Fixed points for (ψ, ϕ)-weak contractions

Ovidiu Popescu

Department of Mathematical Analysis and Probability, Transylvania University, Iuliu Maniu 50, RO-505801, Brasov, Romania

ARTICLE INFO

Article history:
Received 31 March 2010
Accepted 22 June 2010

Keywords:

Fixed point
Generalized contraction
Complete metric space

Abstract

The aim of this paper is to extend a very recent result proved by Dorić (2009) [4], as well as other theorems given by Rhoades (2001) [2] and Dutta and Choudhury (2008) [3].

© 2010 Published by Elsevier Ltd

1. Introduction and preliminaries

Let (X, d) be a metric space. A mapping $T: X \rightarrow X$ is a contraction if there exists a constant $k \in(0,1)$ such that

$$
d(T x, T y) \leq k d(x, y)
$$

holds for any $x, y \in X$. If X is complete, then every contraction has a unique fixed point and that point can be obtained as a limit of repeated iteration of the mapping at any point of X (the Banach contraction principle). Obviously, every contraction is a continuous function. A mapping $T: X \rightarrow X$ is a ϕ-weak contraction if for each $x, y \in X$, there exists a function $\phi:[0, \infty) \rightarrow[0, \infty)$ such that ϕ is positive on $(0, \infty), \phi(0)=0$, and

$$
d(T x, T y) \leq d(x, y)-\phi(d(x, y))
$$

The concept of the weak contraction was defined by Alber and Guerre-Delabriere [1] in 1997. They defined such mappings for single-valued maps on Hilbert spaces and proved the existence of fixed points. Rhoades [2] showed that most results of [1] are true for any Banach space. Also Rhoades proved the following generalization of the Banach contraction principle.

Theorem 1. Let (X, d) be a nonempty complete metric space and let $T: X \rightarrow X$ be a ϕ-weak contraction on X. If ϕ is a continuous and nondecreasing function with $\phi(t)>0$ for all $t>0$ and $\phi(0)=0$, then T has a unique fixed point.

Every contraction is a ϕ-weak contraction if we take $\phi(t)=k t$, where $0<k<1$.
Dutta and Choudhury [3] proved the following generalization of Theorem 1.
Theorem 2. Let (X, d) be a nonempty complete metric space and let $T: X \rightarrow X$ be a self-mapping satisfying the inequality

$$
\psi(d(T x, T y)) \leq \psi(d(x, y))-\phi(d(x, y))
$$

where $\psi, \phi:[0, \infty) \rightarrow[0, \infty)$ are both continuous and monotone nondecreasing functions with $\psi(t)=\phi(t)=0$ if and only if $t=0$. Then T has a unique fixed point.

Recently, Dorić [4] generalized Theorem 2.

[^0]Theorem 3. Let (X, d) be a nonempty complete metric space and let $T: X \rightarrow X$ be a self-mapping satisfying the inequality

$$
\psi(d(T x, T y)) \leq \psi(M(x, y))-\phi(M(x, y)),
$$

for any $x, y \in X$, where M is given by

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y),(d(x, T y)+d(T x, y)) / 2\}
$$

and
(a) $\psi:[0, \infty) \rightarrow[0, \infty)$ is a continuous monotone nondecreasing function with $\psi(t)=0$ if and only if $t=0$,
(b) $\phi:[0, \infty) \rightarrow[0, \infty)$ is a lower semi-continuous function with $\phi(t)=0$ if and only if $t=0$.

Then T has a unique fixed point.
For other related results we refer the reader to [5,6]. The aim of this work is to show that some of the control conditions of Theorem 3 are not necessary.

2. Main results

Theorem 4. Let (X, d) be a nonempty complete metric space and $T: X \rightarrow X$ be a mapping satisfying for all $x, y \in X$

$$
\begin{equation*}
\psi(d(T x, T y)) \leq \psi(M(x, y))-\phi(M(x, y)) \tag{1}
\end{equation*}
$$

where
(a) $\psi:[0, \infty) \rightarrow[0, \infty)$ is a monotone nondecreasing function with $\psi(t)=0$ if and only if $t=0$,
(b) $\phi:[0, \infty) \rightarrow[0, \infty)$ is a function with $\phi(t)=0$ if and only if $t=0$, and $\liminf _{n \rightarrow \infty} \phi\left(a_{n}\right)>0$ if $\lim _{n \rightarrow \infty} a_{n}=a>0$,
(c) $\phi(a)>\psi(a)-\psi(a-)$ for any $a>0$, where $\psi(a-)$ is the left limit of ψ at a.

Then T has a unique fixed point.
Proof. We note that there exists the left limit of ψ at a by the monotonicity of ψ. Let $x_{0} \in X$ and the sequence $\left\{x_{n}\right\}$ be defined by $x_{n}=T x_{n-1}, n=1,2, \ldots$. If there exists n such that $x_{n}=x_{n+1}$ then the conclusion holds. Then we can assume that $x_{n} \neq x_{n+1}$ for any $n \geq 0$. Substituting $x=x_{n-1}$ and $y=x_{n}$ in (1) we obtain

$$
\begin{equation*}
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(M\left(x_{n-1}, x_{n}\right)\right)-\phi\left(M\left(x_{n-1}, x_{n}\right)\right), \tag{2}
\end{equation*}
$$

which implies $\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(M\left(x_{n-1}, x_{n}\right)\right)$. Using the monotone property of the ψ-function, we get

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq M\left(x_{n-1}, x_{n}\right) \tag{3}
\end{equation*}
$$

Now from the triangle inequality for d we have

$$
\begin{aligned}
M\left(x_{n-1}, x_{n}\right) & =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right),\left(d\left(x_{n-1}, x_{n+1}\right)+d\left(x_{n}, x_{n}\right)\right) / 2\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n-1}, x_{n+1}\right) / 2\right\} \\
& \leq \max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right),\left(d\left(x_{n-1}, x_{n}\right)+d\left(x_{n}, x_{n+1}\right)\right) / 2\right\} \\
& =\max \left\{d\left(x_{n-1}, x_{n}\right), d\left(x_{n}, x_{n+1}\right)\right\} .
\end{aligned}
$$

If $d\left(x_{n}, x_{n+1}\right)>d\left(x_{n-1}, x_{n}\right)$, then $M\left(x_{n-1}, x_{n}\right)=d\left(x_{n}, x_{n+1}\right)>0$. By (2) it furthermore implies that

$$
\psi\left(d\left(x_{n}, x_{n+1}\right)\right) \leq \psi\left(d\left(x_{n}, x_{n+1}\right)\right)-\phi\left(d\left(x_{n}, x_{n+1}\right)\right),
$$

which is a contradiction. So, we have

$$
\begin{equation*}
d\left(x_{n}, x_{n+1}\right) \leq M\left(x_{n-1}, x_{n}\right) \leq d\left(x_{n-1}, x_{n}\right) . \tag{4}
\end{equation*}
$$

Therefore, the sequence $\left\{d\left(x_{n+1}, x_{n}\right)\right\}$ is monotone nonincreasing and bounded. Thus, there exists $r \geq 0$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} M\left(x_{n-1}, x_{n}\right)=r \tag{5}
\end{equation*}
$$

We suppose that $r>0$. If there exists n such that $d\left(x_{n-1}, x_{n}\right)=r$, then by (4) we have $d\left(x_{n}, x_{n+1}\right)=M\left(x_{n-1}, x_{n}\right)=r$ and by (2) we get $\psi(r) \leq \psi(r)-\phi(r)$. This is a contradiction. If $d\left(x_{n-1}, x_{n}\right)>r$ for all $n \geq 1$, then by (2) and (5) letting $n \rightarrow \infty$ we obtain

$$
\psi(r+) \leq \psi(r+)-\liminf _{n \rightarrow \infty} \phi\left(M\left(x_{n-1}, x_{n}\right)\right)
$$

which is also a contradiction. Hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{6}
\end{equation*}
$$

Next we prove that $\left\{x_{n}\right\}$ is a Cauchy sequence. Otherwise there exists $\epsilon>0$ for which we can find subsequences $\left\{x_{m(k)}\right\}$ and $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that $n(k)$ is the smallest index for which $n(k)>m(k)>k$ and $d\left(x_{m(k)}, x_{n(k)}\right) \geq \epsilon$. This implies that
$d\left(x_{m(k)}, x_{n(k)-1}\right)<\epsilon$ for all $k \geq 1$. Using the triangle inequality we have

$$
\epsilon \leq d\left(x_{m(k)}, x_{n(k)}\right) \leq d\left(x_{m(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)-1}, x_{n(k)}\right)<\epsilon+d\left(x_{n(k)-1}, x_{n(k)}\right) .
$$

Letting $k \rightarrow \infty$ and using (6) we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)}\right)=\epsilon . \tag{7}
\end{equation*}
$$

Again,

$$
d\left(x_{m(k)}, x_{n(k)-1}\right) \leq d\left(x_{m(k)}, x_{n(k)}\right)+d\left(x_{n(k)}, x_{n(k)-1}\right)
$$

and

$$
d\left(x_{m(k)}, x_{n(k)}\right) \leq d\left(x_{m(k)}, x_{n(k)-1}\right)+d\left(x_{n(k)}, x_{n(k)-1}\right) .
$$

Then we have

$$
\left|d\left(x_{m(k)}, x_{n(k)-1}\right)-d\left(x_{m(k)}, x_{n(k)}\right)\right| \leq d\left(x_{n(k)}, x_{n(k)-1}\right)
$$

Letting $k \rightarrow \infty$ and using (6) and (7) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)-1}\right)=\epsilon \tag{8}
\end{equation*}
$$

Similarly, we can prove that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)}\right)=\lim _{k \rightarrow \infty} d\left(x_{m(k)-1}, x_{n(k)-1}\right)=\lim _{k \rightarrow \infty} d\left(x_{m(k)+1}, x_{n(k)}\right)=\lim _{k \rightarrow \infty} d\left(x_{m(k)}, x_{n(k)+1}\right)=\epsilon \tag{9}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty} M\left(x_{m(k)-1}, x_{n(k)-1}\right)=\epsilon \tag{10}
\end{equation*}
$$

If there exists a subsequence $\{k(p)\}$ of $\{k\}$ such that $\epsilon<d\left(x_{m(k(p))}, x_{n(k(p))}\right)$ for any p, then substituting $x=x_{m(k(p))-1}, y=$ $x_{n(k(p))-1}$ in (1) we get

$$
\psi\left(d\left(x_{m(k(p))}, x_{n(k(p))}\right)\right) \leq \psi\left(M\left(x_{m(k(p))-1}, x_{n(k(p))-1}\right)\right)-\phi\left(M\left(x_{m(k(p))-1}, x_{n(k(p))-1}\right)\right),
$$

for any p. By (7) and (10), letting $p \rightarrow \infty$ we obtain

$$
\psi(\epsilon+) \leq \psi(\epsilon+)-\liminf _{p \rightarrow \infty} \phi\left(M\left(x_{m(k(p))-1}, x_{n(k(p))-1}\right)\right)
$$

which is a contradiction. We repeat the procedure if there exists a subsequence $\{k(p)\}$ of $\{k\}$ such that $\epsilon<d\left(x_{m(k(p))}\right.$, $\left.x_{n(k(p))+1}\right)$ for any p or $\epsilon<d\left(x_{m(k(p))+1}, x_{n(k(p))}\right)$ for any p. Therefore we can suppose now that $d\left(x_{m(k)}, x_{n(k)}\right)=\epsilon$, $d\left(x_{m(k)}, x_{n(k)+1}\right) \leq \epsilon$ and $d\left(x_{m(k)+1}, x_{n(k)}\right) \leq \epsilon$ for any $k \geq k_{1}$. Then $M\left(x_{m(k)}, x_{n(k)}\right)=\epsilon$ for $k \geq k_{3}=\max \left\{k_{1}, k_{2}\right\}$, where k_{2} is such that $d\left(x_{k}, x_{k+1}\right)<\epsilon$ for all $k \geq k_{2}$. Substituting $x=x_{m(k)}, y=x_{n(k)}$ in (1) we have

$$
\psi\left(d\left(x_{m(k)+1}, x_{n(k)+1}\right)\right) \leq \psi(\epsilon)-\phi(\epsilon)
$$

for any $k \geq k_{3}$. Obviously, $d\left(x_{m(k)+1}, x_{n(k)+1}\right)<\epsilon$; otherwise we have $\phi(\epsilon)=0$. Letting $k \rightarrow \infty$ we obtain

$$
\psi(\epsilon-) \leq \psi(\epsilon)-\phi(\epsilon)
$$

which contradicts (c) by the hypothesis. Hence $\left\{x_{n}\right\}$ is a Cauchy sequence. By the completeness of X there exists $z \in X$ such that $x_{n} \rightarrow z$ as $n \rightarrow \infty$.

Next we show that z is a fixed point of T. Substituting $x=x_{n}, y=z$ in (1) we have

$$
\begin{equation*}
\psi\left(d\left(x_{n+1}, T z\right)\right) \leq \psi\left(M\left(x_{n}, z\right)\right)-\phi\left(M\left(x_{n}, z\right)\right) \tag{11}
\end{equation*}
$$

where

$$
M\left(x_{n}, z\right)=\max \left\{d\left(x_{n}, z\right), d\left(x_{n}, x_{n+1}\right), d(z, T z),\left(d\left(x_{n+1}, z\right)+d\left(x_{n}, T z\right)\right) / 2\right\}
$$

Suppose that $z \neq T z$. Then there exists n_{1} such that for any $n \geq n_{1}$ we have

$$
d\left(x_{n+1}, x_{n}\right)<d(z, T z) / 2, d\left(x_{n}, z\right)<d(z, T z) / 2, d\left(x_{n+1}, z\right)<d(z, T z) / 2
$$

Accordingly,

$$
\begin{aligned}
d(z, T z) \leq M\left(z, x_{n}\right) & \leq \max \left\{d(z, T z) / 2, d(z, T z), d(z, T z) / 2,\left(d\left(x_{n+1}, z\right)+d\left(x_{n}, z\right)+d(z, T z)\right) / 2\right\} \\
& \leq \max \{d(z, T z) / 2, d(z, T z), d(z, T z) / 2,(d(z, T z) / 2+d(z, T z) / 2+d(z, T z)) / 2\} \\
& =d(z, T z)
\end{aligned}
$$

that is, $M\left(z, x_{n}\right)=d(z, T z)$. By (11) we obtain

$$
\psi(d(z, T z)-) \leq \psi(d(z, T z))-\phi(d(z, T z))
$$

which contradicts (c) by the hypothesis. Hence $z=T z$.
If there exists another point $y \in X$ such that $y=T y$, then substituting $x=z$ in (1) we get

$$
\psi(d(z, y)) \leq \psi(M(z, y))-\phi(M(z, y))=\psi(d(z, y))-\phi(d(z, y))
$$

which is a contradiction.
If ϕ is a lower semi-continuous function then for $\lim _{n \rightarrow \infty} a_{n}=a>0$ we have $\liminf _{n \rightarrow \infty} \phi\left(a_{n}\right) \geq \phi(a)>0$. Also, if ψ is a left-continuous function then $\psi(a)-\psi(a-)=0$ and (c) obviously holds. Therefore our control conditions are weaker than those of Theorem 3.

References

[1] Ya.I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Theory Operator Theory, in: Advances and Appl., vol. 98, Birkhauser, Basel, 1997, pp. 7-22.
[2] B.H. Rhoades, Some theorems on weakly contractive maps, Nonlinear Analysis (2001) 2683-2693.
[3] P.N. Dutta, B.S. Choudhury, A generalization of contraction principle in metric spaces, Fixed Point Theory and Applications (2008) Article ID 406368.
[4] D. Dorić, Common fixed point for generalized (ψ, ϕ)-weak contractions, Applied Mathematics Letters 22 (2009) 1896-1900.
[5] B.D. Rouhani, S. Moradi, Common fixed point of multivalued generalized ϕ-weak contractive mappings, Fixed Point Theory and Applications (2010) Article ID 708984.
[6] Q. Zhang, Y. Song, Fixed point theory for generalized ϕ-weak contractions, Applied Mathematics Letters 22 (2009) 75-78.

[^0]: E-mail address: ovidiu.popescu@unitbv.ro.
 0893-9659/\$ - see front matter © 2010 Published by Elsevier Ltd doi:10.1016/j.aml.2010.06.024

