2

l+1 + 6(l + 2)

l − 1
α2

l − β2
l = 6κ(d + l − 4),

d + l − 3

3(d + l − 4)
β2

l + 2(l + 1)(d + l − 3)(d + 2l)

l(d + l − 2)(d + 2l − 2)
ρ2

l − 2l

l − 1
ρ2

l−1 = −2κ(d + l − 3).

To solve these relations we proceed as follows. From the first one we get

ρl = − βl

βl+1
αl+1.
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Fig. 6. General massive Y (k,1) theory.

Putting this relation into the second one, we obtain recurrent relation on parameters β

β2
l = (l + 3)(d + l − 2)

(l + 1)(d + l − 3)
β2

l+1.

This allows us to express all parameters βl in terms of βk−1

β2
l = k(k + 1)(d + k − 4)

(l + 1)(l + 2)(d + l − 3)
β2

k−1.

In this, one can show that fourth equation is equivalent to third one. When all parameters β

are known, the third equation becomes recurrent relation on parameters α and this allows us
(taking into account that αk = 0) to express all αl in terms of αk−1. Let us introduce a notation
M2 = k(k+1)

k−2 α2
k−1, then the expression for αl could be written as follows:

α2
l = (l − 1)(d + k + l − 3)

(l + 1)(l + 2)(d + 2l − 2)

[
M2 − (k − l − 1)(d + k + l − 4)κ

]
.

Thus we are managed to express all parameters in terms of two main ones βk−1 and M (or αk−1),
in this the following relation must hold:

6M2 − kβ2
k−1 = 6k(d + k − 5)κ.

Now we are ready to analyze the results obtained. In complete theory we have three sets of
parameters α, β and ρ and the roles they play could be easily seen from Fig. 6.

First of all note, that massless limit (that requires M → 0 and βk−1 → 0 simultaneously) is
indeed possible in flat Minkowski space only, while for non-zero values of cosmological constant
we can obtain a number of partially massless theories. In AdS space (κ < 0) one can put αk−1 = 0
(and this gives ρk−2 = 0), in this two fields Φμν

(k−1) and hμ
(k−1) decouple and describe partially

massless theory with the Lagrangian (Fig. 7)

L = L0
(
Φμν

(k−1)
) + L0

(
hμ

(k−1)
)

(39)+ (−1)kβk−1
[{μν

ab
}Ωμ

abc,(k−2)hν
c(k−2) + {μνα

abc
}ωμ

a,b(k−2)Φνα
c(k−2)

]
,

which is invariant under the following gauge transformations:

δΦμν
(k−1) = D[μξν](k−1) + ημν

(1,k−2) + βk−1

6(d + k − 5)
e[μ(1ζν]k−2),

(40)δhμ
(k−1) = Dμζ (k−1) + χμ

(k−1) + βk−1ξμ
(k−1).

Such particle corresponds to irreducible representation of anti-de Sitter group in complete agree-
ment with general discussion in [38]. Indeed, a pair of representations Y(k,1) and Y(k,0) of the
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Fig. 7. Partially massless limit in AdS space.

Fig. 8. Partially massless limit in dS space.

Fig. 9. Example of non-unitary partially massless theory.

Lorentz group perfectly combine into one Y(k,1) representation of anti-de Sitter group (com-
pare with Eq. (43) of [38]). As we have already mentioned, massless Y(k,1) particle in flat
Minkowski space has two gauge transformations with parameters corresponding to Y(k − 1,1)

and Y(k,0). If one goes to metric-like formulation by solving algebraic equations for auxiliary
fields, then one can see that in the absence of h field only gauge symmetry with the parameter
Y(k − 1,1) survives. At the same time, all other fields besides Φμν

(k−1) and hμ
(k−1) just give

gauge invariant description of massive Φμν
(k−2) tensor.

On the other hand, in dS space (κ > 0) one can put βk−1 = 0 (and this results in βl = 0 for
all l). In this case complete system decompose into two disconnected subsystems (Fig. 8). One
subsystem with the fields Φμν

(l), 0 � l � k − 1 gives new example of partially massless theory.
Again if one goes to metric-like formulation one can see that in this case only gauge symmetry
with the parameter Y(k,0) survives. At the same time partially massless theory described by the
second subsystem hμ

(k), 0 � l � k − 1 is already known [17,19]. Besides, a number of (non-
unitary) partially massless theories appears then one put one of the αl = 0 (and hence ρl−1 = 0).
In this, complete system also decompose into two disconnected subsystems. One of them gives
partially massless theory with the fields Φμν

(n), hμ
(n), l � n � k − 1 (Fig. 9), while the rest of

fields just give massive theory for the Φμν
(l−1) tensor.
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4. Conclusion

In this paper, using the simplest mixed symmetry tensors Y(k,1) as an example, we have
shown that frame-like gauge invariant formulation of massive higher spin particles [19] could
be extended to the case of mixed symmetry fields. All that one needs for that is to determine
proper collection of massless fields to start with taking into account all gauge symmetries and
their reducibility. It is clear that for general mixed symmetry tensors such construction will re-
quire a lot of fields so that calculations become very lengthy and involved. Thus we need some
more powerful methods, for example, some kind of oscillator formalism adapted to frame-like
formulation with its separation of world and local indices. Let us also note here an interesting
method of dimensional digression proposed recently [43].
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