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Abstract

The concept of Koszul differential graded algebra (Koszul DG algebra) is introduced. Koszul DG algebras
exist extensively, and have nice properties similar to the classic Koszul algebras. A DG version of the Koszul
duality is proved. When the Koszul DG algebra A is AS-regular, the Ext-algebra E of A is Frobenius. In this
case, similar to the classical BGG correspondence, there is an equivalence between the stable category of
finitely generated left E-modules, and the quotient triangulated category of the full triangulated subcategory
of the derived category of right DG A-modules consisting of all compact DG modules modulo the full
triangulated subcategory consisting of all the right DG modules with finite dimensional cohomology. The
classical BGG correspondence can be derived from the DG version.
© 2008 Elsevier Inc. All rights reserved.
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Introduction

In his book [Ma] Manin presented an open question: How to generalize the Koszulity to
differential graded (DG for short) algebras? Attempts have been made by several authors as
in [PP] and [Be]. In their terminology, a DG algebra is said to be Koszul if the underlying graded
algebra is Koszul. Koszul DG algebras in their sense are applied to discuss configuration spaces.
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In this paper, we take a different point of view. Let k be a field. A connected DG algebra
over k is a positively graded k-algebra A = ⊕

n�0 An with A0 = k such that there is a differ-
ential d :A → A of degree 1 which is also a graded derivation. A connected DG algebra A is
said to be a Koszul DG algebra if the minimal semifree resolution of the trivial DG module Ak

has a semifree basis consisting of homogeneous elements of degree zero (Definition 2.1). Our
definition of Koszul DG algebra is a natural generalization of the usual Koszul algebra. As we
will see in Section 2, a connected graded algebra regarded as a DG algebra with zero differen-
tial is a Koszul DG algebra if and only if it is a Koszul algebra in the usual sense. Examples
of Koszul DG algebras can be found in various fields. For example, let M be a connected n-
dimensional C∞ manifold, and let (A∗(M) = ⊕n

i=0 Ai (M), d) be the de Rham complex of M ,
then (A∗(M), d) is a commutative DG algebra and by de Rham theorem [M] the 0th cohomol-
ogy group H 0(A∗(M)) ∼= R. Hence the DG algebra A∗(M) has a minimal model A [KM] or
Sullivan model [FHT2], which is certainly a connected DG algebra. If the manifold M has some
further properties (e.g., M = T n the n-dimensional torus), then the de Rham cohomology alge-
bra H(A∗(M)) is a Koszul algebra. Hence the cohomology algebra of its minimal model (or
Sullivan model) A is Koszul as A is quasi-isomorphic to A∗(M). Then A is a Koszul DG algebra
by Proposition 2.3. More examples of Koszul DG algebra will be given in Section 2. In fact, we
will see that any Koszul algebra can be viewed as the cohomology algebra of some Koszul DG
algebra.

Bernstein–Gelfand–Gelfand in [BGG] established an equivalence between the stable cate-
gory of finitely generated graded modules over the exterior algebra

∧
V with V = kx0 ⊕ kx1 ⊕

· · ·⊕ kxn, and the bounded derived category of coherent sheaves on the projective space P
n. This

equivalence is now called the BGG correspondence. BGG correspondence has been generalized
to noncommutative projective geometry by several authors. Let R be a (noncommutative) Koszul
algebra. If R is AS-regular, Jørgensen proved in [Jo] that there is an equivalence between the sta-
ble category over the graded Frobenius algebra E(R) = Ext∗R(k, k) and the derived category of
the noncommutative analogue QGr(R) of the quasi-coherent sheaves over R; Martínez Villa and
Saorín proved in [MS] that the stable category of the finite dimensional modules over E(R) is
equivalent to the bounded derived category of the noncommutative analogue qgrR of the co-
herent sheaves over R. Mori in [Mo] proved a similar version under a more general condition.
One of our purposes in this paper is to establish a DG version of the BGG correspondence. In
some special case, the DG version of the BGG correspondence coincides with the classical one
as established in [BGG] and [MS].

The paper is organized as follows.
In Section 1, we give some preliminaries and fix some notations for the paper.
In Section 2, we first propose a definition for Koszul DG algebras (Definition 2.1), then give

some examples and discuss some basic properties of Koszul DG algebras. For any connected DG
algebra A, we prove that if the cohomology algebra H(A) is Koszul in the usual sense, then A is
a Koszul DG algebra (Proposition 2.3). The converse is not true in general.

In Section 3, we discuss the structure of the Ext-algebras of Koszul DG algebras. For any
Koszul DG algebra A, we prove that the Ext-algebra E = Ext∗A(Ak,Ak) of A is an augmented,
filtered algebra. Moreover, if H(A) is a Koszul algebra, then the associated graded algebra gr(E)

is isomorphic to the dual Koszul algebra (H(A))! (Theorem 3.3). If further, Ak is compact, then
E is a finite dimensional local algebra; when H(A) is Koszul, the filtration on E is exactly
the Jacobson radical filtration (Theorem 3.5). Using bar and cobar constructions, we prove the
following version of the Koszul duality on the Ext-algebras (Theorem 3.8):
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Theorem (Koszul duality on Ext-algebra). Let A be a Koszul DG algebra and E be its Ext-
algebra. If Ak is compact, then Ext∗E(Ek,Ek) ∼= H(A).

As a corollary, we show that the Ext-algebra of a Koszul DG algebra A with Ak compact is
strongly quasi-Koszul [GM] if and only if its cohomology algebra H(A) is a Koszul algebra.

In Section 4, by using Lefèvre-Hasegawa’s theorem in [Le, Ch. 2] (see Theorem 4.1), we
establish a DG version of Koszul equivalence and duality (Theorems 4.4 and 4.7).

Theorem (Koszul equivalence and duality). Let A be a Koszul DG algebra and E be its
Ext-algebra. Suppose Ak is compact. Then there is an equivalence of triangulated categories
between D+(E) and D+

dg(A
op); and there is a duality of triangulated categories between

Db(mod-Eop) and Dc(Aop).

Here D+(E) is the derived category of bounded below cochain complexes of left E-modules;
Db(mod-E) (resp. Db(mod-Eop)) is the bounded derived category of finitely generated left (resp.
right) E-modules; Ddg(A

op) (resp. D+
dg(A

op)) is the derived category of right DG A-modules
(resp. bounded below right DG A-modules), and Dc(Aop) is the full triangulated subcategory of
D+

dg(A
op) consisting of all the compact objects.

As a corollary, we show that each finite dimensional local algebra with residue field k can be
viewed as the Ext-algebra of some Koszul DG algebra. As a result, we see that the cohomology
algebra of a Koszul DG algebra may not be Koszul.

In Section 5, we introduce the concept of AS-regular DG algebra. Based on the result obtained
in Section 4, we show that the Ext-algebra of an AS-regular Koszul DG algebra is Frobenius
(Proposition 5.4 and Corollary 5.5). We then prove a correspondence between some quotient
category of the derived category of a Koszul AS-regular DG algebra and the stable category of
its Ext-algebra, which is similar to the classical BGG correspondence (Theorems 5.7 and 5.8).

Theorem (BGG correspondence). Let A be a Koszul DG AS-regular algebra with Ext-
algebra E = Ext∗A(k, k). Then there is a duality of triangulated categories between mod-Eop

and Dc(Aop)/Dfd(A
op) and an equivalence of triangulated categories between mod-E and

Dc(Aop)/Dfd(A
op).

Here mod-Eop (resp. mod-E) is the stable category of finitely generated right (resp. left)
E-modules. Dfd(A

op) is the full triangulated subcategory of the derived category of right DG
A-modules consisting of all the DG modules with finite dimensional cohomology.

The results above are generalized to Adams connected DG algebras in Section 6. We show that
the noncommutative BGG correspondence between the triangulated categories established in [Jo]
and [MS] can be deduced from the BGG correspondence on Adams connected DG algebras
(Theorem 6.8).

1. Preliminaries

Throughout, k is a field and all algebras are k-algebras; unadorned ⊗ means ⊗k and Hom
means Homk .

By a graded algebra we mean a Z-graded algebra. An augmented graded algebra is a graded
algebra A with an augmentation map ε :A → k which is a graded algebra morphism. A positively
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graded algebra A = ⊕
n�0 An with A0 = k is called a connected graded algebra. Let M and N be

graded A-modules. HomA(M,N) is the set of all graded A-module morphisms. If L is a graded
vector space, L# = Hom(L, k) is the graded vector space dual.

By a (cochain) DG algebra we mean a graded algebra A = ⊕
n∈Z

An with a differential
d :A → A of degree 1, which is also a graded derivation. An augmented DG algebra is a DG al-
gebra A such that the underlying graded algebra is augmented with augmentation map ε :A → k

satisfying ε ◦d = 0. ker ε is called the augmented ideal of A. A connected DG algebra is a DG al-
gebra such that the underlying graded algebra is connected. Any graded algebra can be viewed as
a DG algebra with differential d = 0; in this case it is called a DG algebra with trivial differential.

Let (A,dA) be a DG algebra. A left differential graded module over A (DG A-module for
short) is a left graded A-module M with a differential dM :M → M of degree 1 such that dM

satisfies the graded Leibnitz rule

dM(am) = dA(a)m + (−1)|a|adM(m)

for all graded elements a ∈ A, m ∈ M .
A right DG module over A is defined similarly. We denote Aop as the opposite DG algebra

of A, whose product is defined as a · b = (−1)|a|·|b|ba for all graded elements a, b ∈ A. Right
DG modules over A can be identified with DG Aop-modules.

Dually, by a (cochain) DG coalgebra we mean a graded coalgebra C = ⊕
n∈Z

Cn with
a differential d :C → C of degree 1, which is also a graded coderivation. A coaugmented DG
coalgebra is a DG coalgebra C with a graded coalgebra map η : k −→ C, called coaugmentation
map, such that d ◦ η = 0. If C is a coaugmented DG coalgebra, then C has a decomposition
C = k ⊕ C̄, where C̄ is the kernel of the counit εC , which is isomorphic to the cokernel C̃ of η.
There is a coproduct Δ̄ : C̄ → C̄ ⊗ C̄ defined by Δ̄(c) = Δ(c) − 1 ⊗ c − c ⊗ 1, such that (C̄, Δ̄)

is a coalgebra without counit. Δ induces a coproduct Δ̃ over C̃. (C̄, Δ̄) and (C̃, Δ̃) are iso-
morphic as coalgebras. A coaugmented DG coalgebra C is cocomplete if, for any homogeneous
element x ∈ C̄, there is an integer n such that Δ̄n(x) = (Δ̄ ⊗ 1⊗n−1) ◦ · · · ◦ (Δ̄ ⊗ 1) ◦ Δ̄(x) = 0.
A right DG C-comodule N is a graded right C-comodule with a graded coderivation dN (i.e.
ρNdN = (dN ⊗ 1 + 1 ⊗ dC)ρN ) of degree 1. A cocomplete right DG C-comodule is defined
similarly [Le].

For the standard facts about DG modules, semifree modules and semifree resolutions of DG
modules, etc., refer to [AFH] and [FHT2]. A DG A-module M is said to be bounded below if
Mn = 0 for n 
 0. Let A be a DG algebra, M and N be left DG A-modules, W be a right DG
A-module. Following [KM] and [We], the differential Ext and Tor are defined as

ExtnA(M,N) = Hn
(
RHomA(M,N)

)
and TornA(W,M) = Hn

(
W ⊗L

A M
)

for all n ∈ Z.
Let s be the suspension map (shifting map) with (sX)n = Xn−1 for any cochain complex X.

Thus si :X → siX is of degree i for any i ∈ Z.

1.1. Bar constructions

Let A be an augmented DG algebra with differential d . Let I (A) = · · ·⊕A−1 ⊕ Ā0 ⊕A1 ⊕· · ·
be its augmented ideal. Let
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B(A) = T
(
s−1(I (A)

))
= k ⊕ s−1(I (A)

) ⊕ s−1(I (A)
) ⊗ s−1(I (A)

) ⊕ [
s−1(I (A)

)]⊗3 ⊕ · · · .

The homogeneous element s−1a1 ⊗ s−1a2 ⊗ · · · ⊗ s−1an of B(A) is written as [a1|a2| · · · |an]
for homogeneous elements a1, . . . , an ∈ I (A). The coproduct

Δ :B(A) → B(A) ⊗ B(A)

is defined by

Δ
([a1|a2| · · · |an]

) = 1 ⊗ [a1|a2| · · · |an] + [a1|a2| · · · |an] ⊗ 1

+
∑

1�i�n−1

[a1| · · · |ai] ⊗ [ai+1| · · · |an],

and define a counit ε :B(A) → k by ε|k = 1k and ε([a1| · · · |an]) = 0 for n � 1. It is easy to check
that (B(A),Δ, ε) is a coaugmented graded coalgebra.

Define δ0 :B(A) → B(A) by

δ0
([a1| · · · |an]

) = −
n∑

i=1

(−1)ωi
[
a1| · · · |d(ai)| · · · |an

]
,

and define δ1 :B(A) → B(A) by

δ1
([a1]

) = 0 and δ1
([a1| · · · |an]

) =
n∑

i=2

(−1)ωi [a1| · · · |ai−1ai | · · · |an],

where ωi = ∑
j<i(|aj | − 1).

It is easy to see that δ2
0 = δ1δ0 + δ0δ1 = δ2

1 = 0. Set δ = δ0 + δ1. Then δ is a differential and
(B(A), δ) is a coaugmented DG coalgebra, which is called the bar construction of A.

Let (M,dM) be a right DG A-module. The bar construction of M is the complex B(M;A) =
M ⊗ B(A) with differential δ = δ0 + δ1, where

δ0
(
m[a1| · · · |an]

) = dM(m)[a1| · · · |an]

−
n∑

i=1

(−1)ωi+|m|m
[
a1| · · · |dA(ai)| · · · |an

]
,

and

δ1(m) = 0,

δ1
(
m[a1| · · · |an]

) = (−1)|m|ma1[a2| · · · |an]

+
n∑

i=2

(−1)ωi+|m|m[a1| · · · |ai−1ai | · · · |an].

B(M;A) is a right DG B(A)-comodule.
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1.2. Cobar constructions

Let C be a coaugmented DG coalgebra with differential d , and let C̄ = · · · ⊕ C−1 ⊕ C̄0 ⊕
C1 ⊕ · · · be the cokernel of the coaugmentation map. Let

Ω(C) = T (sC̄) = k ⊕ sC̄ ⊕ sC̄ ⊗ sC̄ ⊕ [sC̄]⊗3 ⊕ · · ·

be the tensor algebra, which is augmented. Define ∂0 :Ω(C) → Ω(C) by

∂0
([x1| · · · |xn]

) = −
n∑

i=1

(−1)κi
[
x1| · · · |d(xi)| · · · |xn

]
,

and ∂1 :Ω(C) → Ω(C) by

∂1
([x1| · · · |xn]

) =
n∑

i=1

∑
(xi )

(−1)κi+|xi(1)|+1[x1| · · · |xi(1)|xi(2)| · · · |xn],

where κi = ∑
j<i(|xj | + 1) and

∑
(xi )

xi(1) ⊗ xi(2) = Δ̄(xi). Set ∂ = ∂0 + ∂1. Then (Ω(C), ∂) is
an augmented DG algebra, called the cobar construction of C.

Let (M,ρ, dM) be a right DG C-comodule. Then we have a composition

ρ̄ :M
ρ−→ M ⊗ C −→ M ⊗ C̄.

The cobar construction of M is the complex Ω(M;C) = M ⊗ Ω(C) with differential ∂ =
∂0 + ∂1, where

∂0
(
m[x1| · · · |xn]

) = dM(m)[x1| · · · |xn]

−
n∑

i=1

(−1)κi+|m|m
[
x1| · · · |dC(xi)| · · · |xn

]
,

and

∂1
(
m[x1| · · · |xn]

) =
∑
(m)

(−1)|m(0)|m(0)[m(1)|x1| · · · |xn]

+
n∑

i=1

∑
(xi )

(−1)κi+|m|+|xi(1)|+1m[x1| · · · |xi(1)|xi(2)| · · · |xn],

where
∑

(m) m(0) ⊗ m(1) = ρ̄(m).
Ω(M;C) is a right DG Ω(C)-module.

Lemma 1.1. (See [FHT2, Ex. 2, P. 272].) Let A be an augmented DG algebra. Then there is
a quasi-isomorphism of DG algebras ζ :ΩB(A) −→ A.
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Lemma 1.2. (See [FHT2, Proposition 19.2].) The augmentation map

B(A;A) = A ⊗ B(A)
ε⊗ε−−→ Ak

is a quasi-isomorphism, and A ⊗ B(A) is a semifree resolution of Ak.

Dually, we have

Lemma 1.3. The coaugmentation map η : k −→ Ω(C;C) = C ⊗ Ω(C) is a quasi-isomorphism
of left DG C-comodules.

Since C is coaugmented, C = k ⊕ C̄. Let φ :Ω(C;C) −→ k be the natural linear projec-
tion map. Then it is a right DG Ω(C)-module morphism. Since φ ◦ η = id and η is a quasi-
isomorphism, it follows that φ is a quasi-isomorphism, that is, kΩ(C) and Ω(C;C) = C ⊗ Ω(C)

are quasi-isomorphic as DG Ω(C)-modules.

1.3. Some notations

Let A be an augmented DG algebra. Ddg(A) stands for the derived category of left DG
A-modules and Ddg(A

op) for the derived category of right DG A-modules; Dc(A) (resp.
Dc(Aop)) stands for the full triangulated subcategory of Ddg(A) (resp. Ddg(A

op)) consisting
of all the compact objects [Ke1, Sect. 5]. If A is a connected DG algebra, then Dc(A) (resp.
Dc(Aop)) is equivalent to the full triangulated subcategory 〈AA〉 (resp. 〈AA〉) generated by the
object AA (resp. AA), that is, the smallest full triangulated subcategory containing AA (resp. AA)
as an object and closed under isomorphisms.

Let E be an algebra. The notation D∗(E) (∗ = +,−, b) stands for the derived category of
bounded below (resp. bounded above, bounded) cochain complexes of left E-modules. D∗(Eop)

stands for the right version of D∗(E).

2. Koszul DG algebras

In this section, we give a definition of Koszul DG algebras, and discuss some basic properties
of Koszul DG algebras.

First of all we recall some classical definitions and well-known results. Let V be a finite
dimensional vector space, and T (V ) = k ⊕ V ⊕ V ⊗2 ⊕ · · · be the tensor algebra over V . With
the usual grading, T (V ) is a graded algebra. A quadratic algebra is a quotient algebra R =
T (V )/(U) for some finite dimensional vector space V and some subspace U ⊆ V ⊗ V ; the
quadratic dual R! of R is defined as T (V ∗)/(U⊥), where V ∗ is the dual vector space of V

and U⊥ ⊆ (V ⊗ V )∗ ∼= V ∗ ⊗ V ∗ is the orthogonal complement of U . A quadratic algebra R is
Koszul [Pr,BGS,Sm] if the trivial R-module Rk admits a free resolution

· · · → Qn → ·· · → Q1 → Q0 → Rk → 0

with Qn generated in degree n for all n � 0. If R is a Koszul algebra, then its Yoneda Ext-
algebra Ext∗R(Rk,Rk) ∼= R! [Sm,BGS]. For more properties about Koszul algebras, we refer to
the references [BGS,Pr,Sm].
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Ungraded Koszul algebra was defined by Green–Martínez Villa [GM]. Let E be a noetherian
semiperfect algebra with Jacobson radical J . E is called a quasi-Koszul algebra if the quotient
module E/J has a minimal projective resolution

· · · −→ Pn
δn−→ Pn−1

δn−1−−−→ · · · −→ P1
δ1−→ P0

δ0−→ E/J −→ 0

such that

ker δn ∩ J 2Pn = J ker δn for all n � 0.

E is called a strongly quasi-Koszul algebra if

ker δn ∩ J iPn = J i−1 ker δn for all i � 2 and n � 0.

More properties and applications of (strongly) quasi-Koszul algebras may be found in [GM]
and [Mar]. We point out here that if E (with E/J ∼= k) is a strongly quasi-Koszul algebra then
gr(E), the associated graded algebra, is Koszul [GM].

Now let A be a connected DG algebra, and let I = ⊕
n�1 An. A DG A-module M with

differential d is said to be minimal if d(M) ⊆ IM . If M is a bounded below DG A-module,
then M has a minimal semifree resolution [KM,MW]. Recall that a DG A-module P is called
semifree if there is a filtration of DG submodules

0 ⊆ P(0) ⊆ P(1) ⊆ · · · ⊆ P(n) ⊆ · · ·
such that P = ⋃

n�0 P(n) and each P(n)/P (n − 1) is free on a basis of cocycles.
A graded subset E of a DG A-module P is called a semibasis if it is a basis of the graded

module P over the graded algebra A and has a decomposition E = ⊔
n�0 En as a union of

disjoint graded subsets En such that

d
(
E0) = 0 and d

(
En

) ⊆
⊕

e∈(
⊔

i<n Ei)

Ae for all n > 0.

A DG A-module is semifree if and only if it has a semibasis [AFH, Proposition 2.5].
We now give a definition of the Koszulity for DG algebras.

Definition 2.1. A connected DG algebra A is called a left Koszul DG algebra if the trivial DG
module Ak has a minimal semifree resolution ε :P → Ak such that the semibasis of P consists
of elements of degree zero.

Right Koszul DG algebra is defined similarly. The next proposition tells us that a connected
DG algebra is left Koszul if and only it is right Koszul.

Proposition 2.2. Let A be a connected DG algebra. The following statements are equivalent.

(i) A is a left Koszul DG algebra;
(ii) ExtnA(Ak,Ak) = 0 for all n �= 0;

(iii) TornA(kA,Ak) = 0 for all n �= 0;
(iv) A is a right Koszul DG algebra.
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Proof. Using the minimal semifree resolution of the trivial module. �
Let R be a connected graded algebra. Suppose that

· · · → Qn → ·· · → Q1 → Q0 → Rk → 0

is a minimal free resolution of the trivial module Rk. If we consider R as a DG algebra with
trivial differential, and view · · · → Qn → Qn−1 → ·· · as a double complex by using the sign
trick, then the associated total complex (that is, Q0 ⊕Q1[−1]⊕· · ·⊕Qn[−n]⊕· · ·) is a minimal
semifree resolution of the trivial DG module Rk. Therefore R is a Koszul algebra in the usual
sense if and only if it is a Koszul DG algebra with trivial differential.

Proposition 2.3. Let A be a connected DG algebra. If the cohomology algebra H(A) is a Koszul
algebra, then A is a Koszul DG algebra.

Proof. We use the Eilenberg–Moore spectral sequence [FHT2,KM]

E
p,q

2 = Torp,q

H(A)
(k, k) = TorH(A)

−p (k, k)q �⇒ Torp+q
A (k, k),

where q is the grading induced by the gradings on H(A) and H(A)k. This is a convergent bounded
below cohomology spectral sequence. Since H(A) is a Koszul algebra, E

p,q

2 = 0 for p + q �= 0.
Thus TornA(k, k) = 0 for all n �= 0. �

Before proceeding to discuss further properties of Koszul DG algebras, we give some exam-
ples here.

Example 2.4. Let A be the graded algebra k〈x, y〉/(y2, yx), where |x| = |y| = 1. Let d(x) = xy

and d(y) = 0. Then d induces a differential d over A and A is a DG algebra. It is not hard to
check that H(A) = k ⊕ ky, which is a Koszul algebra. Hence by Proposition 2.3, A is a Koszul
DG algebra.

The following example shows that Koszul DG algebras with nontrivial differentials exist ex-
tensively.

Example 2.5. Each Koszul algebra R is the cohomology algebra of a certain Koszul DG algebra
with nontrivial differential. In fact, R can be viewed as a connected DG algebra with a triv-
ial differential. Then by Lemma 1.2, ΩB(R) is quasi-isomorphic to R as DG algebras. Hence
H(ΩB(R)) ∼= H(R) ∼= R. Clearly ΩB(R) is a connected DG algebra with a nontrivial differen-
tial. By Proposition 2.3, ΩB(R) is a Koszul DG algebra.

The converse of Proposition 2.3 is not true, as we will see at the end of Section 4. However
we have the following proposition.

Proposition 2.6. Let A be a Koszul DG algebra. If the global dimension gldimH(A) � 2, then
H(A) is a Koszul algebra.
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Proof. Let

Q•: 0 −→ Q2 −→ Q1 −→ H(A) −→ k −→ 0

be a minimal free resolution of the trivial module H(A)k. It is direct to check that in this case the
Eilenberg–Moore resolution [FHT2,KM] of the trivial DG module Ak arising from Q• can be
chosen to be minimal. If A is Koszul, then the minimal free resolution Q• must be linear and
hence H(A) is Koszul. �

The Koszulity of DG algebras is preserved under taking quasi-isomorphisms.

Lemma 2.7. (See [KM, Proposition 4.2].) Let A and B be DG algebras. If there is a quasi-
isomorphism of DG algebras f :A −→ B , then the restriction of f induces an equivalence of
triangulated categories f ∗ :D(B) −→ D(A) with the inverse functor B ⊗L

A −. The same is true
for D(Bop) and D(Aop).

Proposition 2.8. Let A and B be connected DG algebras. Suppose that there is a quasi-
isomorphism of DG algebras f :A −→ B . If A (resp. B) is a Koszul DG algebra, then so is B

(resp. A).

Proof. If A is a Koszul DG algebra, then ExtnA(Ak,Ak) = 0 for all n �= 0, that is, HomD(A)(Ak,

Ak[n]) = 0 for all n �= 0. Hence

HomD(B)

(
Bk,Bk[n]) ∼= HomD(A)

(
f ∗(Bk), f ∗(Bk)[n]) = HomD(A)

(
Ak,Ak[n]) = 0

for all n �= 0. Hence ExtnB(Bk, Bk) = 0 for all n �= 0, and B is Koszul. �
3. The Ext-algebra of a Koszul DG algebra

In this section, we study the structure of the Ext-algebra of a Koszul DG algebra. We prove a
version of the Koszul duality on Ext-algebra for Koszul DG algebras.

Let P be a semifree DG A-module with a semifree filtration

0 ⊆ P(0) ⊆ P(1) ⊆ · · · ⊆ P(n) ⊆ · · · .

We may adjust the semifree filtration of P to get a standard filtration of P as in the following.
Let E be a semifree basis of P . Then as a graded A-module, P = A ⊗ kE, where kE =⊕
e∈E ke is a graded k-vector space. Set inductively,

V�0 = V (0) = {
v ∈ kE

∣∣ d(v) = 0
}

and F(0) = A ⊗ V (0) ⊆ P,

V�1 = {
v ∈ kE

∣∣ d(v) ∈ F(0)
}

and F(1) = A ⊗ V�1 ⊆ P,

V�n = {
v ∈ kE

∣∣ d(v) ∈ F(n − 1)
}

and F(n) = A ⊗ V�n ⊆ P.

Let V (n) be a subspace of V�n such that V�n = V�n−1 ⊕ V (n). Then for any 0 �= v ∈ V (n),
d(v) ∈ F(n − 1)\F(n − 2).
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Obviously,
⋃

n�0 F(n) = P and F(n)/F (n − 1) ∼= A ⊗ V (n) is a free DG module over a
basis of cocycles. Hence

0 ⊆ F(0) ⊆ F(1) ⊆ · · · ⊆ F(n) ⊆ · · ·
is a new semifree filtration on P , which is called the standard semifree filtration of P associated
to the semibasis E.

As we will see in next example, the standard semifree filtration depends on the choice of the
semibasis.

Example 3.1. Let A be a connected DG algebra such that there is an element a ∈ A1 with
dA(a) �= 0. Let P = Ae0 ⊕ Ae1 as a graded free A-module with deg(ei) = i for i = 0,1. Define
d(e0) = 0 and d(e1) = dA(a)e0. Then P is a semifree DG A-module with a semifree filtration

P: 0 ⊆ P(0) ⊆ P(1) = P

where P(0) = Ae0 and P(1) = Ae0 ⊕ Ae1 = Ae0 ⊕ A(e1 − ae0) = P .
Then E = {e0, e1} and E′ = {e0, e1 − ae0} are two semibasis of the semifree DG module P .

Associated to the semibasis E, the standard filtration is the original one

P: 0 ⊆ P(0) ⊆ P(1) = P.

Associated to the semibasis E′, the standard filtration is

F: 0 ⊆ F(0) = Ae0 ⊕ A(e1 − ae0) = P.

The main reason to introduce the standard filtration is that DG morphism preserves the stan-
dard filtration as in the following lemma, which is needed in the proof of Theorem 3.3.

Lemma 3.2. Let A be a connected DG algebra, M and N be minimal semifree DG A-modules
with the standard filtration 0 ⊆ M(0) ⊆ M(1) ⊆ · · · and 0 ⊆ N(0) ⊆ N(1) ⊆ · · · respectively.
If the semibasis of M and N consist of elements of degree 0, then any DG module morphism
f :M → N preserves the filtration.

Proof. Assume that there are graded vector spaces U(i) and W(i) for i � 0 such that
M(i)/M(i − 1) = A ⊗ U(i) and N(i)/N(i − 1) = A ⊗ W(i). For any u ∈ U(0), f (u) ∈⊕

i�0 W(i) and d(f (u)) = 0 since f is a cochain map. Let f (u) = vi0 + · · · + vit with
0 �= vij ∈ W(ij ) for 0 � j � t and i0 < i1 < · · · < it . Suppose that t � 1. By the definition
of standard filtration of N , d(vij ) ∈ N(ij − 1) and d(vij ) /∈ N(ij − 2). However, 0 = d(f (u)) =
d(vi0 + · · · + vit ) = d(vi0 + · · · + vit−1) + d(vit ). It follows that d(vit ) = −d(vi0 + · · · + vit−1) ∈
N(it−1 − 1) ⊆ N(it − 2), a contradiction. Hence t = 0 and f (u) ∈ W(0), which implies
f (M(0)) ⊆ N(0).

Now suppose f (M(n)) ⊆ N(n). Let M̄ = M/M(n) and N̄ = N/N(n). Then f induces a DG
morphism f̄ : M̄ → N̄ . M̄ and N̄ are minimal semifree modules with standard semifree filtration

M̄(0) = M(n + 1)/M(n) ⊆ M̄(1) = M(n + 2)/M(n) ⊆ · · · and

N̄(0) = N(n + 1)/N(n) ⊆ N̄(1) = N(n + 2)/N(n) ⊆ · · ·
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respectively. By the previous narratives, we have f̄ (M̄(0)) ⊆ N̄(0), which in turn implies
f (M(n + 1)) ⊆ N(n + 1). �
Theorem 3.3. Let A be a Koszul DG algebra. Then

(i) the Ext-algebra E = Ext∗A(Ak,Ak) of A is an augmented algebra;
(ii) there is a filtration

F: E = F0 ⊇ F1 ⊇ · · · ⊇ Fn ⊇ · · ·

on E such that E is a filtered algebra. Moreover, if H(A) is a Koszul algebra, then the
associated graded algebra grF(E) is isomorphic to the dual Koszul algebra (H(A))!.

Proof. (i) and the first part of (ii) may be proved by using the bar construction of A. We give a
direct proof here for later use.

Let ε :P −→ Ak be a minimal semifree resolution of the trivial DG module Ak. Suppose that

0 ⊆ P(0) ⊆ P(1) ⊆ · · · ⊆ P(n) ⊆ · · ·

is a standard semifree filtration of P associated to some semibasis. We have graded vector spaces
V (0),V (1), . . . , V (n), . . . such that P(0) = A ⊗ V (0) and P(n)/P (n − 1) = A ⊗ V (n) for all
n � 1. By the minimality of P , it is easy to see that V (0) = k. Since A is Koszul,

E = Ext∗A(Ak,Ak) = Ext0A(Ak,Ak) =
∏
i�0

V (i)∗ = k ⊕
∏
i�1

V (i)∗.

Define a decreasing filtration F on E by

F: F0 = E and Fn =
∏
i�n

V (i)∗ for n � 1.

We claim that E is a filtered algebra with this filtration. For any x ∈ Fn = ∏
i�n V (i)∗ and

y ∈ Fm = ∏
i�m V (i)∗, we still use x to denote the corresponding DG module morphism

x :P/P (n−1) −→ Ak, and y the corresponding DG module morphism y :P/P (m−1) −→ Ak.
Since P/P (n−1) is semifree, there is a DG module morphism fx :P/P (n−1) −→ P such that
ε ◦ fx = x [AFH, Lemma 6.5.3]. Let g be the composition

P
π−→ P/P (n − 1)

fx−→ P,

where π is the natural projection map. By Lemma 3.2, fx preserves the filtration, hence
g(P (n − 1)) = 0 and g(P (n + i)) ⊆ P(i) for all i � 0. Let h be the composition

P
π−→ P/P (m − 1)

y−→ k.

By definition, the product y · x in the algebra E is the restriction of h ◦ g to
⊕

i�0 V (i). Since
h ◦ g(P (n + m − 1)) ⊆ h(P (m − 1)) = 0, it follows that y · x ∈ ∏

i�n+m V (i)∗. Hence E is
a filtered algebra with filtration {Fn}.
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Define a map ε :E −→ k by ε|k = idk and ε|F1 = 0. Since F1 is an ideal, ε is an algebra
morphism, hence an augmentation map. (i) is proved.

Now we prove the second part of (ii). Suppose that H(A) is a Koszul algebra. The trivial
H(A)-module H(A)k has a linear projective resolution

· · · −→ H(A) ⊗ V ′(n)
δn−→ · · · δ2−→ H(A) ⊗ V ′(1)

δ1−→ H(A) ⊗ V ′(0)
δ0−→ H(A)k −→ 0.

The Eilenberg–Moore resolution [FHT2, Proposition 20.11] P ′ of the DG module Ak arising
from the previous resolution of H(A)k is minimal. Hence P ∼= P ′ as DG A-modules since A is
connected and then V (i) ∼= V ′(i) as vector spaces for all i � 0. For convenience, we identify
V (i) with V ′(i) for all i � 0 and P with P ′. By the construction of the filtration F on E, we get
Fn/Fn−1 ∼= V (n)∗ for all n � 0. Hence we have

grF(E) ∼=
⊕
n�0

V (n)∗ ∼= Ext∗H(A)(k, k) (1)

as graded vector spaces. Pick elements x ∈ V (n)∗ and y ∈ V (m)∗. As we know, x and y can be
extended to be DG module maps (also denoted by x and y respectively) P/P (n − 1)

x−→ Ak

and P/P (m − 1)
y−→ Ak. As before, there are filtration-preserving DG module morphisms

fx :P/P (n − 1) −→ P and fy :P/P (m − 1) −→ P such that ε ◦ fx = x and ε ◦ fy = y. Let g

be the composition of the DG module morphisms

g :P π−→ P/P (n − 1)
fx−→ P

π−→ P/P (m − 1)
y−→ k.

Then the product y · x ∈ V (n + m)∗ of x and y in grF(E) is the restriction of g to V (n + m).
Since it is filtration-preserving, fx induces a morphism of spectral sequences

E
p,q∗ (fx) :Ep,q∗

(
P/P (n − 1)

) −→ E
p,q∗ (P ).

In particular, Ep,q

1 (P/P (n−1)) = Hp+q(A)⊗V (n−p) and E
p,q

1 (P ) = Hp+q(A)⊗V (−p) for
all p � 0 and p +q � 0. Now we regard x ∈ V (n)∗ and y ∈ V (m)∗ as elements in Ext∗

H(A)
(k, k).

Let h−p = ⊕
p�−q E

p,q

1 (fx). Then we get a commutative diagram

H(A) ⊗ V (n + m)

hm

δn+m · · ·
δn+2

H(A) ⊗ V (n + 1)

h1

δn+1
H(A) ⊗ V (n)

h0
ηx

0

H(A) ⊗ V (m)

ηy

δm · · · δ2
H(A) ⊗ V (1)

δ1
H(A) ⊗ V (0)

δ0
k 0

k

where ηx and ηy are graded H(A)-module morphisms induced by x and y. To avoid the possible
confusion, we temporarily denote the Yoneda product on Ext∗H(A)(k, k) by y ∗x. By the definition
of Yoneda product, y ∗x is equal to the restriction of ηy ◦hm to V (n+m). Let τm :

⊕m
i=0 V (i) →

V (m) be the projection map. For any v ∈ V (n + m),
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ηy ◦ hm(v) = ηy

(
E

−(n+m),n+m
1 (fx)(v)

) = ηy ◦ τm ◦ fx(v) = g(v).

Hence y ∗x = y ·x, that is, the products on grF(E) and Ext∗H(A)(k, k) coincide under the isomor-

phism in (1). Since H(A) is Koszul, Ext∗H(A)(k, k) ∼= (H(A))!. Hence grF(E) ∼= (H(A))!. �
Let A be a connected DG algebra. When the trivial module Ak lies in Dc(A), the DG algebra A

usually has good properties. The following proposition is clear.

Proposition 3.4. Let A be a connected DG algebra. If Ak ∈Dc(A) and H(A) is a Koszul algebra,
then gldimH(A) < ∞.

Theorem 3.5. Let A be a connected DG algebra. Suppose Ak ∈ Dc(A).

(i) If A is a Koszul DG algebra, then the Ext-algebra E = Ext0A(Ak,Ak) is a finite dimensional
local algebra with E/J = k, where J is the Jacobson radical of E.

(ii) If H(A) is a Koszul algebra, then gr(E) = (H(A))!, where gr(E) is the graded algebra
associated with the radical filtration of the local algebra E.

Proof. We use the notations in the proof of Theorem 3.3.
(i) Since Ak ∈ Dc(A), there is an integer m such that P(m)/P (m − 1) �= 0 and P(i)/

P (i − 1) = 0 for all i > m. Hence the filtration F: E = F0 ⊇ F1 ⊇ F2 ⊇ · · · stops at the mth
step. By Theorem 3.3, E is a filtered algebra, hence for x ∈ F1, xm+1 = 0. Thus E is a local
algebra with Jacobson radical J = F1 and E/J ∼= k.

(ii) If H(A) is a Koszul algebra, then by Proposition 3.4, gldimH(A) < ∞. Assume that
gldimH(A) = n. Then the filtration F stops at the nth step, and Jn+1 = 0. By Theorem 3.3,
grF(E) ∼= (H(A))!. If we can show J i = Fi for all 1 � i � n, then we are done. Since V (j) = 0
for j � n + 1, E = k ⊕ V (1)∗ ⊕ · · · ⊕ V (n)∗ and Fi = ⊕n

j=i V (j)∗. By Theorem 3.3, grF(E)

is generated in degree 1, so (F1)
n = Fn = V (n)∗, that is, Jn = Fn. Similarly, since V (n)∗ =

Jn ⊆ Jn−1, V (n− 1)∗ ⊆ (F1)
n−1 +V (n)∗ = Jn−1 and Fn−1 = V (n− 1)∗ ⊕V (n)∗ ⊆ Jn−1. On

the other hand, Jn−1 ⊆ V (n − 1)∗ ⊕ V (n)∗. Hence Fn−1 = Jn−1. An easy induction shows that
J i = Fi for all 1 � i � n. �

We next prove a theorem similar to the Koszul duality for Koszul algebras [BGS].
Let A be an augmented DG algebra, and let R = B(A) be its bar construction.

Lemma 3.6. (See [FHT2, P. 272].) The map ϕ :R# −→ EndA(A ⊗ R) defined by

ϕ(f )
(
1[a1| · · · |an]

) =
n∑

i=0

(−1)|f |ωi 1[a1| · · · |ai]f
([ai+1| · · · |an]

)

is a quasi-isomorphism of DG algebras, where ωi = |a1| + · · · + |ai | − i.

Lemma 3.7. Let A be a Koszul DG algebra and E be its Ext-algebra. If Ak ∈Dc(A), then E# is
a coaugmented coalgebra and there is a quasi-isomorphism of DG algebras

ψ :Ω
(
E#) −→ A.
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Proof. Let R = B(A) be the bar construction of A. Then R is a coaugmented DG coalgebra, and
is concentrated in non-negative degrees. The graded vector space dual R# is an augmented DG
algebra. It follows from Lemmas 1.2 and 3.6 that E ∼= H(EndA(A ⊗ R)) ∼= H(R#). Since A is
Koszul, E is concentrated in degree zero. The last isomorphism implies that Hi(R) = 0 for all
i > 0. Then there is naturally a quasi-isomorphism of coaugmented DG coalgebras

Z0(R) −→ R,

which induces a quasi-isomorphism of augmented DG algebras

R# −→ (
Z0(R)

)#
.

Therefore E ∼= H(R#) ∼= (Z0(R))# as augmented algebras. Since Ak ∈ Dc(A), E is a finite
dimensional algebra. Hence E# ∼= Z0(R) as coaugmented coalgebras, and there is a quasi-
isomorphism of coaugmented DG coalgebras

E# −→ R.

This induces a quasi-isomorphism of DG algebras

ξ :Ω
(
E#) −→ Ω(R) = ΩB(A).

There is also a quasi-isomorphism of DG algebras ζ :ΩB(A) −→ A by Lemma 1.1. Hence the
composition

Ω
(
E#) ξ−→ ΩB(A)

ζ−→ A (2)

gives a quasi-isomorphism of DG algebras ψ = ζ ◦ ξ :Ω(E#) −→ A. The proof is com-
pleted. �
Theorem 3.8 (Koszul duality on Ext-algebra). Let A be a Koszul DG algebra and E be its Ext-
algebra. If Ak ∈ Dc(A), then Ext∗E(Ek,Ek) ∼= H(A).

Proof. By Lemma 3.6, Ω(E#) = B(E)# is quasi-isomorphic to EndE(E ⊗ B(E)). Hence

Ext∗E(Ek,Ek) ∼= H
(
EndE

(
E ⊗ B(E)

)) ∼= H
(
Ω

(
E#)).

It follows from Lemma 3.7 that Ext∗E(Ek,Ek) ∼= H(A). �
As an application of Theorem 3.8, we have the following two corollaries, which establish

relations between Koszul DG algebras and (strongly) quasi-Koszul algebras.

Corollary 3.9. Let A be a Koszul DG algebra. If Ak ∈ Dc(A), then the following are equivalent:

(i) The Ext-algebra E of A is a quasi-Koszul algebra;
(ii) H(A) is generated in degree 1.
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Proof. By Theorem 3.5, E is a finite dimensional local algebra with the residue field k. The
equivalence of (i) and (ii) follows from Theorem 3.8 and [GM, Theorem 4.4]. �
Corollary 3.10. Let A be a Koszul DG algebra. If Ak ∈ Dc(A), then the following are equivalent:

(i) The Ext-algebra E of A is a strongly quasi-Koszul algebra;
(ii) H(A) is a Koszul algebra.

Proof. (i) ⇒ (ii). By [GM, Theorem 6.1] and its proof, Ext∗E(Ek,Ek) is a Koszul algebra. The-
orem 3.8 implies that H(A) ∼= Ext∗E(Ek,Ek) is a Koszul algebra.

(ii) ⇒ (i). Applying Theorem 3.8 again, Ext∗E(Ek,Ek) ∼= H(A) is a Koszul algebra. By [GM,
Theorem 9.1], E is a strongly quasi-Koszul algebra. �
4. Koszul duality

Let B be an augmented DG algebra and C be a coaugmented DG coalgebra. Lefèvre-
Hasegawa [Le, Proposition 2.2.4.1] established an equivalence between the derived cate-
gory D(B) and the so-called coderived category D(C) when B and C satisfy certain conditions.
Thanks for the result of Lefèvre-Hasegawa we can prove a version of Koszul duality [BGS] for
Koszul DG algebras.

Let (B,mB,dB) be an augmented DG algebra with an augmentation map εB :B → k, and
(C,Δ,dC) be a coaugmented DG coalgebra with a coaugmentation map ηC : k → C. A graded
linear map τ :C → B of degree 1 is called a twisting cochain from C to B [HMS,Le] if

εB ◦ τ ◦ ηC = 0, and

mB ◦ (τ ⊗ τ) ◦ Δ + dB ◦ τ + τ ◦ dC = 0.

Let Ω(C) be the cobar construction of C. The twisting cochains from C to B are one-to-one
corresponding to the DG algebra morphisms from Ω(C) to B . There is a canonical twisting
cochain τ0 :C → Ω(C) given by τ0(c) = [c] for any c ∈ C̄ and τ0(k) = 0.

Let τ :C → B be a twisting cochain. For any right DG C-comodule N , the twisted tensor
product N ⊗τ B [Le,Ke2] is the right DG B-module defined by

(i) N ⊗τ B = N ⊗ B as a right graded B-module;
(ii) the differential δ = dN ⊗ 1 + 1 ⊗ dB + (1 ⊗ mB)(1 ⊗ τ ⊗ 1)(ρN ⊗ 1), i.e.

δ(n ⊗ a) = d(n) ⊗ a + (−1)|n|n ⊗ d(a) +
∑
(n)

(−1)|n(0)|n(0) ⊗ τ(n(1))a,

for any homogeneous elements n ∈ N and a ∈ B .

Dually, for any DG B-module M , the twisted tensor product M ⊗τ C is the right DG C-
comodule defined by

(i) M ⊗τ C = M ⊗ C as a vector space;
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(ii) the differential δ = dM ⊗ 1 + 1 ⊗ dC − (mM ⊗ 1)(1 ⊗ τ ⊗ 1)(1 ⊗ Δ), i.e.

δ(m ⊗ c) = d(m) ⊗ c + (−1)|m|m ⊗ d(c) −
∑
(c)

(−1)|m|mτ(c(1)) ⊗ c(2),

for any homogeneous elements m ∈ M and c ∈ C.

Let DGmod-B be the category of right DG B-modules and DGcom-C be the category of right
DG C-comodules. Then there is a pair of adjoint functors (L,R) [Ke2,Le]:

DGcom-C
L=−⊗τ B

DGmod-B.
R=−⊗τ C

Let C be a cocomplete DG coalgebra, and DGcomc-C be the category of cocomplete right
DG C-comodules. For any M,N ∈ DGcomc-C, a DG comodule morphism f :M → N is called
a weak equivalence related to τ [Ke2,Le] if L(f ) :LM → LN is a quasi-isomorphism. Note that
a weak equivalence related to τ0 (B = Ω(C)) is a quasi-isomorphism. But the converse is not true
in general [Ke2]. Let K(C) be the homotopy category of DGcomc-C. Equipped with the natural
exact triangles, K(C) is a triangulated category. Let W be the class of weak equivalences in the
category K(C). Then W is a multiplicative system. The coderived category Ddg(C) of C is de-
fined to be K(C)[W−1], the localization of K(C) at the class W of weak equivalences [Ke2,Le].
Let Ddg(B

op) be the derived category of right DG B-modules. The following theorem is proved
by Lefèvre-Hasegawa in [Le, Ch. 2], and also can be found in [Ke2].

Theorem 4.1. Let C be a cocomplete DG coalgebra, B an augmented DG algebra and τ :C → B

be a twisting cochain. Then the following are equivalent:

(i) The map τ induces a quasi-isomorphism Ω(C) → B;
(ii) The adjunction map

B ⊗τ C ⊗τ B → B

is a quasi-isomorphism;
(iii) The functors L and R induce an equivalence of triangulated categories (also denoted by L

and R)

Ddg(C)
L

Ddg
(
Bop

)
.

R

Now let A be a Koszul DG algebra. Suppose Ak ∈Dc(A). By Theorem 3.5, its Ext-algebra E

is a finite dimensional local algebra with the residue field k. Hence the vector space dual E∗ = E#

is a coaugmented coalgebra which is of course cocomplete. Hence all the DG E∗-comodules are
cocomplete. Let C = E∗ and B = Ω(C). Clearly, B is a connected DG algebra, and the canonical
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twisting cochain τ0 :C → Ω(C) satisfies the condition (i) in the Theorem 4.1. Hence we have
the following equivalence of triangulated categories

Ddg
(
E∗) L

Ddg
(
Ω

(
E∗)op)

.
R

Let D+
dg(Ω(E∗)op) be the derived category of all bounded below right DG Ω(E∗)-modules,

that is, consisting of objects M with Mn = 0 for n 
 0. Since Ω(E∗) is connected, it is not
hard to see that D+

dg(Ω(E∗)op) is a full triangulated subcategory of Ddg(Ω(E∗)op). Similarly,

let K+
dg(C) be the homotopy category of bounded below DG cocomplete comodules, and let

D+
dg(E

∗) be the localization of K+
dg(E

∗) at the class of weak equivalences W+ in K+
dg(E

∗) (W+

is also a multiplicative system). One can check that D+
dg(E

∗) is a full triangulated subcategory

of Ddg(E
∗). Restricting L and R to the subcategories D+

dg(E
∗) and D+

dg(Ω(E∗)op) respectively,
we get the following proposition.

Proposition 4.2. Let A be a Koszul DG algebra and E be its Ext-algebra. If Ak ∈ Dc(A), then
the following is an equivalence of triangulated categories

D+
dg

(
E∗) L

D+
dg

(
Ω

(
E∗)op)

.
R

Since E∗ is concentrated in degree zero, a DG E∗-comodule is exactly a cochain complex of
E∗-comodules. Hence K+

dg(E
∗) = K+(E∗), the homotopy category of bounded below cochain

complexes of right E∗-comodules. It is not hard to see that the class W+ of weak equivalences
related to τ0 is exactly the class of quasi-isomorphisms. Hence D+

dg(E
∗) = K+

dg(E
∗)[(W+)−1] =

D+(E∗), the derived category of bounded below cochain complexes of right E∗-comodules. By
Proposition 4.2 we have the following proposition.

Proposition 4.3. Let A be a Koszul DG algebra and E be its Ext-algebra. If Ak ∈ Dc(A), then
there is an equivalence of triangulated categories (we use the same notations of the equivalent
functors as in Proposition 4.2).

D+(
E∗) L

D+
dg

(
Ω

(
E∗)op)

.
R

Since E is a finite dimensional algebra, the category of left E-modules is isomorphic to the
category of right E∗-comodules [Mon, 1.6.4]. Hence there is an equivalence of triangulated
categories

D+(E)
F

D+(
E∗),

G

where D+(E) is the derived category of bounded below cochain complexes of left E-modules.
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By Lemma 3.7, there is a quasi-isomorphism of DG algebras ϕ :Ω(E∗) −→ A. Hence by
Lemma 2.7, the following gives an equivalence of triangulated categories

D+(
Aop

) ϕ∗

D+(
Ω

(
E∗)op)

.

−⊗L
Ω(E∗)

A

Let Φ = (− ⊗L
Ω(E∗) A) ◦ L ◦ F and Ψ = G ◦ R ◦ ϕ∗. We have the following theorem.

Theorem 4.4 (Koszul equivalence). Let A be a Koszul DG algebra and E be its Ext-algebra. If
Ak ∈ Dc(A), then we have an equivalence of triangulated categories

D+(E)
Φ

D+
dg

(
Aop

)
.

Ψ

It is easy to see that Φ(Ek) = L(kE∗
)⊗L

Ω(E∗) A = Ω(E∗)⊗L
Ω(E∗) A = AA. Temporarily write

〈Ek〉 the full triangulated subcategory of D+(E) generated by Ek. By restricting Φ and Ψ , we
get an equivalence of triangulated categories

〈Ek〉
Φres

Dc(A).
Ψres

Lemma 4.5. 〈Ek〉 = Db(mod-E), where mod-E is the category of finitely generated left E-
modules.

Proof. It suffices to show that all the finitely generated E-modules are in 〈Ek〉. Since E is finite
dimensional, any finitely generated E-module is finite dimensional. Clearly, all 1-dimensional
modules are in 〈Ek〉. Let N be a finite dimensional module. Since soc(N) �= 0, we have an exact
sequence

0 −→ Ek −→ N −→ N/Ek −→ 0.

Since dimN/Ek < dimN , an induction on the dimension of N implies that N lies in 〈Ek〉. Hence
all finitely generated E-modules are in 〈Ek〉. �
Corollary 4.6. Let A be a Koszul DG algebra and E be its Ext-algebra. If Ak ∈ Dc(A), then we
have an equivalence of triangulated categories

Db(mod-E)

Φres

Dc
(
Aop

)
.

Ψres
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Since E is finite dimensional, the vector space dual ( )∗ induces a duality of triangulated
categories

D(mod-E)
( )∗

D
(
mod-Eop

)
.

( )∗

Now, we are able to give a version of the Koszul duality for Koszul DG algebras.

Theorem 4.7 (Koszul duality). Let A be a Koszul DG algebra and E be its Ext-algebra. Suppose
Ak ∈ Dc(A). Then there is a duality of triangulated categories

Db
(
mod-Eop

) F
Dc

(
Aop

)
.

G

It is easy to see that

F(kE) = Φ(Ek) = AA (3)

and

F(EE) = Φ
(
EE∗)

= L
((

E∗)E∗) ⊗L
Ω(E∗) A

(a)∼= kΩ(E∗) ⊗L
Ω(E∗) A

∼= kA, (4)

where the isomorphism (a) holds, because L((E∗)E∗
) = Ω(E∗;E∗) which is quasi-isomorphic

to kΩ(E∗) as a DG Ω(E∗)-module by the narrative below Lemma 1.3.
From the proof of above results, we have proved in fact the following result.

Corollary 4.8. Let R be a finite dimensional local algebra with the residue field k. Then there is
a duality of triangulated categories

Db
(
Rop) � Dc

(
Ω

(
R∗)op);

and under this duality, the trivial module kR corresponds to Ω(R∗) and RR to kΩ(R∗).

The following corollary was indicated in [Ke2] and [Le]. As an application of Corollary 4.8,
we give a proof here.

Corollary 4.9. Let R be a finite dimensional local algebra with the residue field k. Then the
connected DG algebra Ω(R∗) is a Koszul DG algebra. Moreover, the Ext-algebra Ext∗Ω(R∗)(k, k)

is isomorphic to R.
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Proof. By Corollary 4.8, kΩ(R∗) is compact, and

ExtnΩ(R∗)op(k, k) = HomDc(Ω(R∗)op)

(
k, k[−n]) ∼= HomDb(Rop)

(
R[n],R) = 0

if n �= 0. Therefore Ω(R∗) is a Koszul DG algebra. Moreover, the following are algebra isomor-
phisms

Ext∗Ω(R∗)(k, k) ∼= Ext∗Ω(R∗)op(k, k)op ∼= Ext∗Rop(R,R) ∼= R. �
In particular, by Corollary 4.9, if k is algebraically closed, then any finite dimensional local

algebra can be viewed as the Ext-algebra of some Koszul DG algebra.

Example 4.10. Now let V = kx ⊕ ky ⊕ kz and R = T (V )/T �4(V ). Clearly, R is a finite di-
mensional local algebra. Then B = Ω(R∗) is a Koszul DG algebra with Ext∗B(Bk, Bk) = R.
Since gr(R) ∼= R is not a Koszul algebra, so R is not a strongly quasi-Koszul algebra. By
Corollary 3.10, the cohomology H(B) cannot be a Koszul algebra. Hence the converse of Propo-
sition 2.3 is not true.

5. BGG correspondence

In [BGG], Bernstein–Gelfand–Gelfand established an equivalence of categories

grmod-Λ(V ) ∼= Db
(
Coh P

n
)

where grmod-Λ(V ) is the stable category of finitely generated graded modules over the exterior
algebra Λ(V ) of an (n + 1)-dimensional space V = kx0 ⊕ kx1 ⊕ · · · ⊕ kxn, and Db(Coh P

n) is
the bounded derived category of coherent sheaves over the n-dimensional projective space P

n.
This equivalence is now called the BGG correspondence in literature. A sketch of the proof of the
BGG correspondence can be found also in [GMa, P. 273, Ex. 1]. The BGG correspondence has
been generalized to noncommutative projective geometry by several authors [Jo,MS,Mo]. Let R

be a Koszul noetherian AS-Gorenstein algebra with finite global dimension. Then its Ext-algebra
E(R) is a Frobenius algebra [Sm]. A version of the noncommutative BGG correspondence was
proved in [MS], which was stated as

grmod-E(R) ∼= Db
(
qgrRop),

where grmod-E(R) is the stable category of finitely generated graded modules over E(R) and
qgrRop is the quotient category grmod-Rop/ torsRop [AZ]. Let Db

fd(grmod-Rop) be the full sub-

category of Db(grmod-Rop) consisting of objects X with finite dimensional cohomology groups.
It is well known that [Mi]

Db
(
qgrRop) = Db

(
grmod-Rop)/Db

fd

(
grmod-Rop).

Hence the above BGG correspondence can be stated as

grmod-E(R) ∼= Db
(
grmod-Rop)/Db

(
grmod-Rop). (5)
fd
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In this section, we deduce a correspondence similar to (5) for AS-Gorenstein Koszul DG alge-
bras.

First of all we recall the definition of AS-Gorenstein DG algebra. Let A be a connected DG al-
gebra. We say that A is right AS-Gorenstein (AS stands for Artin–Schelter) if RHomAop(k,A) ∼=
snk for some integer n [FHT1,LPWZ,LPWZ2]; A is right AS-regular if A is right AS-Gorenstein
and kA ∈ Dc(Aop). Similarly, we define left AS-Gorenstein DG algebra and left AS-regular al-
gebra. We say that A is AS-Gorenstein (resp., regular) if A is both left and right AS-Gorenstein
(resp., regular).

Proposition 5.1. Let A be a connected DG algebra. If the cohomology algebra H(A) is a left
AS-Gorenstein algebra, then A is a left AS-Gorenstein DG algebra.

Proof. Consider the Eilenberg–Moore spectral sequence [KM]

E
p,q

2 = ExtpH(A)

(
k,H(A)

)q �⇒ Extp+q
A (k,A)

where the index p in ExtpH(A)(k,H(A))q is the usual homological degree and q is the grading
induced from the gradings of Ak and H(A). If the cohomology spectral sequence is regular, then
it is complete convergent [We]. If H(A) is AS-Gorenstein, then by definition there exist some
integers d and l such that

ExtnH(A)

(
k,H(A)

) =
{

0 n �= d,

k[l] n = d.

Then it is routine to see that

ExtnA(k,A) =
{0 n �= d + l,

k n = d + l.

Hence RHomA(k,A) ∼= snk for n = d + l. �
We don’t know whether the converse of Proposition 5.1 is true or not. If A is a connected

graded algebra, viewed as a DG algebra with trivial differential, then A is an AS-Gorenstein DG
algebra if and only if A satisfies AS-Gorenstein condition in the usual sense. The AS-Gorenstein
property is invariant under quasi-isomorphism.

Proposition 5.2. Let f :A → A′ be a quasi-isomorphism of connected DG algebras. Then A is
left AS-Gorenstein (AS-regular) if and only if A′ is.

Proof. The proof is similar to that of Proposition 2.8. �
Lemma 5.3. Let A be an AS-regular DG algebra. Suppose RHomAop(k,A) ∼= slk for some inte-
ger l. Let P → kA be a minimal semifree resolution of kA with a semifree filtration

0 ⊆ P(0) ⊆ P(1) ⊆ · · · ⊆ P(n)

such that P(n) = P and P(n)/P (n − 1) �= 0. Then P(n)/P (n − 1) = A[−l].
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Proof. There are finite dimensional graded vector spaces V (0),V (1), . . . , V (n) such that
P(i)/P (i − 1) = V (i) ⊗ A for all 0 � i � n (P(−1) = 0). As graded A-modules P =⊕n

i=0 V (i) ⊗ A. Hence HomA(P,A) = ⊕n
i=0 A ⊗ V (i)# as graded left A-modules. Let

{x1, . . . , xt } be a homogeneous basis of V (n). Let d be the differential of HomA(P,A) induced
by the differentials of P and A. For any 1 � s � t , define a graded right A-module morphism

fs :P =
n⊕

i=0

V (i) ⊗ A −→ A

by sending xs to the identity of A, xj to zero for j �= s, and sending V (r) to zero for all
r < n. One can see that f1, . . . , ft so defined are cocycles of the cochain complex HomA(P,A).
Since P is minimal, d(g)(xj ) = (dAg − (−1)|g|gdP )(xj ) ∈ A�1 for any homogeneous element
g ∈ HomA(P,A) and xj . Hence any fj (1 � j � t) cannot be a coboundary. By hypothesis
RHomAop(k,A) ∼= slk, which forces dimV (n) = 1 and the degree of non-zero elements in V (n)

is −l, that is, P(n)/P (n − 1) ∼= s−lA. �
The following proposition is a special case of [LPWZ2, Theorem 9.8].

Proposition 5.4. Let A be a Koszul DG algebra with Ext-algebra E = Ext∗A(k, k). Then A is
right AS-regular if and only if E is Frobenius.

Proof. Suppose that A is right AS-regular. Then kA ∈ Dc(Aop), which is equivalent to
Ak ∈ Dc(A). Hence E is finite dimensional. Since A is Koszul, RHomAop(k,A) ∼= k by
Lemma 5.3. By Theorem 4.7,

ExtnEop(k,E) = HomDb(mod-Eop)

(
k,E[−n])

∼= HomDc(Aop)

(
F(E),F(k)[−n])

∼= HomDc(Aop)

(
k,A[−n])

= ExtnAop(k,A).

Hence ExtnEop(k,E) = 0 for n �= 0. Let

0 −→ EE −→ I 0 −→ I 1 −→ · · ·
be a minimal injective resolution of EE . Since E is finite dimensional and local, all the injec-
tive modules In’s are finite dimensional. Hence 0 = ExtnEop(k,A) ∼= soc In for all n � 1, and
HomEop(k,E) = k. We get In = 0 for all n � 1 and I 0 = E∗. Therefore we have a right E-
module isomorphism E ∼= E∗, that is, E is a Frobenius algebra.

Conversely, if E is Frobenius, then it is finite dimensional, and hence kA ∈ Dc(Aop). Since E

itself is injective and local, it follows ExtnEop(k,E) = 0 for n � 1 and Ext0Eop(k,E) = k. Hence
ExtnAop(k,A) ∼= ExtnEop(k,E) = 0 for n �= 0 and Ext0Aop(k,A) ∼= k. Then RHomAop(k,A) ∼= k, and
hence A is AS-regular. �

In [LPWZ2, Theorem 9.8], a more general case of the above proposition is proved with some
locally finite conditions.



J.-W. He, Q.-S. Wu / Journal of Algebra 320 (2008) 2934–2962 2957
Corollary 5.5. Let A be a Koszul DG algebra. Then A is right AS-regular if and only if A is left
AS-regular.

Proof. Note that Eop ∼= Ext∗Aop(k, k). �
Next we are going to deduce a result similar to the classical BGG correspondence.

Lemma 5.6. Let A be a connected DG algebra such that kA ∈ Dc(Aop). Then the full triangu-
lated subcategory 〈kA〉 of Dc(Aop) generated by kA, is equal to Dfd(A

op), the full subcategory
of Dc(Aop) consisting of DG modules M such that dimH(M) < ∞.

Proof. For any DG module M , temporarily we write

�(M) = sup
{
i
∣∣ Hi(M) �= 0

} − inf
{
i
∣∣ Hi(M) �= 0

}
and

λ(M) = sup
{
i
∣∣ Mi �= 0

} − inf
{
i
∣∣ Mi �= 0

}
.

We prove the lemma by an induction on �(M). Let M be a DG A-module with dimH(M) < ∞.
Without loss of generality, we may assume that Hi(M) = 0 for i < 0 or i > n for n = �(M).
Since A is connected, by suitable truncations, we may assume that M is concentrated in degrees
0 � i � n. If �(M) = 0, then M is isomorphic in Dc(Aop) to a DG module N with λ(N) = 0,
which is a direct sum of finite copies of kA, and hence is in 〈kA〉. Now suppose that each DG mod-
ule M with dimH(M) < ∞ and �(M) < n is in 〈kA〉. If M is a DG module with dimH(M) < ∞
and �(M) = n, without loss of generality, we may assume M0 �= 0 and Mn �= 0, and Mi = 0 for
i < 0 and i > n. Then the vector space Mn has a decomposition Mn = d(Mn−1) ⊕ K for some
subspace K . Since dimH(M) < ∞, then dimK < ∞. Taking K as a DG A-module concen-
trated on degree zero, then we have an exact sequence of DG modules

0 −→ snK −→ M −→ M/snK −→ 0.

Now �(snK) = 0 and �(M/snK) � n − 1. By the induction hypothesis, both snK and M/snK

are objects in 〈kA〉, and hence M is in 〈kA〉. Therefore 〈kA〉 = Dfd(A
op). �

Theorem 5.7 (BGG correspondence). Let A be a Koszul DG AS-regular algebra with Ext-
algebra E = Ext∗A(k, k). Then there is a duality of triangulated categories

mod-Eop � Dc
(
Aop)/Dfd

(
Aop).

Proof. By the Koszul duality (Theorem 4.7), There is a duality of triangulated categories

Db
(
mod-Eop) � Dc

(
Aop);

and under this duality the object EE ∈ Db(mod -Eop) is corresponding to the object kA ∈
Dc(Aop) by (4). Hence there is a duality

Db
(
mod-Eop)/〈EE〉 � Dc

(
Aop)/〈kA〉,
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where 〈EE〉 is the full triangulated subcategory of Db(mod-Eop) generated by EE . Since E is
a finite dimensional local algebra with E/J (E) ∼= k (Theorem 3.5), all finitely generated projec-
tive E-modules are free. Therefore 〈EE〉 = Db(projEop), where projEop is the category of all
finitely generated right projective E-modules. Hence

Db
(
mod-Eop)/〈EE〉 = Db

(
mod-Eop)/Db

(
projEop).

By Proposition 5.4, E is Frobenius, and hence [Be1]

Db
(
mod-Eop)/Db

(
projEop) ∼= mod-Eop.

On the other hand, by Lemma 5.6

Dc
(
Aop)/〈kA〉 = Dc

(
Aop)/Dfd(A).

In summary, there is an a duality of triangulated categories

mod-Eop � Dc
(
Aop)/Dfd

(
Aop). �

Since E is finite dimensional, there is an equivalence form of the BGG correspondence.

Theorem 5.8. Let A be a Koszul DG AS-regular algebra with Ext-algebra E = Ext∗A(k, k). Then
there is an equivalence of triangulated categories

mod-E ∼= Dc
(
Aop)/Dfd

(
Aop).

6. BGG correspondence on Adams connected DG algebras

Many examples of the DG algebra from algebraic geometry and algebraic topology admit an
extra grading. Let A = ⊕

i,j∈Z
Ai

j be a bigraded space. An element a ∈ Ai
j is of degree (i, j).

The second grading is usually called Adams grading [KM,LPWZ]. A DG algebra (A,d) is called
a DG algebra with Adams grading if A is bigraded and the differential d is of degree (1,0)

(i.e., d preserves Adams grading). A DG module over a DG algebra with Adams grading is
bigraded and the differential preserves the second grading. A DG algebra A with Adams grading
is augmented if there is an augmentation map ε :A → k of degree (0,0). A DG algebra with
Adams grading A is said to be Adams connected if (1) Ai

j = 0 for i < 0 or j < 0, and (2) A0
0 = k,

A0
j = 0 and Ai

0 = 0 for i, j �= 0. All Adams connected DG algebras are augmented.
Similarly, we define coaugmented DG coalgebras with Adams grading.
In this section, all the DG algebras and DG coalgebras involved are with Adams grading.

For simplicity, we call a DG algebra (coalgebra) with Adams grading an Adams DG algebra
(coalgebra).

It is not hard to see that the bar (cobar) construction (see Section 1) of an (a) (co)augmented
Adams DG algebra (coalgebra) is an Adams DG coalgebra (algebra). The canonical twisting
cochain (see Section 4) τ0 from a cocomplete Adams DG coalgebra C to Ω(C) is of de-
gree (1,0).

Let A be an Adams DG algebra, and let ACdg(A) (ACdg(A
op)) be the category of left (right)

DG A-modules with morphisms of degree (0,0). We use si = [i] to denote the ith shift functor
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on the first grading and use s−(j) = (j) to denote the j th shift functor on the Adams grading.
Let ADdg(A) be the derived category of ACdg(A). Denote ADc(A) (ADc(Aop)) as the full
triangulated subcategory of ADdg(A) (ADdg(A

op)) generated by AA (AA). Let M and N be
objects in ACdg(A), we use

Exti,jA (M,N) = HomADdg(A)

(
M,N [−i](j)

)
to denote the derived functor. Then

Ext∗,∗
A (M,N) =

⊕
i,j∈Z

Exti,jA (M,N)

is a bigraded space. In particular, if A is an augmented Adams DG algebra, then E = Ext∗,∗
A (k, k)

is a bigraded algebra. For convenience, we usually write E i
j = Exti,jA (k, k).

The results obtained in previous sections can be easily generalized to Adams DG algebras.
Hence in this section, we only state the results without giving proofs. More general results can
be found in [LPWZ2, Section 10], with some locally finite conditions.

Let A be an Adams connected DG algebra and M be a bounded below DG module over A.
Then there is a minimal semifree resolution (the construction is similar to [KM, Theorem IV.3.7])
P → M in ACdg(A) (see also [MW]).

Definition 6.1. Let A be an Adams connected DG algebra. It is called a Koszul Adams DG
algebra if Exti,∗A (k, k) = ⊕

j∈Z
Exti,jA (k, k) = 0 for all i �= 0.

It is not hard to see that, if A is a Koszul Adams DG algebra, then its Ext-algebra E =
Ext∗,∗

A (k, k) has the property that E i
j = 0 for i �= 0 or j > 0. Hence E is a negatively graded

algebra. Comparing with Theorem 3.3, we have the following.

Proposition 6.2. Let A be a Koszul Adams DG algebra, and let Sj = E0
−j . Then S = ⊕

j�0 Sj is
a connected graded algebra. If in addition Ak ∈ADc

dg(A), then S is a finite dimensional graded
algebra.

We also have the following form of Lefèvre-Hasegawa’s theorem.

Theorem 6.3. Let C be a cocomplete Adams DG coalgebra, B an augmented Adams DG algebra
and τ :C → B is a twisting cochain of degree (1,0). The following are equivalent

(i) The map τ induces a quasi-isomorphism Ω(C) → B;
(ii) The adjunction map

B ⊗τ C ⊗τ B → B

is a quasi-isomorphism;
(iii) There is an equivalence of triangulated categories

ADdg(C) � ADdg
(
Bop)

where ADdg(C) is the coderived category over the cocomplete Adams DG algebra C.



2960 J.-W. He, Q.-S. Wu / Journal of Algebra 320 (2008) 2934–2962
If Ak ∈ ADc(A), then E is finite dimensional, and hence the graded vector space dual E# is
finite dimensional coalgebra. By applying the above theorem and notice that a DG comodule
over the Adams DG coalgebra E# is exactly a complex of graded comodules over E#, we have
the following proposition which is analogous to Theorem 4.7.

Proposition 6.4. Let A be a Koszul Adams DG algebra. If Ak ∈ ADc(A), then there is a duality
of triangulated categories

Db
(
grmod-Eop

) F
ADc

(
Aop

)
.

G

It is convenient for us to deal with the positively graded algebra S, rather than the negatively
graded algebra E . The abelian category grmod-Eop is equivalent to grmod-Sop of finitely gener-
ated right S-modules. We have the following Koszul duality theorem of Adams DG algebras.

Theorem 6.5. Let A be a Koszul Adams DG algebra. Let S be the graded algebra such that
Sj = Ext0,−j

A (k, k). If Ak ∈ ADc(A), then there is a duality of triangulated categories

Db
(
grmod-Sop

) ψ

ADc
(
Aop

)
.

φ

To establish a version of the BGG correspondence, we need the concept of AS-Gorenstein
Adams DG algebra which is first introduced in [LPWZ].

Definition 6.6. Let A be an Adams connected DG algebra. It is called an AS-Gorenstein Adams
DG algebra if RHomAop(k,A) ∼= k[r](s). Moreover if kA ∈ ADc(Aop), then A is called an AS-
regular Adams DG algebra.

The following proposition is proved in [LPWZ] by using A∞-algebra. Also one can give
a proof by using Theorem 6.5.

Proposition 6.7. Let A be a Koszul Adams DG algebra. Then A is AS-regular if and only if its
Ext-algebra E is Frobenius.

Now we can state the BGG correspondence on Adams DG algebras.

Theorem 6.8. Let A be a Koszul AS-regular Adams DG algebra and S be the connected graded
such that Sj = Ext0,−j

A (k, k). Then there is a duality of triangulated categories

grmod-Sop ∼= ADc
(
Aop)/ADfd

(
Aop), (6)

where ADfd(A
op) is the full triangulated subcategory of ADc(Aop) consisting of objects M such

that dimH(M) < ∞.
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Now let R be a noetherian connected graded algebra. Let A be the Adams connected DG alge-
bra with trivial differential by taking Ai

i = Ri and Ai
j = 0 if i �= j . If R is a Koszul algebra, then

it is not hard to see that A is a Koszul Adams DG algebra. Moreover, Ext0,−j
A (k, k) = R!

j for all

j � 0, i.e., S = R! = E(R) = Ext∗R(k, k). Suppose that gl.dimR < ∞. Then S = E(R) is finite
dimensional. Since E(R) is finite dimensional grmod-E(R)op is dual to grmod-E(R). Hence
Db(grmod-Sop) = Db(grmod-E(R)op) is dual to Db(grmod-E(R)). Let us inspect the category
ADc(Aop) in Theorem 6.5. Since the differential of A is trivial and A is concentrated in the
diagonal of the first quadrant, the triangulated category ADdg(A

op) is naturally equivalent to the
derived category D(Grmod-Rop) of the category Grmod-R of right graded R-modules. Under
this equivalence, AA is corresponding to RR in D(Grmod-Rop). Hence ADc(Aop) is equiva-
lent to the full triangulated subcategory of D(Grmod-Rop) generated by RR (closed under the
shifts on the grading of RR), which is equivalent to Db(projRop), the bounded derived category
of finitely generated graded projective right R-modules. Since R is noetherian and has finite
global dimension, Db(projRop) is equivalent to Db(grmod-Rop), the bounded derived category
of finitely generated graded right R-modules. In summary we have the equivalence (which is
established in [BGS]) of triangulated categories if R is noetherian and of finite global dimension

Db
(
grmod-E(R)

) ∼= Db
(
grmod-Rop).

Moreover, we assume that R is a noetherian Koszul AS-regular algebra. Then the Adams
connected DG algebra A is Koszul Adams AS-regular DG algebra. Hence in the left hand of (6),
grmod-Sop is dual to grmod-E(R). Since ADc(Aop) is equivalent to Db(grmod-Rop), the full tri-
angulated subcategory ADfd(A

op) is equivalent to Db
fd(grmod-Rop), the triangulated subcategory

consisting of objects X such that HX is finite dimensional. Hence in the right hand of (6),

ADc
(
Aop)/ADfd

(
Aop) ∼= Db

(
grmod-Rop)/Db

fd

(
grmod-Rop)

which is equivalent to Db(qgrRop) by [Mi]. In summary we get the BGG correspondence estab-
lished in [MS]

grmod-E(R) ∼= Db
(
qgrRop).
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