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SUMMARY

Malignant gliomas are aggressive brain tumors with
limited therapeutic options, and improvements in
treatment require a deeper molecular understanding
of this disease. As in other cancers, recent studies
have identified highly tumorigenic subpopulations
within malignant gliomas, known generally as cancer
stem cells. Here, we demonstrate that glioma stem
cells (GSCs) produce nitric oxide via elevated nitric
oxide synthase-2 (NOS2) expression. GSCs depend
onNOS2activity for growthand tumorigenicity, distin-
guishing them fromnon-GSCs and normal neural pro-
genitors. Gene expression profiling identified many
NOS2-regulated genes, including the cell-cycle inhib-
itor cell division autoantigen-1 (CDA1). Further, high
NOS2 expression correlates with decreased survival
in human glioma patients, and NOS2 inhibition slows
glioma growth in a murine intracranial model. These
data provide insight into how GSCs are mechanisti-
cally distinct from their less tumorigenic counterparts
and suggest that NOS2 inhibition may be an effica-
cious approach to treating this devastating disease.

INTRODUCTION

Malignant gliomas are highly lethal brain tumors that portend

a dismal prognosis for patients. Despite modern surgical and
medical treatments, the median survival for glioblastoma

patients (WHO grade IV astrocytoma) remains only 14.6 months

(Stupp et al., 2005), emphasizing a need for improved therapies.

The identification of highly tumorigenic subpopulations within

gliomas has fueled enthusiasm for development of novel anti-

glioma therapeutics. Due to their high tumorigenic potential

and stem cell-like behavior, these cells have earned a variety

of names, including tumor-propagating cells or cancer stem cells

(CSCs). Unlike the bulk tumormass, CSCs exhibit sustained self-

renewal and produce secondary tumors that recapitulate the

parent tumor’s features and cellular diversity (Bonnet and Dick,

1997; Galli et al., 2004; Lapidot et al., 1994; Singh et al., 2003;

Yuan et al., 2004). The concept of CSCs provides a rational hier-

archical explanation for cellular heterogeneity observed within

tumors (Reya et al., 2001), which is complementary to stochastic

mutations with clonal outgrowths (Shackleton et al., 2009).

Regardless of the etiology for tumor heterogeneity, the potent

tumor-propagation capacity of CSCs suggests a utility for glioma

stem cell (GSC)-directed therapies.

As their name suggests, CSCs share features with nonneo-

plastic stem cells. Gene expression profiles of GSCs resemble

those of embryonic stem cells (Ben-Porath et al., 2008) and

nonmalignant neural stem cells (Taylor et al., 2005). Disruption

of several stem cell-specific pathways (Bar et al., 2007; Clement

et al., 2007; Fan et al., 2006) abrogates CSC proliferation

and tumorigenesis, though canonical stem cell signals (e.g.,

Hedgehog, Notch, and Wnt) are clearly critical to normal stem

cell physiology as well (Androutsellis-Theotokis et al., 2006;

Reya et al., 2003; Wechsler-Reya and Scott, 1999). Develop-

ment of strategies that target CSCs while sparing normal stem
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cell function is therefore necessary to attain a CSC-selective

therapeutic index, a notion that has been supported by studies

of leukemic versus hematopoietic stem cells (Yilmaz et al.,

2006). In contrast, this concept is relatively unexplored in

GSCs versus neural stem cells.

Endogenous nitric oxide (NO) exhibits pleiotropic roles within

cancer cells and tumors, and studies employing inhibition or

genetic deletion of endogenous NO synthases (NOSs) support

a tumor-promoting role for NO (Fukumura et al., 2006; Williams

and Djamgoz, 2005). Downstream effects of endogenous NO

in cancer include chemotherapeutic resistance (Fetz et al.,

2009; Yang et al., 2002), evasion of apoptosis (Engels et al.,

2008; Levesque et al., 2003), and enhanced proliferation (Lim

et al., 2008). NOS isoforms exhibit heterogeneous expression

patterns within glioma cell populations (Bakshi et al., 1998;

Cobbs et al., 1995). This heterogeneity may reflect a NOS

expression pattern that is restricted to specific glioma subpopu-

lations. This raises the possibility that NOS activity could be

unique to GSC subpopulations, as one determinant of glioma

heterogeneity relates to the existence of GSCs. Along these

lines, studies have suggested a protumorigenic role for NO in

gliomas (Charles et al., 2010; Yamaguchi et al., 2002). Endothe-

lial NOS3 localizes near neoplastic cells displaying stem cell

markers, and exogenous NO donors support stem cell signaling

pathways in murine glioma cells (Charles et al., 2010). However,

the therapeutic possibilities of targeting NOS3 in glioma are

limited, as previous human trials of nonselective NOS inhibitors

(i.e., those with anti-NOS3 activity) resulted in adverse outcomes

and increased mortality in sepsis (Alexander et al., 2007; Avon-

tuur et al., 1998; López et al., 2004).

The possibility of GSC-specific endogenous NO synthesis

remain unevaluated, and the contribution of other more target-

able NOS isoforms to GSCs remains unexamined. Given the

precedence that NO can support tumor growth and the afore-

mentioned studies suggesting a pro-GSC effect for NO, we

hypothesized that endogenous NO production might be aug-

mented within GSCs relative to nonstem glioma cells (non-

GSCs), thus promoting the established tumorigenic phenotype

of GSCs.

RESULTS

Endogenous NO Contributes to Growth of GSCs, which
Is Abrogated by Heterologous Expression of the
Bacterial NO-Consuming Enzyme Flavohemoglobin
Employing techniques described in the Dirks group’s original

report first validating CD133 as a GSC cell surface marker (Singh

et al., 2003), we characterized a variety of human tumor speci-

mens and xenografts in which positive selection for CD133

segregates GSC-enriched populations from non-GSCs, as

demonstrated by measures of self-renewal, stem cell marker

expression, and tumor propagation potential (Bao et al.,

2006a; Li et al., 2007). When CD133-based selection is utilized

and stem cell-permissive culture conditions employed (Lee

et al., 2006), CD133 marker expression is maintained (Figures

S1A and S1B available online).

Using this CD133-based selection system, we compared the

NO production capacity of CD133+ glioma cells (GSCs) with
54 Cell 146, 53–66, July 8, 2011 ª2011 Elsevier Inc.
CD133– glioma cells (non-GSCs). We measured nitrite (NO2
�),

a stable byproduct of NO, in the culture medium using matched

cultures from xenografted patient specimens. GSCs produced

more NO2
� than matched non-GSCs (Figure 1A), suggesting

that elevated NO synthesis may be a distinctive feature of GSCs.

To examine the function of endogenous NO in GSCs, we

designed and biochemically validated a strategy to deplete NO

in mammalian cells (Forrester et al., 2011). While not con-

served in mammals, bacteria and fungi employ flavohemoglobin

(FlavoHb)—a potent NO-consuming enzyme that converts NO to

nitrate (NO3
�) (Figure 1B)—to protect from nitrosative stress

(Gardner et al., 1998; Hausladen et al., 2001; Hausladen et al.,

1998). Within GSCs and non-GSCs, we employed lentiviral-

based expression of the E. coli FlavoHb. Efficient NO consump-

tion by this approach was confirmed in HEK293 cells transfected

with a CMV-driven NOS2, which results in supraphysiologic

levels of NO (Figure 1C). Expression of FlavoHb impaired GSC

growth (Figure 1D and Figure S1C) and neurosphere formation

(Figure 1E and Figure S1D), though these effects were absent in

CD133– non-GSCs and did not impact HEK293 cells that lack

NO dependence (Figure S1E). Consumption of NO in GSCs via

FlavoHb abrogated critical GSCs properties in vitro, suggesting

a progrowth role for endogenous NO synthesis in GSCs.

Expression of NOS2 within GSCs Is Responsible for
Their Distinctive NO Synthesis
While FlavoHb blocked NO availability and decreased GSC

growth, the source of GSC-derived NO remained unclear.

Glioma stem cells from primary patient specimens (Figure 2A)

and human glioma xenografts (Figure 2B) displayed higher levels

of NOS2 protein than matched non-GSCs, while no consistent

expression pattern for NOS1 or NOS3 was observed. These

data suggest that NOS2 expression in GSCs might contribute

to their malignant properties, as (1) NOS2 is the most highly

productive NOS, (2) NOS2 is regulated largely at the level of

transcription, and (3) GSCs demonstrated elevated endogenous

NO production that contributed to GSC growth.

Although CD133 is useful for identifying GSCs (Bao et al.,

2006a; Galli et al., 2004; Singh et al., 2003), it is not the only

marker that may enrich for GSC phenotypes. The optimal

method for defining GSC marker effectiveness likely depends

on individual tumor characteristics and is a topic of active in-

vestigation. The marker stage-specific embryonic antigen-1

(SSEA1; CD15) has been reported to effectively isolate GSCs

from some tumors with low CD133 expression (Son et al.,

2009). Cell lysates from two of these previously reported tumors

revealed elevated NOS2 expression in SSEA1+ GSCs relative to

SSEA1– non-GSCs (Figure 2C). Positive selection for SSEA1

segregated for tumorigenic GSCs (as measured in transplanta-

tion assays) in these tumors from which we acquired SSEA1+

and SSEA1– protein lysates (Son et al., 2009). These data

demonstrate that NOS2 cosegregates with GSC phenotypes in

gliomas where CD133 or SSEA1 are useful for enriching GSCs.

To examine whether differential NOS2 expression is inadver-

tently driven by cell culture conditions, we used qRT-PCR to

quantify NOS2 messenger RNA (mRNA) derived from CD133+

and CD133– populations isolated by fluorescence-activated

cell sorting (FACS) from fresh dissociated human gliomas
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Figure 1. GSCs Synthesize NO, and Flavohemoglobin-Mediated NO Depletion Decreases GSC Growth

(A) Nitrite (NO2
�) was quantified in the conditioned media of glioma xenografts (T3832, T4302, T3691, T4121) sorted into CD133+ (GSC) and CD133– (non-GSC)

populations, and normalized to cellular protein.

(B) Microbial flavohemoglobin (FlavoHb) catalyzes the reaction of NO with oxygen to form inert nitrate (NO3
�). A western blot verified Flag-tagged FlavoHb

expression in GSCs.

(C) FlavoHb expression in NOS2-transfected HEK293 cells decreased the total NO2
� measured in media, reflecting conversion of NO to NO3

�.
(D and E) FlavoHb growth of xenograft-derived GSCs as measured by trypan blue exclusion (D) and GSC neurosphere formation capacity as measured 10 days

after single cells were individually sorted into wells (E).

Scale bars represent 50 mm. N.S., not significant; *p < 0.05; **p < 0.01; ***p < 0.001. Error bars represent the mean ± standard error of the mean (SEM) of at least

three measurements. See also Figure S1.
without intervening culture. Levels of NOS2 mRNA were higher

in GSCs relative to non-GSCs from three different primary

human gliomas and a xenograft (Figure 2D). Previously

described minor NOS2 splice variants (Eissa et al., 1996, 1998;

Tiscornia et al., 2004) were not detected in GSCs or non-GSCs

(Figure S2A). Although these data indicate that full-length

NOS2 transcripts are elevated in GSCs in vivo, we further evalu-

ated NOS2 protein and GSCs in human tissue. Immunofluores-

cence staining demonstrated coexpression of CD133 and

NOS2 protein in human glioma tissue sections (Figure 2E and

Figure S2B). Flow cytometry analysis of dissociated primary

human glioma specimens showed that greater than 80% of

NOS2-positive cells also express CD133 (Figure 2F). These find-

ings collectively support the notion that NOS2 expression is

elevated in GSCs.

To determine whether NOS2 is critical for GSCNO production,

cells were treated with the highly selective NOS2 inhibitor

1400W (Garvey et al., 1997). Synthesis of NO was markedly

attenuated in 1400W-treated GSCs, which had elevated NO

production at baseline versus non-GSCs (Figure 2G and Fig-

ure S2C). Though in some tumors 1400Wqualitatively decreased

NO production in non-GSCs, this effect was less pronounced

and not statistically significant in the setting of low overall

NO production and minimal NOS2 expression in non-GSCs

(Figure 2G).
Genetic or Pharmacologic Blockade of NOS2 Inhibits
GSC Growth and Proliferation
Consumption of NO by FlavoHb blocked GSC growth and neu-

rosphere formation (Figures 1D and 1E and Figures S1C and

S1D) and NO production in GSCs was largely NOS2 dependent

(Figure 2G). We therefore hypothesized that NOS2 activity in

GSCs contributes to their known malignant properties. Short

hairpin RNA (shRNA)-mediated knockdown of NOS2 (Figure 3A)

resulted in decreased GSC growth and proliferation (Figures

3B–3D and Figures S3A–S3E) but had minimal effect on non-

GSCs (Figures 3B–3D and Figures S3A, S3B, S3D, and S3E).

Further, NOS2-directed shRNA decreased neurosphere forma-

tion in xenograft-derived GSCs (Figure 3E and Figure S3C). Neu-

rospheres surviving NOS2-directed shRNA still expressed

NOS2 mRNA (assessed by qRT-PCR; data not shown) and

thus were likely derived from cells that did not undergo NOS2

knockdown or silenced NOS2-directed shRNA expression.

Though FlavoHb does not affect the expression of NOS2 (Fig-

ure S3F), the antigrowth effect of NOS2-directed shRNA was

comparable to results with FlavoHb-mediated NO consumption

in GSCs (Figure S3G). Consistent with these results, the NOS2

inhibitor 1400W decreased GSC survival, proliferation, and neu-

rosphere formation (Figures 3F–3H and Figures S3H–S3J), as

did several other less-potent or less-selective NOS2 inhibitors

(Figure S3K).
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Figure 2. GSCs Selectively Express the NOS2 Isoform, which Is Primarily Responsible for Elevated NO Synthesis

(A and B) Western analysis of NOS2 expression in CD133+ cells (GSCs) versus CD133– cells (non-GSCs) in primary human specimens (A) and xenografted

tumors (B).

(C) NOS2 expression levels were compared usingwestern analysis in GSCs versus non-GSCs isolated via SSEA1-based sorting fromS1228 and S308 tumors, for

which SSEA1 has been previously validated as a functional marker of GSCs.

(D) GSCs and non-GSCs immediately isolated by FACS from fresh primary human brain tumors were analyzed for NOS2 mRNA by qRT-PCR.

(E) Immunofluorescence of primary human tumor tissue sections revealed coexpression of CD133 and NOS2; scale bars represent 25 mm.

(F) Human primary malignant gliomas coexpressed NOS2 and CD133 via flow analysis performed immediately after isolation from fresh tissue.

(G) Media from xenograft-isolated cells with or without daily treatment with 100 mM 1400Wwas evaluated for NO2
� levels, expressed as quantities normalized to

total cellular protein.

*p < 0.05; **p < 0.01. Error bars represent the mean ± SEM of at least three measurements. See also Figure S2.
Targeting NOS2 Decreases Cell-Cycle Rate and
Increases Expression of Cell Division Autoantigen 1
Due to the decreased growth of GSC populations after NOS2-

directed interventions, we interrogated the rate of cell-cycle

transit within individual GSCs using a 5-ethynyl-20-deoxyuridine
(EdU) incorporation assay. Both NOS2-directed shRNA and

NOS2 inhibitor treatment decreased the rate of cell-cycle transit

in GSCs (Figure 4A and Figures S4A and S4B), suggesting that

endogenous NOS2 activity effects a proproliferative phenotype

in GSCs.

We next screened for potential downstream molecular effec-

tors of the proproliferative effects of GSC-specific NOS2 expres-
56 Cell 146, 53–66, July 8, 2011 ª2011 Elsevier Inc.
sion. We performed a microarray analysis of gene expression

changes associated with NOS2-directed knockdown in human

cells with endogenous NOS2 expression. Comparison of GSCs

with or without NOS2 knockdown revealed a variety of gene

expression patterns altered by NOS2-directed shRNA treat-

ment, andNOS2was one of the differentially represented genes,

verifying successful knockdown (Table S1). Gene expression

changes were further investigated by Ingenuity pathway analysis

(Figures S4C and S4D).

Of the genes altered by NOS2-directed shRNA, we wanted

to identify genes that were associated with human survival and

with NOS2 expression in the Repository for Molecular Brain
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Figure 3. Knockdown or Inhibition of NOS2 Decreases GSC Growth and Neurosphere Formation

(A) Western analysis was employed to compare the selectivity of NOS2-directed shRNAs to NOS2 relative to NOS1 or NOS3 in T3691 CD133+ cells (GSCs).

(B) Representative images of neurospheres from (A); scale bars represent 50 mm.

(C andD) AfterNOS2-directed shRNA treatment of GSCs andCD133– cells (non-GSCs), (C) the number of viable cells weremeasured by trypan blue exclusion (C)

and proliferation was measured by 3H thymidine incorporation (D).

(E) Neurosphere formation after NOS2-directed shRNA treatment of GSCs was measured 10 days after single infected cells were individually sorted into wells.

(F–H) After inhibition of NOS2 with daily administration of 100 mM1400W to GSCs and non-GSCs, the following were measured: viability by trypan blue exclusion

(F), proliferation by 3H thymidine incorporation (G), and neurosphere formation capacity (H). Representative images of neurospheres assessed in (H) are

displayed; scale bars represent 50 mm.

*p < 0.05; **p < 0.01 ***p < 0.001. Error bars represent the mean ± SEM of at least three measurements. See also Figure S3.
Neoplasia Data (REMBRANDT) database (NCI, 2005). The REM-

BRANDT database contains microarray-derived gene expres-

sion data from biopsies from 577 human patients with malignant

glioma for which clinical outcome is known. The REMBRANDT

database permits the retrospective analysis of each microar-

ray-analyzed gene in the context of patient survival. Using this

database, 49 of the NOS2-dependent probes identified in the

microarray correlated with patient survival and 35 correlated
with NOS2 levels in the direction predicted by the microarray

(Table S1). Only 11 probes satisfied both of these criteria, of

which three were associated with the cell-cycle inhibitor cell divi-

sion autoantigen 1 (CDA1, also known as TSPYL2). The only

gene in the list with a known role in cell cycle or proliferation

was CDA1. In the microarray studies, targeting of NOS2 with

directed shRNAs resulted in increased CDA1 levels (Figure 4B).

Although this is, to our knowledge, the first report of NO-
Cell 146, 53–66, July 8, 2011 ª2011 Elsevier Inc. 57
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Figure 4. GSC Cell-Cycle Flux Is Supported by NOS2 Activity, which Modulates Gene Expression Including the Cell-Cycle Inhibitor CDA1

(A) 5-ethynyl-20-deoxyuridine (EdU) incorporation assay was employed to evaluate the effect of NOS2-directed shRNA on S phase transit in CD133+ GSCs.

(B) Microarray analysis demonstrated that NOS2-directed shRNA increased transcript expression of the cell-cycle inhibitor, CDA1 (two xenografts in duplicate).

(C and D) NOS2-dependent suppression of CDA1 in GSCs was validated by qRT-PCR (C) and western analysis (D).

(E) Viability of GSCs and CD133- cells (non-GSCs) was evaluated after treatment with vector or CDA1 expressing lentivirus.

(F) Neurosphere formation capacity was evaluated 10 d after single vector or CDA1-overexpressing cells were sorted into wells.

(G) The decreased EdU incorporation from NOS2-directed shRNAs was partially blocked by concurrent expression of CDA1-directed shRNA.

*p < 0.05; **p < 0.01; ***p < 0.001, N.S., not significant. Error bars represent the mean ± SEM of at least three measurements. See also Figure S4 and Table S1.
dependent repression of CDA1, this protein has previously been

reported to be a pan-cell-cycle inhibitor and tumor suppressor,

probably working through inhibition of multiple cyclin dependent
58 Cell 146, 53–66, July 8, 2011 ª2011 Elsevier Inc.
kinases (Chai et al., 2001; Kandalaft et al., 2008; Tu et al., 2007).

NOS2-dependent suppression of CDA1 was confirmed in

several glioma xenografts by qRT-PCR (Figure 4C) and western
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B Glioblastoma Figure 5. Human Glioma Patient Survival Is Corre-

lated with Characteristic NOS2 and CDA1 mRNA

Expression Patterns

(A and B) NOS2 mRNA expression inversely correlated

with survival when glioma patient specimens are segre-

gated via tumor grade to anaplastic astrocytoma (A) or

GBM (B) with the REMBRANDT database. *p < 0.05;

**p < 0.01 relative to all other groups.

(C) Downregulation of CDA1 correlated with poor patient

survival in REMBRANDT. **p < 0.01 for decreased patient

survival with downregulated CDA1 expression relative to

biopsies with intermediate CDA1 expression.

(D) Inverse correlation of tumor-specific NOS2 and CDA1

expression in REMBRANDT was determined with Jump8

software.
blotting (Figure 4D). Exposure of HEK293 cells to physiologic

levels of the NO donor diethylenetriamine NONOate (DETA-NO)

or transfection with NOS2 also inhibited CDA1 expression (Fig-

ure S4E). However, NO did not substantially affect CDA1 protein

(Figure S4F) or transcript (Figure S4G) stability. These data

support the notion that CDA1 is transcriptionally repressed by

NOS2-dependent NO production in a pathway that is not

restricted to GSCs.

As predicted by this model, CDA1 overexpression mimics the

effects of NOS2 shRNAs in GSCs. Increased CDA1 expression

preferentially decreased GSC numbers (Figure 4E) and neuro-

sphere formation (Figure 4F) with minimal effects on non-

GSCs. In converse experiments, CDA1-directed shRNA also

partially rescued the antigrowth effect of NOS2-directed shRNA

in CD133+ GSCs (Figure 4G and Figures S4H and S4I). Thus,

NOS2-dependent repression of CDA1 contributes, at least in

part, to the proproliferative effect of endogenous NOS2 expres-

sion in GSCs.

Elevated NOS2 Expression Is Associated with Poor
Prognosis in Humans with Malignant Glioma and Is
Inversely Correlated with CDA1 Levels
The proproliferative effect of NOS2 in human GSCs in vitro

compelled us to evaluate whether NOS2 expression in gliomas

correlated with patient survival. Evaluation of data contained in

the REMBRANDT database revealed that high NOS2 expression

in human gliomas, irrespective of grade, is inversely correlated

with patient survival. Survival of astrocytoma and glioblastoma

patients with elevated NOS2 mRNA is reduced (Figures 5A and

5B). Although these retrospective data cannot determine

whether NOS2 (or any gene) is an independent predictor of

survival, these data do suggest that expression of NOS2 is

a negative prognostic factor for human glioma patients.
Ce
Assessment of REMBRANDT data also

revealed that patients with tumors demon-

strating low CDA1 expression have worse clin-

ical outcomes than patients with intermediate

levels of CDA1 (Figure 5C). These results are

consistent with the known tumor suppressor

and antiproliferative effects of CDA1 (Chai

et al., 2001; Kandalaft et al., 2008; Tu et al.,

2007) and the ability for NOS2-derived NO to
suppress CDA1 expression in glioma cells. Further supporting

NOS2-dependent repression of CDA1, expression of CDA1 in

human gliomas is inversely correlated with NOS2 expression

(Figure 5D). Again, we cannot exclude the possibility that other

factors contribute to this correlation because we are unable to

use continuous multivariate models to evaluate independent

predictive power using this database. Further, the retrospective

nature of this analysis precludes our ability to assess whether

NOS2 or CDA1 levels are absolutely prognostic. However, it is

compelling that both NOS2 and CDA1 are associated with

survival, as this observation serves to support not only the impor-

tance of NOS2 in glioma biology, but also that CDA1 may repre-

sent a critical molecular effector of the pro-GSC role for NOS2.

Normal Neural Progenitor Cells Express Low Levels of
NOS2 and Exhibit Minimal NOS2 Growth-Dependence
Interventions directed against NOS2 decreased the proliferation

of GSCs, and high NOS2 expression within human gliomas is

associated with negative patient prognosis. While these data

suggest a potential antitumor effect for NOS2-directed treat-

ments in vivo, GSC-directed therapies could have toxic effects

on normal stem cells due to shared molecular characteristics.

We therefore evaluated the expression and functional impor-

tance of NOS2 within normal neural progenitor cells (NPCs) to

assess the therapeutic margin for NOS2-directed treatment

strategies in vivo. Although NOS2 inhibition or knockdown abro-

gates the proliferation of GSCs, NOS2 knockout (NOS2�/�) mice

appear to undergo normal neural development (MacMicking

et al., 1995; Wei et al., 1995), suggesting that NOS2 is not essen-

tial for normal NPC function. Further, NOS2 expression in brain

tissue has a variety of reported roles, both positive and negative,

in the regulation of neurogenesis in mice after ischemia (Iadecola

et al., 1997; Luo et al., 2007; Zhao et al., 2000). To more fully
ll 146, 53–66, July 8, 2011 ª2011 Elsevier Inc. 59
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Figure 6. Normal Mouse and Human Neural Progenitor Cells Exhibit Minimal NOS2 Dependence

(A and B) Viability measured by trypan blue exclusion (A) and proliferation measured by 3H thymidine incorporation (B) was evaluated in adult wild-type (WT)

versus NOS2�/� mouse neural progenitor cells.

(C) Immunofluorescence was used to measure phospho-histone H3- (PH3; green) positive cells per field in the periventricular region of WT and NOS2�/�

littermates. Dashed line, ventricular border. The scale bar represents 50 mm.

(D) Viability by trypan blue exclusion was measured in CD133+ cells (GSCs) and mouse neural progenitors with control or daily 100 mM 1400W treatment.

(E) Western analysis compared NOS2 expression in normal fetal NPCs (fNPCs) versus CD133+ GSCs and CD133– non-GSCs.

(F and G)NOS2mRNA levels were determined by qRT-PCR in fNPCs versus GSCs (F), and in human adult NPCs versus GSCs and non-GSCs from fresh primary

gliomas immediately post-FACS isolation (G).

(H and I) CD133-mediated enrichment for the functional properties of GSCs in these tumors was validated with neurosphere formation. The effects of daily 1400W

treatment on the viability of GSCs versus embryonic stem cell-derived NPCs (H) and two preparations of fNPCs (I).
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examine the effects of NOS2 inhibitors in NPCs, we evaluated

NPCs from mouse models, as well as human fetal and adult

NPCs (Figure 6). Comparison of NPCs derived from wild-type

(WT) and NOS2�/� mice revealed similar levels of cell growth

and viability (Figures 6A and 6B). Similar levels of the proliferation

marker phospho-histone H3 (PH3) were observed in the NPC-

rich subependymal zone ofWT and NOS2�/� adult mouse brains

(Figure 6C). Since knockout mice may develop mechanisms by

which they are able to compensate for the deletion of any given

gene, we evaluated growth of WT mouse NPCs in response to

acute administration of NOS2 inhibitor and observed no impact

on growth (Figure 6D).

The potential role of NOS2 in normal NPCs was next analyzed

in human cells. Normal human fetal NPCs (fNPCs) expressed

markedly less NOS2 than GSCs (Figures 6E and 6F). Adult

human NPCs isolated from normal human brain specimens

also expressed less NOS2 mRNA than xenograft-derived

CD133+ GSCs (Figure S5A), as did CD133+ cells from primary

human tumor specimens from which mRNA was harvested

immediately after FACS sorting (i.e., without the influence of

cell culture; Figure 6G). Inhibition of NOS2 had no growth impact

on embryonic stem cell-derived NPCs (Figure 6H), nor did it

affect the growth of two different fNPC preparations (Figure 6I).

Unlike effects on GSCs, treatment with NOS2 inhibitor did not

decrease neurosphere formation in fNPCs (Figure 6J). Human

fNPCs and GSCs also have the capacity for multilineage differ-

entiation, with GSCs being capable of aberrant differentiation

(i.e., the expression of markers from multiple lineages in a single

cell), also a known characteristic of GBM (Martinez-Diaz et al.,

2003; Perry et al., 2009). However, NOS2 inhibition did not affect

multilineage differentiation patterns in fNPCs or GSCs (Figures

6K and 6L and Figure S5B), suggesting that (1) NOS2 inhibition

does not affect the differentiation potential of NPCs and (2) the

anti-GSC effect of NOS2 inhibition does not relate to a promotion

of differentiation. Together, these data suggest that NOS2-

directed treatments would likely spare normal NPC growth and

function, thus providing a favorable therapeutic margin for treat-

ing gliomas.

NOS2-Directed Interventions Decrease Glioma Growth
In Vivo
Next, we sought to evaluate the potential antitumor effects of

NOS2-directed interventions in vivo. First, we explored the rela-

tionship between cellular NO availability and tumor growth by

implanting FlavoHb-expressing CD133+ GSCs into the brains

of athymic mice, noting that consumption of cellular NO pro-

longed animal survival (Figure 7A). Next, to specifically evaluate

the role of NOS2 expression within GSCs and tumorigenicity,

we intracranially implanted NOS2 shRNA-expressing GSCs into

the forebrains of athymic mice. Consistent with results obtained

with GSCs expressing the NO-consuming FlavoHb (Figure 7A),

the time to development of neurological signs correlated with
(J) Neurosphere formation of GSCs versus fNPCs was quantified after 10 days o

(K and L) Multilineage differentiation capacity with vehicle or daily 1400W treatmen

(Tuj1), and oligodendrocytic (O4) markers, shown as representative high power

power field (L); scale bars represent 10 mm.

*p < 0.05; **p < 0.01; ***p < 0.001. N.S., not significant. Error bars represent the
the extent of NOS2 knockdown (Figure 7B), suggesting that

synthesis of NO by NOS2 contributes to the tumorigenicity of

GSCs.

To translate our findings into a clinically relevant approach, we

studied the antitumor activity of small molecule inhibitors against

NOS2 in vivo. First, we examined the effects of the NOS2 inhib-

itor 1400W in mice bearing subcutaneous human glioma xeno-

grafts. Mice receiving 50 mg/kg of 1400W daily for 2 weeks

had reduced tumor volumes compared to vehicle controls (Fig-

ure 7C). When tumors were excised after 17 days, overall tumor

burden was markedly decreased by 1400W (Figure 7D), sug-

gesting that NOS2 inhibitors have antiglioma effects in vivo. In

these same tumors, there were indications of grossly decreased

tumor angiogenesis as indicated by a decrease in vascularity

(Figure 7C).

To confirm the efficacy of systemically administered NOS2

inhibitors using a more anatomically relevant model, we em-

ployed NOS2 inhibitors against intracranial glioma xenografts.

The blood brain barrier (BBB), however, provides a formidable

pharmacokinetic obstacle for charged or polar compounds

such as the NOS2 inhibitor 1400W. Penetration of the BBB

by 1400W is limited (Rebello et al., 2002), thus prompting the

selection of alternative NOS2 inhibitors for BBB penetration

(Figure S6A). The more lipophilic NOS2 inhibitor, BYK191023

(Strub et al., 2006), exhibited similar efficacy as 1400W for inhibi-

tion of CD133+ GSC growth in vitro (Figure S6B). However,

BYK191023 possesses more suitable characteristics for BBB

penetration, so it was therefore considered ideal for application

in the intracranial glioma model. Luciferase-expressing glioma

xenografts were implanted into the brains of athymic mice. After

an engraftment period, tumor-bearing animals were randomly

assigned to treatment groups. Mice treated with 60 mg/kg

BYK191023 twice daily demonstrated significantly decreased

tumor growth as measured by luminescence with two different

patient-derived glioma xenografts in separate experiments (Fig-

ure 7E and Figure S6C). To assess whether these effects of

NOS2 inhibition were related to GSCs, we dissociated control

and BYK191023-treated tumors and evaluated cells for func-

tional characteristics of GSCs. In vivo NOS2 inhibitor treatment

decreased the ability of cells to form neurospheres (Figure S6D)

and initiate secondary tumors in retransplantation assays (Fig-

ure S6E). Inhibitor-treated tumors therefore had fewer GSCs or

GSCs with diminished self-renewal and tumorigenic capacity.

To more readily distinguish between requirements for NOS2 in

tumor initiation or maintenance, we used an inducible NOS2-

directed shRNA knockdown construct to deplete NOS2 at

implantation and then released shRNA induction to allow tumor

growth with normal NOS2 expression levels. Transient knock-

down during tumor engraftment did not affect overall tumor

growth kinetics in vivo (Figure S6F). These data suggest that

the effect of NOS2 activity in GSCs relates primarily to the main-

tenance, rather than the engraftment/initiation, of glioma.
f daily 1400W treatment.

t in GSCs and fNPCs was evaluated by staining for astrocytic (GFAP), neuronal

immunofluorescence images (K) and percent of marker positive cells per low

mean ± SEM of at least three measurements. See also Figure S5.
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Figure 7. The Tumor Initiation and Maintenance Potential of GSCs Is Reduced by NO Depletion and NOS2 Knockdown/Inhibition

(A) Survival of athymic mice was tracked following intracranial implantation of 5000 CD133+ GSCs expressing either vector or FlavoHb.

(B) An intracranial in vivo limiting dilution survival assay (employing 10,000, 1000, and 500 cells per mouse) was performed using T3691 CD133+ cells, with

qRT-PCR-verified NOS2 knockdown. The table displays number of mice developing tumors and median time to neurologic signs. The survival curve displayed

depicts mice injected with 10000 GSCs.

(C and D) Tumor volumes (C) and images of GSC derived subcutaneous xenografts (D) treated with daily intraperitoneal vehicle (n = 6) or 1400W (n = 6).

(E) T3832 luciferase-expressing GSC-derived intracranial xenografts treated with intraperitoneal vehicle or BYK191023 (n = 17 per group) after engraftment and

tracked by bioluminescence. Real-time images from median three animals on day 9 are shown (right).

*p < 0.05; **p < 0.01. Error bars represent the mean ± SEM of the indicated number of animals. See also Figure S6.
No toxicities were observed in the mice treated with

BYK191023, and BYK191023 was without effect on the slow-

cycling subependymal neural progenitors in non-tumor-bearing

mice (Figures S6G and S6H). Collectively, these data suggest

that NOS2-directed therapeutics may represent a nontoxic and

effective anti-GSC strategy with an effect primarily linked to

tumor maintenance.

DISCUSSION

Here we demonstrate that NO synthesis, secondary to high

NOS2 expression, is a distinctive feature of GSCs relative to

non-GSCs and normal neural progenitors. Blockade of cellular

NO availability with FlavoHb-based consumption or NOS2 inhibi-

tion/knockdown resulted in decreased GSC growth and tumori-

genic capacity, suggesting an integral role for NO and endoge-

nous NOS2 activity in the biology of GSCs. These findings are

consistent with the wealth of reports showing that endogenously
62 Cell 146, 53–66, July 8, 2011 ª2011 Elsevier Inc.
produced NO is generally cytoprotective (Rai et al., 1998; Sinz

et al., 1999). In addition, systemic NOS2 inhibitors have been

shown to block tumor growth (Thomsen et al., 1997), and

NOS2 has an established cytoprotective role in chronic lympho-

cytic leukemia (Levesque et al., 2003; Zhao et al., 1998). Until our

study, a role for CSC-synthesized NO has remained unexplored.

The molecular mechanisms by which NOS2 facilitates GSC

proliferation and tumor growth are likely broad, as NO regulates

a wide range of signaling pathways. The microarray analysis of

GSCs treated with NOS2-directed shRNA knockdown suggests

that NOS2plays a role in regulating gene transcription of a variety

of targets (Table S1) including suppression of the cell-cycle

inhibitor CDA1, which has not previously been identified as an

NO-regulated gene. Initiated by our microarray studies, we

were able to determine that CDA1 repression mediates, at least

in part, NO-mediated proliferation in GSCs.We provide evidence

that NO likely represses overall transcription rates of CDA1,

versus effects on CDA1 mRNA or protein stability (Figures S4F



and S4G). Further, it has previously been demonstrated

that GSCs support tumor-mediated angiogenesis (Bao et al.,

2006b), and our studies suggest a role for NOS2 as a proangio-

genic factor in GSCs, as NOS2 inhibitor-treated tumors exhibited

a gross decrease in blood vessels (Figure 7D). However, the

contribution of NOS2 toward glioma angiogenesis remains

a question for future study, while many other downstream

targets for CSC-derived NO remain to be analyzed in the context

of GSCs.

Previous studies have reported a role for NO in facilitating

glioma cell growth (Lam-Himlin et al., 2006; Yamaguchi et al.,

2002), and it has recently been suggested that NO synthesized

by NOS3 (in the endothelium) or NOS1 (in glioma cells) may

represent mechanisms by which the vasculature and neoplastic

cells interact with each other to affect glioma growth and

response to therapy (Charles et al., 2010; Kashiwagi et al.,

2008). In particular, a recent publication (Charles et al., 2010)

proposes a role for endothelium in promoting stem-like pheno-

types in glioma cells in a PDGF-driven mouse model of glioma.

Through in vitro administration of exogenous NO donors, they

propose a role for NO (purportedly derived from the NOS3

activity in the vasculature in vivo) in the maintenance of GSC

stem cell signaling. However, while their data do suggest that

exogenous NO can promote certain CSC phenotypes, the

source of this NO in vivo was never conclusively demonstrated

beyond correlative staining. Further, even if endothelial NOS3

activity does play a role in sustaining GSCs, it is unlikely that

NOS3-directed therapies will find clinical utility due to the nega-

tive impacts of inhibiting NOS3 in humans (Alexander et al., 2007;

Avontuur et al., 1998; López et al., 2004). Finally, the side scatter-

based method for isolating GSCs has recently been called into

question as a valid technique for GSC isolation (Broadley et al.,

2011).

Our report of NOS2 expression and activity within GSCs,

however, is distinct from these previously identified roles for

NO in glioma. This study identifies a cell-autonomous, GSC-

specific source of NO, and it definitively highlights the expression

and biological effects of the NOS2 isoform within GSCs using

loss-of-function, multiple inhibitors, and NO consumption strate-

gies. Moreover, our loss-of-function studies identify many

genetic targets for NOS2 in GSCs (including the cell-cycle inhib-

itor protein CDA1), providing novel mechanistic information

distinct from previous studies using exogenous NO donors.

Finally, NOS2 inhibition may represent an antiglioma treatment

option with an acceptably low toxicity profile, as demonstrated

by the negligible toxicity of NOS2 inhibitor administration to hu-

mans (Brindicci et al., 2009; Dover et al., 2006; Singh et al., 2007).

We evaluated the toxicity of NOS2 inhibition on normal NPCs,

and our results suggest nominal expression of NOS2 in normal

NPCs as well as a minimal role for NOS2 in NPC growth. Our

ability to fully assess the role of NOS2 in normal adult human

NPCs was restricted by the lack of functionally validated estab-

lished cell surface markers for human adult NPCs, so we could

not assess NOS2 in NPCs acutely sorted from fresh human brain

tissue. Thus, we utilized a strategy by which human adult neural

stem cells are isolated by nestin-driven GFP via viral infection,

which requires several days of cell culture. Cell culture has

the capacity to select for cell populations or induce genetic or
epigenetic changes in cells, and thus our studies of adult human

NPCs are limited by the necessity of cell culture with these previ-

ously validated techniques (Keyoung et al., 2001).

Though one required characteristic of CSCs relates to their

ability to generate tumors in transplantation assays, it is critical

to realize that the molecular characteristics supporting the

malignant characteristics of GSCs are not necessarily the

same molecular alterations that permit transformation and thus

generation of tumors de novo (Visvader, 2011). The antitumor

effect of NOS2 inhibitors against engrafted tumors implies

a role for NOS2 in the GSC-supported tumor maintenance.

However, this does not mean that NOS2 is essential for the initial

transformative event in tumors. In fact, our data suggest that the

role of NOS2 relates primarily to tumor maintenance and not

engraftment capacity.

We observed antitumor effects for 1400W and BYK191023

against glioma xenografts. Although 1400W effectively de-

creased subcutaneous tumor growth, it displayed limited effi-

cacy against intracranial tumors (data not shown), probably as

a result of the poor pharmacokinetic parameters of 1400W for

intracranial delivery and BBB penetration (i.e., LogP = 0.71,

cationic at neutral pH). Themore lipophilic NOS2-selective inhib-

itor BYK191023, however, demonstrated effective antitumor

activity against intracranial xenografts (Figure 7E). Though

neither drug abolished tumor growth completely, both delayed

tumor growth to a significant extent and may be useful when

combined in multimodal treatment regimens that also target

the tumor bulk.

BYK191023 could be a strong candidate for clinical evaluation

as it possesses the following desirable characteristics: (1) it

exhibits at least 1000-fold selectivity for NOS2 over NOS1 and

NOS3 (Strub et al., 2006), (2) it adheres to ‘‘Lipinski’s rules of

five’’ for optimal pharmacokinetics and bioavailability (Lipinski

et al., 2001), (3) it is sufficiently lipophilic for BBB penetration

(i.e., LogP 1.84), and (4) it decreases GSC growth and survival

in vitro and in vivo. In combination with the minimal toxic

potential for NOS2 inhibition in humans and the effective anti-

GSC activity demonstrated in our investigations, the data

provided here will hopefully serve as an impetus for evaluation

of NOS2-directed therapies as a component of multimodal

treatment regimens for human glioma.

EXPERIMENTAL PROCEDURES

Isolation and Culture of GSCs and Non-GSCs from Xenografts and

Primary Human Specimens

GSCs and non-GSCs were isolated from tumor tissue or xenografts (Table S2)

as previously described (Bao et al., 2006a; Li et al., 2009).

Nitrite Level Determination by 4,5-Diaminofluorescein

For determination of cellular nitrite production, conditioned supernatants or

nitrite standards were added to 4,5-diaminofluorescein (DAF-2; Cayman

Chemical) (Kojima et al., 1998; Nakatsubo et al., 1998). Samples were

analyzed postacidification and neutralization for fluorescence measured with

lex = 488 nm and lem = 525 nm, and the results were normalized to cellular

protein content (measured by Bradford assay; Bio-Rad).

Neurosphere Formation Assay

Neurosphere formation assays were performed in a manner similar to our prior

report (Li et al., 2009), with propidium iodide-negative cells sorted by FACS to
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a single cells per well of 96-well plates. For NOS2 inhibitor studies, vehicle or

100 mM1400Wwas added daily. Neurosphere formation wasmeasured as the

percent of wells with neurospheres after 10 days.

Assessment of In Vivo Glioma Progression after Treatment with

NOS2 Inhibitors, NOS2 Knockdown, and Flavohemoglobin

For bioluminescence imaging, GSCs stably expressing firefly luciferase were

intracranially injected into the right forebrains of 4- to 6-week-old athymic

nude mice, and the Xenogen system was used for imaging every 3 days.

Survival studies were performed as in our prior report (Li et al., 2009), with

intracranial injection of lentivirally infected CD133+ cells. Mice were monitored

daily until the development of neurological or constitutional signs (e.g., ataxia,

lethargy, and seizures).

Retrospective Analysis of NOS2 and CDA1 Expression in Human

Gliomas

The National Cancer Institute’s Repository for Molecular Brain Neoplasia Data

(REMBRANDT, http://rembrandt.nci.nih.gov/, accessed 6/25/10) was evalu-

ated for correlations between clinical outcome/survival and gene expression

in malignant glioma biopsies. For REMBRANDT, ‘‘upregulated’’ is defined as

expression >2.0-fold relative to mean values in normal tissue, whereas ‘‘down-

regulated’’ is defined as expression <0.5-fold relative to mean values in normal

tissue. ‘‘Intermediate’’ expression is the range between ‘‘upregulated’’ and

‘‘downregulated’’ (i.e., between 0.5- and 2-fold relative to mean values in

normal tissue).

Microarray Expression Analysis of NOS2 Knockdown

in CD133+ GSCs

CD133+ cells derived from two different xenografts (T3359 and T3691) were

treated in duplicate for 72 hr with either nontargeting scramble control shRNA

or two distinct NOS2-directed shRNAs. Total RNA was harvested, reverse

transcribed, labeled, and hybridized to Illumina BeadArrays. BeadStudio soft-

ware was used to normalize scanned chip data and to subtract background

signal, and chip effects were removed by ANOVA.

ACCESSION NUMBERS

The GEO accession number for the microarray expression analysis of NOS2

knockdown in GSCs reported in this paper is GSE29750.
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