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a b s t r a c t

The ring over which the universal Abel formal group law is defined is characterized by
an integrality condition. Three localizations of this ring considered by Bukhshtaber and
Kholodov are given simple descriptions in terms of integer-valued polynomials, and the
Abel formal group over one of these rings is shown to be multiplicative.
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1. Introduction

An Abel formal group law over a ring R is a formal group law F(u, v) ∈ R[[u, v]] of the form

F(u, v) = u+ v + α1uv +
∑
i>1

αi(uvi + uiv). (1.1)

It is well known that a complex-oriented cohomology theory has associated to it a formal group law, and Busato showed
in [1] that there is a cohomology theory Ab∗( ) whose associated formal group law is the universal Abel formal group
law FAb. This result is based on earlier work [2] by Bukhshtaber and Kholodov who constructed the ring Λ over which the
universal Abel formal group law is defined andwhich forms the coefficient ring ofAb∗( ). They also constructed cohomology
theories whose coefficient rings are certain localizations ofΛ and established certain algebraic facts aboutΛ, including that
Λ is torsion-free and that Λ ⊗ Q is isomorphic to the ring Q[a, b]S2 of symmetric polynomials in the roots a and b of the
quadratic X2 − α1X − 2α2. ThusΛmay be considered to be a subring of Q[a, b]. Bukhshtaber and Kholodov also described
Λ in terms of generators and relations, and gave a Z(p)-basis for the localization ofΛ at a prime p; see Propositions 2.3 and
3.3 below.
In this paper, we show that Λ can be described by an integrality condition: a polynomial f (a, b) ∈ Q[a, b]S2 lies in Λ if

and only if it has the property that f (kt, `t) ∈ Z[t, (k − `)−1] for any pair of distinct integers k and `. Using this criterion,
we show that the localizations of Λ considered in [2] have similar descriptions in terms of integrality conditions and that
over one of these localizations FAb is isomorphic to the multiplicative formal group law.
The organization of the paper is as follows: Section 2 contains a summary of the facts we need from [1,2] about Abel

formal group laws and the statement of our main result, Theorem 2.4. Its proof, in Section 3, consists in showing that (i) the
elements ofΛ satisfy the integrality condition (Proposition 3.1), and (ii) all polynomials satisfying this condition belong to
Λ (Proposition 3.4). The former of these results makes use of the notion of a VWDWO sequence introduced in [3], while the
latter is a linear-algebra calculation using the basis for Λ(p) constructed in [2]. In Section 4 we discuss the localizations of
Λ considered in [2] and show that as graded rings each is isomorphic to a graded version of a certain ring of integer-valued
polynomials. Finally in Section 5we show that the Abel formal group law over the ring (Λ⊗Z(2))[(a+b)−1] ismultiplicative.
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2. A characterization of the ringΛ

Recall from [2] that the Abel formal group law FAb(u, v) of (1.1) has exponential series

expAb(u) =
eau − ebu

a− b
=
eαu
√
β
sinh

(√
βu
)
,

where

a = α +
√
β,

b = α −
√
β,

and
α = (a+ b)/2,
β = (a− b)2/4.

Abel’s name is associated to this formal group law because of his study [4] of the functional equation that this exponential
satisfies. This was his first research paper, published in 1823.
The coefficients αn of FAb(u, v) can be expressed as polynomials either in α and β or in a and b.

Proposition 2.1 (Proposition 3.1 of [2]). α1 = 2α, and if n > 1,

αn =


−1

(2`)!(2`− 1)

∏̀
k=1

(
(2`− 1)2α2 − (2k− 1)2β

)
, if n = 2`,

α

(2`+ 1)!

∏̀
k=1

(
(2`)2α2 − (2k)2β

)
, if n = 2`+ 1. �

Corollary 2.2. α1 = a+ b, and if n > 1,

αn =
(−1)n−1

n!(n− 1)

∏
i+j=n−1
i,j≥0

(ia+ jb). �

ThusΛ is the subring of Q[a, b] generated by the αn. They satisfy the following set of relations:

Proposition 2.3 (Lemma 3.3 of [2]).

(i) For n ≥ 3,

nαn +
n−1∑
k=2

kαkαn−k = 0.

(ii) For m, n ≥ 2,

αmαn =

(
m+ n
n

)
αm+n +

m+n−1∑
k=2

[
FAb(u, v)k

]
m,n αk,

where
[
FAb(u, v)k

]
m,n denotes the coefficient in FAb(u, v)

k of umvn.

The main result of this paper is the following ‘‘numerical’’ characterization ofΛ.

Theorem 2.4. The ring Λ consists of those symmetric polynomials in Q[a, b] such that f (kt, `t) ∈ Z[t, (k − `)−1] for any
integers k, ` such that k 6= `.

3. The proof of Theorem 2.4

We show first that the integrality condition is satisfied by all polynomials inΛ.

Proposition 3.1. If f (a, b) ∈ Λ ⊆ Q[a, b], then, for any k 6= ` ∈ Z,

f (kt, `t) ∈ Z[t, (k− `)−1].

Proof. First note that it suffices to verify the assertion for homogeneous polynomials f ∈ Λ, for which the condition is
equivalent to showing that f (k, `) ∈ Z(p) for each prime p and each k, ` ∈ Zwith p - (k− `).
Moreover, since the generatorsαn are all homogeneous, it suffices to show that they satisfy this condition. Recall, from [3],

that a sequence of integers {ai} is called a VWDWO (very well distributed and well ordered) sequence for a prime p if
νp(ai − aj) = νp(i− j) for all i, j, where νp(x) denotes the p-adic valuation of x.
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For such a sequence

νp

(
n+k−1∏
i=k

ai

)
≥

∑
i≥0

⌊
n/pi

⌋
= νp(n!), (3.2)

for any n and k. Also, if {ai} is a sequence such that for any k and ` the set
{
ai+k : i = 0, 1, . . . , p` − 1

}
is a complete set of

residue classesmodulo p`, then it is a VWDWO sequence for p. If r and s are such that p - r , then the sequence {s+ rj : j ≥ 0}
has this property. Therefore, given n, k and `with p - (k− `), the sequence {(n− 1)`+ j(k− `) : j ≥ 0} is VWDWO, so that

νp

(
n−1∏
j=0

(n− 1)`+ j(k− `)

)
= νp

 ∏
i+j=n−1
i,j≥0

i`+ jk

 ≥ νp(n!).
If p - (n− 1), Corollary 2.2 now shows that αn(k, `) ∈ Z(p). If p | (n− 1), then we write

n−1∏
j=0

((n− 1)`+ j(k− `)) =
(n− 1)`

(n− 1)`+ n(k− `)

n∏
j=1

((n− 1)`+ j(k− `)) ,

so that, using (3.2) again,

νp

( ∏
i+j=n−1

i`+ jk

)
≥ νp(n− 1)+ νp(n!).

Hence αn(k, `) ∈ Z(p) in this case also. �

To complete the proof of Theorem 2.4 we shall need the following description of the localization Λ(p) = Λ ⊗ Z(p) of Λ
at a rational prime p. This result is also due to Bukhshtaber and Kholodov.

Proposition 3.3 (Theorem 3.3 and 3.2 of [2]).

(i) Λ(2) has a Z(2)-basis consisting of the monomials

αn1α
j1
2 α

j2
4 · · ·α

jk
2k
, for 0 ≤ n, 0 ≤ ji < 2.

(ii) If p is an odd prime,Λ(p) has a Z(p)-basis consisting of the monomials

αn1α
m
2 α

j1
p α

j2
p2
· · ·α

jk
pk , for 0 < n, 0 ≤ m ≤

p− 3
2
, 0 ≤ ji < p,

αm2 α
j1
p α

j2
p2
· · ·α

jk
pk , for 0 ≤ m, 0 ≤ ji < p. �

Thus Theorem 2.4 will be proved if we can show

Proposition 3.4. Let p be a prime and f (a, b) ∈ Q[a, b] a symmetric, homogeneous polynomial such that

f (k, `) ∈ Z(p)

for all k, ` ∈ Z with p - k− `. Then f is a Z(p)-linear combination of the monomials in Proposition 3.3.

The proof of this proposition will occupy the rest of this section. We will evaluate f and the basis monomials of
Proposition 3.3 at a suitably chosen set of values, form the resulting system of linear equations to express f in terms of
the monomials, and show that this system is solvable over Z(p) by showing that the coefficient matrix is invertible over Z(p).
The proof of this last assertion is separated into the case p = 2, which is fairly straightforward, and the case p odd, which is
not. Our plan requires some information about the values of the basis monomials.

Proposition 3.5. If ` ≡ k+ 1 mod pn+1 with n > 0, then

αpn(k, `) ≡
⌊
k/pn

⌋
− k mod p.

To prove this proposition we need the following lemma on binomial coefficients.

Lemma 3.6. If k ≥ pn and k̃ ≡ k mod pn with 0 ≤ k̃ < pn, then(
k
pn

)
pn

k− k̃
∈ 1+ pZ(p).
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In particular,(
k
pn

)
≡

⌊
k
pn

⌋
mod p.

Proof. We can write
(
k
pn

)
pn

k−k̃
as the product of

k̃∏
i=1

k− k̃+ i
i

and
pn−1∏
i=k̃+1

k− k̃− pn + i
i

,

within which each factor belongs to 1+ pZ(p). For the last part, note that
⌊
k
pn

⌋
=
k−k̃
pn . �

Proof of Proposition 3.5. Write ` = k− pn+1N + 1, and let k̃ be such that 0 ≤ k̃ < pn and k̃ ≡ k mod pn. Then

αpn(k, `) =
(−1)p

n
−1

pn!(pn − 1)

pn−1∏
j=0

(
(pn − 1− j)k+ j(k− pn+1N + 1)

)
=

(−1)p
n
−1

pn!(pn − 1)

pn−1∏
j=0

(
(pn − 1)(k− j)− jpn(pN − 1)

)

≡
(−1)p

n
−1

pn!(pn − 1)

pn−1∏
j=0

(pn − 1)(k− j)− k̃pn(pN − 1)
pn−1∏
j=0
j6=k̃

(pn − 1)(k− j)

 mod p,
since νp(k− j) < n unless j = k̃.
The result now follows from Lemma 3.6, for we may write the last expression as

(1− pn)p
n
−1
(
k
pn

)(
1+

k̃pn(pN − 1)

(1− pn)(k− k̃)

)
≡

⌊
k
pn

⌋
− k mod p. �

With this result about certain values of the αpn in hand, we may prove Proposition 3.4, considering first the case p = 2,
for which Proposition 3.5 specializes to

Corollary 3.7. If L > n, then

α2n(2k, 2k− 2L + 1) ≡
⌊
k/2n−1

⌋
mod 2. �

It follows that

Corollary 3.8. If 0 < i1 < i2 < · · · < i` < L and i =
∑`
j=1 2

ij−1, then

α2i1α2i2 · · ·α2i` (2k, 2k− 2
L
+ 1) ≡

{
0 mod 2, if 0 ≤ k < i,
1 mod 2, if k = i.

Proof. If k < i, there is at least one j such that the coefficient of 2ij in the base 2 expansion of 2k is zero, in which case
α2ij (2k, 2k− 2

L
+ 1) ≡

⌊
k/2ij−1

⌋
≡ 0 mod 2.

On the other hand, α2ij (2i, 2i− 2
L
+ 1) ≡

⌊
i/2ij−1

⌋
≡ 1 mod 2, for each 1 ≤ j ≤ `. �

Now fix N , choose L such that 2L > N , and letM2 denote the (bN/2c + 1)× (bN/2c + 1)matrix with (i, k)-entry
αN−2i1 α2i1α2i2 · · ·α2i` (2k, 2k− 2

L
+ 1),

where 2i =
∑`
j=1 2

ij .

Lemma 3.9. The matrix M2 is upper triangular modulo 2 , with diagonal elements all congruent to 1modulo 2 .
Proof. This follows from Corollary 3.8, together with the fact that α1(2k, 2k− 2L + 1) = 4k− 2L + 1 is odd. �

Now suppose f (a, b) satisfies the hypotheses of Proposition 3.4 with p = 2, and let N be its degree. Since Λ ⊗ Q =
Q[a, b]S2 , the basis elements of Proposition 3.3(i) of degree N provide a Q-basis for the vector space of homogeneous
symmetric polynomials of degree N . Thus we may write f (a, b) as

∑bN/2c
i=0 ci αN−2i1 α2i1α2i2 · · ·α2i` , where 2i =

∑`
j=1 2

ij and
ci ∈ Q. Evaluating at

{
(2k, 2k− 2L + 1) : 0 ≤ k ≤ bN/2c

}
gives a linear system of equations for the ci whose coefficient

matrix isM2, which is invertible over Z(2), by Lemma 3.9. Thus, since the values of f (a, b) belong to Z(2), so do the ci.
This completes the proof of Proposition 3.4 for the case p = 2. �
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The case p > 2, to which we now turn, is complicated by the fact that the analogous matrix Mp is not upper triangular
modulo p. We will show, however, that it is still invertible, which suffices for our purposes.
For a given N > 0, we divide the basis elements in Proposition 3.3(ii) into subsets as follows: For each m = 0, 1, . . . ,

(p− 3)/2, let

Pm =
{
αn1α

m
2 α

j1
p . . . α

j`
p`
: 0 < n, 0 ≤ ji < p, n+ 2m+

∑
jipi = N

}
,

and let

Q =
{
αm2 α

j1
p . . . α

j`
p`
: 0 ≤ m, 0 ≤ ji < p, 2m+

∑
jipi = N

}
.

Note that these subsets are disjoint and together include all of the basis elements of degree N listed in Proposition 3.3(ii),
of which there are bN/2c + 1.
We consider first the special case N = p` − 1, for which |Pm| = p`−1 for all m, and |Q| = (p`−1 − 1)/2. Choose L > `,

and define sets Pm,Q ⊂ Z2 as follows:
For eachm = 0, 1, . . . , (p− 3)/2, let

Pm =
{
(kp+m, kp+m− pL + 1) : 0 ≤ k ≤ p`−1 − 1

}
,

and let

Q =
{(
kp+

p− 1
2

, kp+
p− 1
2
− pL + 1

)
: 0 ≤ k ≤ (p`−1 − 1)/2

}
.

Let Mp be the matrix obtained by evaluating the basis elements in
⋃
m Pm ∪ Q at the values

⋃
m Pm ∪ Q . We order the

columns of Mp, corresponding to the elements of
⋃
m Pm ∪ Q by arranging the Pm in blocks by increasing m, followed by

Q , and within each of these blocks ordering by increasing k. We order the rows of Mp corresponding to the elements of⋃
m Pm ∪ Q by arranging the Pm’s in blocks by increasing m, followed by Q, and within each block ordering by increasing

value of
∑
jipi. The result of this is a matrix Mp made up of the following blocks: the p`−1 × p`−1 submatrices Pm(Pm′) for

0 ≤ m,m′ ≤ (p− 3)/2, which form a submatrix which we denoteP (P), the (p`−1+ 1)/2× (p`−1+ 1)/2 submatrixQ(Q ),
and the non-square blocks Pm(Q ) andQ(Pm′). Thus

Mp =


P1(P1) · · · P1(P(p−3)/2) P1(Q )
...

. . .
...

...
P(p−3)/2(P1) · · · P(p−3)/2(P(p−3)/2) P(p−3)/2(Q )

Q(P1) · · · Q(P(p−3)/2) Q(Q )

 .
A useful preliminary observation is

Lemma 3.10.

α1(kp+m, kp+m− pL + 1) ≡ 2m+ 1 mod p,

α2(kp+m, kp+m− pL + 1) ≡ −m(m+1)2 mod p. �

Corollary 3.11. Pm(Q ) = 0 for 0 ≤ m ≤ (p− 3)/2.

Proof. Each element of Pm contains α1 as a factor, and α1(Q ) = 0 by the lemma. �

Thus the problem of showing thatMp is invertiblemodulo p decomposes into that of studyingP (P) andQ(Q ) separately.
We begin with P (P).

Lemma 3.12. If k =
∑`−1
i=0 kip

i, the entries of the submatrix Pm(Pm′) are, modulo p,

αn1α
m
2 α

j1
p . . . α

j`
p`
(kp+m′, kp+m′ − pL + 1) ≡ (2m′ + 1)n(−m′(m′ + 1)/2)m

∏̀
i=1

(ki−1 −m′)ji

≡

(
−m′(m′ + 1)
2(2m′ + 1)2

)m ∏̀
i=1

(
ki−1 −m′

2m′ + 1

)ji
.

Proof. The first congruence follows directly from Proposition 3.5 and Lemma 3.10, while the second follows from noting
that (2m′ + 1)n ≡ (2m′ + 1)−2m(2m′ + 1)

∑
ji mod p since n = (p` − 1)− 2m−

∑
jipi. �

Corollary 3.13.

Pm(Pm′) =
(
−m′(m′ + 1)
2(2m′ + 1)2

)m
P0(Pm′). �
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We consider next how P0(Pm′) depends onm′. Given 0 ≤ m′ ≤ (p− 3)/2, define a permutation ϕ of {0, 1, . . . , p` − 1}
by ϕ(k) ≡ (k−m′)/(2m′ + 1) mod p if k < p, and by ϕ(

∑
kipi) =

∑
ϕ(ki)pi if 0 ≤ ki < p. It follows that

Lemma 3.14. The matrix P0(Pm′) is equal to the matrix P0(P0) with its columns permuted by ϕ. �

Combining Lemmas 3.12 and 3.14, we have

Proposition 3.15. The permutation of the columns of the matrixP (P), given by the function ϕ above, yields a matrix congruent
modulo p to the tensor product of the matrices((

−m′(m′ + 1)
2(2m′ + 1)2

)m)
0≤m,m′≤(p−3)/2

and

P0(P0) =

(
`−1∏
i=1

kjii−1

)
0≤ki−1,ji<p

.

The latter matrix is itself equal to the (`− 1)-fold tensor power of(
kj
)
0≤k,j<p . �

Corollary 3.16. P (P) is invertible modulo p.

Proof. The matrices in the proposition are Vandermonde matrices with non-zero determinant modulo p. Hence the tensor
product is invertible modulo p. �

We turn now toQ(Q ).

Lemma 3.17. If k =
∑`−1
i=0 kip

i, then the entries in the submatrixQ(Q ) are, modulo p,

αm2 α
ji
p · · ·α

j`
p`

(
kp+

p− 1
2

, kp+
p− 1
2
− pL + 1

)
≡ 2−3m

∏̀
i=1

(
ki−1 +

1
2

)ji
≡ ε`

∏̀
i=1

(
εi−1(2ki−1 + 1)z

)ji
,

where z ∈ Fp2 is such that z2 = 2 and ε is the Legendre symbol
(
2
p

)
= (−1)(p

2
−1)/8.

Proof. The first formula follows as for Lemma 3.12 once we note that

α2

(
kp+

p− 1
2

, kp+
p− 1
2
− pL + 1

)
≡ 1/8 mod p.

Now zp = εz and z3 = 2z. As 2m = p` − 1− pj, where j =
∑
jipi−1 and j is even, we have 2−3m = z−6m = ε`2jz j in Fp2 .

Since 2p
i−1
= 2 and zp

i−1
= εi−1z, the second formula follows. �

The (p`−1 + 1)/2 × (p`−1 + 1)/2 matrix Q(Q ) consists (modulo p) of those entries in Lemma 3.17 for which 0 ≤ k ≤
(p`−1 − 1)/2 and 0 ≤

∑
jipi < p`−1 with

∑
ji is even. Note that the latter condition ensures that in all cases the final

expression in the lemma does indeed belong to Fp.
In order to show that Q(Q ) is invertible, we embed its mod p reduction in the p`−1 × p`−1 matrix Q(Q ) (defined over

Fp or Fp2 as appropriate) having entries εr
∏`
i=1

(
εi−1(2ki−1 + 1)z

)ji , where now 0 ≤ k < p`−1 and 0 ≤ ∑
jipi < p`−1

without requiring that
∑
ji is even. Thus all values of ki, ji satisfying 0 ≤ ji, ki < p arise. NowQ(Q ) is invertible since it is a

Vandermonde matrices with non-zero determinant.
It follows that the ((p`−1 + 1)/2) × p`−1 matrix A consisting of those rows of Q(Q ) for which

∑
ji is even has rank

(p`−1 + 1)/2. If k = p`−1 − k − 1, then 2ki + 1 = −(2ki + 1) for all i and the column of A corresponding to k is equal to
the column corresponding to k. But since Amust have (p`−1 + 1)/2 linearly independent columns, the matrix consisting of
those columns of A for which 0 ≤ k ≤ (p`−1 − 1)/2, to whichQ(Q ) is congruent modulo p, is invertible.
Hence we have proved.

Proposition 3.18. For N = p` − 1 the matrix Mp is invertible. �

We now consider the basis elements in a degree N < p` − 1. LettingP andQ continue to denote the above sets of basis
elements in degree p` − 1, let P̃ and Q̃ denote the corresponding sets of basis elements in degree N .
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Multiplication by αp
`
−N−1

1 provides an injective map from P̃ to P . Thus the matrix P̃ (P) obtained by evaluating the
elements of P̃ on the pairs in P can be obtained, modulo p, by choosing the corresponding rows of P (P) and multiplying
each column by a scalar which (by Lemma 3.10) is non-zero. Since, by Corollary 3.16, P (P) has maximum rank modulo p,
so does P̃ (P), and it is possible to choose a subset P̃ ⊂ P for which the matrix P̃ (̃P) is invertible.
If N is even, multiplication by α(p

`
−N−1)/2

2 is an injection Q̃→ Q. If N is odd, an injection Q̃→ Q is provided by sending

αm̃2 α̃
j1
p α̃

j2
p2
. . . α̃

j`
p`−1
to αm2 α

j1
p α

j2
p2
. . . α

j`
p`−1
, where m = m̃ + (p` − N − p − 1)/2 and

∑
jipi = 1 +

∑
j̃ipi with 0 ≤ j̃i, ji < p.

In both cases the same argument as above shows that there is a subset Q̃ ⊂ Q for which Q̃(Q̃ ) is invertible.
With the sets P̃, Q̃ constructed in this way we may form the degree N matrix

Mp =
(

P̃ (̃P) P̃ (Q̃ )
Q̃(̃P) Q̃(Q̃ )

)
and have

Proposition 3.19. In all degrees the matrix Mp is invertible. �

The proof of Proposition 3.4 now follows for p odd just as in the case p = 2. This completes the proof of Theorem 2.4.
�

4. Localizations ofΛ

In [2, Theorem 4.3] Bukhshtaber and Kholodov considered three extensions of the ring Λ, each obtained by inverting
various elements. We denote these rings by A = Λ(2)[(a + b)−1], B = Λ[ 12 ][(a − b)

−2
] and C = Λ[(a2 − b2)−2]. The

description ofΛ in Theorem 2.4 yields the following characterizations in terms of integrality conditions.

Proposition 4.1.
(i) A =

{
f (a, b) ∈ Q[a, b, (a+ b)−1] : f (a, b) = f (b, a), f (kt, `t) ∈ Z(2)[t, t−1] if k, ` ∈ Z and k− ` is odd

}
;

(ii) B =
{
f (a, b) ∈ Q

[
a, b, (a− b)−2

]
: f (a, b) = f (b, a), f (kt, `t) ∈ Z

[ 1
2 ,

1
k−`

]
[t, t−1] if k 6= ` ∈ Z

}
;

(iii) C =
{
f (a, b) ∈ Q

[
a, b, (a2 − b2)−2

]
: f (a, b) = f (b, a), f (kt, `t) ∈ Z

[
1

k2−`2

]
[t, t−1] if k 6= ±` ∈ Z

}
. �

But we can describe these rings still more explicitly in terms of integer-valued polynomials. We consider A and C first,
since the ring B turns out to be rather more complicated.
Let Int(Z(2)) =

{
f (x) ∈ Q[x] : f (Z(2)) ⊆ Z(2)

}
be the ring of 2-local integer-valued polynomials. Give A the grading in

which |a| = |b| = 2, and let Int(Z(2))[y, y−1] have grading with |x| = 0 and |y| = 2.

Proposition 4.2. A = Λ(2)[(a+ b)−1] and Int(Z(2))[y, y−1] are isomorphic as graded rings.

Proof. If k, ` ∈ Z have different parity, then k`
2(k+`)2

∈ Z(2). Hence we may define a ring homomorphism Int(Z(2))→ A by

f (x) 7→ f
(

ab
2(a+b)2

)
.

It will be sufficient to show that Int(Z(2)) maps isomorphically onto the component A0 of degree zero. For then this
isomorphism can be extended to Int(Z(2))[y, y−1] by sending y to a+ b.
SinceΛ⊗ Q is the symmetric algebra Q[a, b]S2 = Q[a+ b, ab], the degree-zero component of A⊗ Q is the polynomial

ringQ
[

ab
(a+b)2

]
. Thus every element of A0may be written (uniquely) in the form f ( ab

2(a+b)2
) for some polynomial f (x) ∈ Q[x].

We need to show that f (x) ∈ Int(Z(2)). If ` = 1− k, then k`
2(k+`)2

=
k(1−k)
2 ∈ Z, so f is certainly Z(2)-valued on the triangular

numbers
{
k(1−k)
2 : k ∈ Z

}
.

However, the triangular numbers are 2-adically dense in Z(2). For if k(1−k)2 = r ∈ Z2, then k = 1±
√
1−8r
2 in Q2. But the

two square roots of 1− 8r belong to 1+ 2Z2, so that the solutions for k belong to Z2. It follows that f is Z(2)-valued on the
whole of Z(2). �

Let T = Int(Z(2),Z) be the ring{
f (x) ∈ Q [x] : f (r2) ∈ Z for all r ∈ Z

}
of polynomials integer-valued on the set Z(2) of squares of integers, and let

T [x−1] =
{
f (x) ∈ Q

[
x, x−1

]
: f (r2) ∈ Z

[
1
r

]
for all r ∈ Z r {0}

}
be its localization away from x.

Proposition 4.3. The graded ring C is isomorphic to T [x−1][y, y−1], where |x| = 0 and |y| = 2.
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Proof. Note that since (a2−b2)2 = (a+b)2(a−b)2 is invertible in C , so are a+b and (a−b)2. Define a ring homomorphism
T [x−1][y, y−1] → Q[a, b, (a2 − b2)−2] by sending x 7→

( a+b
a−b

)2
and y 7→ a + b. It will be sufficient to show that this maps

T [x−1] isomorphically onto the degree-zero component C0.
If h(x) ∈ T [x−1], then there exists n ≥ 0 such that h(x) = xng(x) with g(x) ∈ T = Int(Z(2),Z). By a p-adic density

argument g(x) ∈ Int(Z(2)(p),Z(p)) for all primes p. Thus if k, ` ∈ Z and p is a prime which does not divide k2 − `2, we have

g
(( k+`
k−`

)2)
∈ Z(p) since p - k− `, and then h

(( k+`
k−`

)2)
∈ Z(p) since p - k+ `. Hence h

(( a+b
a−b

)2)
∈ C0.

Suppose now that f
(( a+b
a−b

)2)
∈ C0, so that f

(( k+`
k−`

)2)
∈ Z[ 1

k2−l2
] for all k, ` ∈ Z such that k 6= ±`. Given an even

integer r , let k = r + 1 and ` = r − 1, so that k+`k−` = r , k
2
− `2 = 2r , and h(r2) ∈ Z[ 12r ] = Z[ 1r ]. While if r is odd, letting

k = (r + 1)/2 and ` = (r − 1)/2 yields directly h(r2) ∈ Z[ 1r ]. Hence h(x) ∈ T [x
−1
]. �

We grade the ring B in the same way as A and C , and let R = Int(Z[ 12 ]
(2),Z[ 12 ]) denote the ring{

f (x) ∈ Q [x] : f (r2) ∈ Z
[
1
2

]
for all r ∈ Z

[
1
2

]}
of polynomials which are Z[ 12 ]-valued on squares in Z[ 12 ].

Lemma 4.4. The degree-zero component B0 of the ring B is isomorphic to R.

Proof. We have B ⊗ Q = Q[a + b, ab, (a − b)−2], and ab =
(
(a+ b)2 − (a− b)2

)
/4. Thus B ⊗ Q = Q[a + b, (a − b)2,

(a− b)−2], and B0 ⊗ Q = Q
[( a+b
a−b

)2]
. Thus

B0 =

{
f

((
a+ b
a− b

)2)
: f (x) ∈ Q [x] with f

((
k+ `
k− `

)2)
∈ Z

[
1

2(k− `)

]
if k 6= ` ∈ Z

}
.

If f (x) ∈ R, then, by a density argument, f (x) ∈ Int(Z(2)(p),Z(p)) for all odd primes. Thus if p is an odd prime which does

not divide k− `, then f
(( k+`
k−`

)2)
∈ Z(p). This shows that f

(( a+b
a−b

)2)
∈ B0.

Conversely, given f
(( a+b
a−b

)2)
∈ B0, setting k = s + 2m and ` = s − 2m, where s ∈ Z, yields k+`k−` =

s
2m , and hence

f
(( s
2m
)2)
∈ Z[ 12 ], so that f (x) ∈ R. �

Now let

J =
{
g(x) ∈ Q [x] : rg(r2) ∈ Z

[
1
2

]
for all r ∈ Z

[
1
2

]}
.

This is an R-module, and xJ is an ideal of R.

Proposition 4.5. The graded ring B is isomorphic to the ring defined as (R ⊕ yJ)[z, z−1] subject to the relation y2 = xz, where
|y| = 2 and |z| = 4.

Proof. If g(x) ∈ J and k 6= `, then (k + `)g
(( k+`
k−`

)2)
∈ Z

[
1

2(k−`)

]
, so that we may extend the isomorphism R → B0 of

Lemma 4.4, which sends x to (a+ b)2/(a− b)2, by sending y to a+ b and z to (a− b)2.
Since both rings are periodic, under multiplication by z and (a− b)2, respectively, it remains only to show that we have

an isomorphism in degree 2. It is clear that

B2 =

{
(a+ b)g

((
a+ b
a− b

)2)
: g(x) ∈ Q [x] with (k+ `)g

((
k+ `
k− `

)2)
∈ Z

[
1

2(k− `)

]
if k 6= ` ∈ Z

}
.

Given (a + b)g
(( a+b
a−b

)2)
∈ B2, set k = s + 2m and ` = s − 2m, then we have 2sg

(( s
2m
)2)
∈ Z[ 12 ], so that g(x) ∈ J , and

(a+ b)g
(( a+b
a−b

)2)
is the image of yg(x). �

5. The formal group law over the ring A

The ring A is of particular interest because of its resemblance to the coefficient ring of complex K -theory, with a + b
playing the role of the Bott element. To make this precise we note that
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Proposition 5.1. Let ψ : Z[t±1] → A = Λ(2)[(a+ b)−1] be defined by ψ(t) = a+ b, and let

expAb(u) =
eau − ebu

a− b
and logψ∗K (u) =

ln (1+ (a+ b)u)
a+ b

denote the exponential of the Abel formal group law and the logarithm of the multiplicative formal group law over A, respectively.
Then

expAb ◦ logψ∗K (u) ∈ A[[u]],

i.e., over A the Abel formal group law is multiplicative.

Proof. We have

expAb(logψ∗K (u)) =
ea log(1+(a+b)u)/(a+b) − eb log(1+(a+b)u)/(a+b)

a− b

=
(1+ (a+ b)u)a/(a+b) − (1+ (a+ b)u)b/(a+b)

a− b

=

∑
j≥0

((
a/(a+ b)

j

)
−

(
b/(a+ b)

j

))
(a+ b)j

a− b
uj.

The coefficients clearly lie inQ[a, b]S2 . Thus it suffices to verify that they satisfy the integrality condition in Proposition 4.1(i).
Suppose k, ` ∈ Zwith k 6≡ ` mod 2. Then k+ ` is odd, and so

(
k/(k+`)
j

)
and

(
`/(k+`)
j

)
belong to Z(2). �
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