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Abstract

We establish a common generalization of a theorem of Edmonds on the number of disjoint
branchings and a theorem of Frank on kernel systems. (©) 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Let G=(V,E) be a directed graph. For any R, D£RC V, a branching B of G,
rooted at R, is a subgraph of G such that for every node v € V(B) there is exactly
one directed path in B from a node in R to v. A component of a branching is called
an arborescence, if it is rooted at the node s, we call it an s-arborescence. Edmonds
in [1] proved the following theorem. d(X) denotes the number of edges that leave X,
0(X) denotes the number of edges that enter X.

Theorem 1.1. For any graph G and any sets R;, 0 £R; CV, i=1,2,...,k, there exist
mutually edge-disjoint branchings B;, i=1,2,...,k, of G rooted, respectively, at R; if
and only if

oX)=|{ie{l,2,....,k}: R,CX}| forall XCV.
Frank remarked [3] that the above theorem is equivalent to the following:
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Theorem 1.2. Let @:(V +S,E) be a directed graph and Fy,F,,...,Fy be k edge-
disjoint s-arborescences. They can be completed to k edge-disjoint spanning
s-arborescences if and only if

o'(X)=p(X) forall XCV,

where o'(X) denotes the number of edges entering X not in any of the arborescences,
and p(X) denotes the number of the arborescences disjoint from X.

An interesting special case is the following:

Theorem 1.3. Let G=(V +s,E) be a directed graph. It has k edge-disjoint spanning
s-arborescences if and only if

oX)=k forall XCV.

Frank in [2] introduced the notion of kernel system. The family % of subsets of V'
is called a kernel system with respect to G if

e o(F)>0 for all Fe 7,
o if Fl,FheF andFlﬂFzsé@thenFlﬂFz and FiUF, e #.

We say that RCE covers Z if R contains at least one edge of o(F) for every
F € #. Frank proved the following theorem:

Theorem 1.4. Let G=(V +s,E) be a directed graph and F a kernel system. There
exists a partition Ri,R,,...,R; ofE such that R; covers & for all i=1,2,....k if
and only if

oX)=k forall X e F.

If we set # =2", then we get Theorem 1.3. In this note we give a common gen-
eralization of Theorems 1.2 and 1.4. Our proof is similar to Lovasz’s in [4].

2. Covering intersecting set-systems

Let é:(V + S,E) be a directed graph and &, %,,..., % be set-systems on the
ground-set V' with the following two properties:

o F\,FLbeF,, FlﬂFz#miFHﬁFz and i UF, e #;,
e FLeF,, FzEfj andFlﬂFz#QéFlﬂerfiﬂfj.

If the first property is true for a set-system we call it intersecting. The second
property will be referred to as the linking property. Let X CV, then p(X) denotes
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the number of the above set-systems which contain X. The following lemma is an
immediate corollary of the linking property.

Lemma 2.1. If X € %, and Y € F,, for some iy and iy and X NY #£0, then p(X)+
pY)< p(XNY)+ p(X UY). Moreover, equality holds if and only if X NY € F;
implies that X or Y € #,. [

Theorem 2.2. There exists a partition By,Bs,...,B; ofE“ such that B; covers F; for
all i=1,2,...,k if and only if

e(X)=p(X) forall X V. (1)

Proof. The necessity of (1) is immediate. The sufficiency is proved by induction on
> i1Zi]. We can assume that % is not empty. Let us consider a maximal member
Fy of # 1. By (1) there exists an edge e entering F.

Let 71 ={X € #: e does not cover X }. Clearly, # is intersecting and |, 7>,...,
F i satisfy the linking property. If not, then there exist A€ .7, B€ #; (j#1) such
that ANBe€F| — F, so F1 UA€ Z contradicts the maximality of F.

We call a subset X CV tight if o(X)= p(X)>0 and X ¢ & . If after deleting e
from G the condition (1) holds, then we are done by the induction. If not, then e
enters a tight set.

Let us consider a minimal tight set X which intersects F. (Such a set exists because
the head of edge e is in F.) X — F| is not empty because of the linking property
and the fact that X ¢ % ;. There exists an edge f from X — F; to F; N X because
of the linking property and (1). We claim that f does not enter any tight set and so
we are done. Suppose to the contrary that f enters a tight set Y, then by (1) and the
submodularity of the in-degree function g:

pPX)+ p(Y)=0X)+o(Y)ZoXNY)+oX UY)Zp(XNY)+ p(XUY).

So, equality holds everywhere and, by the lemma, X NY is a tight set and is smaller
than X, a contradiction. [l

The above theorem implies the theorems of the introduction. In the case of
Theorem 1.2 let #; be the family of all the subsets which are disjoint from the nodes
of the s-arborescence F;. In the case of Theorem 14 1 =%, = --- =F;, =F.
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