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Abstract

For R an artinian ring and G a group, we characterize when RG is a principal ideal ring. In the case when
G is finite (and R artinian), this yields a characterization of when RG is a left and right morphic ring. This
extends work done by Passman, Sehgal and Fisher on principal ideal group rings when the coefficient ring
is a field, and work of Chen, Li, and Zhou on morphic group rings.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Principal ideal ring; Morphic ring; Group ring; Annihilator; Skew polynomial ring; Artinian ring

1. Introduction

Throughout this article, the term artinian ring will refer to a left and right artinian ring, and the
term principal ideal ring will refer to a ring all of whose one-sided ideals are principal. Consider
the following question:

Question 1. Given a ring R and a group G, when is the group ring RG a principal ideal ring?

The classical group algebra case of this question, when R is a (commutative) field, and G is
an arbitrary group, was answered by Sehgal and Fisher in [4] in case G is nilpotent, and later
completed (for arbitrary groups) by Passman in [14, Theorem 4.1]. With only minor changes
(detailed in Appendix A, below), the proof given in [14] works for division rings as well.

On another, perhaps seemingly unrelated, topic, in [13], Nicholson and Sánchez Campos
investigated the “morphic” rings. These are rings which satisfy a certain dual of the first iso-
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morphism theorem. Specifically, an element a ∈ R is said to be left morphic if R/Ra ∼= ann�(a)

(which is dual to the theorem that R/ ann�(a) ∼= Ra). A ring is said to be left morphic if each of
its elements is left morphic; right morphic elements and rings are defined similarly. We say that
R is morphic if it is left and right morphic. In [13, Example 36], an example is given of a group
ring RG, for which R is artinian and left and right morphic, G is a finite group, but for which
RG is not a morphic ring. Motivated by this example, in [1], Chen, Li, and Zhou investigated
the question of when a group ring is morphic. In [1, Section 2], Chen, Li, and Zhou prove some
general theorems about morphicity of group rings. For instance, if RG is left morphic then R is
left morphic and G is locally finite [1, Theorem 2.1]; on the other hand, if RH is left morphic
for each finite subgroup H of G, then RG is left morphic [1, Theorem 2.4]. After these general
theorems, they classify when RG is left morphic in a few special cases: specifically, when R is
either semisimple or Zn for some n, and G is a finite abelian group. In addition, they complete
the case when G = Dn is a dihedral group and R = Zpr where p is prime and r � 1. The general
problem of determination of when RG is morphic is left open, even in the case when R is a left
and right artinian left and right morphic ring, and G is a finite group.

Nicholson and Sánchez Campos also investigated the interplay between (left, right, or left and
right) morphic rings and (left, right, or left and right) principal ideal rings in [12]; following [12],
a ring is said to be left (right) P-morphic if it is left (right) morphic and is a left (right) principal
ideal ring. In particular, [12, Corollary 16] contains a structure theorem describing rings which
are left artinian and left and right morphic, and it is shown that this class agrees with the class
of rings which are left and right P-morphic. It seems to have been overlooked, however, that
the structure theorem of [12, Corollary 16] (adding to the earlier [13, Theorem 35]) contains
a condition equivalent to the classical structure theorem describing the artinian principal ideal
rings found, for instance, in [5, Section 15] (stated with more modern terminology, for instance,
in [3, Corollary 2.2]). Namely, a ring is an artinian principal ideal ring if and only if it is a finite
direct product of matrix rings over local artinian principal ideal rings. In [12, Corollary 16], it is
shown that the left artinian left and right morphic rings are precisely the finite direct products of
matrix rings over left and right “special” rings (in the terminology of [13]). A left special ring
is a local ring R for which the Jacobson radical of R is a left principal ideal, generated by a
nilpotent element. It is easy to see that a ring is left special if and only if it is a local left artinian
left principal ideal ring (using conditions (2) and (3) of [13, Theorem 9] and the fact that a left
artinian ring has a nilpotent Jacobson radical), and hence a left and right special ring is precisely
a local artinian principal ideal ring.

In view of this, there is another even more surprising equivalent condition that can be added to
[12, Corollary 16]. Namely, the class described there is, in fact, the artinian principal ideal rings,
allowing us to add the first condition below.

Theorem 2. (Cf. [12, Corollary 16].) For any ring R, the following are equivalent:

(1) R is an artinian principal ideal ring.
(2) R is left and right P -morphic.
(3) R is left artinian and left and right morphic.
(4) R is semiprimary and left and right morphic.
(5) R is left perfect and left and right morphic.
(6) R is a semiperfect, left and right morphic ring in which J is nil and Sr ⊆ess RR .
(7) R is a semiperfect, left and right morphic ring with ACC on principal left ideals in which

Sr ⊆ess RR .
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(8) R is a finite direct product of matrix rings over local artinian principal ideal rings (i.e. left
and right special rings).

Consequently, whenever R is a left and right artinian principal ideal ring and G is a finite
group, the group ring RG is morphic if and only if RG is a principal ideal ring. Thus, there
is overlap in the study of morphic groups rings found in [1] with the earlier study of princi-
pal ideal group rings found in [4] and [14, Section 4]. In particular, one of the special cases
handled in [1], when R is semisimple, and G is a finite abelian group, is essentially already
contained in the results of [4] and [14, Section 4] (removing the hypothesis that G is a finite
abelian group). As we mentioned above, Passman, Sehgal and Fisher only deal with the classical
case with coefficients in a field, but their proofs essentially work in the case of a division ring,
and easily imply a classification in the case of semisimple coefficient rings (see Theorem 20,
below).

In this article, our main result is the characterization of when RG is a principal ideal ring,
in the case when R is artinian and G is arbitrary, answering Question 1 in this case. Since the
class of principal ideal rings is closed under quotients, it is clear that we are actually restricting
to the class of artinian principal ideal rings. To obtain the characterization, we will first answer
Question 1 in the case when R is a local artinian principal ideal ring and G is an arbitrary
group. This extends [14, Theorem 4.1]; simultaneously it includes as special cases observations
made in [1] on morphicity when the coefficient ring is Zpn (removing any hypothesis on the
group G). We will then use the local case to answer Question 1 in the case when R is an artinian
principal ideal ring and G is an arbitrary group. In particular, when R satisfies the hypotheses
of Theorem 2 (i.e. is left artinian and left and right morphic), and G is finite, we completely
characterize when RG is morphic. In particular, our results contain each of the special cases
dealt with in [1, Sections 3, 4], and answer many of the question contained therein.

We will, of course, rely heavily on [14, Theorem 4.1] (for division rings), and this result will
give us an extremely good start on our way. We will freely use the fact that all instances of “field”
in [14, Section 4] can be replaced by “division ring” (we detail this in Appendix A, below). Also,
Lemma 5, below, is motivated by [1, Theorem 2.8]; aside from this motivation, we will not rely
upon any of the results found in [1].

Our ring-theoretic terminology will generally follow [7]. In particular, for a ring R, we denote
by J = J (R) the Jacobson radical of R, and for a group ring RG, we denote by ε the augmen-
tation map ε :RG → R, whose kernel is the augmentation ideal �(RG). For an element x in a
ring R, we denote by annR

� (x) and annR
r (x) the left and right annihilators of x in R, respectively.

When the ring is clear from the context, we shall omit the superscript R. Also, a local ring is
a (not necessarily noetherian) ring with a unique maximal left (equiv. right) ideal, which agrees
with its Jacobson radical. We shall also need some group-theoretic terminology. Specifically, if
A and B are two classes of groups, we say that a group G is A-by-B if there exists N � G such
that N ∈ A and G/N ∈ B. Recall also that for finite groups G, we say that G is a p-group if
|G| is a power of p, and we say that G is a p′-group if |G| is relatively prime to p. We will also
allow ourselves the natural generalizations of this when π is a finite set of primes. In particular,
if π = ∅, a finite π ′-group is synonymous with a finite group, and the only finite π -group is the
trivial group. We shall also freely use the fact that if R is a local artinian principal ideal ring, then
J (R) = cR = Rc for any c ∈ J \J 2 (e.g. [13, Corollary 10] or [5, Theorem 38]).
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2. The local case

As we mentioned in the introduction, Question 1 has a complete characterization in the case
when R is a division ring. Completing work of Fisher and Sehgal [4] for nilpotent groups, in [14,
Section 4], Passman showed that

Theorem 3. (See [14, Theorem 4.1].) Let KG be the group ring of G over the division ring K .
Then, the following are equivalent.

(1) KG is a right principal ideal ring.
(2) KG is right Noetherian and the augmentation ideal �(KG) is principal as a right ideal.
(3) • charK = 0: G is finite or finite-by-infinite cyclic.

• charK = p > 0: G is finite p′-by-cyclic p, or finite p′-by-infinite cyclic.

As we mentioned above, the statement found in [14, Theorem 4.1] requires that K is a field,
but with only minor changes (detailed in Appendix A, below), its proof is valid when K is a
division ring as well. For simplicity, we will refer to [14, Theorem 4.1], even in the case of
division rings, as Passman’s theorem.

Before stating our extension of Passman’s theorem to local artinian principal ideal rings, we
shall need a definition, which will require a bit of preliminary set up. This work, and some of the
work done when we discuss associated graded rings (in the beginning of Section 3) is similar to
that found in [6, Chapter 2, Section 6], specifically, [6, Chapter 2, Lemma 6.2]. We are working in
a more restricted case when compared with that studied in [6], and a more elementary exposition
is therefore possible. In the interests of keeping the exposition elementary and relatively self-
contained, we will deal explicitly with our special case, instead of extracting it from the results
from [6].

Suppose that R is a local artinian principal ideal ring with J 2 = 0, and for which J �= 0. In
this case, the only nontrivial ideal of R is J = cR = Rc (see, for instance, [13, Theorem 9, ff.]).
We associate to a ring with these properties a ring automorphism ϕ of R/J as follows. Note that,
for each r ∈ R, cr = sc for some s ∈ R. Since ann�(c) = J (see [13, Theorem 9]), it is clear
that s is determined uniquely modulo J , and so it determines a unique element of R/J . Observe
that c1 = 1c, and if cr = sc and cr ′ = s′c, then c(r + r ′) = (s + s′)c and c(rr ′) = scr ′ = (ss′)c.
Thus, we have a well-defined ring homomorphism ϕ :R → R/J defined by setting ϕ(r) = s +J ,
such that cr = sc. Furthermore, σ is surjective, since if s ∈ R, sc ∈ Rc = cR, so sc = cr for
some r ∈ R, and hence ϕ(r) = s. Observe that cr = 0 = 0c if and only if r ∈ annr (c) = J , so
ker(ϕ) = J . We conclude that σ induces a ring automorphism, which we will refer to as σ ,
of R/J . Note that if J = Rc′ = c′R, then c′ = uc for some u ∈ U(R). Then, c′r = ucr = usc =
usu−1uc = usu−1c′. Thus, the map σ is only determined up to conjugation by a nonzero element
of R/J . For future reference, let us observe that the skew polynomial rings (R/J )[t;σ ] and
(R/J )[x;ρu ◦ σ ], where ρu denotes conjugation by u, are isomorphic, by sending t to ux. For
our uses later, this conjugation of σ will not be relevant, since we will primarily be dealing with
properties of the associated skew polynomial rings which are preserved by isomorphism, so we
will, in general, refer imprecisely to a single map σ .

Given a local artinian principal ideal ring R, we associate to R the (conjugacy class of)
σ ∈ Aut(R/J ) corresponding to the above construction for the quotient ring R/J 2. Now, if G

is a finite group G with |G| · 1 ∈ U(R/J ), by Maschke’s theorem, (R/J )G is semisimple. Let
{e1, . . . , en} be the set of centrally primitive idempotents of (R/J )G. The automorphism σ ex-
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tends to an automorphism of (R/J )G, acting on G trivially, and must permute the set {e1, . . . , en}
of centrally primitive idempotents. Note that this is reminiscent of Lemmas 5 and 6 of [4].

We shall say that a finite group G with |G| · 1 ∈ U(R/J ) is R-admissible if σ induces the
identity permutation on the set of centrally primitive idempotents of (R/J )G. Note that this does
not depend on the choice of σ , since conjugation by a nonzero element of R/J certainly must fix
any central element of (R/J )G. The condition that G is R-admissible is equivalent to saying that
if fi is any lift of ei to (R/J 2)G, then fic = cfi . It is easy to see from this that R-admissibility
is equivalent to requiring that the centrally primitive idempotents of (R/J )G lift to centrally
primitive idempotents of (R/J 2)G. In particular, R-admissibility is actually the statement that
the block decomposition of the artinian ring (R/J )G lifts to a block decomposition of the artinian
ring RG (see [7, Section 22]).

In treating the group ring case specifically, we prefer to view R-admissibility as a property
of the automorphism σ . For instance, in the case when k = R/J is an algebraically closed field,
this is equivalent to the condition that σ fixes χ(g) for each irreducible k-character χ of G, and
each g ∈ G. This is certainly ensured if σ fixes all |G|th roots of unity. Generalizing our results
to other classes of rings may well be possible, however, using the lifting of block decompositions
(or centrally primitive idempotents) as one’s starting point. Our main theorem for local artinian
principal ideal rings is the following, which extends Passman’s theorem. We do not know, how-
ever, if there is a valid analogue of condition (b) of Passman’s theorem.

Theorem 4. Suppose R is a local artinian principal ideal ring and G is a group. Then, the
following are equivalent:

(1) RG is a principal ideal ring
(2) • char(R/J ) = 0: G is a finite or finite-by-infinite cyclic. If R is not a division ring, then

G is an R-admissible finite group.
• char(R/J ) = p > 0: G is finite p′-by-cyclic p, or a finite p′-by-infinite cyclic. If R is not

a division ring, then G is a finite R-admissible p′-group.

Much of the forward implication follows immediately from Theorem 3, since if RG is a
principal ideal ring, then (R/J )G is a principal ideal ring as well, and R/J is a division ring,
so we may apply Theorem 3 to obtain information about the group G. This gets us off to a very
good start, however, there is still much to be done. In the forward implication, it remains only
to show that, if R is not a division ring, then G is finite with |G| · 1 ∈ U(R), and that G is
R-admissible. Our next lemma will complete everything in the forward implication except for
the R-admissibility. For the reverse implication, the entire case when R is not a division ring
remains. We shall break the proof of Theorem 4 into a few steps, over the course of the next few
sections.

Our first step is to prove two lemmas. The first, in characteristic p, is motivated by [1, The-
orem 2.8]. The argument in [1, Theorem 2.8] is specific to Zpr (possibly able to be extended to
local artinian principal ideal rings for which J has a central generator). Our argument is com-
pletely different, obtaining a slightly weaker conclusion than [1, Theorem 2.8], but for general
local artinian principal ideal rings. When restricting to groups which admit surjections onto non-
trivial p-groups whenever p divides |G| (e.g. finite nilpotent groups), the results contained herein
yield the same type of conclusion found in [1, Theorem 2.8].
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Lemma 5. Suppose R is a local artinian principal ideal ring whose residue division ring, R/J ,
has characteristic p, and suppose G is a finite p-group. If RG is a principal ideal ring, then R

is a division ring.

Proof. Suppose that char(R/J ) = p > 0, G is a finite p-group, and that RG is a principal ideal
ring. By [11], RG is an (artinian) local ring, which, by assumption is a principal ideal ring. It is
easy to see that ε−1(J (R)) is the maximal left ideal of RG, since the left ideals of RG form a
chain (see [13, Theorem 9]) and the only left ideals of R are powers of J , so I = ε−1(J ) is a
maximal left ideal of RG, and hence the unique maximal left ideal because RG is local. Also, it
is apparent that I 2 = ε−1(J 2). In particular, if R is not a division ring, then J \ J 2 is nonempty,
and if c ∈ J \ J 2, the element c · 1 is clearly an element of I \ I 2, hence it generates I as a right
ideal (e.g. [5, Theorem 38] or [13, Claim 1, p. 395]). But, since G is nontrivial, we may find
1 �= g ∈ G, and the element 1−g is an element of I . But I = c(RG), so there must exist x ∈ RG

such that (c · 1)x = (1 − g). Comparing constant coefficients (noting that c = c · 1 is a scalar),
we find that c is right invertible, which is clearly impossible, since c ∈ J (R). We conclude that
J (R) = J (R)2 so J (R) = 0 (since R is artinian), and hence R is a division ring. �

Our next lemma is in the same vein, for the group Z, and applies to all characteristics. The
previous lemma was stated only in the local case, since this is the only case we shall use, and
since it is simpler to state due to the restriction on the characteristic. The following lemma will
be just as easy to state without the condition that R is local. The crux of the proof, however, is
the local case, as in the last lemma.

Lemma 6. Let R be an artinian principal ideal ring. If the ring RZ (which is isomorphic to the
Laurent polynomial ring R〈x〉) is a principal ideal ring, then R is semisimple.

Proof. Using the structure theorem for artinian principal ideal rings, we write R ∼= ∏n
i=1 Mki

(Si),
where Si is a local artinian principal ideal ring, and ki > 1. If R is not semisimple, there is
some Si for which Si is not a division ring. Since R is a principal ideal ring, so is its quotient
Mki

(Si/J (Si)
2). Thus, it suffices to consider the case when R = Mn(S), where n � 1 and S is a

local artinian principal ideal ring for which J (S)2 = 0.
Let T = R〈x〉, J (R) = Rc = cR and let K = J (R)〈x〉 = cR〈x〉 = R〈x〉c, which is an ideal

of T . We shall write T = S/K ∼= (R/J (R))〈x〉 and for t ∈ T , we will denote by t the image
of t in T . Since R is artinian, K ⊆ J (T ) by [2, Proposition 9]. Consider the right ideal I =
(1 + x)T + cT . We will show that I is not principal. Note first that I = (1 + x)T , which is a
proper right ideal of T . We conclude that I < T . Suppose that I = f T . We have f = ∑

i∈Z
aix

i .
Separate those coefficients which are in J (R) from those which are not, and write f = f0 + f1,
where f1 ∈ J (R)〈x〉, and each coefficient of f0 is in R \ J . Observe that f = f0.

Since f T = I , we have fg = 1 + x for some g ∈ T . Note that f0g0 = 1 + x, and that 1 + x

is not a zero divisor in T , so ann�(f0) = 0. Also, T ∼= (R/J (R))Z ∼= Mn(S/J (S))Z is a left
and right Noetherian ring, and is a prime ring by [7, Theorem 10.20] and [7, Connell’s Theorem,
p. 161]. We conclude that T is left and right nonsingular (e.g. [8, Corollary 7.19]) and hence we
conclude that annr (f0) = 0, by [15, Lemma 10.4.9].

On the other hand, since c ∈ I , there must exist h ∈ T , written as h = h0 + h1, such that
f h = c. Then, c = f h = f0h0 + f1h0 + f0h1, since J (R)2 = 0. Reducing modulo K , we see
that 0 = c = f0h0. Since annr (f0) = 0, we conclude that h0 = 0. By our choice of h0 and h1,
we see that h0 = 0. Now, K = R〈x〉c, so we write h1 = g1c for some g1 ∈ R〈x〉. Thus, we
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have c = f0g1c, so (1 − f0g1)c = 0. Using [13, Theorem 9], we see that every coefficient of
1 − f0g1 is in J (R) (looking first at coefficients with respect to x, and then at the entries of
the matrices). We conclude that f0g1 ∈ 1 + J (R)〈x〉. In particular, since J (R)〈x〉 ⊆ J (T ), we
conclude that f0g1 is a unit. We conclude that f0 is right invertible. It is easy to see that T = RZ

is noetherian, hence Dedekind-finite, so we conclude that f0 is a unit. Therefore, I = ff −1
0 T ,

where ff −1
0 = 1 + f1f

−1
0 . Since each coefficient of f1f

−1
0 is in J (R), and J (R)2 = 0, we see

that f1f
−1
0 is nilpotent. We conclude that ff −1

0 = 1 + f1f
−1
0 is unipotent, hence a unit. We

conclude that I = T , a contradiction. �
The next step is to reduce to the case when J (R)2 = 0. This is motivated by [7, Chapter 22];

the reduction to the case of square zero radical is a standard technique (see [7, p. 332]) in studying
artinian rings.

Lemma 7. Suppose R is a local artinian ring. Then, R is a principal ideal ring if and only if
R/J 2 is a principal ideal ring.

Proof. We need only prove the reverse implication, since the class of principal ideal rings
is closed under homomorphic images. Assume R/J 2 is a principal ideal ring. Thus, J/J 2 =
c(R/J 2) = (R/J 2)c for some c ∈ R/J 2. Lift c to an element of J \ J 2 in R. Thus, J 2 + cR = J

and J 2 + Rc = J . Since R is artinian, J is nilpotent. Thus, by [7, Theorem 23.16], we conclude
that Rc = J and cR = J . By [13, Theorem 9], R is a principal ideal ring. �

Using the structure theorem for artinian principal ideal rings, we can easily remove the as-
sumption that R is local from Lemma 7.

Corollary 8. Suppose R is an artinian ring. Then, R is a principal ideal ring if and only if R/J 2

is a principal ideal ring.

Proof. Only the reverse implication needs proof. Assume R/J 2 is a principal ideal ring, so that
R/J 2 = ∏n

i=1 Mki
(Si). By [7, Theorem 22.9], we may lift the centrally primitive idempotents

{e1, . . . , en} corresponding to the previous product to a full set {f1, . . . , fn} of centrally primitive
idempotents of R. Note that fiRfi/ rad(fiRfi) ∼= eiRei/ rad(eiRei) ∼= Mki

(Si/ rad(Si)). Since
fiRfi is artinian, we conclude by [7, Theorem 23.10] that fiRfi

∼= Mli (Ki) for some local
ring Ki . But then, Mli (Ki/J (Ki)

2) ∼= Mki
(Si). The uniqueness asserted in [7, Theorem 23.10]

implies that li = ki and Ki/J (Ki)
2 ∼= Si . Thus, Ki is a local artinian ring for which Ki/J (Ki)

2

is a principal ideal ring. By Lemma 7, we conclude that Ki is a principal ideal ring. We conclude
that R ∼= ∏n

i=1 Mki
(Ki) is a principal ideal ring. �

At this point, we obtain our desired reduction.

Corollary 9. If R is a local artinian principal ideal ring and G is a finite group with |G| · 1 ∈
U(R), then RG is a principal ideal ring if and only if (R/J 2)G is a principal ideal ring.
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Proof. By [2, Proposition 9], J (R)G ⊆ J (RG) in case R is artinian or G is locally finite (both
of those conditions are true in our situation). In this case, however, we obtain equality. To see
this, note that

RG

J(R)G
∼=

(
R

J(R)

)
G,

which is semisimple, since R/J (R) is semisimple (J -semisimple and artinian) and G is a finite
group with |G| · 1 ∈ U(R/J (R)). We conclude from [7, Ex. 4.11], that J (RG) ⊆ J (R)G, and
hence J (RG) = J (R)G.

Now, only the reverse implication needs proof, as usual. We have

(
R/J 2)G ∼= RG/

(
J (R)2G

) ∼= RG/
(
J (RG)2).

Since RG is artinian, the result now follows from Corollary 8. �
3. Associated graded rings and the case J 2 = 0

In this section, we will handle completely the case when R is a local artinian principal ideal
ring with J (R)2 = 0, and G is a finite group with |G| · 1 ∈ U(R), and we shall use this to
complete the proof of Theorem 4. We will first look at the simpler case when R is an associated
graded ring with respect to its Jacobson radical. As we shall see the prototype for this type of
ring is a skew polynomial ring of the form D[t;ϕ]/(t2), where D is a division ring and ϕ is a
ring automorphism of D (cf. [6, Chapter 2, Section 6]).

Lemma 10. Suppose D is a division ring, and ϕ is a ring automorphism of D. Then, D[t;ϕ] is
a principal ideal ring.

Proof. Apply [10, Theorem 1.2.9], noting that since ϕ is an automorphism, D[t;ϕ] can be
viewed as both a right and left skew polynomial ring. �

Note that D[t;ϕ]/(t2) is a local artinian principal ideal ring with radical (t). Now, suppose
instead that we start with any local artinian principal ideal ring R for which J (R)2 = 0. We
may form the associated graded ring of R with respect to the ideal J (R), which in this case is
(R/J (R)) ⊕ J (R), since J (R)2 = 0. Fix a c ∈ R such that J (R) = cR = Rc, and an associated
ring automorphism σ :R/J → R/J (as in Section 2). From the definition of σ , it is easy to see
that grJ R ∼= (R/J )[t;σ ]/(t2), with t corresponding to c (recall that the choice of σ does not
affect the isomorphism type of (R/J )[t;σ ]). Thus, as we eluded to earlier, rings of the form
R = D[t;ϕ]/(t2) are the general form of local artinian principal ideal rings with J (R)2 = 0 for
which grJ R ∼= R. Note that the study of group rings over such rings are much easier to study than
general local artinian principal ideal rings with J 2 = 0, since (D[t;ϕ]/(t2))G ∼= DG[t;ϕ]/(t2),
where ϕ is the automorphism of DG obtained by extending the automorphism ϕ linearly, acting
trivially on G. The group ring DG is semisimple, but, the difficulty lies in the fact that ϕ need
not respect the blocks (centrally primitive idempotents) of DG. It is clear that the blocks are
preserved precisely when G is D[t;ϕ]-admissible, and we shall see that this is precisely the case
when DG[t;ϕ] is a principal ideal ring.

Therefore, we shall now work to characterize when RG is a principal ideal ring, in the case
that R = grJ R is a local artinian principal ideal ring with J (R)2 = 0. First, we shall need to
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describe the automorphisms of Mn(D), where D is a division ring, so that we may characterize
the skew polynomial rings with coefficients in the simple artinian ring Mn(D).

Lemma 11. Let D be a division ring, and n > 0. Let ϕ be any ring automorphism of
Mn(D). Then, Mn(D)[t;ϕ] ∼= Mn(D[x;σ ]) for some ring automorphism σ of D; moreover,
Mn(D)[t;ϕ]/(tk) ∼= Mn(D[x;σ ]/(xk)) for each k � 1.

Proof. Our first goal is to describe the automorphisms of Mn(D). Let {eij } denote the usual
matrix units of Mn(D), and set fii = ϕ(eii). Since {e11, . . . , enn} is a collection of orthogonal
local idempotents which sum to 1, it is easy to see that the same is true for {f11, . . . , fnn}.
By [7, Exercise 21.17], there is a unit u ∈ Mn(D) and a permutation π ∈ Sn such that fi,i =
u−1eπ(i),π(i)u. There is a unit v ∈ Mn(D) (a permutation matrix) such that v−1eiiv = eπ(i),π(i).
Then, fii = (vu)−1eii(vu).

Now, let us consider the automorphism ψ = ρ(vu)−1 ◦ ϕ, where, throughout this proof, ρ

denotes conjugation. By our choice of u and v, ψ(ei) = ei . Consider fij = ψ(eij ). Note that
erfij es = ψ(ereij es). If i �= r and j �= s, then erfij es = 0. Thus, if we express fij = ∑

ij aij eij ,
for aij ∈ D, we see that fij = aij eij . Since ψ(ei) = ei , we see that aii = 1. Note that aij ajk =
aik for all i, j, k. In particular, aij aji = 1 so each aij is a unit. Consider the diagonal matrix
w = diag(a11, a21, . . . , an1), which is an invertible matrix with inverse diag(a11, a12, . . . , a1n).
Consider ρw ◦ ψ . Note that ρw ◦ ψ(eij ) = eij for all i, j .

Now, let d ∈ D, and consider d ′ = ρw ◦ ψ(dIn). Note that eiid
′ejj = (ρw ◦ ψ)(eiidInejj ),

which is zero if i �= j . Thus, d ′ is a diagonal matrix. Consider the permutation matrix x =
e12 + e23 + · · · + en−1,n + en,1, whose inverse is x−1 = e21 + e32 + · · · + en,n−1 + e1n. For
any diagonal matrix z, conjugation by x applies a cyclic shift on the entries of z. In particular,
x−1(dI)x = dI , and hence x−1d ′x = d ′. It follows that d ′ is a diagonal matrix of the form cIn

for some c ∈ D. It is easy to see that (ρw ◦ψ)|DIn is a ring automorphism of DIn. We shall refer
to this automorphism of D ∼= DIn as σ , and we shall also use σ to denote the automorphism
of Mn(D) obtained by applying σ componentwise.

It is easy now to see that σ−1 ◦ ρw ◦ ψ is the identity map on Mn(D). Indeed, σ−1 ◦ ρw ◦
ψ fixes each eij and fixes DIn elementwise, from which it follows that it fixes

∑
ij aij eij =∑

ij (aij In)eij . We conclude that ϕ = ρuvw−1 ◦ σ .

Let z = (uvw−1)−1. Now, consider the map g : Mn(D)[t;ϕ] → Mn(D[x;σ ]) defined by em-
bedding Mn(D) in Mn(D[x;ψ]) and sending t to zx. Note that Mn(D[x;σ ]) ∼= Mn(D)[x;σ ],
where the first σ refers to the ring automorphism of D, and the second refers to the ring auto-
morphism of Mn(D) it induces componentwise.

Note that tA = ϕ(A)t . Note that g(tA) = zxA, and g(ϕ(A)t) = ϕ(A)zx, but z−1ϕ(A)z =
σ(A), so g(ϕ(A)t) = zσ (A)x = zxA = g(tA). Since Mn(D)[t;ϕ] = Mn(D)[t]/〈{tA − ϕ(A)t :
A ∈ Mn(D)}〉, we conclude that g is a well-defined ring homomorphism.

Suppose that p(t) = A0 + A1t + · · · + Ant
n, then

g
(
p(t)

) = A0 + A1zx + A2(zx)2 + · · · + An(zx)n

= A0 + A1zx + A2zσ (z)x2 + · · · + Anzσ(z) · · ·σn−1(z)xn.

In particular, we see that g is bijective, since z is a unit (as are its images under powers of σ ). We
conclude that Mn(D)[t;ϕ] ∼= Mn(D[x;σ ]). It is also clear that for each k � 1, g((tk)) = (xk),
from which it follows that Mn(D)[t;ϕ]/(tk) ∼= Mn(D[x;σ ]/(xk)). �



402 T.J. Dorsey / Journal of Algebra 318 (2007) 393–411
The following proposition is now essentially obvious.

Proposition 12. Suppose R = grJ R is a local artinian principal ideal ring with J 2 = 0 and G

is a finite group with |G| · 1 ∈ U(R). If G is R-admissible, then RG is a principal ideal ring.

Proof. We have R ∼= R[t;σ ]/(t2) as above. By Maschke’s theorem with the Artin–Wedderburn
theorem, RG ∼= ∏k

i=1 Mni
(Di) for division rings Di and ni > 0. The automorphism σ of R

extends to an automorphism of RG, which, by assumption, fixes the centrally primitive idempo-
tents (which correspond to the direct product decomposition above). In particular, σ acts as the
direct product of automorphisms σi of Mni

(Di). Using Lemma 11 to obtain automorphisms ψi

of Di , it is straightforward to see that

RG ∼= (
R[t;σ ]/(t2))G ∼= (RG)[t, σ ]/(t2) ∼=

k∏
i=1

(
Mni

(Di)[ti;σi]/(ti)2)

∼=
k∏

i=1

(
Mni

(
Di[xi;ψi]/(xi)

2)).

By Lemma 10 and the structure theorem for artinian principal ideal rings, we conclude that RG

is a principal ideal ring. �
The reverse implication is easier, and will not require the assumption that the ring is an asso-

ciated graded ring. We will therefore, delay this until the complete characterization for the local
case (Proposition 14).

At this point, we know that if G is R-admissible, then grJG(RG) = (grJ R)G is a principal
ideal ring. What is not clear is the nature of the relationship between RG and grJG(RG). Our
goal is a theorem of the type sought in [6, Chapter 2, Section 7]. We seek to conclude that a
ring is a principal ideal ring, knowing that its associated graded ring (with respect to its Jacobson
radical) is a principal ideal ring (note that P(R) = J (R) when R is artinian). In general, this type
of question is difficult, but we have imposed strong chain conditions which help us. Moreover,
the main trick that we need is that the R-admissibility of G allows us to lift the centrally primitive
idempotents of (R/J )G to centrally primitive idempotents of RG.

One important special case of this type of result (lifting through the associated graded ring) is
found in [6, Proposition 7.7]; the following is a special case of that result.

Lemma 13. Suppose that R is a local artinian ring. Then, the following are equivalent:

(1) R is a principal ideal ring,
(2) grJ R is a principal ideal ring.

Proof. Any (one-sided) artinian local ring is completely primary, and its prime radical agrees
with its Jacobson radical (e.g. [7, Theorem 10.30] and the fact that the Jacobson radical of an
artinian ring is nilpotent). The result is then a special case of [6, Proposition 7.7] applied on the
left and the right.

The special case when J 2 = 0 lends itself to a simpler proof, since grJ R takes on a particu-
larly simple form. In particular, the ideal J in R is also an ideal (i.e. 0 ⊕ J ) of grJ R, and it is
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easy to check that the ideal J is (left, respectively right) principal in R if and only if 0 ⊕ J is
(left, respectively right) principal in S. �
Proposition 14. If R is a local artinian principal ideal ring with J 2 = 0, and G is a finite group
with |G| · 1 ∈ U(R), then RG is a principal ideal ring if and only if G is R-admissible.

Proof. Let S = RG. Since G is finite and |G| · 1 ∈ U(R), we see that J (RG) = JG. First,
lift the set {e1, . . . , en} of centrally primitive idempotents of RG/JG to orthogonal primitive
idempotents {f1, . . . , fn} (for instance, by [7, Corollary 21.32]). Note that f1 + · · · + fn reduces
to e1 + · · · + en = 1, modulo J (RG), so f1 + · · · + fn is an idempotent unit, hence equals 1. If
i �= j , note that fiSfj ⊆ J (S). To see this, note that reducing modulo J (RG) = JG, we obtain
ei((R/J )G)ej = 0, since ei, ej are orthogonal and central.

For the forward implication, suppose S is an artinian principal ideal ring. By Theorem 2, S is
morphic. By [13, Corollary 19], fiSfj = 0 whenever i �= j . Thus, each fi is a central idempotent
of S, since 1 −fi = ∑

j �=i fj , so fiS(1 −fi) = 0 = (1 −fi)Sfi , from which we conclude that fi

is central (by [7, Lemma 21.5]). In particular, fic = cfi . It follows that σ(ei) = σ(fi) = fi = ei ,
so G is R-admissible.

For the converse, suppose that G is R-admissible. We claim that each fi is central in S. First,
note that fic = cfi for each i, by hypothesis, since G is R-admissible. Also, note that, even
without R-admissibility, for any r ∈ R, c(fir) = c(rfi) and (fir)c = (rfi)c, since fir − rfi is
in J = ann(c), since fi = ei is central in S. Let r ∈ R, and let i �= j . Note that firfj ∈ fiSfj ⊆
J (S). We may write firfj = ch = h′c, for some h,h′ ∈ S, since J (S) = J (R)G = c(RG) =
(RG)c. Note that firfj = fi(firfj ) = fich = cfih = chfi = firfjfi = 0. We conclude that
fiSfj = 0 if i �= j , and, as before, that each fi is central. We conclude that the fi are a complete
set of centrally primitive idempotents of S. The ring fiSfi is an artinian ring which is a simple
artinian ring modulo its radical. By [7, Theorem 23.10], fiSfi

∼= Mki
(Si) for some ki > 0 and

some local ring Si . At this point, we know that RG ∼= ∏n
i=1 Mki

(Si). Next, we will show that
each Si is a principal ideal ring.

Note that (grJ R)G ∼= grJ (RG) ∼= ∏n
i=1 Mki

(grJ Si). By hypothesis, G is R-admissible,
so it is also grJ R admissible (the induced automorphism of R/J is the same); by Proposi-
tion 12 (grJ R)G is an artinian principal ideal ring. Since the class of artinian principal ideal
rings is Morita invariant (e.g. [12, Corollary 17]), grJ Si is a local artinian principal ideal
ring. By Lemma 13, we have that Si is a local artinian principal ideal ring. It follows that
RG ∼= ∏n

i=1 Mki
(Si) is a principal ideal ring. �

Remark 15. In light of the Artin–Wedderburn theorem and the structure theorem for artinian
principal ideal rings, we view Proposition 14 as an analogue of Maschke’s theorem (e.g. as stated
in [7, Theorem 6.1]).

We can now put all of this together to prove Theorem 4.

Proof of Theorem 4. For the implication (1) ⇒ (2), suppose RG is a principal ideal ring.
Then, its quotient (R/J )G is a principal ideal ring, to which we may apply Theorem 3. If
char(R/J ) = 0, we conclude that G is finite or finite-by-infinite cyclic. In the latter case, RG

surjects onto RZ, which must therefore be a principal ideal ring. By Lemma 6, we conclude that
G must be finite if R is not a division ring.
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If char(R/J ) = p > 0, we conclude from Theorem 3 that G is finite p′-by-cyclic p or finite
p′-by-infinite cyclic. In either case, if the cyclic group in question is nontrivial, RG surjects onto
RH for some nontrivial cyclic p-group H , and RH is a principal ideal ring. By Lemma 5, we
conclude that, if R is not a division ring, then the cyclic group must be trivial, and hence G must
be a p′-group.

We have shown that if R is not a division ring, then G is a finite group with |G| · 1 ∈ U(R).
Since RG is a principal ideal ring, its homomorphic image (R/J 2)G is a principal ideal ring,
and by Proposition 14, G is R-admissible.

For the implication (2) ⇒ (1), Theorem 3 handles the case when R is a division ring. In the
remaining case, R is not a division ring, G is an R-admissible finite group with |G| · 1 ∈ U(R).
By Proposition 14, (R/J 2)G is a principal ideal ring, and by Corollary 9, we conclude that RG

is a principal ideal ring. �
Before moving on to general artinian rings, let us obtain a result which does not directly

follow from our results on group rings, but does follow from our arguments. In our study of
when a group ring is a principal ideal ring when the coefficient ring is an associated graded ring,
we have seen that rings of the form D[x;σ ]/(x2) play an important role, and our arguments
show the following.

Corollary 16. Let R be a semisimple ring, and σ an automorphism of R. Then, the following are
equivalent:

(1) All centrally primitive idempotents of R are fixed by σ .
(2) All central idempotents of R are fixed by σ .
(3) R[x;σ ]/(xn) is morphic for all n � 1.
(4) R[x;σ ]/(x2) is morphic.

Proof. Since R is semisimple, by the Artin–Wedderburn theorem there are division rings
D1, . . . ,Dk , and integers ni > 0 for 1 � i � k such that R ∼= ∏k

i=1 Mni
(Di). Let e1, . . . , ek be the

complete set of centrally primitive idempotents which corresponds to the above direct product
decomposition (see [7, Chapter 22]). It is clear that the automorphism σ induces a permutation
on the set of centrally primitive idempotents.

The equivalence of (1) and (2) is a consequence of [7, Proposition 22.1], while the implica-
tion (3) ⇒ (4) is a tautology. The argument for (2) ⇒ (3) is essentially contained in the proof of
Proposition 12. Since σ fixes the centrally primitive idempotents, it fixes the associated Peirce
corner rings, which are the factors Mni

(Di); in particular, σ induces a ring automorphism σi

on Mni
(Di), and is the direct product of the automorphisms σi . By Lemma 11, there exist auto-

morphisms ψi of Di such that Mni
(Di)[xi;σi]/(xk

i ) ∼= Mni
(Di[ti;ψi]/(tki )). Combining this,

R[x;σ ]/(xn
) ∼=

k∏
i=1

Mni
(Di)[xi;σi]/

(
xn
i

) ∼=
k∏

i=1

Mni

(
Di[ti;ψi]/

(
tki

))
.

As in the proof of Proposition 12, we conclude from Lemma 10 and the structure theorem for
artinian principal ideal rings that R[x;σ ]/(xn) is an artinian principal ideal ring, which is equiv-
alent to saying that it is an artinian morphic ring.
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Finally, we shall show that (4) ⇒ (1), by an argument similar to a portion of the proof of
Proposition 14. Let S = R[x;σ ]/(x2). Let e1, . . . , ek be the (orthogonal) set of centrally prim-
itive idempotents of R. Observe that if i �= j , then eiSej = eiRσ(ej )x. In particular, eiSej is
contained in Sx which is a nilpotent ideal of S, so eiSej ⊆ J (R). Since R[x;σ ]/(x2) is mor-
phic, we conclude from [13, Corollary 19] that eiSej = ejSei = 0. In particular, eiσ (ej )R =
eiRσ(ej ) = 0. Since σ induces a permutation on the finite set of centrally primitive idempo-
tents of R, we conclude that ei = σ(ei), since eiσ (ej ) = 0 (in particular, σ(ej ) �= ei ) whenever
i �= j . �

In [9], Lee and Zhou examine morphicity of rings of the form R[x;σ ]/(xn). In particular, in
[9, Theorem 2] Lee and Zhou showed that for unit regular rings if σ is an endomorphism and fixes
all idempotents of R, then R[x;σ ]/(xn) is morphic. For the smaller class of semisimple rings,
and assuming that σ is an automorphism, Corollary 16 provides the necessary and sufficient
condition for R[x;σ ]/(xn) to be morphic: σ need only fix all centrally primitive idempotents
of R. The coefficient ring in [9, Example 3] is semisimple, and in light of Corollary 16, it does
not actually show that the assumption that σ must fix all idempotents cannot be removed, it
demonstrates the result of Corollary 16, that σ must fix all central idempotents. It is, however,
easy to find examples where R is semisimple, σ is an automorphism, and σ does not fix all
idempotents, but R[x;σ ]/(xn) is morphic. For instance, let D be a division ring, let R = M2(D),
and let σ be conjugation by the matrix

( 0 1
1 0

)
. Since R has no nontrivial central idempotents, σ

fixes them (so R[x;σ ]/(xn) is morphic), but, it does not fix all idempotents of R. It remains an
open question for unit regular rings, however, to determine the necessary and sufficient conditions
on σ which guarantee that R[x;σ ]/(xn) is morphic. In particular, it is unknown whether fixing
the centrally primitive idempotents ensures morphicity.

4. General artinian principal ideal rings

Given the structure theorem for artinian principal ideal rings, we are now in position to eas-
ily study RG when R is an artinian principal ideal ring. We shall first need a few completely
elementary group theoretic lemmas.

Lemma 17. Suppose that G is a finite group, and that H,K � G such that G/H and G/K

are cyclic groups with relatively prime order. Then, G/(H ∩ K) is a cyclic group of order
|G/H | · |G/K|.

Suppose that k � 1 and H1, . . . ,Hk are normal subgroups of a finite group G, such that G/Hi

is cyclic for each i, and that |G/Hi | is relatively prime to |G/Hj | if i �= j . Then, G/(H1 ∩ · · · ∩
Hk) is a cyclic group of order |G/H1| · |G/H2| · · · |G/Hk|.

Proof. This follows immediately from the structure theorem for finitely generated abelian
groups. �
Corollary 18. Let π be a nonempty finite set of primes, and let G be a group. Then, G is finite
π ′-by-cyclic π if and only if G is finite p′-by-cyclic p for each p ∈ π .

Proof. We are given that for each p ∈ π , there exists a normal p′-subgroup Hp � G such that
|G/Hp| is a cyclic p-group. Applying Lemma 17, we find that the group G/(

⋂
p∈π Hp) is cyclic

and its order is
∏

p∈π |G/Hp|. In particular, G/(
⋂

p∈π Hp) is a cyclic π -group. On the other
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hand,
⋂

p∈π Hp is a subgroup of each Hp , which is a p′-group. We conclude that
⋂

p∈π Hp is a
finite normal π ′-group, and we conclude that G is finite π ′-by-cyclic p. �

Similarly, we have the following lemma in the infinite case.

Lemma 19. Let π be a nonempty finite set of primes, and let G be a group. Then, G is finite
π ′-by-infinite cyclic if and only if G is finite p′-by-infinite cyclic for each p ∈ π .

Proof. Suppose that G is finite π ′-by-infinite cyclic, so there is a finite π ′-group H � G such
that G/H is infinite cyclic. For each p ∈ π , H is a p′-group. We conclude that G is finite p-by-
infinite cyclic.

On the other hand, suppose that G is finite p′-by-infinite cyclic for each p ∈ π . We claim that
G is finite π ′-by-infinite cyclic. We induct on the size of π , the result being trivial if |π | = 1.
Thus, suppose that π = π1 ∪ {p}, where |π1| < |π |. By the inductive hypothesis, G is finite
π ′

1-by-infinite cyclic. Thus, we have a finite normal π ′
1-subgroup H1 � G such that G/H1 is

infinite cyclic. We also have a finite normal p′-subgroup H �G such that G/H is infinite cyclic.
Note that the subgroup H1H is a finite normal subgroup, and its image in G/H and G/H1 is
thus trivial, since an infinite cyclic group has no nontrivial finite subgroups. We conclude that
H = H1. In particular, H = H1 is a normal π -subgroup for which G/H is infinite cyclic. We
conclude that G is finite π ′-by-infinite cyclic. �

We reformulate Passman’s theorem for semisimple rings as follows; note that the statement is
somewhat simpler than that of Passman’s theorem, not distinguishing the characteristic.

Theorem 20. Let R be a semisimple ring, and G a group. Let π be the set of primes which are
not invertible in R. Then, the following are equivalent:

(1) RG is a principal ideal ring.
(2) G is finite π ′-by-cyclic π , or finite π ′-by-infinite cyclic.

The statement for artinian principal ideal rings is similarly the following.

Theorem 21. Suppose R is an artinian principal ideal ring, and that G is a group. Write R ∼=∏n
i=1 Mki

(Si) where each Si is a local artinian principal ideal ring. Let π denote the set of
primes which are not invertible in R. Then, the following are equivalent:

(1) RG is a principal ideal ring.
(2) G is finite π ′-by-cyclic π or finite π ′-by-infinite cyclic. If R is not semisimple, then G is

finite, and for each i ∈ {1, . . . , n} for which Si is not a division ring, |G| · 1 ∈ U(Si) and G

is Si -admissible.

We shall prove Theorems 20 and 21 together. In case G is finite, these theorems are simply
repackagings of their analogues Theorems 3 and 4, using the relevant structure theorems and
the fact that the class of artinian principal ideal rings is Morita invariant (passing to and from
matrix rings). We shall need to do some work, however, even in the semisimple case, to deal
with arbitrary (not necessarily finite) groups. The arguments in that case model essentially those
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found in [14, Section 4], but need to be adapted slightly. In particular, we do not know whether,
even for semisimple rings, an analogue of condition (b) of Passman’s theorem holds.

Proof of Theorems 20 and 21. The reverse implication is straightforward. Indeed, either Si

is a division ring and G is finite π ′-by-cyclic π or finite π ′-by-infinite cyclic; or else, |G| is
finite with |G| · 1 ∈ U(Si), and G is Si -admissible. By Theorems 4 and 3, SiG is a principal
ideal ring. By [5, Theorem 40], Mki

(SiG) is a principal ideal ring, and by [5, Lemma on p. 70],
R ∼= ∏n

i=1 Mki
(Si) is a principal ideal ring.

The forward implication requires a slight amount of work. As we mentioned before starting
the proof, in case G is finite, this work evaporates, since the class of artinian principal ideal rings
is Morita invariant; in particular, if RG is an artinian principal ideal ring, so is SiG for each i,
from which we can easily complete the argument. For principal ideal rings we do not know, in
general, whether the (full) Peirce corner rings of a principal ideal ring need to be principal ideal
rings. We shall sidestep this problem, however.

First, let us deal with the semisimple case. We will suppose first that R ∼= Mn(K) is simple
artinian, where n � 1 and K is a division ring. Essentially, we will argue as in the proof of
the implication (b) ⇒ (c) in Passman’s theorem (to obtain information about G), however, we
will need to adapt those arguments slightly to our situation. We will, however, only prove the
implication (a) ⇒ (c) in this context, which allows us more flexibility.

Proceeding as in the implication (b) ⇒ (c) (though we are doing the analogue of the im-
plication (a) ⇒ (c)) of the proof of Passman’s theorem, we conclude that RG is noetherian,
and hence all subgroups of G are finitely generated, and in particular, we have �+(G) finite.
As in Passman’s theorem, setting G = G/�+(G), we see that KG is a prime ring (e.g. [7,
Connell’s Theorem, p. 161]), and hence RG ∼= Mn(K)G ∼= Mn(KG) is a prime ring (by [7,
Theorem 10.20]).

At this point, we seek to apply [14, Lemma 4.4], which does not apply directly to our situ-
ation. Fortunately, we are only attempting to prove an analogue of the implication (a) ⇒ (c) as
opposed to the more restrictive implication (b) ⇒ (c). We will show that the conclusion of [14,
Lemma 4.4] is valid if we assume RG is a principal ideal ring, instead of only assuming that
�(RG) is a principal right ideal and RG is noetherian.

Indeed, using the argument found in [14, Lemma 4.4], with R simple artinian,1 we conclude
as before that when char(K) = 0,2 G/G′ is infinite cyclic. Similarly, if char(K) = p > 0 we
conclude that |G/H | is infinite, where H = ⋂∞

n=1 Dn(RG). As before, we conclude that G1 =
G/Dn(RG) is a finite p-group. Now, RG1 ∼= Mn(KG1) is an artinian principal ideal ring, and,
by Morita invariance, we conclude that KG1 is a principal ideal ring. Now, we are in position
to apply [14, Lemma 4.3] (for division rings, see Appendix A), to conclude that G/Dn(RG)

is cyclic, and hence G′ ⊆ H , so G/G′ is infinite. The rest of the proof of [14, Lemma 4.4]
carries through routinely. Indeed, G/G′ is an infinite finitely generated abelian group, so there
is a normal subgroup W of G for which G/W is infinite cyclic. If we set B = �(RW)RG,
then B is a prime ideal of RG since RG/B ∼= R(G/W) ∼= Mn(K(G/W)) is a prime ring by [7,
Connell’s Theorem, p. 161] and [7, Theorem 10.20]. Applying [14, Lemma 4.2(ii)], we conclude
that B = 0, and hence W = 1.

1 In Appendix A, below, we observe that the basic properties of the dimension subgroups needed apply in this situation,
since Q or Zp embeds in R.

2 Note that in this case Q embeds in R, so we obtain the usual basic properties of the dimension subgroups; see
Appendix A, below.
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Returning to the main proof, we therefore conclude that G is infinite cyclic or else G = 1.
Thus, G is finite or finite-by-infinite cyclic, and if char(K) = 0, we are done. Now, suppose
char(K) = p > 0. If G is finite, then, since RG ∼= Mn(KG) is an artinian principal ideal ring,
we conclude that KG is a principal ideal ring, and hence we conclude from Theorem 3 that G is
finite p′-by-cyclic p. Finally, we argue as in the last paragraph of the implication (b) ⇒ (c) of
the proof of Passman’s theorem, and, instead of applying [14, Lemma 4.3] to RG̃, we note first
that RG̃ ∼= Mn(KG̃) is an artinian principal ideal ring, so KG̃ is a principal ideal ring, to which
we may apply [14, Lemma 4.3], and we conclude as in the original proof, that either G is finite
p′-by-cyclic p, or else G is finite p′-by-infinite cyclic.

Putting all of the information we have together, suppose now that R is semisimple, so that
R ∼= ∏n

i=1 Mki
(Ki), and that G is a group, for which RG is a principal ideal ring. Looking at

quotients, we find that Mki
(KiG) is a principal ideal ring. Let π be the set of primes which are

not invertible in R; equivalently, p ∈ π if and only if p = char(Ki) > 0 for some i. First suppose
that G is finite. If π is empty, then considering any i, we find that G is finite; equivalently, G

is finite π ′-by-cyclic π . If π is nonempty, then, we find that G is finite p′-by-cyclic p for each
p ∈ π (considering any i for which Ki has characteristic p). By Lemma 18, we conclude that
G is finite π ′-by-cyclic π . We conclude in each case that if G is finite, then G is finite π ′-by-
cyclic π .

Next, suppose that G is infinite. If π = ∅, then each Ki has characteristic 0; we conclude that
G is finite-by-infinite cyclic (we conclude this for each i); equivalently, G is finite π ′-by-infinite
cyclic. If π is nonempty, then, we conclude for each p ∈ π that G is finite p′-by-infinite cyclic
(considering any i for which Ki has characteristic p). By Lemma 19, we conclude that G is finite
π ′-by-infinite cyclic. We therefore conclude that, in any event, G is finite π ′-by-infinite cyclic,
and the forward implication has been proved when R is semisimple.

With the semisimple case completed, we will now tackle the general case. Suppose that RG

is a principal ideal ring, where R is an artinian principal ideal ring. Thus, (R/J )G is a principal
ideal ring, but R/J is semisimple (since it is J -semisimple and artinian) and applying the semi-
simple case, we find that G is finite π ′-by-cyclic π or finite π ′-by-infinite cyclic. In the latter
case, RZ is a quotient of RG, so RZ is a principal ideal ring. By Lemma 6, we conclude that
R is semisimple. In particular, if any Si is not a division ring, then G is finite π ′-by-cyclic π .
Thus, suppose that Si is not a division ring. Clearly, since RG is a principal ideal ring, its quo-
tient Mni

(SiG) is a principal ideal ring as well. Since G is finite π ′-by-cyclic π , G is finite, so
Mni

(SiG) is an artinian principal ideal ring, so SiG is a principal ideal ring. By Theorem 4, we
conclude that |G| · 1 ∈ U(Si) and G is Si -admissible, which completes the forward implication.

For the implication (1) ⇒ (2), Theorem 4 implies that G is a finite p′-by-cyclic p group
for each p ∈ π ; if Si is not a division ring, then |G| · 1 ∈ U(R) and G is Si -admissible. By
Corollary 18, G is a finite π ′-by-cyclic π group, and the proof is complete. �

Using Theorem 2 we can now obtain a characterization of when RG is morphic (which is
merely a restatement of Theorem 21), in the case when G is finite and R is artinian.

Corollary 22. Suppose R is an artinian principal ideal ring, and that G is a finite group. Write
R ∼= ∏n

i=1 Mki
(Si) where each Si is a local artinian principal ideal ring. Let π denote the set of

primes which are not invertible in R. Then, the following are equivalent:

(1) RG is a principal ideal ring.
(2) RG is a morphic ring.
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(3) G is finite π ′-by-cyclic π . If R is not semisimple, then for each i ∈ {1, . . . , n} for which Si is
not a division ring, |G| · 1 ∈ U(Si) and G is Si -admissible.

Remark 23. [1, Theorem 3.7] characterizes, for R semisimple and G a finite abelian group,
when RG is (strongly) left morphic, which, by Theorem 2 is equivalent to requiring that RG is a
principal ideal ring (strongly morphic and morphic are equivalent for artinian rings). The second
condition found there, that for each p ∈ π , each Sylow p-subgroup of G is cyclic, is equivalent
to condition (3) of Corollary 22 above in the case when G is a finite nilpotent group.

Also, Corollary 22, in the case when R is a commutative artinian principal ideal ring (for
which any group is R-admissible), reduces to the statement that RG is a principal ideal ring if
and only if G is finite π ′-by-cyclic π and, for any p ∈ π , if p ∈ J (Si), then Si is a division
ring. The characterization of when ZnG is morphic (i.e. a principal ideal ring) appears in [1,
Theorem 3.15], but its equivalence to this condition is somewhat obscured, since the statement
and proof find the number theoretic condition that p2 does not divide n, which happens to be
equivalent to the aforementioned ring-theoretic condition for the ring Zn.

5. Examples

Our work settles a number of questions raised in [1]. In particular, Theorem 21 answers in the
affirmative [1, Conjecture 4.14] and [1, Question 4.15]. Next, let us resolve [1, Question 2.6] in
the negative. First, we will need the following useful example, due to the author and A. Diesl.

Example 24. Let R = C[t;σ ]/(t2), where σ is complex conjugation, and G = C3. Note that

G is not R-admissible, since the central idempotents of (R/J )G ∼= CC3 are 1+αg+α2g2

3 , where
α3 = 1, but σ does not fix the cube roots of unity. By Theorem 4, RG is not a principal ideal ring
(equivalently, it is not morphic, since RG is artinian).

Now, let us use Example 24 to answer [1, Question 2.6] in the negative. Consider the ring R

from Example 24, let H = C3, viewed as a subgroup of G = S3. We have seen that RC3 is not
a principal ideal ring. The ring RS3 is, however, a principal ideal ring, since S3 is R-admissible
(since each entry of the character table of S3 is in Z, the coefficients of the centrally primitive
idempotents of CS3 are all in Q, and hence are fixed by σ ).

We note, in passing, that if R is a local artinian principal ideal ring for which J (R) has a
central generator, then every finite group G, for which |G| · 1 ∈ U(R), is R-admissible, since the
automorphism of R/J is the identity map. In particular, if G is finite, R is such a ring, then if
RG is morphic, the same is true for any subgroup H of G (since |H | divides |G|).

It should also be noted that the likely motivation for the authors of [1] to ask [1, Question 2.6]
lies in the statement and proof of [1, Theorem 2.4]. The full strength of the hypotheses of [1,
Theorem 2.4] are not needed in the proof and can be weakened. Namely, if G is a locally finite
group with the property that every element x ∈ RG is left morphic as an element of RH for some
finite subgroup H of G, then RG is left morphic (instead of letting H be the subgroup generated
by the support, simply take H to be the finite subgroup for which x is left morphic in RH ; the
rest of the proof is unchanged). In fact, this gives a local condition for morphicity in the group
ring RG.

Proposition 25. Let G be a locally finite group. Then, RG is left morphic if and only if for each
x ∈ RG, there is a finite subgroup H of G such that x is left morphic in RH .
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Proof. The reverse implication is proved as in the proof of [1, Theorem 2.4] (replacing the sub-
group generated by the support of the element by the larger subgroup guaranteed by hypothesis).
For the converse, if x ∈ RG is left morphic, then there is some y such that annRG

� (x) = RGy

and annRG
� (y) = RGx. Consider the subgroup H generated by the supports of x and y; H is

finite, since G is locally finite. Clearly, RHx ⊆ annRH
� (y) and RHy ⊆ annRH

� (x). Conversely, if
z ∈ annRH

� (y), then z ∈ annRG
� (y) = RGx. We write z = wx, for some w ∈ RG, and write w =∑

gibi , where {gi} is a left transversal for H in G, and bi ∈ RH . We have z = ∑
gi(bix). Com-

paring coefficients of elements of H , we see that z = g0b0x, where g0 ∈ H . Since g0b0 ∈ RH ,
we conclude that z ∈ RHx, and hence RHx ⊇ annRH

� (y). It follows that RHx = annRH
� (y).

Similarly, RHy = annRH
� (x), and we conclude that x is left morphic in H . �

An interesting question, however, is whether RG left morphic implies that for each x ∈ RG,
there is a finite subgroup H of G for which x ∈ RH and RH is left morphic (as opposed to
simply x being left morphic in RH ); nor do we know whether each finite subgroup K of G is
contained in a finite subgroup H of G for which RH is left morphic. Certainly, both of these
statements are trivially true if the group G is a finite group (take H = G). We conclude with a
few more examples.

Example 26. Let R be an artinian principal ideal ring, and let G be an infinite locally finite group
for which RH is a principal ideal ring for each nontrivial (finite) subgroup of G. For instance,
we may take R to be a division ring, and p a prime number which is invertible in R, we may
take G = {x ∈ C: xpr = 1 for some r � 0}. Then, RG is not a principal ideal ring by Passman’s
theorem (it is infinite, but has no elements of infinite order), however, by [1, Theorem 2.4], RG

is a left and right morphic ring.

Example 27. Let R = C[t;σ ]/(t2), where σ is an automorphism of C which fixes the algebraic
numbers (there are such maps which are nontrivial, see, for instance, [16]). Then, any finite group
G is R-admissible (see the discussion preceding Theorem 4). In particular, RG is a principal
ideal ring for each finite group G. Note that nontrivial σ give rise to noncommutative rings R

with this property.
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Appendix A

In this appendix, we will detail slight changes to the arguments found in [14, Section 4] which
allow one to replace the hypothesis that K is a field with the hypothesis that K is a division ring
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in each of the results found in [14, Section 4]. For this section, we recommend that the reader
have a copy of [14] to follow along with.

First, suppose R is a ring which has a subring, with the same unity as R, which is isomorphic
to Q or to Zp for some prime p; we then view R as having characteristic 0 or characteris-
tic p, accordingly. We may define the dimension subgroups as in [15, Section 3.3], and [15,
Lemma 3.3.1] and [15, Lemma 3.3.2] remain valid (we need (x − 1)p = xp − 1, and we need to
divide by positive integers, in the characteristic p and 0 cases, respectively). Also, observe that
Dn(Mn(R)) = Dn(R), since �(Mn(R))i = Mn(�(R)i).

We will next detail why [14, Lemma 4.3] remains valid for division rings. In the proof of
[14, Lemma 4.3], the first paragraph remains valid for any division ring K , with dimension
interpreted as left K-vector space dimension. The next paragraph (finding a subgroup H for
which |H | �= 0 in the division ring) requires no changes. By the properties cited for the dimension
subgroups in this context, G/H is a p-group, and if it is not cyclic, it has a homomorphic image
which is elementary abelian of order p2. We need to make a slight change in the last paragraph,
since the ring KW need not be commutative. Arguing as in the first paragraph of the proof, if
�(KW) is principal as a right ideal, say �(KW) = αKW , then �(KW) = KWα. It follows that
�(KW)p = KWαp . But, if α = ∑

g∈W agg, then αp = ∑
g∈W a

p
g = ε(α)p = 0. We conclude

that if �(KW) is principal, it must be nilpotent of degree p. It is, however, easy to see that the
subring ZpW of KW is nilpotent of degree 2p − 1 > p, from which it follows that �(KW) is
not principal, and hence G/H is a cyclic p-group.

Finally, we observe that [14, Lemma 4.4] remains valid for K a division ring, with no changes
needed. The proof of Passman’s theorem proceeds as before for the implications (a) ⇒ (b) and
(b) ⇒ (c), using [14, Lemma 4.3] and [14, Lemma 4.4] which hold for division rings. The im-
plication (c) ⇒ (a) is essentially unchanged, using Maschke’s theorem and [4, Lemma 6] (more
details of this type of argument are found in the proof of the main theorem in [4]).
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