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Abstract

The small polaron, a one-dimensional lattice model of interacting spinless fermions, with generic non-
diagonal boundary terms is studied by the off-diagonal Bethe ansatz method. The presence of the Grass-
mann valued non-diagonal boundary fields gives rise to a typical U(1)-symmetry-broken fermionic model. 
The exact spectra of the Hamiltonian and the associated Bethe ansatz equations are derived by constructing 
an inhomogeneous T –Q relation.
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1. Introduction

In this paper we focus on constructing the Bethe ansatz solution of the small polaron with 
generic non-diagonal boundary terms, described by the Hamiltonian

H =
N−1∑
j=1

1

sinη

{
cos(η)n̄j+1n̄j + cos(η)nj+1nj + c+

j cj+1 + c+
j+1cj

}

+ 1

2
cot(ψ−)[n̄1 − n1] + [κ+n̄N − κ−nN ] + csc(ψ−)

[
α−c1 + β−c+

1

]
+ csc(ψ+)

[
α+cN + β+c+

N

]
, (1.1)

where c+
j and cj are the creation and annihilation operators of spinless fermions at site j (which 

obey anticommutation relations {c+
j , ck} = δjk), respectively; the operators of particle numbers 

are nj = c+
j cj and n̄j = 1 − nj ; the parameters ψ±, α± and β± are the boundary parameters 

related to boundary interactions; η is the bulk coupling parameter. The boundary coupling κ± is 
given by 1

2 cscψ+ cscη sin(η ± ψ+) respectively. The model (1.1) is a typical spinless fermion 
model with boundary terms in condensed matter physics. It provides an effective description 
of the motion of an additional electron in a polar crystal [1,2]. In one spatial dimension, the 
model is integrable for both periodic and open boundary conditions by reconstructing it within 
the framework of quantum inverse scattering method (QISM) [3–6].

In the past few decades, the integrability and the excitation spectra problem have been studied 
extensively. For the small polaron model with periodic and purely diagonal boundary conditions, 
which can be mapped onto the XXZ quantum spin chain through the Jordan–Wigner transforma-
tion, the energy spectrum problem of the model was solved by the Algebra Bethe Ansatz method 
in [7–9]. A remarkable result was given by Yukiko Umeno [9] who constructed the fermionic 
R-operator and solved the spectrum problem via the Algebra Bethe Ansatz method. The generic 
integrable boundary conditions were obtained [10] by solving the graded reflection equation [11]. 
Subsequently, the Lax pair formulation of the generic integrable boundary conditions was pre-
sented in [12]. Since then, there have been numerous efforts to work out the exact solutions of 
the model. In 2013 the authors in [13,14] figured out the Bethe ansatz solution of the model with 
non-diagonal boundary terms based on a deformation of the diagonal case and commented on the 
eigenstate of the model which envolves into the Fock vacuum when the off-diagonal boundary 
terms were ignored. The result is also closely related to that of algebra Bethe ansatz method. 
However, there still exists a main obstacle for applying the conventional algebra Bethe Ansatz 
method to get the exact solution of the model with generic off-diagonal boundary conditions. 
The difficulty is mainly due to the fact the Hamiltonian (1.1) includes Grassmann valued non-
diagonal boundary fields (or couplings) such as the terms associated with the parameters α± and 
β± which breaks the bulk U(1)-symmetry of the model. The breaking of the U(1)-symmetry 
leads to the obvious reference state (all-spin-up or all-spin-down state) is no longer the reference 
state in the usual algebraic Bethe ansatz [15].

Very recently, a systematic method for approaching the exact solutions of generic integrable 
models either with U(1) symmetry or not, i.e., the off-diagnonal Bethe ansatz (ODBA) method 
[16] was proposed in [17–20]. With the ODBA method, some long-standing models [19,21–24]
without U(1) symmetry were then solved. In this paper we study the small polaron model with 
the generic integrable boundary condition specified by the K-matrices within Grassmann num-
bers via the ODBA method.
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The paper is organized as follows. In Section 2, we begin with a concise view of the integra-
bility of the fermion model with the open boundary condition within the framework of the graded 
QISM. Some basic ingredients and algorithm of the transfer matrix are also introduced. In Sec-
tion 3 we show that the Hamiltonian of the model can be rewritten in terms of the corresponding 
transfer matrix. In Section 4, after deriving the operator product identities of the transfer matrix 
at some special points of the spectrum parameter and its asymptotic behaviors, we express the 
eigenvalue of the transfer matrix in terms of an inhomogeneous T –Q relation and derive the 
associated Bethe ansatz equations. Finally, we summarize our results and give some discussions.

2. Transfer matrix

Let V be a two-dimensional Z2-graded vector space (or super space) [25] with an orthonormal
basis {|i〉|i = 1, 2}. The grading of the basis vectors is [|1〉] = 0, [|2〉] = 1. The R-matrix of the 
small polaron model is given by [14]

R(u) = 1

sinη

⎛
⎜⎜⎝

sin(u + η) 0 0 0
0 sinu sinη 0
0 sinη sinu 0
0 0 0 − sin(u + η)

⎞
⎟⎟⎠ , (2.1)

acting on the tensor product V ⊗ V of two superspace. Here u is the spectral parameter and η is 
the crossing parameter related to the bulk coupling (1.1). The R-matrix R(u) satisfies the graded 
quantum Yang–Baxter equation (g-QYBE) [26]

R12(u − v)R13(u)R23(v) = R23(v)R13(u)R12(u − v), (2.2)

and enjoys the properties:

Initial condition : R12(0) = P12, (2.3)

Unitarity relation : R12(u)R21(−u) = ξ(u), ξ(u) = − sin(u − η)

sinη

sin(u + η)

sinη
, (2.4)

P-symmetry : R21(u) = P12R12(u)P12 = R12(u), (2.5)

T-symmetry : Rst1, st2
12 (u) = R

ist1, ist2
12 (u) = R21(u), (2.6)

Crossing relation : Rst2
21 (−u − 2η)R

st1
21 (u) = ξ(u + η), (2.7)

Antisymmetry : R12(−η) = −2P (−), (2.8)

Periodicity : R12(u + π) = −σz
1 R12(u)σ z

1 = −σz
2 R12(u)σ z

2 . (2.9)

In the above equations, stj and istj are the partial super transposition and its inverse, Pij is the 
graded permutation operator and P (−) is a projector with rank one,

P (−) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

⎞
⎟⎟⎠ . (2.10)

Here and below we adopt the standard notations: for any matrix A ∈ End(V ), Aj is an embedding 
operator in the tensor space V ⊗V ⊗· · · , which acts as A on the j -th space and as identity on the 
other factor spaces; Rij (u) is an embedding operator of R-matrix in the tensor space, which acts 
as identity on the factor spaces except for the i-th and j -th ones. Since we discuss a fermionic 
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lattice model, all embeddings are to be understood into a super tensor product structure. It is 
remarked that the super tensor product is graded according to the rule

(A ⊗ B)ikjl = (−1)([|i〉]+[|j〉])[|k〉]Ai
jB

k
l, (2.11)

where the parity [|i〉] is equal to zero (one) for bosonic (fermionic) indices. (For the details about 
the algorithm of super tensor product we refer the reader to [25,13].)

We introduce two monodromy matrices T0(u) and T̂0(u), which can be considered as 2 × 2
matrices on the auxiliary space with elements being operators acting on V ⊗N

,

T0(u) = R0N(u − θN)R0N−1(u − θN−1) · · ·R01(u − θ1), (2.12)

T̂0(u) = R01(u + θ1)R02(u + θ2) · · ·R0N(u + θN). (2.13)

Here {θj |j = 1, 2, . . . , N} are arbitrary free complex parameters which are usually called the 
inhomogeneous parameters.

The framework of QISM for integrable systems with open boundary conditions in a way that 
makes it applicable to super spin chains. Following [5,6], for a given R-matrix, we introduce 
a pair of K-matrices K−(u) and K+(u). The former satisfies the graded reflection equation

R12(u − v)K−
1 (u)R21(u + v)K−

2 (v) = K−
2 (v)R12(u + v)K−

1 (u)R21(u − v), (2.14)

and the latter satisfies the dual graded reflection equation

R12(v − u)K+
1 (u)

˜̃
R21(−u − v)ist1, st2K+

2 (v)

= K+
2 (v)R̃12(−u − v)ist1, st2K+

1 (u)R21(v − u), (2.15)

whereas the new matrices ˜̃
R and R̃ are related to the R-matrix via

˜̃
R21(u)ist1, st2 = ([{R−1

21 (u)}ist2 ]−1)st2, (2.16)

R̃12(u)ist1, st2 = ([{R−1
12 (u)}st1 ]−1)ist1 . (2.17)

For open super spin chains, rather than the standard monodromy matrix T0(u) (2.12), we need 
to consider the double-row monodromy matrix T0(u)

T0(u) = T0(u)K−
0 (u)T̂0(u). (2.18)

Then the double-row transfer matrix t (u) of the system is given by

t (u) = str0{K+
0 (u)T0(u)}, (2.19)

where str{·} denotes the super trace of a matrix, which is defined by

str{A} ≡
∑

i

(−1)[i]Ai
i . (2.20)

The graded QYBE (2.2) and REs (2.14) and (2.15) lead to the fact that the transfer matrices give 
rise to a family of commuting operators [6] with different spectral parameters:

[t (u), t (v)] = 0. (2.21)

Then t (u) serves as the generating function of the conserved quantities, which ensures the inte-
grability of the system.
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3. Small polaron with open boundaries

In this paper, we consider the K-matrices K−(u) and K+(u) which satisfy the graded REs 
[6,5] and possess the following generic expressions (see also [10,27,12])

K−(u) = ω−
(

sin(u + ψ−) α− sin(2u)

β− sin(2u) − sin(u − ψ−)

)
, (3.1)

K+(u) = ω+
(

sin(u + η + ψ+) α+ sin(2[u + η])
β+ sin(2[u + η]) sin(u + η − ψ+)

)
, (3.2)

with normalizations ω± defined by ω−(η) ≡ 1
sin(ψ−)

and ω+(η) ≡ 1
2 cos(η) sin(ψ+)

. Here ψ±, α±, 
β± are all Grassmann numbers which are related to boundary fields. The parameters ψ± are 
arbitrary commuting even Grassmann numbers but the invertibility requires them to have a 
non-vanishing complex part, the remaining non-diagonal boundary parameters α± and β± are 
anticommuting odd Grassmann numbers, namely,

[ψ+,ψ−] = 0 = {α±, α±} = {α±, β±} = {β±, β±}. (3.3)

In addition, the odd Grassmann numbers are subject to the condition α±β± = 0 due to the graded 
REs (2.14) and (2.15).

Based on the graded QISM, the Hamiltonian (1.1) of the small polaron model with generic 
off-diagonal boundary terms can be rewritten in terms of the transfer matrix (2.19) as:

H = 1

2

∂t (u)

∂u
|u=0,{θj =0} + 1

2
tanη

= 1

2
str0{K+ ′

0 (0)} +
N−1∑
j=1

R′
j,j+1(0)Pj,j+1 + str0{K+

0 (0)PN0R
′
0N(0)}

+ K− ′
1 (0) + 1

2
tanη. (3.4)

The purpose of this paper is to construct the spectra of the Hamiltonian and derive the corre-
sponding Bethe ansatz equations.

4. Eigenvalues and the Bethe ansatz equations

4.1. Functional relations

Following the similar method developed in [20], we derive that the products of the transfer ma-
trix (2.19) of the super spin chain with the generic open boundaries described by the K-matrices 
in (3.1) and (3.2), at the points θj and θj − η, satisfies the relations

t (θj )t (θj − η) = −�q(θj )

ξ(2θj )
, j = 1, . . . ,N. (4.1)

For generic {θj }, the quantum determinant operator �q(θj ) is proportional to the identity opera-
tor, namely,

�q(u) = δ(u) × id, (4.2)
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where the function δ(u) is given by

δ(u) = ω2+ω2−
sin2 η

× sin(u + ψ+) sin(u − ψ+) sin(u + ψ−) sin(u − ψ−) sin(2u + 2η) sin(2u − 2η)

×
N∏

l=1

sin(u − θl − η) sin(u − θl + η)

sin2 η

sin(u + θl − η) sin(u + θl + η)

sin2 η
. (4.3)

Furthermore, we have checked that the transfer matrix t (u) of the small polaron model with the 
generic boundary conditions enjoys the crossing property

t (−u − η) = t (u). (4.4)

The quasi-periodicity of the R-matrix (2.9) and K-matrices

R12(u + π) = −σz
1 R12(u)σ z

1 = −σz
2 R12(u)σ z

2 , K±(u + π) = −σzK±(u)σ z, (4.5)

and the special points values at u = 0, π2 of the K-matrix give rise to several properties of the 
associated transfer matrix, namely,

t (u + π) = t (u), (4.6)

t (0) =
N∏

l=1

sin(η − θl) sin(η + θl)

sin2 η
× id, (4.7)

t (
π

2
) = cotψ− cotψ+

N∏
l=1

sin(π
2 − θl + η) sin(π

2 + θl + η)

sin2 η
× id, (4.8)

lim
iu→±∞ t (u) = ω+ω−

1

(2i)2N+2
(α+β− − β+α−)

1

sin2N η
e±{i(2N+4)u+i(N+2)η} × Uz. (4.9)

Here the operator Uz is given by

Uz =
N∏

j=1

σz
j , (Uz)2 = id, (4.10)

which commutes with the transfer matrix. The relation (4.10) allows us to decompose the whole 
Hilbert space H into two subspaces, i.e., H = H+ ⊕ H− according to the action of the oper-
ator Uz: Uz H± = ±H±. The commutativity of the transfer matrix and the operator Uz, i.e., 
[t (u), Uz] = 0, implies that each of the subspace is invariant under t (u). Hence the whole set 
of eigenvalues of the transfer matrix can be decompose into two series, denoted by �±(u) re-
spectively. The eigenstates corresponding to �+(u) (resp. �−(u) ) belong to the subspace H+
(resp. H−). The operator product identities (4.1) of the transfer matrix and the commutativity of 
the transfer matrix with different spectrum u enable us to derive the following relations of the 
associated eigenvalues �±(u) respectively,

�±(θj )�±(θj − η) = δ(θj ) sinη sinη

sin(2θj + η) sin(2θj − η)
, j = 1, . . . ,N, (4.11)

with the function δ(u) given in (4.3).
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The properties of the transfer matrix t (u) given by (4.4)–(4.9), imply that the corresponding 
eigenvalue functions �±(u) satisfy the relations:

�±(−u − η) = �±(u), �±(u + π) = �±(u), (4.12)

�±(0) =
N∏

l=1

sin(η − θl) sin(η + θl)

sin2 η
, (4.13)

�±(
π

2
) = cotψ− cotψ+

N∏
l=1

sin(π
2 − θl + η) sin(π

2 + θl + η)

sin2 η
, (4.14)

lim
iu→±∞�±(u) = ±ω+ω−

1

(2i)2N+2
(α+β− − β+α−)

1

sin2N η
e±{i(2N+4)u+i(N+2)η}. (4.15)

Obviously, �±(u) are a degree 2N + 4 trigonometric polynomial of u, along with the crossing 
symmetry and the periodicity mentioned in (4.12), these factors lead to that only N +3 unknown 
coefficients need to be determined by N + 3 special points values of the associated function 
�±(u). Therefore, the two functions �±(u) can be completely determined by the above func-
tional relations (4.11)–(4.15).

4.2. Eigenvalues of the transfer matrix

Following the method in [17–20] and with the helps of the functional relations (4.11)–(4.15), 
we can express the eigenvalue �±(u) of the transfer matrix of the small polaron model with 
the boundary terms specified by the generic non-diagonal K-matrices given by (3.1) and (3.2) in 
terms of an inhomogeneous T –Q relation [18] respectively,

�±(u) = a(u)
Q(±)(u − η)

Q(±)(u)
+ d(u)

Q(±)(u + η)

Q(±)(u)

± c̄ sin(2u) sin(2u + 2η)

Q(±)(u)
Ā(u)Ā(−u − η), (4.16)

where the Q-functions are parameterized by {μ(±)
j | j = 1, . . . , N} respectively

Q(±)(u) =
N∏

j=1

sin(u − μ
(±)
j )

sinη

sin(u + μ
(±)
j + η)

sinη
= Q(±)(−u − η). (4.17)

The other functions a(u), d(u), Ā(u) and the constant c̄ are given by

Ā(u) =
N∏

l=1

sin(u − θl + η) sin(u + θl + η)

sin2 η
, (4.18)

a(u) = ω+ω− sin(u − ψ+) sin(u − ψ−)
sin(2u + 2η)

sin(2u + η)
Ā(u), (4.19)

d(u) = ω+ω− sin(u + η + ψ+) sin(u + η + ψ−)
sin(2u)

sin(2u + η)
Ā(−u − η)

= a(−u − η), (4.20)

c̄ = ω+ω−(α+β− − β+α−). (4.21)
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Since that �±(u) both are polynomials, the residues of �±(u) at the apparent poles u = μ
(±)
j

and u = −μ
(±)
j − η, j = 1, . . . , N must vanish, which gives rise to the associated BAEs

a(μ
(±)
j )Q(μ

(±)
j − η) + d(μ

(±)
j )Q(μ

(±)
j + η)

± c̄ sin 2μ
(±)
j sin(2μ

(±)
j + 2η)Ā(μ

(±)
j )Ā(−μ

(±)
j − η) = 0, j = 1, . . . ,N. (4.22)

It is easy to check that the T –Q relation (4.16) satisfies the relations (4.11)–(4.15) respectively 
under the condition of N parameters {μj | j = 1, . . . , N} satisfying the BAEs (4.22).

We remark that the roots {μ(±)
j |j = 1, . . . , N} to the BAEs (4.22) are Grassmann number 

valued, which implies that the corresponding Q-functions in (4.17) can be expressed as

Q(±)(u) = Q
(±)
0 (u) + g Q

(±)
1 (u), g = α+β− − β+α−, andg2 = 0, (4.23)

where

Q
(±)
0 (u) =

N∏
j=1

sin(u − λ
(0,±)
j )

sinη

sin(u + λ
(0,±)
j + η)

sinη
,

Q
(±)
1 (u) = λ

(1,±)
N

N−1∏
j=1

sin(u − λ
(1,±)
j )

sinη

sin(u + λ
(1,±)
j + η)

sinη
. (4.24)

The 2N parameters {λ(i,±)
j |i = 0, 1; j = 1, . . . , N} are c-number valued. Substituting the re-

lations (4.23)–(4.24) into the BAEs (4.22), one may get the associated 2N BAEs. The resulting 
BAEs completely determine the 2N c-number valued parameters {λ(i,±)

j |i = 0, 1; j = 1, . . . , N}, 
which resembles those in [13,14].

In the homogeneous limit θj → 0, the above BAEs become(
sin(μ

(±)
j + η)

sinμ
(±)
j

)2N
sin(μ

(±)
j − ψ+) sin(μ

(±)
j − ψ−) sin(2μ

(±)
j + 2η)

sin(μ
(±)
j + η + ψ+) sin(μ

(±)
j + η + ψ−) sin(2μ

(±)
j )

= −Q(μ
(±)
j + η)

Q(μ
(±)
j − η)

∓ (α+β− − β+α−) sin(2μ
(±)
j + η) sin(2μ

(±)
j + 2η) sin2N(μ

(±)
j + η)

sin(μ
(±)
j + η + ψ+) sin(μ

(±)
j + η + ψ−) sin2N ηQ(μ

(±)
j − η)

,

j = 1, . . . ,N. (4.25)

Then two series eigenvalues of the Hamiltonian (1.1) can be expressed in terms of the Bethe 
roots as follows

E± = 1

2

∂�±(u)

∂u
|u=0,{θj =0} +1

2
tanη

= −1

2
cotψ+ − 1

2
cotψ− − 1

sin 2η
+ N cotη + +1

2
tanη

+
N∑

j=1

sin2 η

sinμ
(±)
j sin(μ

(±)
j + η)

, (4.26)

where the parameters {μ(±)|j = 1, . . . , N} satisfy the associated BAEs (4.25).
j
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5. Conclusions

The small polaron model with off-diagonal boundary described by the K-matrices (3.1)
and (3.2), which can be regarded as a graded version of the general open XXZ spin chain, has 
been studied by the off-diagonal Bethe ansatz method proposed in [18,17,19,20]. Based on some 
properties of the R-matrix and K-matrices, we obtain the operator identities (4.1) of the transfer 
matrix and then construct the corresponding inhomogeneous T –Q relation for its eigenvalues 
(4.16) and the corresponding BAEs (4.22). Moreover, the exact spectra of the Hamiltonian is 
given in (4.26). When the nondiagonal boundary parameters satisfy the constraint α± = β± = 0, 
the resulting T –Q relation is reduced to the conventional one which is the solution of the model 
with diagonal boundaries.

A possible extension of the present work is to consider the multi-component Bose–Fermi mix-
tures with off-diagonal boundary conditions with the help of the fusion method [28]. Meanwhile, 
according to the spin-s XXZ Heisenberg chain with generic non-diagonal boundaries solved 
in [29], the construction and the solution of graded higher spin chain may be obtained by similar 
method.
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