

Discrete Mathematics 234 (2001) 187-189

www.elsevier.com/locate/disc

Note

On covering intersecting set-systems by digraphs $\stackrel{\text{\tiny theta}}{\to}$

László Szegő

Department of Operations Research, Eötvös University, Kecskeméti utca 10–12., Budapest, H-1053, Hungary

Received 8 December 1999; revised 17 August 2000; accepted 28 August 2000

Abstract

We establish a common generalization of a theorem of Edmonds on the number of disjoint branchings and a theorem of Frank on kernel systems. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 05C40

Keywords: Arborescence; Branching; Kernel system; Covering

1. Introduction

Let $\vec{G} = (V, \vec{E})$ be a directed graph. For any R, $\emptyset \neq R \subseteq V$, a branching B of \vec{G} , rooted at R, is a subgraph of \vec{G} such that for every node $v \in V(B)$ there is exactly one directed path in B from a node in R to v. A component of a branching is called an *arborescence*, if it is rooted at the node s, we call it an *s*-arborescence. Edmonds in [1] proved the following theorem. $\delta(X)$ denotes the number of edges that leave X, $\varrho(X)$ denotes the number of edges that enter X.

Theorem 1.1. For any graph \vec{G} and any sets R_i , $\emptyset \neq R_i \subseteq V$, i = 1, 2, ..., k, there exist mutually edge-disjoint branchings B_i , i = 1, 2, ..., k, of \vec{G} rooted, respectively, at R_i if and only if

 $\delta(X) \ge |\{i \in \{1, 2, \dots, k\}: R_i \subseteq X\}| \quad for all \ X \subset V.$

Frank remarked [3] that the above theorem is equivalent to the following:

E-mail address: eszel@math.elte.hu (L. Szegő).

0012-365X/01/\$ - see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0012-365X(00)00381-2

 $^{^{\}circ}$ Research supported by the Hungarian National Foundation for Scientific Research Grant, OTKA T029772. The author is supported by the Siemens-ZIB Fellowship Program.

Theorem 1.2. Let $\vec{G} = (V + s, \vec{E})$ be a directed graph and F_1, F_2, \ldots, F_k be k edgedisjoint s-arborescences. They can be completed to k edge-disjoint spanning s-arborescences if and only if

 $\varrho'(X) \ge p(X)$ for all $X \subseteq V$,

where $\varrho'(X)$ denotes the number of edges entering X not in any of the arborescences, and p(X) denotes the number of the arborescences disjoint from X.

An interesting special case is the following:

Theorem 1.3. Let $\vec{G} = (V + s, \vec{E})$ be a directed graph. It has k edge-disjoint spanning *s*-arborescences if and only if

 $\varrho(X) \ge k$ for all $X \subseteq V$.

Frank in [2] introduced the notion of *kernel system*. The family \mathscr{F} of subsets of V is called a kernel system with respect to \vec{G} if

- $\varrho(F) > 0$ for all $F \in \mathscr{F}$,
- if $F_1, F_2 \in \mathscr{F}$ and $F_1 \cap F_2 \neq \emptyset$ then $F_1 \cap F_2$ and $F_1 \cup F_2 \in \mathscr{F}$.

We say that $R \subseteq \vec{E}$ covers \mathscr{F} if R contains at least one edge of $\varrho(F)$ for every $F \in \mathscr{F}$. Frank proved the following theorem:

Theorem 1.4. Let $\vec{G} = (V + s, \vec{E})$ be a directed graph and \mathscr{F} a kernel system. There exists a partition R_1, R_2, \ldots, R_k of \vec{E} such that R_i covers \mathscr{F} for all $i = 1, 2, \ldots, k$ if and only if

 $\varrho(X) \ge k$ for all $X \in \mathscr{F}$.

If we set $\mathscr{F} = 2^V$, then we get Theorem 1.3. In this note we give a common generalization of Theorems 1.2 and 1.4. Our proof is similar to Lovász's in [4].

2. Covering intersecting set-systems

Let $\vec{G} = (V + s, \vec{E})$ be a directed graph and $\mathscr{F}_1, \mathscr{F}_2, \dots, \mathscr{F}_k$ be set-systems on the ground-set V with the following two properties:

- $F_1, F_2 \in \mathscr{F}_i, F_1 \cap F_2 \neq \emptyset \Rightarrow F_1 \cap F_2 \text{ and } F_1 \cup F_2 \in \mathscr{F}_i,$
- $F_1 \in \mathscr{F}_i, F_2 \in \mathscr{F}_j \text{ and } F_1 \cap F_2 \neq \emptyset \Rightarrow F_1 \cap F_2 \in \mathscr{F}_i \cap \mathscr{F}_j.$

If the first property is true for a set-system we call it *intersecting*. The second property will be referred to as the *linking property*. Let $X \subseteq V$, then p(X) denotes

the number of the above set-systems which contain X. The following lemma is an immediate corollary of the linking property.

Lemma 2.1. If $X \in \mathscr{F}_{i_1}$ and $Y \in \mathscr{F}_{i_2}$ for some i_1 and i_2 and $X \cap Y \neq \emptyset$, then $p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y)$. Moreover, equality holds if and only if $X \cap Y \in \mathscr{F}_i$ implies that X or $Y \in \mathscr{F}_i$. \Box

Theorem 2.2. There exists a partition $B_1, B_2, ..., B_k$ of \vec{E} such that B_i covers \mathcal{F}_i for all i = 1, 2, ..., k if and only if

$$\varrho(X) \ge p(X) \quad \text{for all } X \subseteq V. \tag{1}$$

Proof. The necessity of (1) is immediate. The sufficiency is proved by induction on $\sum_i |\mathscr{F}_i|$. We can assume that \mathscr{F}_1 is not empty. Let us consider a maximal member F_1 of \mathscr{F}_1 . By (1) there exists an edge *e* entering F_1 .

Let $\mathscr{F}'_1 = \{X \in \mathscr{F}_1 : e \text{ does not cover } X\}$. Clearly, \mathscr{F}'_1 is intersecting and $\mathscr{F}'_1, \mathscr{F}_2, \ldots, \mathscr{F}_k$ satisfy the linking property. If not, then there exist $A \in \mathscr{F}'_1, B \in \mathscr{F}_j \ (j \neq 1)$ such that $A \cap B \in \mathscr{F}_1 - \mathscr{F}'_1$, so $F_1 \cup A \in \mathscr{F}_1$ contradicts the maximality of F_1 .

We call a subset $X \subseteq V$ tight if $\varrho(X) = p(X) > 0$ and $X \notin \mathscr{F}_1$. If after deleting *e* from \vec{G} the condition (1) holds, then we are done by the induction. If not, then *e* enters a tight set.

Let us consider a minimal tight set X which intersects F_1 . (Such a set exists because the head of edge e is in F_1 .) $X - F_1$ is not empty because of the linking property and the fact that $X \notin \mathscr{F}_1$. There exists an edge f from $X - F_1$ to $F_1 \cap X$ because of the linking property and (1). We claim that f does not enter any tight set and so we are done. Suppose to the contrary that f enters a tight set Y, then by (1) and the submodularity of the in-degree function ϱ :

$$p(X) + p(Y) = \varrho(X) + \varrho(Y) \ge \varrho(X \cap Y) + \varrho(X \cup Y) \ge p(X \cap Y) + p(X \cup Y).$$

So, equality holds everywhere and, by the lemma, $X \cap Y$ is a tight set and is smaller than X, a contradiction. \Box

The above theorem implies the theorems of the introduction. In the case of Theorem 1.2 let \mathscr{F}_i be the family of all the subsets which are disjoint from the nodes of the *s*-arborescence F_i . In the case of Theorem 1.4 $\mathscr{F}_1 = \mathscr{F}_2 = \cdots = \mathscr{F}_k = \mathscr{F}$.

References

- J. Edmonds, Edge disjoint branchings, Combinatorial Algorithms, Academic Press, New York, 1973, pp. 91–96.
- [2] A. Frank, Kernel system of directed graphs, Acta Sci. Math. 41 (1979) 63-76.
- [3] A. Frank, personal communication, 1997.
- [4] L. Lovász, On two minimax theorem in graph, J. Combin. Theory Ser. B. 2 (1976) 96-103.