score. A weak positive correlation was detected between TO and Gensini score (r=0.165, p<0.035) and a weak negative correlation was detected between TS and Gensini score (r=-0.193, p<0.013). When HRV parameters of CAD and control groups were compared; SDNN, SDNN index and LF/nu values were found significantly decreased in CAD group (SDNN: 116.1±36.3 ms; SDNN index: 44.8±15 ms; LF/nu: 35.6±20.2 vs 71.1±14.6, p<0.041 in patients with CAD and control group respectively). Also negative correlation between SDNN, SDNN index and Gensini score were found (r=-0.356, p<0.001 and r=-0.270, p<0.001 respectively). Furthermore TO is negative correlated with LF/nu, HF/nu, and LF/HF ratio (r=-0.277, p<0.001, r=-0.243; p<0.001 respectively). TS is positive correlated with RMSSD and SDNN index (r=0.203, p=0.009, r=0.170, p=0.030 respectively).

Conclusions: Our data show that HRT and HRV variables are impaired in patients with CAD patients versus those with control group and weakly correlated with severity of CAD.

PP-151
Association of the Factor V Leiden Mutation (1691G>A, Arg534Gln) with Ischemic Stroke in Nonvalvular Atrial Fibrillation in Turkish Population
Atilla Icli1, Nilgün Ertan2, Yasın Tarkö3, Uhudluhan Akıncıy, Hübi Yücel4, Erdöğan Yaşar1, Mehmet Koray Adalı1, Recep Sıçkı5, Fatih Aksoy6
1Department of Cardiology, Abdi Ercan University Education and Research Hospital, Eresin, 2Department of Neurology, Giresun University, Giresun, 3Department of Cardiology, Duzce University, Duzce, 4Department of Cardiology, Salemyan Demirel University, Ispara, 5Department of Biochemistry, Katip Celebi University, Izmir

Background: Factor V Leiden is an inherited disorder of blood clotting. It is a variant of a human factor V that causes a hypercoagulability disorder. In this disorder, the Leiden variant of factor V cannot be inactivated by activated protein C. The gene that codes the protein is referred to as factor V. Mutation of this gene is a single nucleotide polymorphism (SNP) is located in exon 10. As a missense substitution it changes a protein’s amino acid from arginine to glutamine. Factor V Leiden gene is present in 3% of the general population. People who carry the factor V Leiden gene have a fivefold greater risk of thrombosis than the rest of the population. Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia, which concerns a high risk of mortality and morbidity from stroke and thromboembolism. We wanted to investigate Factor V Leiden Mutation (1691G>A, Arg534Gln) in patients with AF who have had a stroke than in healthy controls.

Methods: The Factor V Leiden mutation was analysed in 70 patients with nonvalvular AF who have had a stroke and 70 healthy individuals with no documented episode of AF matched for age, race and sex. The Factor V Leiden mutation was identified by polymerase chain reaction method. Distribution of the factor V Leiden mutation alleles (allel G, allel A) and genotypes (Normal (GG) genotype, heterozygous (GA) or homozygous (AA) mutant genotype) were identified in study population. Demographic characteristics and risk factors for AF and stroke were evaluated in the study groups.

Results: There was no significant difference with respect to age and gender between groups. Genotype distribution of AF patients who have had a stroke and control groups shown in the table. The frequency of GG normal genotype of the Factor V Leiden was significantly lower in patients with AF patients who have had a stroke group compared with control group (57 (81.4%) vs 66 (94.3%), p=0.02). The frequency of GA genotype heterozygous mutant genotype was significantly higher in AF patients who have had a stroke group than control (12 (17.1%) vs 4 (5.7%), p=0.034). Between the two groups were compared according to the dominant genetic model (GA+AA vs. GG). The number of patients carrying at least one A mutant allele (GA + AA) was significantly higher in AF patients who have had a stroke group than control (14 (20%) vs 7 (11%), p=0.026).

Conclusions: In this study, our data suggest that the factor V Leiden mutation (1691G>A, Arg534Gln) may be associated with AF patients who have had a stroke from other clinical risk factors, but this should be confirmed in a much larger series of patients. Screening for this mutation may help in identifying patients at risk and in deciding the antithrombotic strategy.

PP-152
Effect of smoking on Tp-e interval, TP-e/QT and TP-e/QTC ratios as indices of ventricular arrhythmogenesis
Hakan Taşçılar1, Mehmet Ballı2, Mustafa Çetin3, Barış Ataç2, Musa Çakıcı4, Adil Bayramoğlu1, Özmir Ötuğ1, Hasan Pekdemir3
1Adıyaman University Training and Research Hospital, Department of Cardiology, Adıyaman, 218 Mart University, Faculty of Medicine, Department of Cardiology, Canakkale, 3İnönü University Faculty of Medicine, Turgut Ozal Medical Center, Department of Cardiology, Malatya

Background: Smoking may lead to ventricular arrhythmias and sudden cardiac death via altering ventricular recovery time dispersion indices such as QT interval and QT dispersion (QTc). TP-e/QT ratio and TP-e/QTC ratio are also known as predictors of ventricular arrhythmogenesis. The aim of our study was to assess effect of smoking on ventricular arrhythmogenesis using TP-e interval, TP-e/QT ratio, and TP-e/QTC ratios.

Methods: 45 chronic smokers and 30 age- and sex-matched non-smoker controls were included in our study. TP-e interval and TP-e/QT ratio were measured by 12-lead electrocardiogram, and the TP-e interval corrected for heart rate.

Results: QTd and corrected QT (QTc) were significantly higher in smokers group compared to controls (29.7± 5.6 vs 26.1 ± 4.4 and 36.1 ± 8.4 vs 31.1 ± 4.8 ms; P=0.008 and P<0.007, respectively). TP-e interval, TP-e/QT and TP-e/QTC ratios were also significantly higher smokers (88.1 ± 8.5 vs 71.1 ± 6.8 and 0.24 ± 0.03 vs 0.17 ± 0.02 ms, P<0.001 for all). In smoker group, the amount of smoking was correlated both TP-e interval and TP-e/QTc ratio (r=0.72, P<0.001 and r=0.55, P<0.001, respectively).

Conclusions: We found in our study that TP-e interval, TP-e/QT and TP-e/QTC ratios were increased in smokers and significantly correlated to the amount of smoking.

PP-153
Decreased transmural dispersion of repolarisation in hypertrabeculation/ noncompaction cardiomyopathy patients
Hatice Betül Ercan1, Tolga Sinan Güzgen2, Servet Altu3, Elif İçel Çekinçer1, Nazime Özbilgin4, Nurett Suyur5, Dilaver Oc6, Ahmet Emekli6, Ayça Zencirci6, Gümüş Zeren6, Osman Şahin6, Ahmet Lütfü Orhan6, Mehmet Ercan1
1Dr.Siyami Ersek Thoracic and Cardiovascular Surgery Training and Research Center, Department of Cardiology, Istanbul, 2Ordu State Hospital, Department of Cardiology, Ordu, 3Seydishehir State Hospital, Department of Cardiology, Konya, 4Faculty of Medicine, Medeniyet University, Department of Cardiology, Istanbul

Purpose: We aimed to evaluate the changes in the Tpeak–Tend interval (an index of transmural dispersion of repolarisation) with other traditional electrocardiographic indices of electrical dispersion in patients with hypertrabeculation/noncompaction (HT/NC) cardiomyopathy.

Methods: We enrolled 55 (38 men and 17 women; mean age 33±15 years) HT/NC cardiomyopathy patients (mean LVEF 44±16%) and 18 controls (mean age 31±11). Exclusion criteria were as follows: severe valvular heart disease, other congenital heart diseases, documented coronary artery disease, pulmonary hypertension, chronic renal failure, diabetic neuropathy and patients using digoxin or antiarrhythmic drugs at the time of admission. Twelve-lead ECGs were recorded at a tape speed of 50 mm s-1. QT interval duration and corrected QT interval duration (according to the Bazett’s formula) were measured manually after twofold magnification. The following parameters were analysed: QTP interval duration (from the onset of the QRS complex to the peak of the T wave); QTE interval duration (from the onset of the QRS complex to the end of the T wave); Tp-eTe interval duration (from the peak to the end of the T wave); QT dispersion was measured from all 12 leads (F-V 6). Differences between groups were compared by using Mann Whitney-U test.

Results: Corrected values of the QTp, QTc and Tp-eTe intervals in the controls and HT/NC cardiomyopathy patients are listed in Table. We found that minimum QT interval was significantly lower in the patient group than the controls (p<0.016). T wave negativity was more frequent in the HT/NC patients (p=0.01). Conclusion: In HT/NC cardiomyopathy patients the transmural dispersion of repolarisation is decreased and it may be associated with increased arrhythmias.

Factor V Leiden Mutation (1691G>A, Arg534Gln) genotype frequencies

<table>
<thead>
<tr>
<th></th>
<th>AF patients with stroke (n=70)</th>
<th>Control (n=70)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nc %</td>
<td>nc %</td>
<td></td>
</tr>
<tr>
<td>GG genotype</td>
<td>57 81.4</td>
<td>66 94.3</td>
<td>0.020</td>
</tr>
<tr>
<td>GA genotype</td>
<td>12 17.1</td>
<td>4 5.7</td>
<td>0.034</td>
</tr>
<tr>
<td>AA genotype</td>
<td>1 1.4</td>
<td>0 0</td>
<td>0.316</td>
</tr>
<tr>
<td>GA + AA genotypes (Dominant genetic model)</td>
<td>14 20</td>
<td>5 7.1</td>
<td>0.026</td>
</tr>
</tbody>
</table>