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BACKGROUND Although epidemiological studies have reported positive associations between circulating urate levels

and cardiometabolic diseases, causality remains uncertain.

OBJECTIVES Through a Mendelian randomization approach, we assessed whether serum urate levels are

causally relevant in type 2 diabetes mellitus (T2DM), coronary heart disease (CHD), ischemic stroke, and heart

failure (HF).

METHODS This study investigated 28 single nucleotide polymorphisms known to regulate serum urate levels in asso-

ciation with various vascular and nonvascular risk factors to assess pleiotropy. To limit genetic confounding, 14 single

nucleotide polymorphisms exclusively associated with serum urate levels were used in a genetic risk score to assess

associations with the following cardiometabolic diseases (cases/controls): T2DM (26,488/83,964), CHD (54,501/68,275),

ischemic stroke (14,779/67,312), and HF (4,526/18,400). As a positive control, this study also investigated our genetic

instrument in 3,151 gout cases and 68,350 controls.

RESULTS Serum urate levels, increased by 1 SD due to the genetic score, were not associated with T2DM, CHD, ischemic

stroke, or HF. These results were in contrast with previous prospective studies that did observe increased risks of

these 4 cardiometabolic diseases for an equivalent increase in circulating urate levels. However, a 1 SD increase in serum

urate levels due to the genetic score was associated with increased risk of gout (odds ratio: 5.84; 95% confidence

interval: 4.56 to 7.49), which was directionally consistent with previous observations.

CONCLUSIONS Evidence from this study does not support a causal role of circulating serum urate levels in T2DM, CHD,

ischemic stroke, or HF. Decreasing serum urate levels may not translate into risk reductions for cardiometabolic

conditions. (J Am Coll Cardiol 2016;67:407–16) © 2016 by the American College of Cardiology Foundation.
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CHD = coronary heart disease

GRS = genetic risk score

HF = heart failure

MR = Mendelian randomization

SNP = single nucleotide

polymorphism

T2DM = type 2 diabetes

mellitus

Keenan et al. J A C C V O L . 6 7 , N O . 4 , 2 0 1 6

Causal Assessment of Serum Urate Levels F E B R U A R Y 2 , 2 0 1 6 : 4 0 7 – 1 6

408
U ric acid is the end product of purine
metabolism and circulates in the
blood as the anion urate. Blood

levels of uric acid are causally associated
with gout, as implicated by evidence from
randomized clinical trials using urate-
lowering therapies (1). In 1923, Kylin initially
described a constellation of metabolic distur-
bances that included hypertension, hyper-
glycemia, and elevated uric acid levels.
Since then, circulating levels of serum uric
acid have been reported to be positively correlated
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vascular outcomes. In the absence of such evidence,
it remains unknown whether circulating uric acid is
an independent causal factor for cardiometabolic
conditions and whether lowering urate levels might
offer therapeutic utility in these disorders.

Human genetic data can be used to directly test
the hypothesis of causality between uric acid and
clinical endpoints. In particular, Mendelian random-
ization (MR) studies assess causal inference by using
genetic alleles as unbiased proxies for circulating
biomarkers (12). MR studies are based on the random
assortment of genetic alleles during meiosis that
can confer advantages similar to a randomized
controlled trial by investigating the relationship
between genetic alleles that are exclusively associ-
ated with a biomarker of interest and disease risk
(13). Previously, such an approach has been used
to assess the causality of low- and high-density
lipoprotein cholesterol (14), triglycerides (15), lip-
oprotein(a) (16,17), fibrinogen (18), and C-reactive
protein in CHD (19).

This study’s objective is to test the hypothesis that
serum urate levels are causally associated with car-
diometabolic conditions by applying an MR study
design. We integrated information on genetic variants
related to serum urate, 50 potential confounders, and
risk of disease outcomes. In contrast to previously
published genetic reports on serum urate�related ge-
netic variants and disease risk (20–23), the current
study investigates >10 times more CHD cases and ex-
amines, for the first time, risks of stroke and HF
conferred by genetically raised serum urate levels. It
also systematically evaluates pleiotropy, enabling
reliable assessment of any possible moderate causal
effect of serum urate levels on any of the 4 major car-
diometabolic outcomes.
Neurological Disorders and Stroke (U01 NS069208), the American Heart Ass

vention Research 0775010N, the National Institutes of Health and Nationa

nomics research program (R01 HL087676), and a grant from the National

Center for Genotyping and Analysis is supported by grant U54 RR020278

CHARGE–Stroke data. This work was supported by the dedication of the Fram

Lung, and Blood Institute’s Framingham Heart Study (Contract No. N01-HC

Neurological Disorders and Stroke (NS17950), the National Institute of Aging

Blood Association (HL93029, U01HL 096917). The content is solely the res

represent the official views of the National Institute of Neurological Disorde

Institute, the National Institute of Aging, or the National Institutes of H

Department of Health (UK) Senior Fellowship. BRAINS is supported by gr

Research Initiative), Henry Smith Charity, and Qatar National Research Fun

grants U01-HG004436 and U01-NS069208. CHARGE Heart Failure Consort

Janine F Felix was working in Erasmus AGE, a center for aging research acro

Ltd.), Metagenics Inc., and AXA. These funding sources had no role in design

analysis, and interpretation of the data; and preparation, review or approva

that they have no relationships relevant to the contents of this paper to disc

Dr. Voight and Dr. Saleheen are joint senior authors.

Manuscript received August 12, 2015; accepted October 27, 2015.
METHODS

STUDY DESIGN. Our study had 3 interrelated compo-
nents. First, we selected single nucleotide poly-
morphisms (SNPs) previously discovered in
genome-wide association studies of serum urate
levels. Second, we conducted genetic analyses in
relation to a panel of 50 vascular and nonvascular risk
factors and identified SNPs that did not exhibit
pleiotropy (i.e., SNPs exclusively associated with
circulating urate levels, but not with other car-
diometabolic traits that might confound our interpre-
tation). For these analyses, we queried publicly
available resources and genome-wide association data
available from 18,828 subjects of PROMIS (Pakistan
Risk of Myocardial Infarction Study), a case-control
study in urban Pakistan (24). Third, we used a genetic
risk score (GRS) comprised of SNPs exclusively
associated with serum urate levels to evaluate the
potential causal role of circulating urate levels in
T2DM, CHD, ischemic stroke, and HF through an MR
approach.
URATE GENETIC VARIANTS AND ASSESSMENT OF

PLEIOTROPY. All of the 28 urate SNPs included in the
current analyses were in linkage equilibrium (r2 ¼ 0,
based on participants of European, South Asian, and
East Asian ancestries in the International HapMap
Project phase II and phase III) (25). Each SNP was
evaluated for associations with 50 vascular and
nonvascular traits in up to 18,828 PROMIS partici-
pants (24). Information from publicly available
genome-wide association studies databases was also
used to assess associations of these SNPs with blood
pressure traits in up to 134,433 participants (Global
BPgen Consortium) (26); with major lipids in up
to 100,000 participants (Global Lipids Genetics
ociation/Bugher Foundation Centers for Stroke Pre-
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Consortium) (27), with anthropometric traits in up to
183,727 participants (Genetic Investigation of ANthro-
pometric Traits) (28–30); and with glycemic traits in
up to 46,368 nondiabetic participants (Meta-Analyses
of Glucose and Insulin-related traits Consortium)
(31–34). Pleiotropy was declared at a nominal p value
of <0.01. Only nonpleiotropic SNPs were used to
construct a urate-specific GRS. We used additive
linear regression models to interrogate the urate
GRS in association with a range of traits in PROMIS.
ASSOCIATION WITH DISEASE OUTCOMES. For each
of the 28 SNPs, summary effect estimates in associa-
tion with T2DM, CHD, ischemic stroke, and HF were
obtained from various consortia, including DIAGRAM
(DIAbetes Genetics Replication And Meta-analysis
consortium) (35), CARDIoGRAM (Coronary ARtery
DIsease Genome-wide Replication and Meta-analysis
consortium) (36), C4D (Coronary Artery Disease
Genetics consortium) (36), METASTROKE (META-
STROKE Collaboration) (37), and CHARGE-Heart
Failure studies (Cohorts for Heart and Aging
Research in Genomic Epidemiology consortium) (38).
DIAGRAM data were downloaded from their website;
other data were acquired by contacting investigators
within each consortium. We maximized study power
by obtaining further data on participants who did
not contribute to any of these consortia previously,
thus increasing sample size for CHD, ischemic stroke,
and HF by up to 25% (Online Table 1). Effect sizes and
errors from consortia data and study-specific
effect sizes and errors from additional studies
(Online Table 1) were combined via meta-analysis
(inverse-variance fixed-effect model). In the final
analyses, data were available on 26,488 T2DM cases
and 83,964 controls; 54,501 CHD cases and 68,275
controls; 14,779 ischemic stroke cases and 67,312
controls; and 4,553 HF cases and 19,985 controls.
Effect estimates in association with prevalent gout
were obtained from GUGC (Global Urate Genetics
Consortium) involving 3,151 gout cases and 68,350
controls (39). All participants were of self-reported
European or South Asian ancestry. Individual
studies within each consortium obtained written
informed consent from participants and received
approval from the relevant ethics boards.
STATISTICAL ANALYSES. All 28 SNPs used in the
current analyses have been previously shown to
be associated with serum urate levels at a p value
of <5 � 10-8 (39). The association of each SNP with
each cardiometabolic outcome was evaluated
with a fixed-effects, inverse-variance, weighted
meta-analysis using beta(s) and SE(s) obtained from
consortia and studies listed in Online Table 1. SNPs
found exclusively associated with serum urate levels
were used in a genetic score as an instrument for MR
analyses (39,40). The impact of the urate genetic
score on disease risk was calculated using methods
described previously (41,42). Briefly, under the as-
sumptions that SNPs are unlinked and the effects of
each SNP are log additive on uric acid levels, using an
MR framework (12,13), a causal effect (alpha) between
a biomarker and outcome can be estimated by

a ¼
�X

j
bws�2

� �X
j
w2s�2

�.

where for all j SNPs, b represents the estimated nat-
ural log odds effect of the j-th SNP on the endpoint of
interest, s represents the standard error on the log
odds effect of the j-th SNP on the endpoint, and w
represents a weight for the SNP on the outcome. Each
SNP was weighted using the reported estimated effect
of the SNP on uric acid levels (in SD units). SE for
alpha-hat was calculated by taking the square root of
the reciprocal of the denominator, as previously
described (42). A simulation approach was used to
estimate the power to identify or exclude causal ef-
fects of the urate genetic score on each tested
outcome (Online Appendix) (43). All analyses were
conducted in STATA (StataCorp LP, College Station,
Texas), R (The R Foundation), SNPTEST (University of
Oxford), or PLINK (Harvard University).

RESULTS

URATE VARIANTS. Of the 28 SNPs related to serum
urate levels, 14 variants had pleiotropic associations at
a p value <0.01 with at least 1 vascular or nonvas-
cular trait (Online Tables 2 and 3). The remaining
14 nonpleiotropic SNPs were used in a genetic score
weighted for the reported urate effect estimate of
each SNP. The weighted GRS was not associated with
any vascular or nonvascular trait at a p value <0.01
(Figure 1).

Of the 14 urate-specific SNPs, 9 variants were asso-
ciated with increased risks of gout but none of the
variants were associated with T2DM, CHD, ischemic
stroke, or HF at a p value <0.01 (Figures 2 and 3). Most
notably, the SNP at the SLC2A9 locus, which was
associated with the largest increases in serum urate
level (0.37 mg/dl) and risk of gout (odds ratio [OR]:
1.56; 95% confidence interval [CI]: 1.45 to 1.68; p¼ 1.9�
10-31), was not associated with any of the car-
diometabolic outcomes. Of the 14 pleiotropic SNPs, we
found 1 SNP at the ATXN2 locus to be significantly
associated with increased risk of CHD (OR: 1.06; 95%
CI: 1.03 to 1.08; p¼ 6.5� 10-6) and ischemic stroke (OR:
1.08; 95% CI: 1.04 to 1.11; p ¼ 4.4 � 10-6) (Online
Table 4). The variant at the VEGFA locus was signi-
ficantly associated with decreased risk of T2DM
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FIGURE 1 Association of Urate Genetic Score With Potential Confounders
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Of the 28 single nucleotide polymorphisms (SNPs) related to serum urate levels, 14 variants had pleiotropic associations at a p < 0.01 with at

least 1 vascular or nonvascular trait. The remaining 14 nonpleiotropic SNPs were used to calculate a genetic score by using individual participant

data in the PROMIS (Pakistan Risk of Myocardial Infarction Study) participants. The genetic score was weighted for the reported urate effect

estimate of each SNP. The genetic score was subsequently used in analyses with 50 traits in the PROMIS participants and was not found

associated with any trait at a p < 0.01. LpPLA2 ¼ lipoprotein-associated phospholipase A2.
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(OR: 0.93; 95% CI: 0.89 to 0.96; p ¼ 1.0 � 10-4) but
increased serum urate levels (Online Table 5).
URATE GENETIC SCORE AND DISEASE OUTCOMES.

For a 1 SD increase in serum uric acid levels, the OR of
gout conferred by genetic score was 5.84 (95% CI:
4.56 to 7.49; p ¼ 4.2 � 10-44), which was directionally
consistent with the observed OR of 2.12 (95% CI: 1.90
to 2.33) for gout in epidemiological studies (44).
However, a 1 SD increase in serum urate due to
the genetic score had no relationship with T2DM

http://dx.doi.org/10.1016/j.jacc.2015.10.086
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(OR: 0.95; 95% CI: 0.86 to 1.05; p ¼ 0.28), CHD
(OR: 1.02; 95% CI: 0.92 to 1.12; p ¼ 0.73), ischemic
stroke (OR: 0.99; 95% CI: 0.88 to 1.12; p ¼ 0.93), or HF
(OR: 1.07; 95% CI: 0.88 to 1.30; p ¼ 0.51) (Central
Illustration). In further subsidiary analysis, a GRS
comprised of all 28 urate-related SNPs was not asso-
ciated with the 4 cardiometabolic outcomes (Online
Table 6). A score based on the 14 urate-related vari-
ants with pleiotropic effects was also not associated
with stroke or HF (Online Table 7). However, this
score was nominally associated with T2DM, though in
a direction opposite of epidemiological expectation,
and weakly associated with CHD. We posit that these
weak associations are explained by strong, con-
founding associations of these SNPs with blood
pressure, cholesterol, triglycerides, obesity, glucose,
insulin, and insulin resistance (Online Table 3). These
null associations are in contrast to data from obser-
vational epidemiological studies which have previ-
ously shown that equivalent increases in serum urate
levels are associated with increased risks of T2DM
(OR: 1.25; 95% CI: 1.13 to 1.37) (3), CHD (OR: 1.06;
95% CI: 1.03 to 1.09) (4), ischemic stroke (OR: 1.17;
95% CI: 1.00 to 1.37) (8), and HF (OR: 1.19; 95% CI: 1.17
to 1.21) (10).

For a 1 SD change in serum urate levels due to ge-
netic score, our study was statistically powered at
>80% with a 5% alpha rate to assess ORs of 1.15 for
T2DM, 1.17 for ischemic stroke, 1.10 for CHD, and 1.24
for HF.

We conducted sensitivity analyses and investi-
gated, in the same study population, the associations
of the previously published urate-related SNPs with
serum urate levels and CHD risk. In the 7 studies
analyzed, we found highly significant associations for
uric acid levels by the 3 risk scores that we used in the
main analyses earlier (Online Figure 1A) whereas no
association was observed between any of the risk
scores investigated and CHD risk in the same studies
(Online Figure 1B). We further restricted our analyses
to 3 studies in which we investigated the association
of: 1) serum urate levels with CHD risk; 2) SNPs with
serum urate levels; and 3) SNPs with CHD risk.
Although we found highly significant associations
between circulating serum urate levels and CHD risk
(Online Figure 2A) and highly significant associations
between SNPs and serum urate levels (Online
Figure 2B), no association was observed for any of 3
urate-related GRSs with CHD risk (Online Figure 2C).
These sensitivity analyses provide further validation
to the “2-stage” MR experiment used earlier. Further,
in analyses stratified by ethnicity, similar null results
were obtained for participants of European or South
Asian origin (Online Tables 8 to 10).

http://dx.doi.org/10.1016/j.jacc.2015.10.086
http://dx.doi.org/10.1016/j.jacc.2015.10.086
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DISCUSSION

Contrary to epidemiological studies in humans in
which higher serum urate levels correlate with
increased risk of cardiometabolic outcomes, the MR
analyses reported here provided no evidence of
causal associations between circulating urate levels
and risks of T2DM, CHD, ischemic stroke, or HF
(Central Illustration). First, we analyzed all SNPs
associated with circulating urate levels across a range
of vascular and nonvascular traits to assess pleiot-
ropy, and identified 14 exclusively associated with
serum urate levels. Second, a genetic score combining
these nonpleiotropic variants exclusively increased
uric acid levels and risk of gout. Third, none of the
urate-specific SNPs individually or combined as a
genetic score associated with any cardiometabolic
outcome. Fourth, a genetic risk score comprised of all
28 SNPs known to regulate serum urate levels was not
associated with any cardiometabolic outcome.

The current study raised doubts about the etiolog-
ical relevance of serum uric acid in cardiovascular and
metabolic diseases as suggested by prior epidemio-
logical and model systems studies (3–11,45), which
may have observed increased uric acid levels to asso-
ciate with higher risk of cardiometabolic diseases due
to residual confounding or reverse causality. More-
over, no large-scale randomized control trials have
been conducted using targeted interventions to lower
serum urate levels (e.g., xanthine-oxidase inhibition
inhibition) for the primary prevention of car-
diometabolic endpoints, although an ongoing trial is
evaluating the role of xanthine-oxidase inhibitors in
patients with HF (46). Prior studies have suggested a
role for urate-lowering therapies in reducing blood
pressure in adolescents with hyperuricemia, amelio-
rating exercise capacity in patients with chronic stable
angina, improving endothelial function in patients
with HF, and making other biochemical parameters
more favorable in patients with stable disease (47–49).
Such evidence, however, was generated through
studies conducted in populations with prevalent and
stable disease and did not assess the association of
urate reduction with primary cardiometabolic events
(i.e., stroke, CHD, diabetes, or HF). Moreover, these
prior studies do not address the etiological relevance
of urate reduction in the prevention of primary car-
diometabolic events in healthy participants. In
contrast, findings from this report suggested that uric
acid lowering may not succeed in primary prevention
of metabolic and vascular events, consistent with a
recent study that showed initiation of xanthine oxide
inhibitors in patients with gout was not associated
with a change in cardiovascular disease risk (50).



CENTRAL ILLUSTRATION Urate Genetic Score: Association of Genetically Raised Urate With
Cardiometabolic Outcomes

Outcome                                                                          OR            95% CI            p value

OR per SD increase in Serum Urate Conferred by Genetic Score
0.5       1.0                     5.0    10.0

Keenan, T. et al. J Am Coll Cardiol. 2016; 67(4):407–16.

A genetic score was created using single nucleotide polymorphisms exclusively associated with serum urate levels. For a 1 SD increase in serum

uric acid levels, the odds ratio (OR) of gout conferred by the urate-specific genetic score was 5.84 (95% confidence interval [CI]: 4.56 to 7.49),

which was directionally consistent with the observed OR of 2.12 (95% CI: 1.90 to 2.33) for gout in epidemiological studies. However, a 1 SD

increase in serum urate due to the genetic score had no relationship with type 2 diabetes, coronary heart disease, ischemic stroke, or heart

failure. SD ¼ 1.427 mg/dl urate.
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Our findings were consistent with a prior report
that evaluated variation at the SLC2A9 gene in asso-
ciation with ischemic heart disease that found no evi-
dence of an association between genetically lowered
uric acid and CHD or blood pressure (21). The current
study extended these prior findings by evaluating
all variants associated with uric acid systematically,
exploring pleiotropy for all uric-acid related variants,
investigating other cardiometabolic outcomes (i.e.,
T2DM, stroke, and HF), and assessing >7-fold more
CHD cases (54,501 in the current report vs. 7,172 in the
prior report). Thus, it provided an analysis ade-
quately powered to assess urate variants and genetic
scores known to have modest effects on urate levels.

We observed that one serum urate SNP in the
ATXN2 gene, which was pleiotropic for major lipid,
glycemic, and anthropometric traits (thus excluded
from our score-based MR analysis), appeared to be
associated with risks of CHD and ischemic stroke at
nominal levels of significance. This SNP is located in
a high-frequency (w40%) long-range (1.6 Mb) haplo-
type, previously described to be associated with a
range of other traits including type 1 diabetes, celiac
disease, and elevated platelet counts. This haplotype
is speculated to have arisen from a selective sweep
specific to Europeans w3,400 years ago when high-
density human settlements were expanding in that
region of the world (33). In analyses restricted to
participants of South Asian ancestry, we did not find
this variant to be associated with major lipids in
37,000 participants or with risks of CHD (9,000 cases
and 9,000 controls) or ischemic stroke (3,500 cases
and 5,000 controls). Because of the high pleiotropic
nature of this locus and specificity to populations of
European ancestry, it is unlikely that the ATXN2
locus leads to CHD by increasing serum urate levels.
STUDY LIMITATIONS. Potential limitations of this
study should be considered. First, while analyses on
HF in the current study were underpowered (Online
Table 9), the concordance of the null findings
observed for all cardiometabolic outcomes tend to
suggest a lack of a major etiological role of serum
urate levels in HF. Second, we evaluated only 50
traits to assess pleiotropy for uric acid SNPs and did
not conduct measurements for all possible biological
traits; however, we conducted analyses using both
single SNPs and a GRS in association with car-
diometabolic outcomes. Importantly, we also con-
ducted analyses for a variant, rs12498742, that
imparts the strongest effect on uric acid levels (Online
Table 10) and is located in an intron of the SLC2A9
gene that encodes for a glucose and urate transporter
in the kidney, hence providing biological plausibility
to our hypothesis. We did not find this variant to be
associated with any other trait apart from circulating
urate levels; hence enabling MR analyses using this
variant only. We did not find rs12498742 to be asso-
ciated with any cardiometabolic outcome despite the
fact that MR analyses with this variant were suffi-
ciently powered (Online Table 9).

Third, nonpleiotropic variants in addition to the
SLC2A9 variant explained only 15.3% of the variance
in serum urate levels (Online Table 10). However,
none of them were associated with any of the inves-
tigated cardiometabolic endpoints in our large-scale
analyses, casting further doubt on serum urate as a
causal factor. Fourth, as suggested by our power
calculations (Online Table 9), although we were able
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Although

elevated serum uric acid levels have been associated with an

increased risk of cardiometabolic diseases, a causal link has not

been established. The results of a large Mendelian randomization

study suggest that lowering serum urate levels may not translate

into reductions in the risks of type 2 diabetes, coronary heart

disease, ischemic stroke, or heart failure.

TRANSLATIONAL OUTLOOK: Genetic studies that take

advantage of the random assortment of alleles during meiosis

can save time and resources, minimize bias, and inform clinical

practice when data from prospective clinical trials are not

available to provide evidence for causality.
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to exclude effects imparted by a 1 SD change in serum
urate levels on disease risk, which are weak to modest
and consistent with prior epidemiological studies
(3–11) (Online Table 9), our analyses may not have
detected very weak disease risk estimates (e.g., OR
for CHD < 1.10).

Fifth, while our assessment of causality was
limited to SNPs that are observed to be non-
pleiotropic, it can be argued that the loci that do
exhibit pleiotropy can mediate the disease. We ruled
out the latter possibility by demonstrating that risk
scores comprised of all 28 SNPs or 14 pleiotropic SNPs
were not associated with any cardiometabolic out-
comes. Finally, although we had access to only
summary-level data, preventing adjustment for fac-
tors acting as potential mediators between genotypes
and disease risk, MR analyses on summary-level data
have been shown to achieve results similar to the
methods that have used individual participant data
(14–19). Moreover, analyses with gout provided a
positive control and reinforced the findings observed
for other outcomes.

CONCLUSIONS

Our MR analyses did not support a causal role
of circulating serum urate concentrations in car-
diometabolic conditions. Our results suggested that
lowering serum urate levels may not translate into
risk reductions for T2DM, CHD, ischemic stroke, or HF
events.
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