
The fallacy of the calcium-phosphorus product
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Scattered through the practice of medicine are dogmas with

little or no scientific basis. One of these is the product of the

serum calcium and phosphorus concentrations, the so-called

calcium-phosphorus product or Ca� P. The assumption

that ectopic calcification will occur when the product of the

serum calcium and phosphorus concentrations exceeds a

particular threshold has become standard practice in

nephrology even though there is little scientific basis.

Experimental support is lacking, the chemistry underlying the

use of the product is oversimplified and the concept that

ectopic calcification is simply the result of supersaturation is

biologically flawed. The evidence that the Ca�P is an

independent risk factor for mortality and morbidity is also

questionable. Although ectopic calcification can occur in

many sites, this review will focus on vascular calcification, as

it is the most common site and the site most likely to affect

patient outcomes.
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HISTORY OF THE CALCIUM-PHOSPHORUS PRODUCT

In 1917, Binger1 showed that infusion of phosphate produced
tetany in dogs, demonstrating for the first time the inverse
relationship between circulating calcium and phosphate
concentrations. The assumption that this was due to the
precipitation of calcium phosphate was incorporated into
early studies of bone formation. In the first mention of
the calcium-phosphorus product (Ca� P), Howland and
Kramer2 showed that active rickets in children and rats was
present when Ca� P was less than 35 mg2/dl2 and absent
when the product was above 40 mg2/dl2. However, this
product implied that bone resulted from a simple second
order reaction between calcium and phosphate ions, which
was not consistent with the stoichiometry of Ca3(PO4)2 or of
calcium and phosphate in bone. Clarification came from
Shear and Kramer,3 who showed that precipitation of
calcium and phosphate from physiologic saline solutions
was a second order reaction consistent with the formation of
CaHPO4 and governed by a simple solubility product of the
concentrations of Ca2þ and HPO4. Subsequent studies using
addition of phosphate to human serum in vitro or
intravenous infusion of phosphate in animals demonstrated
a constant Ca� P equivalent to the solubility product for
CaHPO4,4 and similar results were obtained in humans 30
years later.5 Most recently, the concept that Ca� P might be a
useful clinical parameter has been embraced by epidemiol-
ogists, who have shown correlations between Ca� P and
outcomes in end-stage renal disease. However, it has never
been demonstrated that exceeding the solubility of CaHPO4

in plasma leads to ectopic calcification or that reducing the
Ca� P alters outcomes in patients. Despite this, the Ca� P
was incorporated into the Kidney Disease Outcome Quality
Initiative (KDOQI) as an ‘evidence-based’ guideline.6

THE CHEMISTRY OF ECTOPIC CALCIFICATION

Chemical analyses of ectopic calcification in uremia has
revealed at least three forms: magnesium whitlockite
(CaMg)3(PO4)2, carbonate-substituted hydroxyapatite
(CaMg)10(PO4CO3)6(OH)2, and amorphous (noncrystalline)
calcium phosphate.7–9 Apatite is the principal component of
periarticular and vascular calcifications but whitlockite can
occur in vessels under specific conditions.9 The solution
chemistry of hydroxyapatite and the calcium and phosphate
that comprise it is complex and cannot be described by a
simple Ca� P. It is often stated that the concentrations of
Ca2þ and HPO4

2� in normal human plasma exceed the

m i n i r e v i e w http://www.kidney-international.org

& 2007 International Society of Nephrology

Received 5 March 2007; revised 2 April 2007; accepted 10 April 2007;

published online 4 July 2007

Correspondence: WC O’Neill, Department of Medicine, Renal Division,

Emory University School of Medicine, WMB 338, 1639 Pierce Drive Atlanta,

Georgia 30322, USA.

E-mail: woneil@emory.edu

792 Kidney International (2007) 72, 792–796

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82306606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


solubility product for hydroxyapatite and that normal plasma
is supersaturated with Ca2þ and HPO4

2�. Although the
former is correct, the latter is certainly not. The explanation
for this apparent paradox is that hydroxyapatite does not
form directly from Ca2þ and HPO4

2� in solution. Instead,
solid CaHPO4 is formed, followed by gradual, spontaneous
hydrolysis to hydroxyapatite.10 The solubility product (Ksp,
based on activities not concentrations) for CaHPO4 is
2.3� 10�7

M
2 at 371C and pH 7.4 in a physiologic salt

solution10 or in ultrafiltered serum,11 which exceeds the
product of the Ca2þ and HPO4

2� activities in normal serum
of approximately 1� 10�7

M
2.10,12 On the other hand, plasma

Ca� P is much greater than that the Ksp of less than 10�50
M

2

for hydroxyapatite.12 Thus, formation of hydroxyapatite from
solutions of calcium and phosphate requires at least two
chemical reactions: (1) formation of CaHPO4, which requires
supraphysiologic concentrations of the ions and is readily
reversible under physiologic conditions and (2) conversion of
CaHPO4 to hydroxyapatite, which is essentially irreversible at
physiologic pH and ion concentrations.7,10 This explains why
we do not turn into stone yet our bones do not
spontaneously dissolve. Of note, only the first reaction is
governed by Ca� P, and problems arise in establishing a
specific Ca� P threshold (Ksp) in vivo.

The first problem is that total Ca or P in plasma may not
accurately reflect Ca2þ or HPO4

2�, the relevant ions. The ‘P’
is actually HPO4

2� and H2PO4
�, and the proportions vary

with pH, even in the physiologic range. At pH 7.4,
approximately 80% of the phosphate is HPO4

2�. In addition
to ionized calcium, the ‘Ca’ also consists of complexed
calcium (primarily to citrate and bicarbonate) and protein-
bound calcium (primarily to albumin). As the concentrations
of these compounds vary widely in our patients and their
interaction with calcium depends on pH, which also varies,
the correlation between total calcium and ionized calcium is
poor at best. An additional complication is that physiologic
salt solutions are not ideal solutions. This means that we
must use activities and not concentrations in order to
account for the colligative properties of the various ions. The
solubility of calcium phosphate is governed by the product of
the activities of Ca2þ and HPO4

2�, not the concentrations.
Activity coefficients (the proportion of the concentration that is
‘active’) vary widely, from 0.06 for PO4

3� to 0.62 for H2PO4
�.10

For Ca2þ and HPO4
2�, the values are 0.36 and 0.23,

respectively. Clearly, any attempt to correlate the product of
total serum Ca and total serum phosphorus with a true
solubility product is futile.

Even if we were able to determine the activities of Ca2þ

and HPO4
2� in plasma, what value for the product should we

use? Assuming that 47% of total serum calcium is ionized13

and that 81% of total phosphorus is HPO4
2�, and assuming

the aforementioned activity coefficients, the Ca� P in plasma
would have to be above 90 mg2/dl2 to exceed the in vitro
solubility of CaHPO4.10 However, an even higher product is
required for spontaneous precipitation of CaHPO4

10 because
of the formation of colloidal CaHPO4 that remains soluble.4

To determine this product, the author’s plasma was incubated
with increasing amounts of calcium and phosphate. As
shown in Figure 1, precipitation did not occur until the
Ca� P exceeded 200 mg2/dl2. Thus, a Ca� P at which
CaHPO4 precipitates in plasma is almost never achieved in
our patients.

THE BIOLOGY OF ECTOPIC CALCIFICATION

So, what actually happens when the solubility of CaHPO4 is
exceeded in vivo? It was shown many years ago that the
CaHPO4 formed in supersaturated serum in vitro and plasma
in vivo does not precipitate and remains in solution in a
colloidal form,4 probably bound to proteins, in particular
fetuin.14 The colloidal CaHPO4 rapidly disappears from the
plasma, even when large amounts are formed, because of
rapid uptake by the reticuloendothelial system, specifically
Kupfer cells and splenic phagocytes.15,16 This process also
occurs in interstitial fluid, with uptake of colloidal CaHPO4

by regional lymph nodes, and would seemingly prevent
precipitates of CaHPO4 from forming in tissues. It is likely
that this uptake represents endocytosis of fetuin–CaHPO4

complexes.17 The granules of CaHPO4 in the reticulo-
endothelial cells subsequently disappear, presumably due to
dissolution. Whether this process can be overwhelmed and
what happens when plasma is chronically supersaturated is
not known. Presumably the same process occurs in humans
but there are no data.

Oral or intravenous phosphate was a common treatment
for hypercalcemia before the advent of other therapies and
resulted in rapid decreases in circulating Ca concentrations.
The fate of the CaHPO4 that was presumably formed is
unknown but the treatments were well tolerated. In the
seminal study by Goldsmith and Ingbar,18 autopsies were
performed on seven of the 10 patients with severe
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Figure 1 | Precipitation of calcium phosphate in human plasma.
Plasma was anticoagulated with 15 U/ml heparin and incubated at
371C in 5% CO2. Tracer 45Ca was added followed by sequential
additions of CaCl2 and buffered sodium phosphate from 1 M

solutions. Samples were taken 15 min after each addition and
centrifuged at 16 000 g for 3 min. Radioactivity in the supernatant was
counted. Values are the means7s.e. of triplicate determinations.
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hypercalcemia who received phosphate. Although ectopic
calcification was present in five patients, it was felt to be
consistent with the magnitude and duration of the hyper-
calcemia and could not be ascribed to the phosphate
treatment. Two patients who received repeated phosphate
treatments (one of them intravenously) showed no ectopic
calcification. Notably, in light of the recent focus on vascular
calcification, arterial calcification was not found in any
patient. One patient had calcification along a vein where
extravasation of the phosphate solution had occurred.
Recently, it has been reported that large doses of oral
phosphate associated with bowel cleansing can result in
nephrocalcinosis and renal failure.19,20 However, this results
from intratubular calcium phosphate deposition and appears
to be unrelated to circulating levels of Ca or P.

Further evidence that the Ca� P has little to do with
vascular calcification comes from conditions, such as diabetes
and aging, in which vascular calcification occurs in the
absence of hypercalcemia or hyperphosphatemia. The most
dramatic example is infantile arterial calcification, which
results from the lack of an enzyme that produces extracellular
pyrophosphate, a potent inhibitor of hydroxyapatite forma-
tion.21 These children develop severe vascular calcification in
the absence of hypercalcemia or hyperphosphatemia and die
by the age of 2 years. Absence of other proteins also results in
extensive arterial calcification.22,23 It is clear then that
vascular calcification can occur at physiologic calcium and
phosphate levels that are well below the precipitation point of
CaHPO4 and that we would all die of vascular calcification if
it was not for processes normally in place to inhibit it. The
fact that calcification can occur at such a low Ca� P is
not surprising when one considers that bone is continually
being formed under these conditions. This is accomplished
by creating a microenvironment in which CaHPO4 is less
soluble and where pyrophosphate is removed by phospha-
tases.24 In arteries, such a microenvironment may be created
by elastin and glycoaminoglycans, which bind calcium and
calcium salts.

Although hyperphosphatemia could clearly promote
ectopic calcification, the tendency of vascular smooth muscle
to calcify under normal conditions suggests that vascular
calcification in renal failure has more to do with the lack of
inhibitors than an elevated Ca� P. Consistent with this,
circulating pyrophosphate levels are reduced in hemodialysis
patients25 and hydrolysis of pyrophosphate is increased in
uremic vessels as a result of upregulation of alkaline
phosphatase (P Garg, K Lomashvili, and WC O’Neill, Journal
of the American Society of Nephrology 2005; 16: 53, abstract).
Whether other inhibitors are altered is unknown. Alterna-
tively, others have proposed that osteogenic transformation
of smooth muscle in uremia is responsible,26,27 but a direct
role in vascular calcification has yet to be demonstrated.

Does the Ca� P play any role in vascular calcification?
This was examined in the author’s laboratory using a model
of medial calcification in cultured rat aorta. When aortas
were cultured for up to 3 weeks in high concentrations of

calcium and phosphate equivalent to a Ca� P in plasma well
above 120 mg2/dl2, no calcification occurred,28 confirming
that an elevated Ca� P alone is not sufficient. This is because
pyrophosphate, a potent inhibitor of hydroxyapatite forma-
tion, is produced by the vessels, and calcification occurs only
when pyrophosphate is eliminated enzymatically. This
calcification requires an elevation of both calcium and
phosphate, but when the concentrations were varied to
maintain a constant product,29 calcification ranged from
extensive to none (Figure 2). Surprisingly, calcification varied
directly with the calcium concentration and inversely with
phosphate concentration, suggesting that calcium may be the
more important parameter. Although the model is far from
perfect, this represents the most direct test to date of the role
of Ca� P and it failed to correlate with vascular calcification.

THE EPIDEMIOLOGY OF Ca�P

There are abundant epidemiologic data showing correlations
between the Ca� P and cardiovascular outcomes or morta-
lity. However, this does not prove causality and the medical
literature is replete with negative intervention trials based on
solid epidemiologic data. Although the KDOQI guideline
that the Ca� P should be maintained below 55 mg2/dl2 is
labeled as evidence-based, actually there are no data to
support this. First, the studies are primarily cross-sectional
and certainly do not indicate that keeping the product below
55 will improve outcomes. Second, the correlation between
Ca� P and outcomes may have nothing to do with ectopic
calcification. Lastly, it is questionable whether the Ca� P is
an independent risk factor at all, as most of the variability in
this parameter is accounted for by serum phosphorus, which
is clearly associated with poor outcomes. In the large study
cited in the KDOQI guidelines, hyperphosphatemia carried a
slightly greater risk than elevated Ca� P.30 This was also true
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Figure 2 | Calcification of rat aortas cultured in serum-free
medium with alkaline phosphatase at varying [Ca] and [PO4]
with Ca�P kept constant at 6.84 mmol2/l2. Error bars are standard
errors. *Po0.001 versus 1.33 mM calcium and 5.14 mM phosphate.
Adapted from Lomashvili et al.29 with permission.
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in an even larger follow-up study of 40 000 dialysis patients,
despite the fact that serum Ca concentration was positively
associated with death.31

It is also not clear that Ca� P is a risk factor for vascular
calcification. In most cross-sectional analyses of patients with
renal failure, vascular calcification has not correlated with
Ca� P32–37 and in almost all of these studies, there was no
correlation with serum Ca or phosphorus levels as well.
Univariate associations between Ca� P found in other
studies either disappeared or became weaker in multivariate
analyses.38,39 In the largest cross-sectional study, both serum
Ca and serum P concentrations were strongly associated with
coronary calcification but Ca� P was not analyzed.40 More
importantly, longitudinal studies have not shown any
correlation between progression of coronary calcification
and Ca� P in patients with renal failure.34,41–44 In a trial of
sevelamer versus calcium-based phosphate binders, changes
in calcification correlated with Ca� P only in the latter
group.45 The correlation was similar to that for Ca or P alone
and was not apparent in multivariate analyses. The slower
progression of calcification with sevelamer was not associated
with a reduction in Ca� P.

SUMMARY

The Ca� P is a grossly oversimplified and scientifically
flawed approach to the problem of ectopic calcification and
there is no convincing evidence that it is a clinically useful
parameter. Precipitation of CaHPO4 does not occur in
plasma until the Ca� P is at least three times the KDOQI
threshold of 55 mg2/dl2, and there is no evidence that such
precipitation is actually harmful. Like bone formation,
ectopic calcification is a complex process that is governed
as much or more by biology than by physical chemistry.
Although hyperphosphatemia and calcium balance appear to
contribute, vascular calcification is determined primarily by
factors in the microenvironment of the vessel wall that both
inhibit and promote it, not by spontaneous precipitation of
calcium phosphate.
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