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SUMMARY

The consistent observation across all kingdoms of
life that highly abundant proteins evolve slowly
demonstrates that cellular abundance is a key deter-
minant of protein evolutionary rate. However, other
empirical findings, such as the broad distribution of
evolutionary rates, suggest that additional variables
determine the rate of protein evolution. Here, we
report that under the global selection against the
cytotoxic effects of misfolded proteins, folding
stability (DG), simultaneous with abundance, is a
causal variable of evolutionary rate. Using both theo-
retical analysis and multiscale simulations, we dem-
onstrate that the anticorrelation between the pre-
mutation DG and the arising mutational effect
(DDG), purely biophysical in origin, is a necessary
requirement for abundance–evolutionary rate covari-
ation. Additionally, we predict and demonstrate in
bacteria that the strength of abundance–evolutionary
rate correlation depends on the divergence time
separating reference genomes. Altogether, these
results highlight the intrinsic role of protein bio-
physics in the emerging universal patterns of molec-
ular evolution.
INTRODUCTION

Understanding the variation of protein structures and sequences

in nature is a fundamental problem in biology. Crucial to address-

ing this question is knowing what determines the rate of protein

evolution. A major advance came from the observation that

highly expressed proteins consistently evolve slowly in bacteria,

yeast, worm, fly, mouse, and humans (Drummond et al., 2005;

Drummond andWilke, 2008; Pál et al., 2001). This anticorrelation

between a protein’s cellular abundance and its evolutionary rate

(denoted herein as ER) found a unified possible explanation in

the global selection against the cytotoxic effect due to misfolded

proteins. The primary hypothesis is that misfolded proteins are

detrimental to cellular fitness (Drummond et al., 2005). Conse-

quently, more abundant proteins, being prone to produce more

toxic molecules (Bucciantini et al., 2002), experience stronger

selection pressure, hence will evolve slowly (Drummond et al.,
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2005). Abundance then is a primary causal variable in deter-

mining the ER. However, even for those proteins of comparable

expression levels, their ERs still span several orders of magni-

tude (Drummond and Wilke, 2008). Abundance likewise cannot

account for the quasi log-normal distribution of the ER among

genes in a genome, a fact observed from bacteria, yeast,

worm, fly, mouse, and humans (Lobkovsky et al., 2010). These

observations suggest that abundance, although a major deter-

minant of ER, is not its only causal variable.

A candidate for another causal variable is protein folding

stability. Most proteins (excluding those that are intrinsically

disordered) need to fold to their native 3D structure to function,

a property that is thermodynamically determined by its folding

free energy (DG = Gfolded � Gunfolded). Gross destabilization of

proteins by mutations also renders them nonfunctional, and is

the etiological basis of several major diseases (Chiti and Dobson,

2006; Serohijos et al., 2008). More importantly, there is intrinsic

toxicity associated with protein misfolding because of protein

aggregation (Bucciantini et al., 2002).

If indeed stability is a causal variable of protein evolution, what

is its systematic effect on ER and on the universally observed

abundance-ER anticorrelation? Here, using simulations, theoret-

ical analysis, and bioinformatics, we show that under the global

selection against protein misfolding, both abundance and

folding stability are causal variables of the ER. We derive an

ER surface that defines the coupled role of abundance and

folding stability. Further highlighting the role of stability, we

demonstrate that the inverse correlation between DG and

DDG, an intrinsic feature of protein biophysics, is a necessary

requirement for highly expressed proteins to evolve slowly.

Lastly, we predict from multiscale evolutionary simulations that

the strength of the abundance-ER correlation will increase with

divergence time. Systematic analysis of species in a class of

bacteria confirms this prediction.
RESULTS

Multiscale Evolutionary Model
To systematically determine the role of protein biophysics in

the genomic correlation between abundance and ER, we first

constructed a monoclonal population of 104 model cells (Fig-

ure 1). Each cell consisted of 103 genes that were characterized

by their folding stability (DG =Gfolded –Gunfolded) and abundance.

The abundances of the 103 genes were randomly drawn from

the distribution of measured protein abundances in yeast
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Figure 1. Multiscale Model of Protein

Evolution

Model: a constant population of Ne = 104 cells.

Each cell contains 103 genes defined by its cellular

abundance and the folding stability of its protein

product. Because of intrinsic cytotoxicity (Buc-

ciantini et al., 2002), protein misfolding is assumed

to be the major determinant of organismic fitness

(Drummond and Wilke, 2008). Assuming a two-

state protein folding model (Privalov and Khechi-

nashvili, 1974; Shakhnovich and Finkelstein,

1989), the number of misfolded proteins contrib-

uted by gene i (with abundance Ai and folding

stability DGi) is a product of abundance and the

probability of being unfolded, 1/(1 + exp(�bDGi)),

where b = 1/kBT. The total number of misfolded

proteins in the cell is the sum of all misfolded

proteins contributed by each gene. The factor c is

the intrinsic fitness cost for every misfolded pro-

tein, measured in yeast to be �32/(total protein

concentration) (Geiler-Samerotte et al., 2011).

A random mutation in a gene changes its folding

stability by DDG (i.e., DGmutant�DGwild-type), which

consequently increases or decreases the fitness of

the cell. From classical population genetics, and

assuming monoclonality, the fate of a mutation is

determined by the selection coefficient s and the fixation probability Pfix (Crow and Kimura, 1970; Sella and Hirsh, 2005). Dynamics: all genes were assigned an

initial stability value of �5 kcal/mol, then subjected to mutation, selection, and drift as indicated by the flowchart. The choice of initial DG values was irrelevant

because the population would eventually reach the dynamic equilibrium imposed by mutation-selection balance (Movie S1). All analyses and calculations of ERs

were performed only during the interval that the population is under mutation-selection balance.
(Ghaemmaghami et al., 2003). Mutations were assumed to occur

only in the gene’s coding region, hence only the folding stability

of its protein products was evolvable whereas its abundance

remained constant throughout the evolution.

To relate the genomic sequence to organismal fitness,

we employed the hypothesis posited by Drummond and Wilke

(2008) that a major selection pressure underlying coding

sequence evolution is the selection against the generic cytotox-

icity induced by protein misfolding (Figure 1). Because purported

measures of functional selection (e.g., gene essentiality and

protein-protein interactions) are weak correlates of the ER at

the genome-scale (Pál et al., 2006), functional selection was

not taken into account. Assuming a two-state protein folding

model (Privalov and Khechinashvili, 1974; Shakhnovich and

Finkelstein, 1989), the number of misfolded species contributed

by gene i (with abundance Ai and folding stability DGi) may be

expressed as the product of abundance and the Boltzmann

probability of being unfolded, 1/(1 + exp(�bDGi)), where b =

1/kBT. In principle, mutations may also perturb the folding

kinetics; however, we ignored this for now without compro-

mising generality because changes in thermodynamic and

kinetic stabilities are highly correlated (Naganathan and Muñoz,

2010). The fitness of a cell w (i.e., the probability of replicating)

was then a function of the total number of misfolded protein in

the cytoplasm and the intrinsic fitness cost per misfolded protein

(denoted as c), measured in Yeast to be �32/(total protein

concentration) (Geiler-Samerotte et al., 2011) (see Figure 1).

Misfolded proteins arise due to either errors in mistranslation

or ‘‘intrinsic’’ factors such as genetic mutations. The original

proposition of the misfolding hypothesis focused on mistransla-
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tion errors (Drummond et al., 2005; Drummond andWilke, 2008),

however, protein misfolding even in the absence of mistransla-

tion also contributes a non-negligible fraction to the total number

of misfolded proteins in the cell (Yang et al., 2010). Using the

same simulation framework employed by the original propo-

nents of the misfolding hypothesis (Drummond and Wilke,

2008), it was shown that the recapitulation of the abundance-

ER covariation is in fact agnostic to the specific source of mis-

folding (Yang et al., 2010). The results we present here are also

agnostic to the specific source of misfolding (Extended Results).

The monoclonal population of 104 cells was subjected to

mutation, drift, and selection (Figure 1). An organism was hit

by a mutation at gene i changing the thermodynamic folding

stability of the gene’s protein products by DDG (i.e., DGmutant �
DGwild-type), which were randomly drawn from an empirically

derived distribution (Equation 1). Measurements of stability

changes due to single point mutations in real proteins (the

ProTherm database) (Kumar et al., 2006) and computational

studies (Tokuriki et al., 2007) showed that the distribution of

DDG appears universal across all fold types and protein

lengths. In particular, this distribution can be approximated as

a Gaussian

pðDDGÞ= 1

DDGsd

ffiffiffiffiffiffi
2p

p exp

 
� 1

2

ðDDG� DDGmeanÞ2
DDG2

sd

!
:

(Equation 1)

The SD isDDGsd = 1.7 kcal/mol (Zeldovich et al., 2007) and the

mean is DDGmean = 1 kcal/mol, both parameters were derived

from the ProTherm database.
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Figure 2. Abundant Proteins Do Not Evolve Slowly When DDG Is Independent of DG

(A) Abundance-ER correlation from multiscale evolutionary simulations without DDG versus DG correlation (r = 0.01). Red line indicates lowess-smoothed data.

(B) Molecular clock surface without DDG versus DG correlation. The molecular clock (Equation 4) can be integrated over possible DDG (Equation 1) to yield

a surface that is solely a function of premutation gene properties. The surface heuristically governs the evolution of a gene: a gene in the neutral regime (green) will

acquire mutations (on average with DDG > 0) that make it approach the gully (red line). A gene on the verge of misfolding (yellow) will strongly select for beneficial

mutations (DDG < 0) that bring it back to the gully or the neutral regime. A gene in the gully will wait the longest time before fixing a mutation. The gully defines the

steady-state relationship between abundance, DG, and ER. Projection of the gully predicts no abundance-ER correlation. Instantaneous abundance and DG

values of genes from evolutionary simulations are shown as blue dots (see Experimental Procedures).
From classical population genetics, the fate of a mutation is

determined by its fixation probability (Pfix), itself a function of

effective population size (Ne) and the change in fitness due to

the mutation (the selection coefficient s) (Figure 1A) (Crow and

Kimura, 1970). In general, for mutations that do not affect fitness

(i.e., neutral), s = 0 and Pfix = 1/Ne; for beneficial mutations, s > 0

and Pfix > 1/Ne; and for deleterious mutations, s < 0 and Pfix <

1/Ne (Crow and Kimura, 1970). Under the selection against

protein misfolding, one could express s as a function of gene

properties. Specifically in our model, an organism of fitness w

acquired a mutation at gene i that changed its fitness to wmutated

(Figure 1A). The change in fitness could be expressed as (Sella

and Hirsh, 2005) (see Extended Results for details)

s= ln wmutated � ln w= � cAi

�
1

1+ e�bðDGi +DDGÞ �
1

1+ e�bDGi

�
:

(Equation 2)

Because proteins typically exhibit stabilitiesDGi <�3 kcal/mol

(Kumar et al., 2006), Equation 2 can be simplified to a more

intuitive form

szcAie
bDGi
�
1� ebDDG

�
: (Equation 3)

Equations 2 and 3 are significant because they quantitatively

relate the premutation molecular properties of a gene (abun-

dance and stability), the molecular effect of the arising mutation

(DDG), and themutational effect on the organism s. The selection

coefficient for protein misfolding due to mistranslation errors is

formally equivalent to Equation 3 (see Equation S9 in the

Extended Results); hence, without loss of generality, we focused

on the effect of intrinsic genetic misfolding. Additionally, it is

instructive to note the several special cases of Equation 2. For

a neutral mutation (DDG = 0), the fitness effect is trivially zero.

However, even for nonzero DDG, near-neutrality (s z 0) is

likewise achieved when the premutated gene has low cellular
Cell Reports 2, 249–256, August 30,
abundance (Ai z 0) and/or is very stable (DGi � 0). The latter

is due to the flatness of the ‘‘Fermi-function’’ in Equation 2 in

very stable DG regimes: for very stable proteins, typical DDG

values (�1 kcal/mol) (Kumar et al., 2006) exhibit negligible

change in the number of unfolded proteins. In general however,

for deleterious mutations (DDG > 0), s < 0. Also, in agreement

with the standard formulation of the selection against protein

misfolding, it is apparent from Equations 2 and 3 that protein

abundance A multiplies the detrimental effects of deleterious

mutations.

We performed multiscale evolutionary simulations as outlined

in Figure 1 then estimated the ER of each gene. Because we

knew the full evolutionary history of the population, the ER was

simply the total number of accepted substitutions over the diver-

gence time separating two reference genomes (Experimental

Procedures). Surprisingly, despite the global selection against

the toxic effects of protein misfolding, we did not observe

a correlation between abundance and ER (Figure 2A).

The ER Surface as Protein Evolution’s ‘‘Free Energy
Landscape’’
To investigate why highly abundant proteins did not necessarily

evolve slowly even when protein misfolding is the only source

of evolutionary selection, we performed analytic treatment of

the ER. Following earlier works (Nielsen and Yang, 2003), we ex-

pressed the normalized ER u (specifically dN/dS, the ratio

between nonsynonymous ER and synonymous ER) as (see

Experimental Procedures)

uðsÞ=Ne

1� expð�2sÞ
1� expð�2NesÞ: (Equation 4)

Equations 2 and 4 provide the crucial link between the premu-

tation gene properties abundance and DG, the molecular effect

of the arising mutation DDG, and the rate of protein evolution.

Equation 4 recapitulates the standard interpretation of ERs—for
2512012 ª2012 The Authors Open access under CC BY-NC-ND license.
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neutral and near neutral mutations (DDG = 0 and/or DG < < 0),

u z1; for deleterious mutations (DDG > 0), u < 1; and for

beneficial mutations (DDG < 0), u > 1.

Moresignificantly, because thedistributionofmutational effects

(DDG) of arising mutations is known (Equation 1), we integrated

Equation 4 over all possible DDG to arrive at an ER surface that

is solely a function of premutation gene parameters (Figure 2B).

The ER surface is characterized by three regimes (Figure 2B).

First, a neutral regime (flat region; colored green), where u z 1

and the purifying selection due to misfolding is weak because

of low abundance and/or high stability. Second, a regime domi-

nated by fixation of beneficial mutations (upward curved leaf;

colored red and yellow). In this regime of high abundance and

low stability, the protein is closer to the precipice of misfolding,

thus there is a strong selection for beneficial mutations,

hence the rate is faster than 1. Third, the regime defined by the

minimum of the surface (‘‘gully’’), where the rate of protein evolu-

tion is slower than 1.

Fixation of a nonsynonymous mutation changes DG and

is a single step on the ER surface; consequently, the full evolution

of a gene is essentially a ‘‘walk’’ on this surface. This walk is

slowest at the gully (Figure 2B, red line), thus the genes are ex-

pected on average to populate this neighborhood. Indeed,

when we tracked the location of each gene on the abundance-

DG plane throughout the simulation, we observed that the

genes tend to approach the gully when the population is under

the dynamic equilibrium imposed by mutation-selection balance

(Figure 2B, blue dots). Thus, the ER surface is conceptually anal-

ogous to free energy landscapes in physics, where the minima

define the state of the physical system under equilibrium.

This analogy to ‘‘energy landscapes’’ implies that the gully

determines the average relationship between the evolu-

tionary variables abundance, folding stability, and ER under

mutation-selection balance. When the gully is projected onto

the abundance-DG plane, we could predict that more abundant

proteins will be more stable in agreement with our multiscale

evolutionary simulations (Movie S1) and prior computational

results (Drummond and Wilke, 2008; Yang et al., 2010). How-

ever, when the curvature of the gully is projected on the

abundance-ER plane, there is no expected covariation between

abundance and ER (Figure 2B, projection).

The explanation to the absence of abundance-ER covariation

starts with the realization that the selection coefficient is a func-

tion not only of abundance but also of DG. Equations 2 and 3

suggest that a low abundance gene can experience the same

selection coefficient (hence, the same ER) as a highly abundant

gene if the latter is more stable. That is, the role of abundance as

a multiplier of the detrimental effects of deleterious mutations

can be compensated by greater stability. Indeed, under the

selection against protein misfolding, highly abundant proteins

evolve to greater stability as shown in this study (Movie S1)

and in prior evolutionary simulations by other groups (Drummond

andWilke, 2008; Yang et al., 2010). This specific prediction of the

misfolding hypothesis is supported by the observation that

highly expressed and slowly evolving proteins share amino

acid composition with proteins from thermophilic bacteria

(Cherry, 2010). Altogether, these results suggest that the two

major predictions of the misfolding avoidance hypothesis—
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highly abundant proteins evolve slowly and highly abundant

proteins are more stable—are apparently mutually inconsistent.

DDG Versus DG Anticorrelation Is a Necessary
Requirement for Highly Abundant Proteins to Evolve
Slowly
What prevents the exact compensation between abundance and

folding stability in nature? We realized that the exact compensa-

tion between protein folding stability and abundance could be

avoided if the mutational effects (DDG) will couple with premuta-

tion gene properties. It is unlikely that DDG couples with its

concentration in the cytoplasm. On the other hand, from protein

biophysics, there is an expected dependence of DDG on DG

(Figures 3A and S1). In the limit of themost stable sequence (Fig-

ure 3A, blue), all mutations will lead to less stable sequences,

hence its DDG distribution will all be destabilizing; for the least

stable set of sequences (Figure 3A, red), most mutations lead

to sequences that are more stable, hence the distribution of

DDG will be biased toward stabilizing mutations. Between these

two extremes are wild-type sequences (Figure 3A, green) that

are not maximally stable (Kumar et al., 2006; Taverna and Gold-

stein, 2002; Zeldovich et al., 2007). Indeed, experimental data

from ProTherm database confirm this correlation (Figure 3B).

We incorporated the empirical statistical correlation between

DG and DDG into Equation 1 as

pðDDGÞ= 1

DDGsd

ffiffiffiffiffiffi
2p

p exp

 
� 1

2

ðDDG� DDGmeanÞ2
DDG2

sd

!

DDGmean = � 0:13ðDGÞ+ 0:23 kcal=mol:

(Equation 5)

In Equation 5 the mean of the Gaussian distribution of DDG

becomesmore positive asDG as proceeds tomore stable values

(Figure S1), formally reflecting the tendency for stable proteins to

exhibit more destabilizing mutations.

When we calculated a new ER surface by integrating Equation

4 over all possible DDG (Equation 5), the gully is deeper at higher

abundances where proteins are more stable and mutations are

more destabilizing (Figure 3C). Projection of the gully on the

abundance-ER plane now predicts that highly expressed pro-

teins will evolve slowly. When we performed evolutionary simu-

lations accounting for the DG versus DDG anticorrelation, we

recapitulated the abundance-ER anticorrelation (Figure 3D).

This new curvature of the gully still predicts that highly abundant

proteins are more stable. Thus, in the presence of DG versus

DDG anticorrelation, the observation of highly abundant proteins

being more stable is no longer inconsistent with highly abundant

proteins evolving slowly.

Overall, these results suggest that the prevalent interpretation

of the selection pressure imposed by protein misfolding—that

highly expressed proteins are under stronger selection pressure

because they produce greater amount of toxic proteins—is

incomplete. A more complete restatement of the hypothesis

should be: selection against protein misfolding induces abun-

dant proteins to evolve to greater stability, where the average

mutations are more destabilizing; hence, more abundant pro-

teins evolve slowly.
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Figure 3. DDG versus DG Dependence Is Necessary for Abundance-ER Correlation

(A) Biophysical origin of DDG versus DG correlation. In the limit of the most stable sequence (blue), all mutations will lead to less stable sequences, hence its DDG

distribution will all be destabilizing; for the set of least stable sequences (i.e., random coils) (red), all mutations lead to sequences that are more stable, hence the

distribution of DDGwill be biased toward all stabilizing mutations. Between these two extremes are wild-type sequences (green), which are not maximally stable

(Kumar et al., 2006; Taverna and Goldstein, 2002; Zeldovich et al., 2007). See also Figure S1.

(B) DDG versus DG correlation in real proteins. Compiled empirical measurements of DG and DDG values in the Protherm database (Kumar et al., 2006) exhibit

a negative correlation (r = �0.2; p value = 10�22). A linear fit (red line) yields a slope of mDG,DDG = �0.13.

(C) Molecular clock surface with DDG versus DG correlation from ProTherm. Abundance and DG values of genes frommultiscale evolutionary simulation validate

the heuristic interpretation (blue dots) (see Movie S1). Two-dimensional projections of the gully predict highly abundant genes will evolve slowly.

(D) Abundance-ER correlation is recapitulated in multiscale evolutionary simulations when DDG versus DG correlation is taken into account (Spearman rank

correlation r = �0.3; p value = 10�9). Red line indicates lowess-smoothed data.
Strength of Abundance-ER Anticorrelation Varies with
Divergence Time
The results above demonstrate the causal role of stability on ER.

Because DG is intrinsically an instantaneous property of a gene

(i.e., each sequence has a defined DG), the ER u as defined by

Equation 4 is also instantaneous. Nevertheless, estimating ER

in practice entails comparing two close, yet sufficiently diverged

orthologs. Over the divergence time separating these orthologs,

several substitutions would have been fixed, while the gene

sampled several DG values. We wanted to determine if the

Abundance-ER variation likewise exhibits dependence on diver-

gence time.

From the multiscale simulations, we estimated the ERs

by comparing orthologous pairs of genes between pairs of

genomes of various divergences. Simulations predicted that

the magnitude of the abundance-ER correlation should be

time-dependent (Figures 4A and 4B). Immediately right after

divergence, all genes had zero estimated rates by definition,
Cell Reports 2, 249–256, August 30
thus the abundance-ER correlation was practically zero.

Between very recently diverged species, only the fast evolving

genes had fixed mutations, thus the abundance-ER correlation

was weak. As divergence time increased, the slow genes started

acquiring mutations and the disparity in rate between slow and

fast genes intensified, consequently increasing the manifesta-

tion of highly abundant genes evolving slowly (Figures 4A and

4B). Strikingly, we found that the nature of the time-dependence

of the abundance-ER correlation is strongly influenced by the

magnitude of DDG versus DG anticorrelation (Figure 4B).

We then sought to determine if the predicted time-depen-

dence holds true in real organisms (Figures 4C–4E). We focused

on Escherichia coli because its cellular protein abundances have

been surveyed (Ishihama et al., 2008) and numerous genomes of

its close relatives have been sequenced (Figure 4E), the latter is

essential for accurate ER estimation (see Experimental Proce-

dures). We found that the strength of the abundance-rate corre-

lation is weakest when ER is estimated between E. coli and its
253, 2012 ª2012 The Authors Open access under CC BY-NC-ND license.
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Figure 4. Abundance-ER Anticorrelation Varies with Divergence Time

ER ismeasured by counting the number of fixedmutations between two diverged genomes. Divergence time ismeasured as the number of substitutions per gene

(Na) averaged over all genes in the genome (<Na>) normalized by the average length <L> of genes in the genome. See Experimental Procedures.

(A and B) Abundance-ER correlation from multiscale evolutionary simulations. Rates estimated from recently diverged genomes (A, left) exhibit a broader

distribution and a weaker correlation with abundance than distantly diverged genome (A, right). (B) The magnitude of abundance-ER correlation varies with

divergence time. This variation is influenced by the dependence of DG on DDG.

(C and D) Abundance-ER correlation in g-proteobacteria. Nonsynonymous ER (dN) was calculated between E. coli and orthologous genes in other g-proteo-

bacteria. For example, (C, left) is between E. coli and S. typhimurium and (C, right) is between E. coli and P. ingrahamii. (D) Full time variation of abundance-ER

correlation. See Figure S2 for the complete abundance-ER correlations in other g-proteobacteria.

(E) g-Proteobacteria phylogeny (adapted from Williams et al., 2010).
closest relative, Salmonella typhimurium, than between E. coli

and the bacteria Shewanella or Psychromonas ingrahamii.

Interestingly, the strength of the correlation asymptotically

approaches the value predicted by the ProTherm parameteriza-

tion of the DG versus DDG correlation (Figure 4D). Overall, these

results provide yet another proof of the universality of the selec-

tion against protein misfolding and of the critical roles protein

stability DG and protein biophysics play in determining the ER.

DISCUSSION

In agreement with Drummond and Wilke (2008), the protein mis-

folding hypothesis is the strongest candidate for a unified expla-

nation to the observed correlation between protein abundance

and ER. Moreover, the hypothesis accounts for new genome-

wide observations such as indicated in Figure 4 or the finding

that proteins in thermophiles share amino acid composition

with slowly evolving, highly expressed proteins (Cherry, 2010).

These observations suggest that selection against misfolding
254 Cell Reports 2, 249–256, August 30, 2012 ª2012 The Authors Op
may have more fundamental implications in shaping the features

and architecture of the genome.

However, the standard formulation of the hypothesis is incom-

plete, because the selection coefficient and consequently the ER

are determined not only by abundance but also by protein folding

stability DG, as suggested by previous works (Bershtein et al.,

2006; Bloom et al., 2006; Wylie and Shakhnovich, 2011) and

systematically proven here. The crux of the misfolding hypoth-

esis is that abundance multiplies the detrimental effect of desta-

bilizing mutations because more abundant proteins will produce

more toxic unfolded species. On the other hand, abundant

proteins evolve to greater stabilities (Figures 2A and 3C), poten-

tially relieving abundant proteins of the strong selection pres-

sure, thus eliminating the abundance-ER correlation (Figure 2).

The exact compensation between abundance and stability is

avoided because DDG is correlated with DG (i.e., mutations

are more destabilizing in more stable proteins) (Figure 3).

We advance a more complete statement of the hypothesis:

Abundant proteins evolve to greater stability, where the average
en access under CC BY-NC-ND license.
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mutations are more destabilizing; hence, more abundant

proteins evolve slowly.

The magnitude of the correlation between ER-abundance is

likewise dependent on the strength of the DG versus DDG anti-

correlation (Figure 3B)—more destabilizing mutations in more

stable regime (also high abundance) lead to slower ER. Hence,

quantification of this biophysical property is crucial in inferring

the strength of the genome-wide abundance-ER correlation. In

this work, we parameterized the DG versus DDG anticorrelation

according to Protherm. Simplified models that fold proteins on

a lattice model tend to overestimate the DDG dependence on

DG because of a small hydrophobic core. Thus prior works

(DrummondandWilke, 2008; Yang et al., 2010)may have overes-

timated in simulation the strength of abundance-ER correlation.

Previous theoretical analysis of the ER focusing solely on the

effect of translational robustness, and excluding the DG versus

DDG anticorrelation (Wilke and Drummond, 2006), does not

recapitulate the shape of the abundance-ER dependence that

is observed in simulations using 2D lattice models (Drummond

et al., 2005; Drummond and Wilke, 2008; Yang et al., 2010) or

from comparative genomics. This finding implies that the DG

versus DDG dependence is prerequisite to the abundance-ER

anticorrelation in both protein misfolding due to errors in

mistranslation or misfolding due to genetic mutations.

The distribution of ER from simulations in this model, which is

essentially parameter free, spans �1.5 orders of magnitude,

whereas the ER distribution from comparative genomics spans

2–3 orders of magnitude (Lobkovsky et al., 2010). The narrower

distribution from simulations is not surprising for several reasons,

namely (1) the population is assumed to be monoclonal, (2) all

genes have the same length, and (3) other biological factors could

impose various selective constraints that will effectively broaden

the rate of protein evolution. Real life biology is much more

complicated than presented here. Some factors that could influ-

ence the rate of evolution of individual genes include protein-

protein interactions (e.g., avoidance of nonspecific interactions)

(Yang et al., 2012; Zhang et al., 2008), functional selection, and

metabolic network topology (Vitkup et al., 2006). Cellular re-

sponses (e.g., chaperones and proteases) (Tokuriki and Tawfik,

2009) and functional oligomerization of destabilized proteins

(Bershtein et al., 2012) can also attenuate the toxicity of folded

proteins. Generalizing, the current framework to include the

systematiceffectof theseconstraints is thesubject of futurework.
EXPERIMENTAL PROCEDURES

Derivation of u(s) and the Molecular Clock Surface

The rate of the evolutionary clock is a product of the rate at which mutation

occurs and the rate at which these mutations will fix (Pfix(s) in Figure 1A)

(Nielsen and Yang, 2003). If m is the mutation rate (number of mutations per

base pair per generation) and Ne is the effective population size, the total

number of mutations per generation is Nem. Hence, the nonsynonymous

substitution rate dN is

dN=Nem
1� expð�2sÞ

1� expð�2NesÞ: (Equation 6)

Assuming that all silent substitutions are neutral, the synonymous rate is

dS = Nem(1/Ne). The clock in Equation 4 is the ratio dN/dS. Themolecular clock

surface is the integral
R +N
�N pðDDGÞuðsÞdðDDGÞ:
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Simulation Protocol

All genes were assigned an initial stability value of�5 kcal/mol, then subjected

to mutation, selection, and drift as outlined in Figure 1. The factor kBT =

0.593 kcal/mol. The choice of initial DG values was irrelevant because the

population would eventually reach the dynamic equilibrium imposed by

mutation-selection balance (Movie S1). All analyses and calculations of

ERs were performed only during the interval that the population is under

mutation-selection balance.

ER Calculation in Simulations

In the multiscale evolutionary simulations, we knew the full history of the

evolving population and we recorded all the mutations that was fixed. Thus,

the ER was simply the total number of fixed substitutions that occurred over

the divergence time separating the two genomes. Because the rates are

broadly distributed, they are customarily plotted on a logarithmic scale. We

followed (Drummond et al., 2005; Drummond and Wilke, 2008) and used the

transformation (u + 10�4) to include in the analysis the genes with zero

estimated rates.

ER Calculation in Bacterial Genomes

To estimate the ER in real proteins, we first determined the ortholog of a gene

in the reference genome using the reciprocal smallest distance algorithm

implemented in ROUNDUP (Wall et al., 2003). Amino acid alignments of ortho-

logs (generated using CLUSTALW) (Larkin et al., 2007) were used to align their

corresponding DNA sequences. Nonsynonymous ERs (dN) were estimated

using both Nei and Gojobori (1986) and Maximum Likelihood methods (Yang

andNielsen, 2000) as implemented in CODEML (Yang, 2007). dN values calcu-

lated from both methodologies gave nearly identical results because the

species are closely related. Thus, the ERs reported in Figures 4 and S2 used

only the Nei and Gojobori method (Nei and Gojobori, 1986).

Divergence Time Metric

Estimating the divergence time between two genomes is very involved (Arbo-

gast et al., 2002); instead, we used a simple metric that allows direct compar-

ison between simulation and bioinformatics results. The mutation rate in our

simulations was constant. We likewise assumed that the per base pair muta-

tion rate in the g-proteobacteria species are comparable because systematic

analysis (Anderson et al., 2004) show consistency of mutation rates among

bacteria of 0.003 mutations per genome per replication. Thus, divergence

time is proportional to the number of substitutions fixed since divergence. A

simple metric then is the number of amino acid substitutions accumulated

over the time separating two genes. Specifically, divergence time is measured

as the number of nonsynonymous substitutions per gene (Na) averaged over all

genes in the genome (<Na>), then normalized by the average gene length <L>

of genes in the genome. To guard against the potential bias in the composition

of gene abundances in the genome, we show that the distribution of abun-

dances for the set of matched orthologs (Figure S2, histograms) are

comparable.
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