

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Fixed points for (ψ, ϕ) -weak contractions

Ovidiu Popescu

Department of Mathematical Analysis and Probability, Transylvania University, Iuliu Maniu 50, RO-505801, Brasov, Romania

ARTICLE INFO

ABSTRACT

Article history: Received 31 March 2010 Accepted 22 June 2010

Keywords: Fixed point Generalized contraction Complete metric space

The aim of this paper is to extend a very recent result proved by Dorić (2009) [4], as well as other theorems given by Rhoades (2001) [2] and Dutta and Choudhury (2008) [3]. © 2010 Published by Elsevier Ltd

1. Introduction and preliminaries

Let (X, d) be a metric space. A mapping $T: X \to X$ is a *contraction* if there exists a constant $k \in (0, 1)$ such that

 $d(Tx, Ty) \leq kd(x, y)$

holds for any $x, y \in X$. If X is complete, then every contraction has a unique fixed point and that point can be obtained as a limit of repeated iteration of the mapping at any point of X (the Banach contraction principle). Obviously, every contraction is a continuous function. A mapping $T : X \to X$ is a ϕ -weak contraction if for each $x, y \in X$, there exists a function $\phi : [0, \infty) \to [0, \infty)$ such that ϕ is positive on $(0, \infty), \phi(0) = 0$, and

 $d(Tx, Ty) \le d(x, y) - \phi(d(x, y)).$

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. They defined such mappings for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhoades [2] showed that most results of [1] are true for any Banach space. Also Rhoades proved the following generalization of the Banach contraction principle.

Theorem 1. Let (X, d) be a nonempty complete metric space and let $T : X \to X$ be a ϕ -weak contraction on X. If ϕ is a continuous and nondecreasing function with $\phi(t) > 0$ for all t > 0 and $\phi(0) = 0$, then T has a unique fixed point.

Every contraction is a ϕ -weak contraction if we take $\phi(t) = kt$, where 0 < k < 1.

Dutta and Choudhury [3] proved the following generalization of Theorem 1.

Theorem 2. Let (X, d) be a nonempty complete metric space and let $T : X \to X$ be a self-mapping satisfying the inequality

 $\psi(d(Tx, Ty)) \le \psi(d(x, y)) - \phi(d(x, y)),$

where $\psi, \phi : [0, \infty) \to [0, \infty)$ are both continuous and monotone nondecreasing functions with $\psi(t) = \phi(t) = 0$ if and only if t = 0. Then T has a unique fixed point.

Recently, Dorić [4] generalized Theorem 2.

E-mail address: ovidiu.popescu@unitbv.ro.

^{0893-9659/\$ –} see front matter 0 2010 Published by Elsevier Ltd doi:10.1016/j.aml.2010.06.024

Theorem 3. Let (X, d) be a nonempty complete metric space and let $T : X \to X$ be a self-mapping satisfying the inequality

$$\psi(d(Tx, Ty)) \leq \psi(M(x, y)) - \phi(M(x, y)),$$

for any $x, y \in X$, where M is given by

$$M(x, y) = \max\{d(x, y), d(x, Tx), d(y, Ty), (d(x, Ty) + d(Tx, y))/2\}$$

and

(a) $\psi : [0, \infty) \to [0, \infty)$ is a continuous monotone nondecreasing function with $\psi(t) = 0$ if and only if t = 0,

(b) $\phi : [0, \infty) \to [0, \infty)$ is a lower semi-continuous function with $\phi(t) = 0$ if and only if t = 0.

Then T has a unique fixed point.

For other related results we refer the reader to [5,6]. The aim of this work is to show that some of the control conditions of Theorem 3 are not necessary.

2. Main results

Theorem 4. Let (X, d) be a nonempty complete metric space and $T : X \to X$ be a mapping satisfying for all $x, y \in X$

$$\psi(d(Tx,Ty)) \le \psi(M(x,y)) - \phi(M(x,y)),\tag{1}$$

where

(a) $\psi : [0, \infty) \to [0, \infty)$ is a monotone nondecreasing function with $\psi(t) = 0$ if and only if t = 0, (b) $\phi : [0, \infty) \to [0, \infty)$ is a function with $\phi(t) = 0$ if and only if t = 0, and $\liminf_{n \to \infty} \phi(a_n) > 0$ if $\lim_{n \to \infty} a_n = a > 0$, (c) $\phi(a) > \psi(a) - \psi(a)$ for any a > 0, where $\psi(a-)$ is the left limit of ψ at a.

Then T has a unique fixed point.

Proof. We note that there exists the left limit of ψ at a by the monotonicity of ψ . Let $x_0 \in X$ and the sequence $\{x_n\}$ be defined by $x_n = Tx_{n-1}$, n = 1, 2, ... If there exists n such that $x_n = x_{n+1}$ then the conclusion holds. Then we can assume that $x_n \neq x_{n+1}$ for any $n \ge 0$. Substituting $x = x_{n-1}$ and $y = x_n$ in (1) we obtain

$$\psi(d(x_n, x_{n+1})) \le \psi(M(x_{n-1}, x_n)) - \phi(M(x_{n-1}, x_n)), \tag{2}$$

which implies $\psi(d(x_n, x_{n+1})) \le \psi(M(x_{n-1}, x_n))$. Using the monotone property of the ψ -function, we get

$$d(x_n, x_{n+1}) \leq M(x_{n-1}, x_n).$$

Now from the triangle inequality for *d* we have

$$M(x_{n-1}, x_n) = \max\{d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), (d(x_{n-1}, x_{n+1}) + d(x_n, x_n))/2\}$$

= max{d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_{n+1})/2}
 $\leq \max\{d(x_{n-1}, x_n), d(x_n, x_{n+1}), (d(x_{n-1}, x_n) + d(x_n, x_{n+1}))/2\}$
= max{d(x_{n-1}, x_n), d(x_n, x_{n+1})}.

If $d(x_n, x_{n+1}) > d(x_{n-1}, x_n)$, then $M(x_{n-1}, x_n) = d(x_n, x_{n+1}) > 0$. By (2) it furthermore implies that

$$\psi(d(x_n, x_{n+1})) \le \psi(d(x_n, x_{n+1})) - \phi(d(x_n, x_{n+1})).$$

which is a contradiction. So, we have

 $d(x_n, x_{n+1}) \leq M(x_{n-1}, x_n) \leq d(x_{n-1}, x_n).$

Therefore, the sequence $\{d(x_{n+1}, x_n)\}$ is monotone nonincreasing and bounded. Thus, there exists $r \ge 0$ such that

$$\lim_{x \to 0} d(x_n, x_{n+1}) = \lim_{x \to 0} M(x_{n-1}, x_n) = r.$$
(5)

We suppose that r > 0. If there exists n such that $d(x_{n-1}, x_n) = r$, then by (4) we have $d(x_n, x_{n+1}) = M(x_{n-1}, x_n) = r$ and by (2) we get $\psi(r) \le \psi(r) - \phi(r)$. This is a contradiction. If $d(x_{n-1}, x_n) > r$ for all $n \ge 1$, then by (2) and (5) letting $n \to \infty$ we obtain

$$\psi(r+) \leq \psi(r+) - \liminf_{n \to \infty} \phi(M(x_{n-1}, x_n))$$

which is also a contradiction. Hence

$$\lim_{n\to\infty}d(x_n,x_{n+1})=0.$$

Next we prove that $\{x_n\}$ is a Cauchy sequence. Otherwise there exists $\epsilon > 0$ for which we can find subsequences $\{x_{m(k)}\}$ and $\{x_{n(k)}\}$ of $\{x_n\}$ such that n(k) is the smallest index for which n(k) > m(k) > k and $d(x_{m(k)}, x_{n(k)}) \ge \epsilon$. This implies that

(4)

(6)

(3)

 $d(x_{m(k)}, x_{n(k)-1}) < \epsilon$ for all $k \ge 1$. Using the triangle inequality we have

 $\epsilon \leq d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)-1}) + d(x_{n(k)-1}, x_{n(k)}) < \epsilon + d(x_{n(k)-1}, x_{n(k)}).$

Letting $k \to \infty$ and using (6) we obtain

$$\lim_{k \to \infty} d(x_{m(k)}, x_{n(k)}) = \epsilon.$$
⁽⁷⁾

Again,

$$d(x_{m(k)}, x_{n(k)-1}) \le d(x_{m(k)}, x_{n(k)}) + d(x_{n(k)}, x_{n(k)-1})$$

and

$$d(x_{m(k)}, x_{n(k)}) \leq d(x_{m(k)}, x_{n(k)-1}) + d(x_{n(k)}, x_{n(k)-1}).$$

Then we have

 $\lim_{k\to\infty}$

 $|d(x_{m(k)}, x_{n(k)-1}) - d(x_{m(k)}, x_{n(k)})| \le d(x_{n(k)}, x_{n(k)-1}).$

Letting $k \to \infty$ and using (6) and (7) it follows that

$$d(\mathbf{x}_{m(k)}, \mathbf{x}_{n(k-1)}) = \epsilon.$$
(8)

Similarly, we can prove that

$$\lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)}) = \lim_{k \to \infty} d(x_{m(k)-1}, x_{n(k)-1}) = \lim_{k \to \infty} d(x_{m(k)+1}, x_{n(k)}) = \lim_{k \to \infty} d(x_{m(k)}, x_{n(k)+1}) = \epsilon.$$
(9)

Then we get

$$\lim_{k \to \infty} M(x_{m(k)-1}, x_{n(k)-1}) = \epsilon.$$
(10)

If there exists a subsequence $\{k(p)\}$ of $\{k\}$ such that $\epsilon < d(x_{m(k(p))}, x_{n(k(p))})$ for any p, then substituting $x = x_{m(k(p))-1}, y = x_{n(k(p))-1}$ in (1) we get

 $\psi(d(x_{m(k(p))}, x_{n(k(p))})) \leq \psi(M(x_{m(k(p))-1}, x_{n(k(p))-1})) - \phi(M(x_{m(k(p))-1}, x_{n(k(p))-1})),$

for any *p*. By (7) and (10), letting $p \rightarrow \infty$ we obtain

 $\psi(\epsilon+) \leq \psi(\epsilon+) - \liminf_{n \to \infty} \phi(M(x_{m(k(p))-1}, x_{n(k(p))-1})),$

which is a contradiction. We repeat the procedure if there exists a subsequence $\{k(p)\}$ of $\{k\}$ such that $\epsilon < d(x_{m(k(p))}, x_{n(k(p))+1})$ for any p or $\epsilon < d(x_{m(k(p))+1}, x_{n(k(p))})$ for any p. Therefore we can suppose now that $d(x_{m(k)}, x_{n(k)}) = \epsilon$, $d(x_{m(k)}, x_{n(k)+1}) \le \epsilon$ and $d(x_{m(k)+1}, x_{n(k)}) \le \epsilon$ for any $k \ge k_1$. Then $M(x_{m(k)}, x_{n(k)}) = \epsilon$ for $k \ge k_3 = \max\{k_1, k_2\}$, where k_2 is such that $d(x_k, x_{k+1}) < \epsilon$ for all $k \ge k_2$. Substituting $x = x_{m(k)}, y = x_{n(k)}$ in (1) we have

$$\psi(d(x_{m(k)+1}, x_{n(k)+1})) \leq \psi(\epsilon) - \phi(\epsilon)$$

for any $k \ge k_3$. Obviously, $d(x_{m(k)+1}, x_{n(k)+1}) < \epsilon$; otherwise we have $\phi(\epsilon) = 0$. Letting $k \to \infty$ we obtain

$$\psi(\epsilon-) \le \psi(\epsilon) - \phi(\epsilon),$$

which contradicts (c) by the hypothesis. Hence $\{x_n\}$ is a Cauchy sequence. By the completeness of X there exists $z \in X$ such that $x_n \to z$ as $n \to \infty$.

Next we show that *z* is a fixed point of *T*. Substituting $x = x_n$, y = z in (1) we have

$$\psi(d(x_{n+1}, Tz)) \le \psi(M(x_n, z)) - \phi(M(x_n, z)), \tag{11}$$

where

 $M(x_n, z) = \max\{d(x_n, z), d(x_n, x_{n+1}), d(z, Tz), (d(x_{n+1}, z) + d(x_n, Tz))/2\}.$

Suppose that $z \neq Tz$. Then there exists n_1 such that for any $n \ge n_1$ we have

$$d(x_{n+1}, x_n) < d(z, Tz)/2, d(x_n, z) < d(z, Tz)/2, d(x_{n+1}, z) < d(z, Tz)/2$$

Accordingly,

$$d(z, Tz) \le M(z, x_n) \le \max\{d(z, Tz)/2, d(z, Tz), d(z, Tz)/2, (d(x_{n+1}, z) + d(x_n, z) + d(z, Tz))/2\} \\ \le \max\{d(z, Tz)/2, d(z, Tz), d(z, Tz)/2, (d(z, Tz)/2 + d(z, Tz)/2 + d(z, Tz))/2\} \\ = d(z, Tz),$$

that is, $M(z, x_n) = d(z, Tz)$. By (11) we obtain

$$\psi(d(z, Tz)) \le \psi(d(z, Tz)) - \phi(d(z, Tz)),$$

which contradicts (c) by the hypothesis. Hence z = Tz.

If there exists another point $y \in X$ such that y = Ty, then substituting x = z in (1) we get

 $\psi(d(z, y)) \le \psi(M(z, y)) - \phi(M(z, y)) = \psi(d(z, y)) - \phi(d(z, y))$

which is a contradiction. \Box

If ϕ is a lower semi-continuous function then for $\lim_{n\to\infty} a_n = a > 0$ we have $\liminf_{n\to\infty} \phi(a_n) \ge \phi(a) > 0$. Also, if ψ is a left-continuous function then $\psi(a) - \psi(a-) = 0$ and (c) obviously holds. Therefore our control conditions are weaker than those of Theorem 3.

References

- Ya.I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Theory Operator Theory, in: Advances and Appl., vol. 98, Birkhauser, Basel, 1997, pp. 7–22.
- [2] B.H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis (2001) 2683–2693.
- [3] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Applications (2008) Article ID 406368.
- [4] D. Dorić, Common fixed point for generalized (ψ , ϕ)-weak contractions, Applied Mathematics Letters 22 (2009) 1896–1900.
- [5] B.D. Rouhani, S. Moradi, Common fixed point of multivalued generalized φ-weak contractive mappings, Fixed Point Theory and Applications (2010) Article ID 708984.
- [6] Q. Zhang, Y. Song, Fixed point theory for generalized ϕ -weak contractions, Applied Mathematics Letters 22 (2009) 75–78.