Note
On covering intersecting set-systems by digraphs

László Szegő

Department of Operations Research, Eötvös University, Kecskeméti utca 10–12., Budapest, H-1053, Hungary

Received 8 December 1999; revised 17 August 2000; accepted 28 August 2000

Abstract

We establish a common generalization of a theorem of Edmonds on the number of disjoint branchings and a theorem of Frank on kernel systems. © 2001 Elsevier Science B.V. All rights reserved.

MSC: 05C40

Keywords: Arborescence; Branching; Kernel system; Covering

1. Introduction

Let \(\tilde{G} = (V, \tilde{E}) \) be a directed graph. For any \(R, \emptyset \neq R \subseteq V \), a branching \(B \) of \(\tilde{G} \), rooted at \(R \), is a subgraph of \(\tilde{G} \) such that for every node \(v \in V(B) \) there is exactly one directed path in \(B \) from a node in \(R \) to \(v \). A component of a branching is called an arborescence, if it is rooted at the node \(s \), we call it an \(s \)-arborescence. Edmonds in [1] proved the following theorem. \(\delta(X) \) denotes the number of edges that leave \(X \), \(\varrho(X) \) denotes the number of edges that enter \(X \).

Theorem 1.1. For any graph \(\tilde{G} \) and any sets \(R_i, \emptyset \neq R_i \subseteq V, i = 1, 2, \ldots, k \), there exist mutually edge-disjoint branchings \(B_i, i = 1, 2, \ldots, k \), of \(\tilde{G} \) rooted, respectively, at \(R_i \) if and only if

\[
\delta(X) \geq |\{i \in \{1, 2, \ldots, k\}: R_i \subseteq X\}| \quad \text{for all } X \subseteq V.
\]

Frank remarked [3] that the above theorem is equivalent to the following:
Theorem 1.2. Let $\tilde{G}=(V+s,\tilde{E})$ be a directed graph and F_1,F_2,\ldots,F_k be k edge-disjoint s-arborescences. They can be completed to k edge-disjoint spanning s-arborescences if and only if

$$q'(X) \geq p(X) \text{ for all } X \subseteq V,$$

where $q'(X)$ denotes the number of edges entering X not in any of the arborescences, and $p(X)$ denotes the number of the arborescences disjoint from X.

An interesting special case is the following:

Theorem 1.3. Let $\tilde{G}=(V+s,\tilde{E})$ be a directed graph. It has k edge-disjoint spanning s-arborescences if and only if

$$q(X) \geq k \text{ for all } X \subseteq V.$$

Frank in [2] introduced the notion of kernel system. The family \mathcal{F} of subsets of V is called a kernel system with respect to \tilde{G} if

- $q(F)>0$ for all $F \in \mathcal{F}$,
- if $F_1,F_2 \in \mathcal{F}$ and $F_1 \cap F_2 \neq \emptyset$ then $F_1 \cap F_2$ and $F_1 \cup F_2 \in \mathcal{F}$.

We say that $R \subseteq \tilde{E}$ covers \mathcal{F} if R contains at least one edge of $q(F)$ for every $F \in \mathcal{F}$. Frank proved the following theorem:

Theorem 1.4. Let $\tilde{G}=(V+s,\tilde{E})$ be a directed graph and \mathcal{F} a kernel system. There exists a partition R_1,R_2,\ldots,R_k of \tilde{E} such that R_i covers \mathcal{F} for all $i=1,2,\ldots,k$ if and only if

$$q(X) \geq k \text{ for all } X \in \mathcal{F}.$$

If we set $\mathcal{F}=2^V$, then we get Theorem 1.3. In this note we give a common generalization of Theorems 1.2 and 1.4. Our proof is similar to Lovász’s in [4].

2. Covering intersecting set-systems

Let $\tilde{G}=(V+s,\tilde{E})$ be a directed graph and $\mathcal{F}_1,\mathcal{F}_2,\ldots,\mathcal{F}_k$ be set-systems on the ground-set V with the following two properties:

- $F_1,F_2 \in \mathcal{F}_i$, $F_1 \cap F_2 \neq \emptyset \Rightarrow F_1 \cap F_2$ and $F_1 \cup F_2 \in \mathcal{F}_i$,
- $F_1 \in \mathcal{F}_i$, $F_2 \in \mathcal{F}_j$ and $F_1 \cap F_2 \neq \emptyset \Rightarrow F_1 \cap F_2 \in \mathcal{F}_i \cap \mathcal{F}_j$.

If the first property is true for a set-system we call it intersecting. The second property will be referred to as the linking property. Let $X \subseteq V$, then $p(X)$ denotes
the number of the above set-systems which contain X. The following lemma is an immediate corollary of the linking property.

Lemma 2.1. If $X \in \mathcal{F}_{i_1}$ and $Y \in \mathcal{F}_{i_2}$ for some i_1 and i_2 and $X \cap Y \neq \emptyset$, then $p(X) + p(Y) \leq p(X \cap Y) + p(X \cup Y)$. Moreover, equality holds if and only if $X \cap Y \in \mathcal{F}_{i}$ implies that X or $Y \in \mathcal{F}_{i}$.

Theorem 2.2. There exists a partition B_1, B_2, \ldots, B_k of \tilde{E} such that B_i covers \mathcal{F}_i for all $i = 1, 2, \ldots, k$ if and only if

\[\phi(X) \geq p(X) \quad \text{for all } X \subseteq V. \tag{1} \]

Proof. The necessity of (1) is immediate. The sufficiency is proved by induction on $\sum_i |\mathcal{F}_i|$. We can assume that \mathcal{F}_1 is not empty. Let us consider a maximal member F_1 of \mathcal{F}_1. By (1) there exists an edge e entering F_1.

Let $\mathcal{F}_1' = \{ X \in \mathcal{F}_1 : e \text{ does not cover } X \}$. Clearly, \mathcal{F}_1' is intersecting and $\mathcal{F}_1', \mathcal{F}_2, \ldots, \mathcal{F}_k$ satisfy the linking property. If not, then there exist $A \in \mathcal{F}_1'$, $B \in \mathcal{F}_j$ $(j \neq 1)$ such that $A \cap B \in \mathcal{F}_1 - \mathcal{F}_1'$, so $F_1 \cup A \in \mathcal{F}_1$ contradicts the maximality of F_1.

We call a subset $X \subseteq V$ tight if $\phi(X) = p(X) > 0$ and $X \notin \mathcal{F}_1$. If after deleting e from \tilde{G} the condition (1) holds, then we are done by the induction. If not, then e enters a tight set.

Let us consider a minimal tight set X which intersects F_1. (Such a set exists because the head of edge e is in F_1, and $X - F_1$ is not empty because of the linking property and the fact that $X \notin \mathcal{F}_1$. There exists an edge f from $X - F_1$ to $F_1 \cap X$ because of the linking property and (1). We claim that f does not enter any tight set and so we are done. Suppose to the contrary that f enters a tight set Y, then by (1) and the submodularity of the in-degree function ϕ:

\[p(X) + p(Y) = \phi(X) + \phi(Y) \geq \phi(X \cap Y) + \phi(X \cup Y) \geq p(X \cap Y) + p(X \cup Y). \]

So, equality holds everywhere and, by the lemma, $X \cap Y$ is a tight set and is smaller than X, a contradiction.

The above theorem implies the theorems of the introduction. In the case of Theorem 1.2 let \mathcal{F}_i be the family of all the subsets which are disjoint from the nodes of the s-arborescence F_i. In the case of Theorem 1.4 $\mathcal{F}_1 = \mathcal{F}_2 = \cdots = \mathcal{F}_k = \mathcal{F}$.

References