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Phylogeny
rises four established species: Bovine viral diarrhoea viruses 1 (BVDV-1) and 2
(BVDV-2), Border disease virus (BDV), and Classical swine fever virus (CSFV); and a tentative species, Pestivirus
of giraffe. Additional pestiviruses have been identified and suggested for recognition as novel subgroups/
species. To achieve a reliable phylogeny as the basis for classification of pestiviruses, a molecular dataset of 56
pestiviruses and 2089 characters, comprising the 5′UTR, complete Npro and E2 gene regions was analysed by
Maximum likelihood and Bayesian approach. An identical, robust tree topology was inferred, where seven
well-supported monophyletic clades and two highly divergent lineages were identified. Dating most recent
common ancestor was estimated for major pestivirus lineages and their evolutionary histories were revealed.
Accordingly, a new proposal is presented for the classification of pestiviruses into nine species: BVDV-1,
BVDV-2, BVDV-3 (atypical bovine pestiviruses), Pestivirus of giraffe, CSFV, BDV, Tunisian sheep virus (TSV;
previously termed “Tunisian isolates”), Antelope and Bungowannah.

© 2008 Elsevier Inc. All rights reserved.
Introduction

Pestiviruses are single-stranded, positive-sense RNA viruses. The
viral genome contains two untranslated regions (UTRs) at the 5′ and 3′
ends, and an open reading frame (ORF) encoding a polyprotein. The
polyprotein is co- and post-translationally processed into 12 polypep-
tides in the following order: N-terminal autoprotease (Npro); capsid
protein (C); envelope proteins (Erns, E1, and E2); p7; and, non-
structural (NS) proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B)
(reviewed by Thiel et al., 1996). The genus Pestivirus of the family Fla-
viviridae comprises four recognized species: Bovine viral diarrhoea
virus genotypes 1 (BVDV-1) and 2 (BVDV-2), Border disease virus (BDV)
and Classical swine fever virus (CSFV) (van Regenmortel et al., 2000). A
fifth tentative species is represented by the strain H138, isolated froma
giraffe in Kenya (Plowright,1969). Although the natural host of BVDV is
bovine, it can infect both domestic and wild animals, including deer
(Becher et al., 1999) and pigs (Wang et al., 1996). The natural host of
BDV is ovine, however, natural infection of cattle with BDV is reported
(Cranwell et al., 2007). The only species that has not been identified
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outside the natural host is CSFV, which is still restricted to domestic
pigs and wild boars. Pestivirus infections can vary from subclinical to
manifestation of clinical signs such as: fever, diarrhoea, hemorrhagic
syndrome, death, and abortion (reviewed by Thiel et al., 1996).

Besides the established species, there are three groups of recently
identified but unclassified pestiviruses. The first group consists of
“atypical” pestiviruses of bovine origin detected in contaminated
foetal calf serum (FCS) batches, as well as in cattle infected naturally.
These include: D32/00_‘HoBi’, isolated from a batch of FCS originat-
ing from Brazil (Schirrmeier et al., 2004); Brz buf 9, originally isolated
from a buffalo in Brazil (Stalder et al., 2005); CH-KaHo/cont, a cell
culture contaminant possibly originating from a batch of FCS
produced in South America (Stalder et al., 2005); and, Th/04_Khon-
Kaen, detected from serum of a naturally infected calf in Thailand
(Ståhl et al., 2007). All these atypical pestiviruses are closely related
to each other. The second group are two divergent, non-bovine origin
pestiviruses, including one from a diseased young blind pronghorn
antelope in the USA (Vilcek et al., 2005); and Bungowannah virus
from pigs, associated with porcine myocarditis syndrome in Australia
(Kirkland et al., 2007). These two viruses clustered in a well-
supported clade in the phylogenetic trees based on the 5′UTR, and
the Npro and E2 protein sequences (Kirkland et al., 2007). The third
group is so-called “Tunisian isolates” that have been isolated from
both Tunisian sheep and different batches of a contaminated
Tunisian sheep pox vaccine (Thabti et al., 2005). The Tunisian
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isolates are phylogenetically closer to CSFV than to BDV: they form a
separate branch between BDV and CSFV in the phylogenetic trees of
the entire Npro-E2 region and part of E2 gene region (Thabti et al.,
2005).

Uncertainty exists in the classification of pestiviruses. According
to Schirrmeier et al. (2004), the atypical bovine pestivirus D32/
00_‘HoBi’ is proposed as a “sixth” pestivirus species; Becher et al.
(2003) suggest that BVDV-1 and BVDV-2 should be classified as
two major genotypes within one species BVDV. The genetic
diversity of BDV is greater than other pestivirus species, as up to
six major genotypes are reported (Dubois et al., 2008). Further-
more, BDV classification is unclear, for example, genotype-4 has
been assigned to two groups of viruses of different host origin:
Chamois-1 (Arnal et al., 2004) and Tunisian isolates (Thabti et al.,
2005).

The evolutionary relationships between recognised species and
unclassified pestiviruses, and among unclassified pestiviruses have
not been unambiguously determined. This is particularly pro-
nounced for relationships among atypical bovine pestiviruses,
Pestivirus of giraffe and BVDV, as different relationships are
inferred from analyses of different gene regions. For example, the
atypical bovine pestivirus D32/00_‘HoBi’ is placed as a sister in
three different groups. These include: the group consisting of BDV
and CSFV in the tree derived from the Npro region; the group
comprising two genotypes of BVDV in the tree constructed from
the E2 gene region; and, the giraffe strain with a bootstrap support
of 83% in the tree based on the NS3 gene region (Schirrmeier et al.,
2004).

In this study, the representative sequences of both recognized
species and unclassified pestiviruses were mined, and comprehen-
sive phylogenetic analyses of a combined dataset were performed by
Maximum likelihood (ML) and Bayesian approach, with the aim of
achieving a reliable phylogeny as the basis for classifying pesti-
viruses. This strategy resulted in a more stable, well-supported
pestivirus phylogeny, where a close relationship between atypical
bovine pestiviruses and BVDV-1 and BVDV-2 was, for the first time,
unequivocally established, and supported statistically by high poster-
ior probability and bootstrap values. The divergence times of the
major pestivirus lineages were also estimated. The evolutionary
study established that atypical bovine pestiviruses share the most
recent common ancestor with BVDV-1 and BVDV-2, and Tunisian
isolates share the most recent common ancestor with CSFV. The
analyses provided an additional evolutionary basis for the classifica-
tion of pestiviruses.

Results

Incongruence–length-difference test and model selection

The incongruence–length-difference (ILD) test revealed that the
combined dataset was not significantly incongruent (p=0.1667). The
GTR+I+G was selected as the best-fit model for the phylogenetic
analysis of the combined dataset. At the end of the Bayesian analysis,
the standard deviation of split frequencies was less than 0.01
(between 0.006 and 0.007), indicating that four chains had reached
convergence.

Phylogeny and classification of pestiviruses

The evolutionary relationships of pestiviruses were reconstructed
by Maximum likelihood and Bayesian approach through analysing a
combined molecular dataset of 56 pestiviruses and 2089 characters,
comprising the 5′UTR, Npro and E2 gene regions. Analysis of this
dataset produced an identical, well-supported tree topology, regard-
less of the methods used (Fig. 1). Both ML and Bayesian methods
produce unrooted networks, which in practice are rooted through
outgroups. However, as it is uncertain which the closest outgroups of
pestiviruses are and that distant outgroups cause biases in phyloge-
netic analyses (Bergsten, 2005), the exact position of the root for the
pestivirus phylogeny is unknown, but is probably located on one of the
long branches leading to the two divergent pestiviruses, as indicated
in Fig. 1. With this assumption, seven monophyletic clades and two
highly divergent lineages, corresponding to both recognised species
and unclassified pestiviruses, could be identified. Each clade was
strongly supported by the maximum posterior probability value of
1.00 and the highest bootstrap value of 100%. The relationships of the
seven major clades were also supported by the maximum posterior
probability value of 1.00 and by high bootstrap values of 78–99%.
Therefore, this tree topology was regarded as reliable and robust.

The atypical bovine pestiviruses D32/00_‘HoBi’, CH-KaHo/cont,
and Th/04_KhonKaen formed a monophyletic clade, sister to the
established species BVDV-1 and BVDV-2 that bifurcate from a
common branch. The sister relationship with the established BVDV-
1 and BVDV-2 was strongly supported by a posterior probability of
1.00 and a bootstrap value of 78%. Positioning of this clade was
identical to the Th/04_KhonKaen lineage in the whole-genome
phylogeny (Liu et al., submitted). These results supported the
classification of the atypical bovine pestiviruses as a new species,
termed genotype-3 BVDV (BVDV-3). The tentative species (Pestivirus
of giraffe) had a sister relationship with all three genotypes of BVDV,
whichwas supported by a posterior probability of 1.00 and a bootstrap
value of 78%.

In the sister group to the BVDV clade, three monophyletic clades
were identified, corresponding to the recognised species CSFV and
BDV, and unclassified Tunisian isolates from sheep. In the clade of
BDV, BDV-1 formed awell-supported clade. Two single lineages (BDV-
3 and BDV-4) and the well-supported BDV-2 clade formed a larger
clade that was weakly supported by a posterior probability value of
0.67 and a bootstrap value of 54%. Therefore, the relationship among
BDV-2, BDV-3 and BDV-4 could not be resolved. The Tunisian isolates,
which have also been termed BDV-4 (Thabti et al., 2005), formed a
sister clade to the CSFV lineage and was supported by a bootstrap
value of 99% and a posterior probability value of 1.00. This branch was
not the sister group of BDV and is termed Tunisian sheep virus (TSV) in
this study.

Evolutionary history of major pestivirus lineages

To date the most recent common ancestor (MRCA) for major
pestivirus lineages and their evolutionary history, the program BEAST
(Drummond and Rambaut, 2007) was used with the relaxed clock
model (uncorrelated exponential). The mean MRCA dates and 95%
highest posterior density (HPD) were calculated by the software
Tracer. As shown in Fig. 2, the pestiviruses, excluding the two highly
divergent terminals, began diverging around 1483 (HPDs 600 to 1892).
The clade of mainly bovine-origin pestiviruses diverged between 1615
and 1743 to form the four major lineages in the clade, corresponding
to the four species: Pestivirus of giraffe, BVDV-3, BVDV-2 and BVDV-1.
The clade of mainly ovine- and swine-origin pestiviruses diverged
between 1629 and 1736 to form the three species: BDV, TSV and CSFV.
In addition, the earliest MRCA date estimates within species were
1802 (HPDs, 1522 to 1939) for BVDV-1; 1890 (HPDs, 1712 to 1988) for
BVDV-2; 1880 (HPDs, 1651 to 1993) for BVDV-3; 1861 (HPDs, 1637 to
1961) for Pestivirus of giraffe; 1825 (HPDs, 1564 to 1947) for CSFV;
1748 (HPDs, 1334 to 1952) for BDV; and 1906 (HPDs, 1705 to 1993) for
TSV.

Discussion

Phylogenetic analysis of pestiviruses is vital for classifying novel
viruses and for revealing their evolutionary history. Although it is
generally accepted that the Npro and E2 genes are suitable for
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phylogenetic analysis of pestiviruses (Becher et al.,1997,1999, 2003), we
have observed that analysis of the Npro gene produced an unsupported
hypothesis where Pestivirus of giraffe, rather than BVDV-3, was the
sister group to BVDV-1 and BVDV-2. This phenomenon is reported in
other studies on atypical pestiviruses (Schirrmeier et al., 2004; Stalder
et al., 2005). Analysis of the single E2 gene revealed a less robust
hypothesis where Pestivirus of giraffe and BVDV-3 bifurcated from a
common branchwithout strong support. To overcome the limitations of
single gene analyses, a dataset combining 5′UTR, complete Npro and E2
gene regions was analysed by two phylogenetic methods (ML and
Bayesian approach) for classifying pestiviruses. The same strategy was
used for dating most recent common ancestor.

The three codon positions of the Npro and E2 protein-coding genes
may evolve differently. It is possible that substitution saturation in the
third positions may occur over time, therefore, the true level of
divergence is masked and deeper phylogenetic relationships are
obscured to the point of making them unrecoverable (Arbogast et al.,
2002; Avise et al., 1987). To investigate the possible effect of this on the
reliability of the phylogeny inferred from the combined dataset, the
third codon positions were deleted and the first and second codons
were subject to the same analyses. The same tree topology was
Fig. 1. Phylogeny and classification of pestiviruses by Maximum likelihood and Bayesian ap
comprising the 5′UTR, Npro and E2 gene regions. PHYML (v2.4.4) was used for phylogeny in
analysis. This is a representative consensus tree: mid-point rooted (1a, left) and unrooted (1b
this study are in blue (BVDV-3 and TSV) and in red (Antelope and Bungowannah). Fig.1a prese
probability (left) and percentage of 1000 bootstrapping replicates (right). For a clear demo
support for a node by a posterior probability value of 0.99–1.00 and by a bootstrap value
placements of the root for the given unrooted network.
obtained by both ML and Bayesian approach, indicating that analysis
of the combined dataset was reliable.

Species demarcation criteria in the genus include nucleotide
sequence relatedness, serological relatedness and host of origin (van
Regenmortel et al., 2000). By applying these criteria, Schirrmeier et al.
(2004) propose that the atypical bovine pestivirus is classified as a
new species. The question, however, has been whether to coin a new
species name for this taxon or to link it with an established bovine
pestivirus species. There are two arguments for suggesting these
atypical pestiviruses as a new genotype of BVDV. The first is the close
relationship between atypical pestiviruses and BVDV, as revealed in
this study through the analysis of the combined dataset. The second is
that the Th/04_KhonKaen virus was initially detected by a commercial
BVDV Ag-ELISA Kit (Herd Check BVDV Ag/Serum plus, IDEXX
Laboratories) (Kampa et al., 2008), indicating a high degree of
serological relatedness of the Th/04_KhonKaen virus with BVDV. In
a broader context of evolution, this group of bovine pestiviruses
appear to have diverged early from the common ancestor of BVDV-1
and BVDV-2, and to have evolved independently in South America and
possibly South-East Asia (Thailand). Thus, in this study, the atypical
bovine pestiviruses are proposed as BVDV-3.
proach. The molecular dataset contains 56 sampled pestiviruses and 2089 characters,
ference according to maximum likelihood criterion. MrBayes 3.1 was used for Bayesian
, right). The reference sequences are highlighted in green. The new species proposed in
nts all sampled pestiviruses and their relationships. The numbers at a node are posterior
nstration, some terminals are not displayed in Fig. 1b. A “⁎” indicates strong statistical
of 78–100%. The scale bar represents changes per site. The arrows show the probable
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The evolutionary relationship should also be considered as an
additional criterion for species demarcation. The Tunisian isolates,
which have been typed as a subgroup of BDV according to antigenic
relatedness and host of origin criteria, are proposed in this study as
representing another new species, TSV. The closer phylogenetic
relationship of TSV with CSFV rather than with BDV indicated an
evolutionary history of these isolates independent of BDV. Indeed, TSV
shared the most recent common ancestor with CSFV rather than with
BDV. Therefore, based on the evolutionary relationship of TSV with
CSFV, naming these isolates either as a new genotype of BDV or as a
subgroup of BDV appears inappropriate.

Becher et al. (2003) suggest BVDV-1 and BVDV-2 as one species. In
the new classification scheme proposed here, BVDV-1 and BVDV-2
were not considered as one species. Firstly, each of the species BVDV-
1, BVDV-2, and the proposed BVDV-3 formed a well-supported
monophyletic clade in the phylogenetic tree, and the separation
between species was statistically supported. This was in sharp
contrast to only weakly supported separation between the considered
major genotypes of BDV. Secondly, the evolutionary distance
calculated by Neighbour-joining method may not reflect the true
distance. For example, the ratio of evolutionary distances between CP7
(BVDV-1) and 890 (BVDV-2) to that between BDV strains Gifhorn and
T1802 (Fig. 1) was approximately 2.17; whereas, when calculated with
the Neighbour-Joining method, it was approximately 1.44 (Fig. 2 in
Becher et al., 2003). This would suggest either a smaller genetic
distance between two species BVDV-1 and BVDV-2, or a larger
distance between two BDV strains within one species based on a
Fig. 2. Divergence dates of major pestivirus lineages in a phylogenetic tree based on analy
Numbers at branch nodes indicate the divergence dates, with the 95% HPDs in brackets.
Neighbour-joining tree, therefore, masking the real evolutionary
distance. It is unclear if this is an isolated observation or a difference
between two methods in general.

Based on the estimates of the dates of divergence (Fig. 2), the
diversification of major pestiviruses started around 1483 (HPDs, 600
to 1892), approximately 520 years before present. Pestiviruses of two
origins may have been present: one of mainly bovine-origin,
comprising BVDV-1, BVDV-2, BVDV-3 and Pestivirus of giraffe; and
the other of mainly swine- and ovine- origins, consisting of CSFV, BDV
and TSV. At this time, pestiviruses of bovine-origin separated from
those of mainly swine- and ovine-origins. The first evolutionary event
for pestiviruses of mainly bovine-originwas when Pestivirus of giraffe
diverged and evolved independently, probably in Africa, from the
common ancestor around 1615 (HPDs,1017 to 1904). The second event
happened to the BVDV-3 lineage that diverged in South America or
Eastern Asia around 1681 (HPDs, 1210 to 1912), approximately
330 years before present. As this group of pestiviruses was detected
in either contaminated FCS batches (D32/00_‘HoBi’, CH-KaHo/cont) or
persistently infected calf (Th/04_KhonKaen), they are of non-cyto-
pathogenic biotype, which has enabled them to establish persistent
infection in cattle. The third event was the separation of BVDV-2 and
BVDV-1 around 1743 (HPDs, 1373 to 1926), when BVDV-2 evolved
independently in North America. In general, this group of viruses are
highly virulent (Rümenapf and Thiel, 2008), for example, a bovine
viral diarrhoea epidemic in the province of Quebec, Canada, resulted
in the death of 32000 out of 143000 (22.4%) animals in the 1993 veal
calf crop (Pellerin et al., 1994). Finally, the type species of the Pestivirus
sis of 2037 characters (35 terminals) comprising the 5′UTR, Npro and E2 gene regions.
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genus, BVDV-1, first diverged from BVDV-2 around 1743 and then
diversified around 1802, approximately 150 years before the first
description of the disease in 1946 (Olafson et al., 1946). Since then,
BVDV-1 has spread and been detected worldwide.

The separation of swine and ovine pestiviruses occurred at 1629
(HPDs, 1016 to 1927), when BDV speciated in ovine hosts and CSFV
speciated in swine hosts. The BDV clade began diversifying around
1748 (HPDs, 1334 to 1952), approximately 210 years before the first
report of the disease from the border region of England and Wales in
1959 (Hughes et al., 1959). The disease has been reported in most
sheep-rearing countries, such as UK, Australia, New Zealand, Spain,
USA. Although most of the isolates are non-cytopathogenic, a highly
virulent strain X818 is reported (Becher et al., 1994). The latest event of
pestivirus speciation was the separation of TSV and CSFV occurring
around 1736 (HPDs, 1311 to 1931).

As large HPDs were associated with most of the dates, the mean
MRCA date probably does not reflect the exact real date; thus, caution
should be exercised when interpreting the results. However, the
estimates coincided with historical observations. One particular case
is the date for CSFV, which is estimated to have diversified around
1825. No exact data of the first outbreak of the disease (CSF) exists, but
a report of the USDA Bureau of Animal Industry from 1887–1888
indicates that the disease (then named hog cholera) was first noted in
Ohio, USA, in 1833 (Liess, 1981). Other reports suggest that the disease
was already present in Europe in the first part of the 19th century
(Beynon, 1962). These records agreed with the estimated age of the
virus.

The evolutionary history of the major pestivirus lineages was
inferred from analysis of the combined dataset. It was determined that
BVDV-1, BVDV-2, atypical bovine pestivirus (BVDV-3), and Pestivirus
of giraffe shared a common ancestor. These pestiviruses have evolved
separately and formed independent lineages after possibly being
moved to specific regions of the world. They are mainly of bovine
origin, with the exception of the giraffe strain that was isolated from a
giraffe in Africa. However, the isolate PG-2 that clustered with giraffe
in the phylogenetic tree was isolated from a bovine cell culture in
Africa (Becher et al., 2003). Therefore, it is reasonable that all the
pestiviruses of bovine origin are found in the same larger clade (Fig. 1).
In the sister clade, TSV separated from CSFV branch. As this relation-
ship is independent of the gene regions analysed (Thabti et al., 2005)
and the methods used, it is unlikely that recombination events have
created this species. The relationship of the two most divergent
pestivirus species to the remaining species is still unclear, as the
position of the root of the pestivirus phylogeny is not yet known,
although it is possible that the root of the phylogeny lies on the branch
of one of the divergent species (Bungowannah or Antelope). This can
only be ascertained when the sister group to pestiviruses is identified.
The E2 gene sequences of Hepatitis C virus are the closest to pestivirus
E2 gene, but these sequences were not alignable to pestivirus
sequences in any meaningful way; thus, rendering them unsuitable
as outgroups.

In conclusion, a reliable pestivirus phylogeny is inferred from a
molecular dataset combining the 5′UTR, Npro and E2 gene regions by
Maximum likelihood and Bayesian approach. The phylogenetic
relationships among atypical bovine pestiviruses, Pestivirus of
giraffe and two recognised species BVDV-1 and BVDV-2 are
established for the first time, and statistically supported by high
posterior probability and bootstrap values. The dates for most recent
common ancestor of major pestivirus lineages have been estimated
and their evolutionary histories have been revealed. Accordingly, a
proposal is presented for the genetic classification of pestiviruses
into nine species: BVDV-1, BVDV-2, BVDV-3, Pestivirus of giraffe,
CSFV, BDV and TSV, each corresponding to a well-supported
monophyletic clade in the stable, robust phylogenetic tree; and
two most divergent pestiviruses: Antelope and Bungowannah. This
study provides a guideline for classification of newly detected
pestiviruses, and has a potential application in phylogenetic analysis
of other viruses.

Materials and methods

PCR amplification and sequencing of the E2 gene

The complete sequence of the E2 gene of the pestivirus CH-KaHo/
cont (kindly provided by Dr. H.P. Stalder, Institute of Veterinary
Virology, University of Bern, Switzerland) was determined in this
study. Total RNA was extracted with TRIzol Reagent (Invitrogen,
Carlsbad, USA), and cDNA was synthesised with random priming by
SuperScript II (Invitrogen, Carlsbad, USA), according to the manufac-
turer’s instructions. The E2 gene region was amplified with PfuUltra
High-Fidelity DNA polymerase (Stratagene) by primers F1 (1-21): 5′-
GACCTCAGTTGTAAGCCTGAG-3 ′ , and R1 (1098-1119): 5 ′-
CCCCCTAGCTCCTTGTTCAGTT-3′. The amplification reaction and
sequencing of the cloned PCR product in the vector pCRII-TOPO
(Invitrogen) are described previously (Xia et al., 2008). The nucleotide
sequence of the E2 gene was deposited in GenBank under the
accession number EU385605.

Incongruence–length-difference (ILD) test and model selection

The 5′UTR and the complete Npro and E2 gene sequences from 56
pestiviruses were retrieved from GenBank. The virus name, year of
isolation, country and accession numbers are presented in Table 1.
Multiple sequence alignment of each genetic region was done with
CLUSTALW (Thompson et al., 1994). The ILD test was performed using
software WinClada ver 1.00.08. The 5′UTR, and the complete Npro and
E2 gene sequences were then combined. As some sequences of the 5′
UTR had not been deposited in the GenBank, they were treated as
missing data. The final dataset of 56 pestiviruses and 2089 characters
was used to select the best-fit model of evolution with software
MrModelTest V.2.2 (Nylander, 2004), as previously described (Xia
et al., 2007).

Phylogenetic analysis of a molecular dataset

PHYML v2.4.4 (Guindon and Gascuel, 2003) was used for
phylogeny inference according to Maximum likelihood criterion.
Analysis settings were: Base frequency estimates (ML); Proportion of
invariable sites (estimated); Nucleotide substitution model (GTR);
Number of substitution rate categories (4); Gamma distribution
parameter (estimated). After tree reconstruction, the robustness of
the hypothesis was tested through 1000 non-parametric bootstrap
analyses. Bayesian inference analysis used the software MrBayes 3.1
(Huelsenbeck and Ronquist, 2001; Ronquist and Huelsenbeck, 2003),
as previously described (Xia et al., 2007). In brief, the model settings
were a Dirichlet prior for both substitution rates (Nst=6) and state
frequencies (# states=4). Rate variation across sites was modelled
with a γ-distribution (rates= invgamma). The Markov chain Monte
Carlo (MCMC) search was run with four chains for 2 million
generations, sampling the Markov chain every 1000 generations. At
the end of run, the convergence of the chains was inspected through
the average standard deviation of split frequencies. The first 500 (25%)
trees were discarded as “burn-in”. Each analysis was performed at
least three times and a representative consensus tree is presented in
this paper.

Estimation of divergence dates

A sub-dataset (Table 1, not in boldface) of 35 pestiviruses
representing all the major lineages determined in phylogenetic
analyses and 2037 characters was used for generating the BEAST
input file by BEAUti within the BEAST package (Drummond and



Table 1
List of pestiviruses

Speciesa Virus name Accession numbersb Virus isolationc Reference

5′ UTR Npro E2 Year Country/region

BVDV-1 NADL/Ref NC_001461 – – 1963 USA Gutekunst and Malmquist, 1963
SD1 M96751 – – 1992 USA Deng and Brock, 1992
Deer-NZ1 m U80903 AF144614 1980 New Zealand Becher et al., 1997
Bega AF049221 – – 1989 Australia Mahony et al., 2005
Deer-GB1 m U80902 AF144615 1986 UK Becher et al., 1997
CP7 U63479 – – 1985 USA Corapi et al., 1988
Osloss M96687 – – 1967 Germany Liess, 1967
ZM-95 AF526381 – – 1995 China Wang et al., 1996
721 m AF144463 AF144609 1996 Germany Becher et al., 1999
SH9 m AF144473 AF144616 1991 Germany Becher et al., 1999
NADL AJ133738 – – 1963 USA Gutekunst and Malmquist, 1963
KS86-1ncp AB078950 – – 1986 Japan Nagai et al., 2001
Singer Arg DQ088995 – – 2006 Argentina Jones et al., 2006
Trangie Y546 AF049222 – – na Australia Mahony et al., 2005
KE9 EF101530 – – 2007 Germany Meyers et al., 2007
VEDEVAC AJ585412 – – na Hungary Vaccine strain
Oregon C24V AF041040 – – 1960 USA Gillespie et al., 1960
11468 m AY735458 AY734488 na na Cedillo Rosales and Koenig (unpublished)

BVDV-2 C413/Ref NC_002032 – – 1997 USA Chen and Berry (unpublished)
New York’93 AF502399 – – 1993 USA Ridpath et al., 2006
890 U18059 – – 1990 USA Bolin and Ridpath, 1992
P11Q AY149215 – – na na Goens et al. (unpublished)

BVDV-3 Th_04/ThonKaen FJ040215 – – 2004 Thailand Ståhl et al., 2007
CH-KaHo/cont m AY895011 EU385605 2000 South America Stalder et al., 2005
D32/00_HoBi AY489116 AY735486 AY604725 2004 Brazil Schirrmeier et al., 2004

Pestivirusof giraffe Giraffe-1/Ref NC_003678 – – 1967 Kenya Plowright, 1969
PG-2 M AY163647 AY163654 1995 Africa Becher et al., 2003
Antelope AY781152 – – 2000 USA Vilcek et al., 2005
Bungwannah DQ901402 DQ901403 DQ901404 2003 Australia Kirkland et al., 2007

BDV X818/Ref NC_003679 – – 1987 Australia Becher et al., 1994
BD31 U70263 – – 1978 USA Clarke and Osburn, 1978
T1802/1 U65046 AY163649 AY163656 1992 UK Becher et al., 2003
466 m AY163650 AY163657 1985 Germany Becher et al., 2003
AZ79 m AY163652 AY163659 1999 Germany 2003
17385/00 m AY163651 AY163658 2000 Germany Becher et al., 2003
Reindeer-1 NC_003677 – – 1996 Germany Becher et al., 1999
Gifhorn m AY163653 AY163660 1999 Germany Becher et al., 2003
Chamois-1 AY738080 AY738083 AY738082 2001 Andorra Arnal et al., 2004
Bison-1 m AF144476 AF144619 1996 Germany Becher et al., 1999

TSV 33S AF462002 AY452485 AY452485 1995 Tunisia Thabti et al., 2005
BM01 AF462006 AY452482 AY452482 2000 Tunisia Thabti et al., 2005
SN1T AF461997 AY452484 AY452484 1995 Tunisia Thabti et al., 2005

CSFV 94.4/IL/94/TWN AY646427 – – 1994 Taiwan Lin et al., 2007
Brescia M31768 – – 1945 Italy Greiser–Wilke et al., 1998
Eystrup/Ref NC_002657 – – 1964 Germany Greiser-Wilke et al., 1998
Alfort/187 X87939 – – 1987 France Greiser-Wilke et al., 1990
SWH DQ127910 – – 2004 China Li et al., 2006
0406/CH/01/TWN AY568569 – – 2001 Taiwan Deng et al., 2005
GXWZ02 AY367767 – – 2002 China Li et al., 2006
cF114 AF333000 – – 2001 China Li et al., 2006
Riems AY259122 – – na na Vaccine strain
RUCSFPLUM AY578688 – – 2001 USA Risatti et al., 2005
HCLV AF091507 – – 1999 China Vaccine strain
Brescia AF091661 – – na na Kyle et al. (unpublished)
39 AF407339 – – 2001 China Li et al., 2006
Paderborn AY072924 – – 1997 Germany Greiser-Wilke et al., 1998

a Species are named according to this study.
b “–” stands for the same accession number as for the 5′UTR; “m” stands for sequence is not available and treated as missing data.
c “na” stands for not available; the year of isolation, when uncertain, is taken as the year of publishing the sequence or paper.
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Rambaut, 2007). Based on previous phylogenetic analysis, the taxon
sets were selected to include all major clades and major lineages
within clades. The two most divergent terminals (Bungowannah and
Antelope) were not included in the final analysis as isolated long
branches confound phylogenetic analyses in general (Bergsten, 2005),
and their effect on times of divergence analyses is unknown. The dates
for all sampled pestiviruses were specified as years from some time in
the past. The best-fit models “General Time Reversible (GTR)” for
nucleotide substitution and “Gamma+Invariant sites” for site hetero-
geneity were used. The selection of the relaxed uncorrelated
exponential distribution molecular clock model (Drummond et al.,
2006) and tree prior coalescent (exponential growth) was based on
several initial tests, in which the MCMC chain was run for 50 to
150 million generations. “Auto optimise” was used in an attempt to
tune the operators to maximum efficiency. In the final four
independent BEAST analyses, the MCMC chains were run for 150 to
200 million generations and the ESS values (except “coefficient of
variation) were greater than 100, as analysed by software Tracer v1.4
(Rambaut and Drummond, 2007). The analysis with maximum log
tree likelihood value of −3.107×104 was selected and presented in this
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paper. The tree samples were analysed with the program TreeAnno-
tator v1.4.8 (Drummond and Rambaut, 2007), with the first 10%
(18555) trees discarded as “burn-in”. The tree with maximum log
clade credibility value of −3.0275 was selected and visualized by
FigTree v1.1.2 (Rambaut, 2008).
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