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domain different from a ball. Our proof makes heavy use of com-
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1. Introduction

In the last decades considerable attention has been devoted to the study of semilinear elliptic
equations of the type

−�u = f (u) in Ω (1.1)

where Ω is a bounded or unbounded domain and f is a C1-function. In particular much progress
has been made in the study of positive solutions of (1.1), under various boundary conditions. A much
investigated boundary value problem is the Dirichlet problem:

⎧⎨
⎩

−�u = f (u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1.2)

which naturally arises as a model problem in many applications.
Whenever a solution of (1.2) exists it is important to know whether it is unique or not. It is not

difficult to provide cases when (1.2) admits only one solution as well as others when many solutions
exist. Indeed, when f is a concave function in (0,∞), such as f (u) = up , 0 < p < 1, uniqueness
holds in any smooth bounded domain [7]. On the other hand, if f (u) = up , p > 1, there are examples
of nonconvex domains and exponents p, in any dimension N � 2, for which more solutions exist.
This is the case of dumb-bell shaped domains or annuli [11]. Moreover there are examples of convex
nonlinearities, such as f (u) = eu or f (u) = (1 + u)p , p > 1, for which uniqueness fails even if Ω is
a ball [18,29]. All the different results show that both the nonlinearity f (u) and the shape of the
bounded domain Ω play an important role for the uniqueness of the positive solution of (1.2). As
a consequence, a conjecture has been formulated, with its roots in the paper [12] of Gidas, Ni, and
Nirenberg.

Conjecture. If Ω is bounded and convex and f (u) = up + λu, p > 1, p � N+2
N−2 if N � 3, λ ∈ R, then unique-

ness holds as long as a solution of (1.2) exists.

Let us point out that if N � 3 solutions of (1.2) do not exist if Ω is starshaped and f (u) = up +λu,
p � N+2

N−2 , λ � 0, as a consequence of Pohozaev’s identity [24]. More generally positive solutions do
not exist in any bounded domain, for every N � 2, if λ � λ1(Ω), where λ1(Ω) is the first eigenvalue
of the Laplace operator −� with homogeneous Dirichlet boundary conditions in Ω . This can be easily
seen multiplying the equation by the first eigenfunction of −� and integrating.

When Ω is a ball the conjecture has been proved for the full range of the values of λ and p
for which existence holds, mainly exploiting ODE techniques. Indeed, in the case of a ball a well-
known result of Gidas, Ni, and Nirenberg [12] asserts that every positive solution of (1.2) is radial and
radially decreasing so that Eq. (1.1) can be rewritten as an ordinary differential equation. When λ = 0,
i.e. f (u) = up the proof of the uniqueness in the ball is not very difficult and is contained in [12].
Instead, when λ �= 0 the uniqueness in the ball is much more difficult to obtain and the complete
result is spread in several papers [18], [30], [28], [1], [2].

When Ω is not a ball very few results are available, and then only for the case λ = 0, i.e. f (u) = up .
Some are of perturbative type like that of [31] where domains close to a ball are considered, or that
of [13] where the exponent p is close to the critical Sobolev exponent in dimension N � 3 and the
domain Ω is assumed to be symmetric and convex in N orthogonal directions.

As regards general results the only ones to our knowledge are those contained in the papers [17,
11], and [10], again for the case λ = 0. In [17] a partial result is obtained in the sense that the
uniqueness is proved only for the so-called “least-energy” positive solution, and the result holds in
any bounded convex set in the plane. In [11] it is proved that if Ω is a domain in R

2, symmetric and
convex in two orthogonal directions, then there exists only one positive solution. This proof is based



2142 P.J. McKenna et al. / J. Differential Equations 247 (2009) 2140–2162
on a continuation method, also introduced in [11], and on the already known uniqueness result for
the ball.

In [10] the same result as in [11] is obtained, as well as some other qualitative properties of
solutions of (1.2). However the proof of the uniqueness of the solution of (1.2) is completely different
and is based on properties of the solutions of the associated linearized equations which are also
investigated in [10]. This is a pure PDE approach, based on the maximum principle, which does not
rely on the uniqueness of the positive solution in the ball but indeed provides an independent proof
for the ball.

Additionally, the results of [10] enable one to establish properties of the solutions of (1.2) also
when λ �= 0, i.e. if f (u) = up + λu, λ < λ1(Ω), for which, to our knowledge, there are no uniqueness
results in any bounded domain, other than the ball. However these properties are not sufficient in
[10] to deduce the uniqueness of the positive solutions, mainly because of the difficulty in proving
the nondegeneracy of solutions.

(Recall that a solution u of (1.2) is said to be nondegenerate if the linearized operator Lu = −� −
f ′(u) does not admit zero as an eigenvalue in Ω with zero Dirichlet boundary conditions.)

In this paper, by computer assistance, we provide the first rigorous proof of the conjecture in a
domain different from a ball. More precisely we have

Theorem 1.1. Let Ω be the unit square in R
2 , Ω = (0,1)2 . Then the problem⎧⎨

⎩
−�u = u2 + λu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(1.3)

admits only one solution for any λ ∈ [0, λ1(Ω)).

The choice of the exponent p = 2 is merely a matter of numerical convenience but other exponents
could be tested in the same way. Also the domain has been chosen to be the unit square to simplify
the numerical approach. Apart from the importance of the result in itself we believe that Theorem 1.1
is especially valuable because it shows how a combination of a theoretical approach and numerical
methods can lead to the solution of important problems. Indeed without the preliminary results of
[10] and [19] the uniqueness could not be proved solely by numerical methods. On the other hand
the theoretical approach of [10] and [19] has not been sufficient to prove the conjecture.

Let us explain briefly the proof of Theorem 1.1 and, for simplicity let us denote λ1(Ω) by λ1. The
starting point will be Theorem 1.3 of [19] which is a consequence of the results of [10] and asserts
that all solutions of (1.3) lie on a simple continuous curve, in the space R × C1,α(Ω̄), joining the
point (λ1,0) with the point (0, u0), where u0 is the unique positive solution of (1.3) for λ = 0. This
implies that if we are able to construct (by whatever means) a branch of solutions connecting these
two points and can show that along the branch solutions are nondegenerate, then uniqueness follows.
Indeed, the nondegeneracy of the solutions ensures, by the Implicit Function Theorem, that there are
neither turning points nor secondary bifurcations along the branch, so, for every λ there is only one
solution on the curve.

To achieve this goal by computer-assisted methods we proceed in the following way:

(i) First we construct a continuous branch (ωλ) of approximate solutions of (1.3) for λ in an interval
[0, λ̄], with λ̄ < λ1(Ω) suitably chosen.

(ii) Then we prove by the method described e.g. in [20,6,23,22] that a true solution uλ of (1.3) exists
near each ωλ and get a precise estimate of the distance between uλ and ωλ both in H1

0(Ω) and
in L∞(Ω). This allows us to obtain a smooth solution branch of true solutions in the interval
[0, λ̄].

(iii) Using the linearized operator at the approximate solutions and a perturbation argument we prove
that the true solutions uλ are nondegenerate, for λ ∈ [0, λ̄].

(iv) Using an L∞-estimate we prove that for λ ∈ [λ̄, λ1) there is only one solution of (1.3) which is
also nondegenerate.
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The step (iv) will be proved in Section 2 as a consequence of a result of [10] and allows us
to conclude the proof completing the construction of the branch in the interval [λ̄, λ1). Indeed the
construction of the steps (i)–(iii) cannot be carried out in the whole interval [0, λ1), since at λ1 the
only solution which is identically zero is obviously degenerate because the corresponding linearized
operator is just −� − λ1 which has zero as first eigenvalue.

The outline of the paper is the following: In Section 2 we recall some known results and prove
a preliminary result in general domains which allows us to achieve step (iv). In Sections 3 to 5 we
describe the analytical background of our computer-assisted proof, and in Sections 6 and 7 the nu-
merical tools used. Section 8 contains numerical results.

2. Preliminary results

We start recalling some results from [10] and [19] that are important to prove Theorem 1.1. In
the whole paper we consider bounded domains Ω ⊆ R

2 which are symmetric with respect to two
orthogonal axes intersecting at a point xM ∈ Ω and convex in the directions orthogonal to these
axes. For simplicity in this section we will choose xM as the origin and the symmetry axes as the
coordinate axes so that they are Ti = {x = (x1, x2) ∈ R

2, xi = 0}, i = 1,2. In such domains we will give
the following definition:

Definition 2.1. A function u ∈ C1(Ω) is called symmetric and monotone if it is even in both variables
and ∂u

∂xi
> 0 in Ω−

i = {x ∈ Ω: xi < 0}, i = 1,2.

Now we consider the semilinear elliptic equation:

−�u = f (u) in Ω (2.1)

where f is a C1-function.
Let us remark that by a result of [12] all positive solutions of (2.1) which are zero on the boundary

of Ω are symmetric and monotone.
The following result was proved in [10].

Theorem 2.1. Assume that u1 and u2 are positive, symmetric and monotone solutions of (2.1), with f convex.
If maxΩ̄ u1 = maxΩ̄ u2 and u1 � u2 on ∂Ω , then u1 ≡ u2 in Ω .

Note that no boundary conditions are assigned in the previous theorem, but the functions u1 and
u2 are only required to be comparable on the boundary. Hence the previous result is similar to the
uniqueness theorem for solutions of ordinary differential equations in an interval, in which case only
prescribing the maximum value of the solution implies uniqueness.

Now let us consider the problem ⎧⎨
⎩

−�u = up + λu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω

(2.2)

with p > 1 and λ ∈ [0, λ1(Ω)), where λ1(Ω) is the first eigenvalue of the operator −� with homoge-
neous Dirichlet boundary conditions.

Note that problem (2.2) can equivalently be reformulated as finding a non-trivial solution of{−�u = |u|p + λu in Ω,

u = 0 on ∂Ω
(2.3)

since by the strong maximum principle (for −� − λ) every non-trivial solution of (2.3) is positive
in Ω . In fact, this formulation is better suited for our computer-assisted approach than (2.2).



2144 P.J. McKenna et al. / J. Differential Equations 247 (2009) 2140–2162
As a consequence of Theorem 2.1 and of a bifurcation theorem of [25], the following result was
obtained in [19].

Theorem 2.2. All solutions uλ of (2.2) lie on a simple continuous curve Γ in [0, λ1(Ω)) × C1,α(Ω̄) joining
(λ1(Ω),0) with (0, u0), where u0 is the unique solution of (2.2) for λ = 0.

We recall that the uniqueness of the solution of (2.2) for λ = 0 was proved in [11] and [10]. As a
consequence of the previous theorem we have

Corollary 2.1. If all solutions on the curve Γ are nondegenerate then problem (2.2) admits only one solution
for every λ ∈ [0, λ1(Ω)).

Proof. The nondegeneracy of the solutions implies, by the Implicit Function Theorem, that neither
turning points nor secondary bifurcations can exist along Γ . Then, for every λ ∈ [0, λ1(Ω)) there
exists only one solution of (2.2) on Γ . By Theorem 2.2 all solutions are on Γ , hence uniqueness
follows. �

Theorem 2.2 and Corollary 2.1 indicate that to prove the uniqueness of the solution of problem
(2.2) for every λ ∈ [0, λ1(Ω)) it is enough to construct a branch of nondegenerate solutions which
connects (0, u0) to (λ1(Ω),0). This is what we will do numerically in the next sections with a rigor-
ous computer-assisted proof, obtaining so Theorem 1.1.

However, establishing the nondegeneracy of solutions uλ for λ close to λ1(Ω) numerically can be
difficult, due to the fact that the only solution at λ = λ1(Ω), which is the identically zero solution, is
obviously degenerate because its linearized operator is L0 = −� − λ1 which has the first eigenvalue
equal to zero. In the next propositions we will show in a simple way that, using some L∞-estimates
and Theorem 2.1, it is possible to prove that for every domain Ω there exists a computable number
λ̄(Ω) ∈ (0, λ1(Ω)) such that for any λ ∈ (λ̄(Ω),λ1(Ω)) problem (2.2) has only one solution which is
also nondegenerate. Of course, from the well-known results of Crandall and Rabinowitz [8,9], one can
establish that for λ “close to” λ1, all solutions uλ are nondegenerate. However, in order to complete
our program, we need to calculate a precise and explicit estimate of how close they need to be. This
allows us to carry out the numerical computation only in the interval [0, λ̄(Ω)] as we will do later.

Let us denote by λ1 = λ1(Ω) and λ2 = λ2(Ω) the first and second eigenvalue of the operator −�

in Ω with homogeneous Dirichlet boundary conditions. We have

Proposition 2.1. Assume that for some λ ∈ (0, λ1) and for a solution uλ of (2.2) we have

‖uλ‖∞ �
(

λ2 − λ1

p

) 1
p−1

. (2.4)

Then uλ is nondegenerate. Moreover if two solutions u1 and u2 , corresponding to the same value of λ, satisfy
(2.4) then u1 ≡ u2 in Ω .

Proof. Arguing by contradiction let uλ be a degenerate solution of (2.2) satisfying (2.4). This implies
that there exists a non-trivial solution v of the linearized equation at uλ:

−�v − pup−1
λ v − λv = 0 in Ω, v = 0 on ∂Ω.

Then v would change sign because zero cannot be the first eigenvalue of the linearized equation
for any solution of (2.2). Indeed this first eigenvalue is negative for all solutions of (2.2), as can be
deduced by comparison with the linear operator −�−up−1

λ −λ, which has 0 as first eigenvalue (with
eigenfunction uλ; see [17]).
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Setting β(x) = pup−1
λ , this means that v is an eigenfunction of the linear operator Lβ = (−� −

β(x)) corresponding to the eigenvalue λ and by (2.4) we have

β(x) � λ2 − λ1. (2.5)

Since v changes sign λ must be greater than or equal to the second eigenvalue of Lβ that we denote
by μ2(β). Then, using also (2.5) we have

λ � μ2(β) � λ2 − (λ2 − λ1) = λ1

contradicting the fact that λ ∈ (0, λ1).
This proves that uλ must be nondegenerate. In the same way we can also prove the second asser-

tion. Indeed if u1, u2 are two different solutions of (2.2) satisfying (2.4), it is easy to show that the
difference w = u1 − u2 must change sign (see [10, proof of Theorem 4.3]) and satisfy the equation

−�w = α(x)w + λw in Ω, w = 0 on ∂Ω

with

α(x) =
1∫

0

p
(
tu1 + (1 − t)u2

)p−1
dt � λ2 − λ1 (2.6)

by (2.4).
Hence w is an eigenfunction of the linear operator Lα = −� − α(x) corresponding to the eigen-

value λ which must be greater than or equal to the second eigenvalue of Lα , because w changes sign.
Therefore the same contradiction arises as in the proof of the nondegeneracy of the solution. �

The previous proposition asserts that we can deduce nondegeneracy and local uniqueness from
the L∞-estimate (2.4). Next we show how to verify this estimate for λ in an interval (λ̄, λ1).

Lemma 2.1. Let Γ be the unique continuous branch of solutions of (2.2) given by Theorem 2.2 and consider
the function g defined on Γ ∗ := Γ \ {(0, u0)} by

g(λ, uλ) = ‖uλ‖∞ · 1

λ
1

p−1

, (λ, uλ) ∈ Γ ∗.

Then g(Γ ∗) = (0,+∞), g is injective and hence monotone decreasing along Γ ∗ .

Proof. Recall that because Ω is a doubly symmetric domain and uλ is a symmetric and monotone
function (in the sense of Definition 2.1), it achieves its maximum at the origin 0 which is the inter-
section of the symmetry axes of Ω , i.e.

‖uλ‖∞ = uλ(0).

Define

hλ(x) = uλ

(
x√
λ

)
1

λ
1

p−1

, x = (x1, x2) ∈ Ω√
λ

where Ω√
λ = {x = √

λy, y ∈ Ω}.
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Then h satisfies

(Pλ)

⎧⎨
⎩

−�h = hp + h in Ω√
λ,

h > 0 in Ω√
λ
,

h = 0 on ∂Ω√
λ.

Clearly g(λ, uλ) = hλ(0) → 0 as λ → λ1 and g(λ, uλ) = hλ(0) → +∞ as λ → 0. If there exist λ′ and λ′′ ,
λ′ < λ′′ , such that g(λ′, uλ′ ) = g(λ′′, uλ′′ ) then the corresponding functions hλ′ and hλ′′ will be two
solutions of (Pλ′ ) and (Pλ′′ ) with the same maximum and comparable on the boundary of Ω√

λ′ . This
is a contradiction with the statement of Theorem 2.1 and hence the assertion is proved. �
Proposition 2.2. If there exist λ̄ ∈ (0, λ1) and a solution uλ̄ of (2.2) with λ = λ̄ such that

‖uλ̄‖∞ <

(
λ2 − λ1

p

) 1
p−1

·
(

λ̄

λ1

) 1
p−1

, (2.7)

then

‖uλ‖∞ <

(
λ2 − λ1

p

) 1
p−1

(2.8)

for all solutions uλ of (2.2) belonging to the branch Γ2 ⊂ Γ which connects (λ̄, uλ̄) to (λ1,0).

(Recall that Γ is the unique continuous branch of solutions given by Theorem 2.2.)

Proof. We set Γ = Γ1 ∪ Γ2, with Γ1 connecting (0, u0) to (λ̄, uλ̄).
By (2.7) we have

g(λ̄, uλ̄) = ‖uλ̄‖∞ · 1

λ̄
1

p−1

<

(
λ2 − λ1

p

) 1
p−1

· 1

λ
1

p−1
1

=: β.

By continuity we have that the function g takes on Γ1 all values in the interval [β,+∞). If on Γ2

there was a solution uλ′ , λ′ ∈ (0, λ1), such that ‖uλ′ ‖∞ � ( λ2−λ1
p )

1
p−1 then we would have

g(λ′, uλ′) = ‖uλ′ ‖∞ · 1

(λ′)
1

p−1

>

(
λ2 − λ1

p

) 1
p−1

· 1

λ
1

p−1
1

= β.

As a consequence on Γ2 the function g would take again some values in the interval [β,+∞),
contradicting Lemma 2.1 which asserts the injectivity of the function g . �
Corollary 2.2. If on the branch Γ there exists a solution uλ̄, λ̄ ∈ (0, λ1), such that:

(i) on the sub-branch Γ1 connecting (0, u0) with (λ̄, uλ̄) all solutions are nondegenerate, and

(ii) ‖uλ̄‖∞ <

(
λ2 − λ1

p

) 1
p−1

·
(

λ̄

λ1

) 1
p−1

, (2.9)

then all solutions of (2.2) are nondegenerate, for all λ ∈ (0, λ1), and therefore problem (2.2) admits only one
solution for every λ ∈ [0, λ1(Ω)).
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Proof. Let us split as before the branch Γ into the two sub-branches Γ1 and Γ2. On Γ1 we have
that all solutions are nondegenerate by (i). On the other hand the hypothesis (ii) allows us to apply
Proposition 2.2 and obtain (2.8) for all solutions uλ belonging to Γ2. Then Proposition 2.1 implies that
all solutions on Γ2 are nondegenerate. Hence there is nondegeneracy all along Γ so the assertion
follows from Corollary 2.1. �

The last corollary suggests the method of proving the uniqueness through computer assistance:
first we construct a branch of nondegenerate “true” solutions near approximate ones in a certain
interval [0, λ̄] and then verify (ii) for the solution uλ̄ . Note that the estimate (2.9) depends only on
p and on the eigenvalues λ1 and λ2 of the operator −� in the domain Ω . So the constant on the
right-hand side is easily computable. When Ω is the unit square which is the case considered in
Theorem 1.1 and analyzed in the next sections, the estimate (2.9) becomes:

‖uλ̄‖∞ <

(
3π2

p

) 1
p−1

·
(

λ̄

2π2

) 1
p−1

=
(

3λ̄

2p

) 1
p−1

because λ1 = 2π2 and λ2 = 5π2.
Fixing p = 2 or 3 we finally get the conditions

‖uλ̄‖∞ <
3

4
λ̄ if p = 2, (2.10)

‖uλ̄‖∞ <

√
λ̄

2
if p = 3. (2.11)

3. The basic existence and enclosure theorem

We start the computer-assisted part of our proof with a basic theorem on existence, local unique-
ness, and non-degeneracy of solutions to problem (2.3), assuming p � 2 now. In this section, the
parameter λ ∈ [0, λ1(Ω)) is fixed.

Let H1
0(Ω) be endowed with the inner product 〈u, v〉H1

0
:= 〈∇u,∇v〉L2 + σ 〈u, v〉L2 ; the choice of

some positive σ will turn out to be advantageous. Let H−1(Ω) denote the (topological) dual of H1
0(Ω),

endowed with the usual operator sup-norm.
Suppose that an approximate solution ωλ ∈ H1

0(Ω) of problem (2.3) has been computed by numer-
ical means, and that a bound δλ > 0 for its defect is known, i.e.

∥∥−�ωλ − λωλ − |ωλ|p
∥∥

H−1 � δλ, (3.1)

as well as a constant Kλ such that

‖v‖H1
0
� Kλ

∥∥L(λ,ωλ)[v]∥∥H−1 for all v ∈ H1
0(Ω). (3.2)

Here, L(λ,ωλ) denotes the operator linearizing problem (2.3) at ωλ; more generally, for (λ, u) ∈ R ×
H1

0(Ω), let the linear operator L(λ,u) : H1
0(Ω) → H−1(Ω) be defined by

L(λ,u)[v] := −�v − λv − p|u|p−2uv
(

v ∈ H1
0(Ω)

)
. (3.3)

The practical computation of bounds δλ and Kλ will be addressed in Sections 6 and 7.
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Let C p+1 denote a norm bound (embedding constant) for the embedding H1
0(Ω) ↪→ L p+1(Ω),

which is bounded since Ω ⊂ R
2. C p+1 can be calculated e.g. according to the explicit formula given

in [22, Lemma 2]. Finally, let

γ := 1

2
p(p − 1)C3

p+1.

In our example case where Ω = (0,1)2, and e.g. for p = 2, the above-mentioned explicit formula gives
(with the choice σ := 1)

γ = 1√
2(2π2 + 3

2 )

(
<

1

30

)
.

Theorem 3.1. Suppose that some αλ > 0 exists such that

δλ � αλ

Kλ

− γ α2
λ

(‖ωλ‖L p+1 + C p+1αλ

)p−2
(3.4)

and

2Kλγ αλ

(‖ωλ‖L p+1 + C p+1αλ

)p−2
< 1. (3.5)

Then, the following statements hold true:

(a) (Existence) There exists a solution uλ ∈ H1
0(Ω) of problem (2.3) such that

‖uλ − ωλ‖H1
0
� αλ. (3.6)

(b) (Local uniqueness) Let η > 0 be chosen such that (3.5) holds with αλ + η instead of αλ . Then,

u ∈ H1
0(Ω) solution of (2.3)

‖u − ωλ‖H1
0
� αλ + η

}
�⇒ u = uλ. (3.7)

(c) (Nondegeneracy)

u ∈ H1
0(Ω)

‖u − ωλ‖H1
0
� αλ

}
�⇒ L(λ,u) : H1

0(Ω) → H−1(Ω) is bijective, (3.8)

whence in particular L(λ,uλ) is bijective (by (3.6)).

Corollary 3.1. Suppose that (3.4) and (3.5) hold, and in addition that ‖ωλ‖H1
0

> αλ . Then, the solution uλ

given by Theorem 3.1 is non-trivial (and hence positive).

Remark 3.1. (a) The function ψ(α) := α
Kλ

− γα2(‖ωλ‖Lp+1 + C p+1α)p−2 has obviously a positive max-
imum on [0,∞), and the crucial condition (3.4) requires that

δλ � max
α∈[0,∞)

ψ(α), (3.9)

i.e. δλ has to be sufficiently small. According to (3.1), this means that ωλ must be computed with
sufficient accuracy, which leaves the “hard work” to the computer!
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Furthermore, a “small” defect bound δλ allows (via (3.4)) a “small” error bound αλ , if Kλ is not too
large.

(b) If we require, slightly stronger than (3.9) (but without much “practical” difference), that

δλ < max
α∈[0,∞)

ψ(α), (3.10)

and if moreover we choose the minimal αλ satisfying (3.4), then the additional condition (3.5) follows
automatically, which can be seen as follows: There is a unique ᾱ > 0 such that ψ(ᾱ) = max ψ(α), and
(3.10) and the minimal choice of αλ show that αλ < ᾱ. ᾱ is determined by ψ ′(ᾱ) = 0, which implies
2Kλγ ᾱ(‖ωλ‖Lp+1 + C p+1ᾱ)p−2 � 1 (with equality holding if p = 2), and therefore (3.5).

Since we will anyway try to find αλ (satisfying (3.4)) close to the minimal one, condition (3.5) is
“practically” always satisfied if (3.4) holds. (Nevertheless, it must of course be checked.)

(c) In the case p = 2, condition (3.10) reads

δλ <
1

4γ K 2
λ

, (3.11)

and if it holds, (3.4) and (3.5) are satisfied for

αλ := 2Kλδλ

1 +
√

1 − 4γ δλK 2
λ

. (3.12)

For the proof of Theorem 3.1, and also for later purposes, we will need two lemmata.

Lemma 3.1. For all u, ũ, v ∈ H1
0(Ω),

∥∥p
[|u|p−2u − |ũ|p−2ũ

]
v
∥∥

H−1 � 2γ max
{‖u‖L p+1 ,‖ũ‖L p+1

}p−2 · ‖u − ũ‖H1
0
‖v‖H1

0
.

Proof. The Mean Value Theorem gives

|u|p−2u − |ũ|p−2ũ =
1∫

0

(p − 1)
∣∣tu + (1 − t)ũ

∣∣p−2
dt · (u − ũ) on Ω,

whence, for all ϕ ∈ H1
0(Ω),

∣∣∣∣
∫
Ω

p
[|u|p−2u − |ũ|p−2ũ

]
vϕ dx

∣∣∣∣ = p(p − 1)

∣∣∣∣∣
1∫

0

∫
Ω

∣∣tu + (1 − t)ũ
∣∣p−2

(u − ũ)vϕ dx dt

∣∣∣∣∣

� p(p − 1)

1∫
0

∥∥tu + (1 − t)ũ
∥∥p−2

Lp+1‖u − ũ‖L p+1‖v‖L p+1‖ϕ‖L p+1 dt

� p(p − 1)C3
p+1

1∫
0

∥∥tu + (1 − t)ũ
∥∥p−2

Lp+1 dt · ‖u − ũ‖H1
0
‖v‖H1

0
‖ϕ‖H1

0

implying the assertion. �
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Lemma 3.2. Let (λ, u), (λ̃, ũ) ∈ R × H1
0(Ω), and suppose that, for some K > 0,

‖v‖H1
0
� K

∥∥L(λ̃,ũ)[v]∥∥H−1 for all v ∈ H1
0(Ω)

(with L(λ,u) defined in (3.3)), and

κ := K

[
1

λ1(Ω) + σ
|λ − λ̃| + 2γ max

{‖u‖L p+1 ,‖ũ‖L p+1

}p−2‖u − ũ‖H1
0

]
< 1. (3.13)

Then,

‖v‖H1
0
� K

1 − κ

∥∥L(λ,u)[v]∥∥H−1 for all v ∈ H1
0(Ω).

Proof. Using (3.3), Lemma 3.1, and ‖v‖H−1 � 1
λ1(Ω)+σ ‖v‖H1

0
, we obtain

‖v‖H1
0
� K

∥∥L(λ̃,ũ)[v]∥∥H−1 � K
[∥∥L(λ,u)[v]∥∥H−1 + ∥∥(λ − λ̃)v + p

[|u|p−2u − |ũ|p−2ũ
]
v
∥∥

H−1

]
� K

∥∥L(λ,u)[v]∥∥H−1 + κ‖v‖H1
0

for all v ∈ H1
0(Ω),

whence (3.13) implies the assertion. �
Proof of Theorem 3.1. By (3.2), L(λ,ωλ) : H1

0(Ω) → H−1(Ω) is one-to-one, and hence bijective due to
Fredholm’s Alternative for linear boundary value problems. Problem (2.3) is therefore equivalent to
the following fixed-point problem for the error v = u − ωλ:

v = T (v) := L−1
(λ,ωλ)

[(
�ωλ + λωλ + |ωλ|p) + (|ωλ + v|p − |ωλ|p − p|ωλ|p−2ωλv

)]
. (3.14)

Below we will prove that the fixed-point operator T : H1
0(Ω) → H1

0(Ω)

(i) maps D := {v ∈ H1
0(Ω): ‖v‖H1

0
� αλ} into itself,

(ii) is contractive on Dη := {v ∈ H1
0(Ω): ‖v‖H1

0
� αλ + η}.

Then, Banach’s Fixed-Point Theorem yields a fixed-point vλ ∈ D of T , whence by construction
uλ := ωλ + vλ is a solution of (2.3) satisfying (3.6), which proves part (a) of the theorem. Furthermore,
by (ii), vλ is the only fixed-point of T within Dη , whence also part (b) follows. For u as in the premise
of (3.8), and (λ̃, ũ) := (λ,ωλ), the assumptions of Lemma 3.2 hold for K = Kλ and

κ = 2Kλγ max
{‖u‖L p+1 ,‖ωλ‖L p+1

}p−2‖u − ωλ‖H1
0
� 2Kλγ

(‖ωλ‖L p+1 + C p+1αλ

)p−2
αλ

which is indeed less than 1 by (3.5). Thus, L(λ,u) is one-to-one by Lemma 3.2, and hence bijective due
to Fredholm’s Alternative. This proves the final part (c) of the theorem.

To prove (i) and (ii), we first note that, for v, ṽ ∈ H1
0(Ω),

|ωλ + v|p − |ωλ + ṽ|p − p|ωλ|p−2ωλ(v − ṽ)

=
1∫

0

d

dt

[∣∣ωλ + tv + (1 − t)ṽ
∣∣p − tp|ωλ|p−2ωλ(v − ṽ)

]
dt

=
1∫

p
[∣∣ωλ + tv + (1 − t)ṽ

∣∣p−2(
ωλ + tv + (1 − t)ṽ

) − |ωλ|p−2ωλ

]
(v − ṽ)dt
0
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on Ω . Multiplying by a test function, integrating over Ω , exchanging the order of integration on the
right-hand side, and applying Lemma 3.1, we obtain

∥∥|ωλ + v|p − |ωλ + ṽ|p − p|ωλ|p−2ωλ(v − ṽ)
∥∥

H−1

� 2γ

1∫
0

max
{∥∥ωλ + tv + (1 − t)ṽ

∥∥
L p+1 ,‖ωλ‖L p+1

}p−2∥∥tv + (1 − t)ṽ
∥∥

H1
0

dt · ‖v − ṽ‖H1
0

� 2γ
[‖ωλ‖L p+1 + C p+1 max

{‖v‖H1
0
,‖ṽ‖H1

0

}]p−2 · 1

2

(‖v‖H1
0
+ ‖ṽ‖H1

0

) · ‖v − ṽ‖H1
0
. (3.15)

By (3.14), (3.2), (3.1), (3.15) (with ṽ := 0), and (3.4), we obtain for v ∈ D:

∥∥T (v)
∥∥

H1
0
� Kλ

∥∥(
�ωλ + λωλ + |ωλ|p) + (|ωλ + v|p − |ωλ|p − p|ωλ|p−2ωλv

)∥∥
H−1

� Kλ

[
δλ + γ

(‖ωλ‖L p+1 + C p+1αλ

)p−2
α2

λ

]
� αλ,

i.e. T (v) ∈ D , which proves (i). Furthermore, (3.14), (3.2), and (3.15) imply, for v, ṽ ∈ Dη:

∥∥T (v) − T (ṽ)
∥∥

H1
0
� Kλ

∥∥|ωλ + v|p − |ωλ + ṽ|p − p|ωλ|p−2ωλ(v − ṽ)
∥∥

H−1

� 2Kλγ
(‖ωλ‖L p+1 + C p+1(αλ + η)

)p−2
(αλ + η)‖v − ṽ‖H1

0
,

whence (3.5), respectively the choice of η, proves (ii). �
4. The branch (uλ)

Fixing some λ̄ ∈ (0, λ1(Ω)) (the actual choice of which is made on the basis of Proposition 2.2; see
also Section 5), we assume now that for every λ ∈ [0, λ̄] an approximate solution ωλ ∈ H1

0(Ω) is at
hand, as well as a defect bound δλ satisfying (3.1), and a bound Kλ satisfying (3.2). Furthermore, we
assume now that, for every λ ∈ [0, λ̄], some αλ > 0 satisfies (3.4) and (3.5), and the additional non-
triviality condition ‖ωλ‖H1

0
> αλ (see Corollary 3.1). We suppose that some uniform (λ-independent)

η > 0 can be chosen such that (3.5) holds with αλ +η instead of αλ (compare Theorem 3.1(b)). Hence
Theorem 3.1 gives a positive solution uλ ∈ H1

0(Ω) of problem (2.3) with the properties (3.6)–(3.8),
for every λ ∈ [0, λ̄].

Finally, we assume that the approximate solution branch ([0, λ̄] → H1
0(Ω), λ �→ ωλ) is continuous,

and that ([0, λ̄] → R, λ �→ αλ) is lower semi-continuous.
In Sections 6 and 7, we will address the actual computation of such branches (ωλ), (δλ), (Kλ), (αλ).
So far we know nothing about continuity or smoothness of ([0, λ̄] → H1

0(Ω),λ �→ uλ), which
however we will need to conclude that (uλ)λ∈[0,λ̄] coincides with the sub-branch Γ1 introduced in
Corollary 2.2.

Theorem 4.1. The solution branch

{ [0, λ̄] → H1
0(Ω)

λ �→ uλ

}

is continuously differentiable.
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Proof. The mapping

F :

{
R × H1

0(Ω) → H−1(Ω)

(λ, u) �→ −�u − λu − |u|p

}

is continuously differentiable, with (∂F /∂u)(λ, u) = L(λ,u) (see (3.3)), and F (λ, uλ) = 0 for all
λ ∈ [0, λ̄]. (Note that L(λ,u) depends indeed continuously on (λ, u) by Lemma 3.1.) It suffices to prove
the asserted smoothness locally. Thus, fix λ0 ∈ [0, λ̄]. Since L(λ0,uλ0 ) is bijective by Theorem 3.1(c), the

Implicit Function Theorem gives a C1-smooth solution branch

{
(λ0 − ε,λ0 + ε) → H1

0(Ω)

λ �→ ûλ

}

to problem (2.3), with ûλ0 = uλ0 . By (3.6),

‖ûλ0 − ωλ0‖H1
0
� αλ0 . (4.1)

Since ûλ and ωλ depend continuously on λ, and αλ lower semi-continuously, (4.1) implies

‖ûλ − ωλ‖H1
0
� αλ + η

(
λ ∈ [0, λ̄] ∩ (λ0 − ε̃, λ0 + ε̃)

)
for some ε̃ ∈ (0, ε). Hence Theorem 3.1(b) provides

ûλ = uλ

(
λ ∈ [0, λ̄] ∩ (λ0 − ε̃, λ0 + ε̃)

)
,

implying the desired smoothness in some neighborhood of λ0 (which of course is one-sided if λ0 = 0
or λ0 = λ̄). �

As a consequence of Theorem 4.1, (uλ)λ∈[0,λ̄] is a continuous solution curve connecting the point
(0, u0) with (λ̄, uλ̄), and thus must coincide with the sub-branch Γ1, connecting these two points, of
the unique simple continuous curve Γ given by Theorem 2.2. Using Theorem 3.1(c), we obtain

Corollary 4.1. On the sub-branch Γ1 of Γ which connects (0, u0) with (λ̄, uλ̄), all solutions are nondegenerate.

Thus, if we can choose λ̄ such that condition (2.9) holds true, Corollary 2.2 will give the desired
uniqueness result.

5. Choice of λ̄

We have to choose λ̄ such that condition (2.9) is satisfied. For this purpose, we use computer
assistance again. With xM denoting the intersection of the symmetry axes of the (doubly symmetric)
domain Ω , i.e. xM = ( 1

2 , 1
2 ) for Ω = (0,1)2, we choose λ̄ ∈ (0, λ1(Ω)), not too close to λ1(Ω), such

that our approximate solution ωλ̄ satisfies

ωλ̄(xM) <

(
λ2(Ω) − λ1(Ω)

p

) 1
p−1

·
(

λ̄

λ1(Ω)

) 1
p−1

, (5.1)

with “not too small” difference between right- and left-hand side. Such a λ̄ can be found within a
few numerical trials.
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Here, we impose the additional requirement

ωλ̄ ∈ H2(Ω) ∩ H1
0(Ω), (5.2)

which is in fact a condition on the numerical method used to compute ωλ̄ . (Actually, condition (5.2)
could be avoided if we were willing to accept additional technical effort.) Moreover, exceeding (3.1),
we will now need an L2-bound δ̂λ̄ for the defect:

∥∥−�ωλ̄ − λ̄ωλ̄ − |ωλ̄|p
∥∥

L2 � δ̂λ̄. (5.3)

Finally, we make the assumption that Ω is convex, and hence in particular H2-regular, whence every
solution u ∈ H1

0(Ω) of problem (2.3) is in H2(Ω). Again, this additional assumption could be avoided
with a lot of technical effort, but this is not worth doing here since anyway we are aiming at the
convex domain Ω = (0,1)2.

Using the method described in Section 3, we obtain, by Theorem 3.1(a), a positive solution
uλ̄ ∈ H2(Ω) ∩ H1

0(Ω) of problem (2.3) satisfying

‖uλ̄ − ωλ̄‖H1
0
� αλ̄, (5.4)

provided that (3.4) and (3.5) hold, and that ‖ωλ̄‖H1
0
> αλ̄ .

Now we make use of the explicit version of the Sobolev embedding H2(Ω) ↪→ C(Ω̄) given in [20].
There, explicit constants Ĉ0, Ĉ1, Ĉ2 are computed such that

‖u‖∞ � Ĉ0‖u‖L2 + Ĉ1‖∇u‖L2 + Ĉ2‖uxx‖L2 for all u ∈ H2(Ω),

with ‖uxx‖L2 denoting the L2-Frobenius norm of the Hessian matrix uxx . E.g. for Ω = (0,1)2, [20]
gives

Ĉ0 = 1, Ĉ1 = 1.1548 ·
√

2

3
� 0.9429, Ĉ2 = 0.22361 ·

√
28

45
� 0.1764.

Moreover, ‖uxx‖L2 � ‖�u‖L2 for u ∈ H2(Ω) ∩ H1
0(Ω) since Ω is convex (see e.g. [15]). Consequently,

‖uλ̄ − ωλ̄‖∞ � Ĉ0‖uλ̄ − ωλ̄‖L2 + Ĉ1‖uλ̄ − ωλ̄‖H1
0
+ Ĉ2‖�uλ̄ − �ωλ̄‖L2 . (5.5)

To bound the last term on the right-hand side, we first note that

∥∥|uλ̄|p − |ωλ̄|p
∥∥

L2 =
∥∥∥∥∥p

1∫
0

∣∣ωλ̄ + t(uλ̄ − ωλ̄)
∣∣p−2(

ωλ̄ + t(uλ̄ − ωλ̄)
)

dt · (uλ̄ − ωλ̄)

∥∥∥∥∥
L2

� p

1∫
0

∥∥∣∣ωλ̄ + t(uλ̄ − ωλ̄)
∣∣p−1 · |uλ̄ − ωλ̄|

∥∥
L2 dt

� p

1∫
0

∥∥ωλ̄ + t(uλ̄ − ωλ̄)
∥∥p−1

L2p ‖uλ̄ − ωλ̄‖L2p dt

� p

1∫ (‖ωλ̄‖L2p + tC2pαλ̄

)p−1
dt · C2pαλ̄, (5.6)
0
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using (5.4) and an embedding constant C2p for the embedding H1
0(Ω) ↪→ L2p(Ω) in the last line; see

e.g. [22, Lemma 2] for its computation. Moreover, by (2.3) and (5.3),

‖�uλ̄ − �ωλ̄‖L2 � δ̂λ̄ + λ̄‖uλ̄ − ωλ̄‖L2 + ∥∥|uλ̄|p − |ωλ̄|p
∥∥

L2 . (5.7)

Using (5.4)–(5.7), and the Poincaré inequality

‖u‖L2 � 1√
λ1(Ω) + σ

‖u‖H1
0

(
u ∈ H1

0(Ω)
)
, (5.8)

we finally obtain

‖uλ̄ − ωλ̄‖∞ �
[

Ĉ0 + λ̄Ĉ2√
λ1(Ω) + σ

+ Ĉ1 + pC2p Ĉ2

1∫
0

(‖ωλ̄‖L2p + tC2pαλ̄

)p−1
dt

]
· αλ̄ + Ĉ2δ̂λ̄, (5.9)

and the right-hand side is “small” if αλ̄ and δ̂λ̄ are “small”, which can (again) be achieved by suffi-
ciently accurate numerical computations.

Finally, since

uλ̄(xM) � ωλ̄(xM) + ‖uλ̄ − ωλ̄‖∞,

(5.9) yields an upper bound for uλ̄(xM) which is “not too much” larger than ωλ̄(xM). Hence condition
(2.9) can easily be checked, and (5.1) (with “not too small” difference between right- and left-hand
side) implies a good chance that this check will be successful; otherwise, λ̄ has to be chosen a bit
larger.

6. Computation of ωλ,δλ, Kλ for fixed λ

In this section we report on the computation of an approximate solution ωλ ∈ H2(Ω) ∩ H1
0(Ω) to

problem (2.3), and of bounds δλ and Kλ satisfying (3.1) and (3.2), where λ ∈ [0, λ1(Ω)) is fixed (or
one of finitely many values). We will restrict ourselves to the unit square Ω = (0,1)2 now.

An approximation ωλ is computed by a Newton iteration applied to problem (2.3), where the linear
boundary value problems

L
(λ,ω

(n)
λ )

[vn] = �ω
(n)
λ + λω

(n)
λ + ∣∣ω(n)

λ

∣∣p
(6.1)

occurring in the single iteration steps are solved approximately by an ansatz

vn(x1, x2) =
N∑

i, j=1

α
(n)
i j sin(iπx1) sin( jπx2) (6.2)

and a Ritz–Galerkin method (with the basis functions in (6.2)) applied to problem (6.1). The update
ω

(n+1)
λ := ω

(n)
λ + vn concludes the iteration step.

The Newton iteration is terminated when the coefficients α
(n)
i j in (6.2) are “small enough”, i.e. their

modulus is below some pre-assigned tolerance.
To start the Newton iteration, i.e. to find an appropriate ω

(0)
λ of the form (6.2), we first consider

some λ close to λ1(Ω), and choose ω
(0)
λ = α sin(πx1) sin(πx2); with an appropriate choice of α > 0

(to be determined in a few numerical trials), the Newton iteration will “converge” to a non-trivial
approximation ω(λ) . Then, starting at this value, we diminish λ in small steps until we arrive at
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λ = 0, while in each of these steps the approximation ω(λ) computed in the previous step is taken as
a start of the Newton iteration. In this way, we find approximations ωλ to problem (2.3) for “many”
values of λ. Note that all approximations ωλ obtained in this way are of the form (6.2).

The computation of an L2-defect bound δ̂λ satisfying

∥∥−�ωλ − λωλ − |ωλ|p
∥∥

L2 � δ̂λ (6.3)

amounts to the computation of an integral over Ω . In the case p = 2, which is the only one which we
treated completely rigorously, this integral can easily and quickly be computed in closed form, since
ωλ is of the form (6.2) and hence only products of trigonometric functions occur in the integrand.
After calculating them, various sums

∑N
i=1 remain to be evaluated. In order to obtain a rigorous

bound δ̂λ , these computations (in contrast to those for obtaining ωλ as described above) need to be
carried out in interval arithmetic [14,27], to take rounding errors into account.

For the case p = 3 we just approximated the needed integral by a quadrature formula, which
of course spoils mathematical rigor in this case; note however that this lack of rigor occurs on a
rather “technical” level only, whence we are convinced that also this case can be treated completely
rigorously when we use refined numerics.

Once an L2-defect bound δ̂λ (satisfying (6.3)) has been computed, an H−1-defect bound δλ (satis-
fying (3.1)) is easily obtained via the embedding

‖u‖H−1 � 1√
λ1(Ω) + σ

‖u‖L2

(
u ∈ L2(Ω)

)
(6.4)

which is a result of the corresponding dual embedding (5.8). Indeed, (6.3) and (6.4) imply that

δλ := 1√
λ1(Ω) + σ

δ̂λ

satisfies (3.1).
For computing a constant Kλ satisfying (3.2), we use the isometric isomorphism

Φ :

{
H1

0(Ω) → H−1(Ω)

u �→ −�u + σu

}
, (6.5)

and note that Φ−1 L(λ,ωλ) : H1
0(Ω) → H1

0(Ω) is 〈·,·〉H1
0
-symmetric since

〈
Φ−1L(λ,ωλ)[u], v

〉
H1

0
=

∫
Ω

[∇u · ∇v − λuv − p|ωλ|p−2ωλuv
]

dx, (6.6)

and hence selfadjoint. Since ‖L(λ,ωλ)[u]‖H−1 = ‖Φ−1 L(λ,ωλ)[u]‖H1
0
, (3.2) thus holds for any

Kλ �
[
min

{|μ|: μ is in the spectrum of Φ−1L(λ,ωλ)

}]−1
, (6.7)

provided the min is positive.
A particular consequence of (6.6) is that

〈(
I − Φ−1L(λ,ωλ)

)[u], u
〉
H1

0
=

∫
Wλu2 dx

(
u ∈ H1

0(Ω)
)

(6.8)
Ω
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where

Wλ(x) := σ + λ + p
∣∣ωλ(x)

∣∣p−2
ωλ(x) (x ∈ Ω). (6.9)

Choosing the parameter σ > 0 in the H1
0-product large enough (where σ := 1 turned out to be suffi-

cient in the actual computations), we obtain Wλ > 0 on Ω̄ . Thus, (6.8) shows that all eigenvalues μ
of Φ−1L(λ,ωλ) are less than 1, and that its essential spectrum consists of the single point 1. Therefore,
(6.7) requires the computation of eigenvalue bounds for the eigenvalue(s) μ neighboring 0.

Using the transformation κ = 1/(1 −μ), the eigenvalue problem Φ−1 L(λ,ωλ)[u] = μu is easily seen
to be equivalent to

−�u + σu = κWλu,

or, in weak formulation,

〈u, v〉H1
0
= κ

∫
Ω

Wλuv dx
(

v ∈ H1
0(Ω)

)
, (6.10)

and we are interested in bounds to the eigenvalue(s) κ neighboring 1. It is therefore sufficient to
compute two-sided bounds to the first N eigenvalues κ1 � · · · � κN of problem (6.10), where N is (at
least) such that κN > 1. In all our practical examples, the computed enclosures κi ∈ [κ i, κ̄i] are such
that κ̄1 < 1 < κ2, whence by (6.7) and κ = 1/(1 − μ) we can choose

Kλ := max

{
κ̄1

1 − κ̄1
,

κ2

κ2 − 1

}
. (6.11)

The desired eigenvalue bounds for problem (6.10) can be obtained by computer-assisted means of
their own. For example, upper bounds to κ1, . . . , κN (with N ∈ N given) are easily and efficiently
computed by the Rayleigh–Ritz method [26]:

Let ϕ̃1, . . . , ϕ̃N ∈ H1
0(Ω) denote linearly independent trial functions, for example approximate

eigenfunctions obtained by numerical means, and form the matrices

A1 := (〈ϕ̃i, ϕ̃ j〉H1
0

)
i, j=1,...,N , A0 :=

(∫
Ω

Wλϕ̃iϕ̃ j dx

)
i, j=1,...,N

.

Then, with Λ1 � · · · � ΛN denoting the eigenvalues of the matrix eigenvalue problem

A1x = ΛA0x

(which can be enclosed by means of verifying numerical linear algebra; see [3]), the Rayleigh–Ritz
method gives

κi � Λi for i = 1, . . . , N.

However, also lower eigenvalue bounds are needed, which constitute a more complicated task than
upper bounds. The most accurate method for this purpose has been proposed by Lehmann [16], and
improved by Goerisch concerning its range of applicability [4]. Its numerical core is again (as in the
Rayleigh–Ritz method) a matrix eigenvalue problem, but the accompanying analysis is more involved.
In particular, in order to compute lower bounds to the first N eigenvalues, a rough lower bound to
the (N + 1)-st eigenvalue must be known already. This a priori information can usually be obtained
via a homotopy method connecting a simple “base problem” with known eigenvalues to the given
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eigenvalue problem, such that all eigenvalues increase (index-wise) along the homotopy; see [21]
or [5] for details on this method, a detailed description of which would be beyond the scope of
this article. In fact, [5] contains the newest version of the homotopy method, where only very small
(2 × 2 or even 1 × 1) matrix eigenvalue problems need to be treated rigorously in the course of the
homotopy.

Finding a base problem for problem (6.10), and a suitable homotopy connecting them, is rather
simple here since Ω is a bounded rectangle, whence the eigenvalues of −� on H1

0(Ω) are known:
We choose a constant upper bound c0 for |ωλ|p−2ωλ on Ω , and the coefficient homotopy

W (s)
λ (x) := σ + λ + p

[
(1 − s)c0 + s

∣∣ωλ(x)
∣∣p−2

ωλ(x)
]

(x ∈ Ω, 0 � s � 1).

Then, the family of eigenvalue problems

−�u + σu = κ(s)W (s)
λ u

connects the explicitly solvable constant-coefficient base problem (s = 0) to problem (6.10) (s = 1),
and the eigenvalues increase in s, since the Rayleigh quotient does, by Poincaré’s min–max principle.

7. Computation of branches (ωλ), (δλ), (Kλ), (αλ)

In the previous section we described how to compute approximations ωλ for a grid of finitely
many values of λ within [0, λ1(Ω)). After selecting λ̄ (among these) according to Section 5, we are
left with a grid

0 = λ0 < λ1 < · · · < λM = λ̄

and approximate solutions ωi = ωλi ∈ H1
0(Ω) ∩ L∞(Ω) (i = 0, . . . , M). Furthermore, according to the

methods described in the previous section, we can compute bounds δi = δλi and K i = Kλi such that
(3.1) and (3.2) hold at λ = λi .

Now we define a piecewise linear (and continuous) approximate solution branch ([0, λ̄] →
H1

0(Ω),λ �→ ωλ) by

ωλ := λi − λ

λi − λi−1
ωi−1 + λ − λi−1

λi − λi−1
ωi (

λi−1 < λ < λi, i = 1, . . . , M
)
. (7.1)

To compute corresponding defect bounds δλ , we fix i ∈ {1, . . . , M} and λ ∈ [λi−1, λi], and let
t := (λ − λi−1)/(λi − λi−1) ∈ [0,1], whence

λ = (1 − t)λi−1 + tλi, ωλ = (1 − t)ωi−1 + tωi . (7.2)

Using the classical linear interpolation error bound we obtain, for fixed x ∈ Ω ,

∣∣∣∣ωλ(x)
∣∣p − [

(1 − t)
∣∣ωi−1(x)

∣∣p + t
∣∣ωi(x)

∣∣p]∣∣
� 1

2
max

s∈[0,1]

∣∣∣∣ d2

ds2

∣∣(1 − s)ωi−1(x) + sωi(x)
∣∣p

∣∣∣∣ · t(1 − t)

� 1

8
p(p − 1) max

s∈[0,1]
∣∣(1 − s)ωi−1(x) + sωi(x)

∣∣p−2 · (ωi(x) − ωi−1(x)
)2

� 1
p(p − 1)max

{∥∥ωi−1
∥∥∞,

∥∥ωi
∥∥∞

}p−2∥∥ωi − ωi−1
∥∥2

∞, (7.3)

8
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∣∣λωλ(x) − [
(1 − t)λi−1ωi−1(x) + tλiωi(x)

]∣∣
� 1

2
max

s∈[0,1]

∣∣∣∣ d2

ds2

[(
(1 − s)λi−1 + sλi)((1 − s)ωi−1(x) + sωi(x)

)]∣∣∣∣ · t(1 − t)

� 1

4

(
λi − λi−1)∥∥ωi − ωi−1

∥∥∞. (7.4)

Since ‖u‖H−1 � C1‖u‖∞ for all u ∈ L∞(Ω), with C1 denoting an embedding constant for the embed-
ding H1

0(Ω) ↪→ L1(Ω) (e.g. C1 = √|Ω|C2), (7.3) and (7.4) imply

∥∥|ωλ|p − [
(1 − t)

∣∣ωi−1
∣∣p + t

∣∣ωi
∣∣p]∥∥

H−1

� 1

8
p(p − 1)C1 max

{∥∥ωi−1
∥∥∞,

∥∥ωi
∥∥∞

}p−2∥∥ωi − ωi−1
∥∥2

∞ =: ρi, (7.5)

∥∥λωλ − [
(1 − t)λi−1ωi−1 + tλiωi]∥∥

H−1 � 1

4
C1

(
λi − λi−1)∥∥ωi − ωi−1

∥∥∞ =: τi . (7.6)

Now (7.2), (7.5), (7.6) give

∥∥−�ωλ − λωλ − |ωλ|p
∥∥

H−1

� (1 − t)
∥∥−�ωi−1 − λi−1ωi−1 − ∣∣ωi−1

∣∣p∥∥
H−1 + t

∥∥−�ωi − λiωi − ∣∣ωi
∣∣p∥∥

H−1 + τi + ρi

� max
{
δi−1, δi} + τi + ρi =: δλ. (7.7)

Thus, we obtain a branch (δλ)λ∈[0,λ̄] of defect bounds which is constant on each subinterval [λi−1, λi].
In the points λ1, . . . , λM−1, δλ is possibly doubly defined by (7.7), in which case we choose the smaller
of the two values. Hence, ([0, λ̄] → R, λ �→ δλ) is lower semi-continuous.

Note that δλ given by (7.7) is “small” if δi−1 and δi are small (i.e. if the approximations ωi−1 and
ωi have been computed with sufficient accuracy; see Remark 3.1(a)) and if ρi, τi are small (i.e. if the
grid is chosen sufficiently fine; see (7.5), (7.6)).

In order to compute bounds Kλ satisfying (3.2) for λ ∈ [0, λ̄], with ωλ given by (7.1), we fix
i ∈ {1, . . . , M − 1} and λ ∈ [ 1

2 (λi−1 + λi), 1
2 (λi + λi+1)]. Then,

∣∣λ − λi
∣∣ � 1

2
max

{
λi − λi−1, λi+1 − λi} =: μi,

∥∥ωλ − ωi
∥∥

H1
0
� 1

2
max

{∥∥ωi − ωi−1
∥∥

H1
0
,
∥∥ωi+1 − ωi

∥∥
H1

0

} =: νi, (7.8)

whence Lemma 3.2, applied for (λ̃, ũ) := (λi,ωi) and u := ωλ , implies: If

κi := K i
[

1

λ1(Ω) + σ
μi + 2γ

(∥∥ωi
∥∥

L p+1 + C p+1νi
)p−2

νi

]
< 1, (7.9)

then (3.2) holds for

Kλ := K i

1 − κi
. (7.10)

Note that (7.9) is indeed satisfied if the grid is chosen sufficiently fine, since then μi and νi are
“small” by (7.8).
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Analogous estimates give Kλ also on the two remaining half-intervals [0, 1
2 λ1] and [ 1

2 (λM−1 +
λM), λM ].

Choosing again the smaller of the two values at the points 1
2 (λi−1 + λi) (i = 1, . . . , M) where Kλ

is possibly doubly defined by (7.10), we obtain a lower semi-continuous, piecewise constant branch
([0, λ̄] → R, λ �→ Kλ).

According to the above construction, both λ �→ δλ and λ �→ Kλ are constant on the 2M half-
intervals. Moreover, (7.1) implies that, for i = 1, . . . , M ,

‖ωλ‖L p+1 �
{

max{‖ωi−1‖L p+1 , 1
2 (‖ωi−1‖L p+1 + ‖ωi‖L p+1)} for λ ∈ [λi−1, 1

2 (λi−1 + λi)]
max{ 1

2 (‖ωi−1‖L p+1 + ‖ωi‖L p+1),‖ωi‖L p+1} for λ ∈ [ 1
2 (λi−1 + λi), λi]

}

and again we choose the smaller of the two values at the points of double definition.
Using these bounds, the crucial inequalities (3.4) and (3.5) (which have to be satisfied for all

λ ∈ [0, λ̄]) result in finitely many inequalities which can be fulfilled with “small” and piecewise
constant αλ if δλ is sufficiently small, i.e. if ω0, . . . ,ωM have been computed with sufficient accu-
racy (see Remark 3.1(a)) and if the grid has been chosen sufficiently fine (see (7.5)–(7.7)). Moreover,
since λ �→ δλ , λ �→ Kλ and the above piecewise constant upper bound for ‖ωλ‖Lp+1 are lower semi-
continuous, the structure of the inequalities (3.4) and (3.5) clearly shows that also λ �→ αλ can be
chosen to be lower semi-continuous, as required in Section 4. Finally, since (3.5) now consists in fact
of finitely many strict inequalities, a uniform (λ-independent) η > 0 can be chosen in Theorem 3.1(b),
as needed for Theorem 4.1.

8. Numerical results

We carried out the computer-assisted proof explained in the previous sections for the case p = 2
with full mathematical rigor, and for the case p = 3 using quadrature approximations to various
integrals needed. Thus, we give a mathematical proof for p = 2 only, but the lack of rigor in the case
p = 3 occurs on a rather “technical” level only.

All computations have been performed on an Intel Core 2 Duo T 7300 (2 GHz) and on an Intel
Pentium M (1.86 GHz) processor, using MATLAB (versions 7.1 and 7.4, resp.) and the interval toolbox
INTLAB [27]. Our source code can be found on our webpage.1

In the following, we first report on some more detailed numerical results for the (completely
verified) case p = 2.

Fig. 1 shows an approximate branch [0,2π2) → R, λ �→ ‖ωλ‖∞ . (The continuous plot has been
created by interpolation of grid points.)

Using λ̄ = 18.5 (which is not the minimally possible choice 13.1) and M + 1 = 94 values 0 = λ0 <

λ1 < · · · < λ93 = 18.5 (with λ1 = 0.1, λ2 = 0.3 and the remaining grid points equally spaced with
distance 0.2) we computed approximations ω0, . . . ,ω93 with N = 15 in (6.2), as well as defect bounds
δ0, . . . , δ93 and constants K 0, . . . , K 93, by the methods described in Section 6.

For some selected values of λ, Table 1 shows, with an obvious sub- and superscript notation for
enclosing intervals, the eigenvalue bounds for problem (6.10) (giving Kλ by (6.11)), which were com-
puted using the Rayleigh–Ritz and the Lehmann–Goerisch method, and the homotopy method briefly
mentioned at the end of Section 6. The homotopy is illustrated, for the single value λ = 0, in Fig. 2.

Table 1
Eigenvalue enclosures for the first two eigenvalues.

ω0 ω2.7 ω6.7 ω10.7 ω14.7 ω18.5

κ1 0.51204304
011 0.54795375

075 0.6123226
196 0.6947607

581 0.80347444
300 0.943494991

808

κ2 1.5558925
173 1.6307122

6362 1.7611681
0959 1.9203862

291 2.1158624
316 2.34331763

332

1 http://www.mathematik.uni-karlsruhe.de/mi1plum/~roth/page/publ/en.

http://www.mathematik.uni-karlsruhe.de/mi1plum/~roth/page/publ/en
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Fig. 1. Curve (λ,‖ωλ‖∞) with samples of ωλ in the case p = 2.

Fig. 2.

Table 2 contains, for some selected of the 186 λ-half-intervals,

(a) the defect bounds δλ obtained by (7.7) from the grid-point defect bounds δi−1, δi , and from the
grid-width characteristics ρi, τi defined in (7.5), (7.6),
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Table 2

λ-interval δλ Kλ αλ

[0,0.05) 0.0515864 2.9006274 0.1518597
(2,2.1) 0.0512280 2.8159871 0.1462628
(6,6.1) 0.0367367 2.4988079 0.0925099
(10,10.1) 0.0238838 2.2558125 0.0540970
(14,14.1) 0.0138680 4.0259597 0.0562560
(16,16.1) 0.0103536 6.6289293 0.0697054
(18.4,18.5] 0.0077985 29.2929778 0.3435319

Fig. 3. Curve (λ,‖ωλ‖∞) with samples of ωλ in the case p = 3.

Table 3

λ-interval δλ Kλ αλ

[0,0.05) 0.0142569 4.7672700 0.0949471
(2,2.1) 0.0098265 4.2643990 0.0476681
(6,6.1) 0.0039591 3.3147384 0.0134391
(10,10.1) 0.0025861 2.6513609 0.0069136
(14,14.1) 0.0027013 2.1806280 0.0059173
(16,16.1) 0.0031378 2.8967269 0.0091579
(18.4,18.5] 0.0049595 9.2818185 0.0499900

(b) the constants Kλ obtained by (7.10) from the grid-point constants K i and the grid-width param-
eters νi defined in (7.8) (note that μi = 0.1 for all i),

(c) the error bounds αλ computed according to (3.4), (3.5).

For the case p = 3, an approximate solution branch is displayed in Fig. 3. We carried out the
computations described before also here, but—as mentioned above—using quadrature approximations
to the integrals needed to compute the bounds δi and the eigenvalue bounds (giving K i). With these
non-verified bounds (which nevertheless are very likely “almost” correct), Table 3 shows the terms
described for Table 2 already.
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