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Abstract

A minimum clique-transversal set MCT (G) of a graph G=(V; E) is a set S ⊆V of minimum
cardinality that meets all maximal cliques in G. A maximum clique-independent set MCI(G) of
G is a set of maximum number of pairwise vertex-disjoint maximal cliques. We prove that the
problem of �nding an MCT (G) and an MCI(G) is NP-hard for cocomparability, planar, line
and total graphs. As an interesting corollary we obtain that the problem of �nding a minimum
number of elements of a poset to meet all maximal antichains of the poset remains NP-hard even
if the poset has height two, thereby generalizing a result of Du�as et al. (J. Combin. Theory Ser.
A 58 (1991) 158–164). We present a polynomial algorithm for the above problems on Helly
circular-arc graphs which is the �rst such algorithm for a class of graphs that is not clique-perfect.
We also present polynomial algorithms for the weighted version of the clique-transversal problem
on strongly chordal graphs, chordal graphs of bounded clique size, and cographs. The algorithms
presented run in linear time for strongly chordal graphs and cographs. These mark the �rst
attempts at the weighted version of the problem. ? 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

All graphs we deal with are �nite, undirected and simple. As usual for a graph
G, �(G); !(G); �(G) and �(G) denote the size of a maximum independent set, the
size of a largest clique, the minimum degree and the maximum degree, respectively.
A clique is a set of pairwise adjacent vertices. A maximal clique is a clique that
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is maximal under inclusion. A set of vertices that meets all maximal cliques of G
is called a clique-transversal set of G or CT (G). A minimum clique-transversal set
MCT (G) is a CT (G) of minimum cardinality. As de�ned in [20], the clique-transversal
number �C(G) of G is the size of an MCT (G). A clique-independent set CI(G)
is a collection of pairwise vertex-disjoint maximal cliques. The clique-independence
number �C(G) is the size of a maximum clique-independent set MCI(G) [5]. We
have the obvious min–max duality inequality �C(G)¿�C(G) for any graph G. We de-
�ne a graph G to be clique-perfect if �C(H) = �C(H) for every induced subgraph H
of G.
An extensive study on clique-transversal sets is done from the theoretic point of

view in [1,18,20]. The aim of this paper is to investigate the problems of determining
�C(G) and �C(G) of a graph G from the algorithmic point of view. In [5], a linear
time algorithm to �nd �C(G) and �C(G) of a strongly chordal graph G was presented
(given a strong-elimination ordering) and it was proved that the problems are NP-hard
on split graphs. It was also proved that strongly chordal graphs are clique-perfect.
In [2], a polynomial algorithm for the above problems on a comparability graph was
presented by reducing the problems to some Menger-type questions and it was shown
that comparability graphs are clique-perfect.
In this paper, we prove that determining �C(G) and �C(G) is NP-hard for comple-

ments of bipartite graphs, planar graphs and line graphs. We obtain as a corollary that
the problem of �nding a minimum number of elements of a poset to meet all maxi-
mal antichains of a poset (de�ned later in the paper) is NP-hard, even for height-two
posets. We then propose an O(n2) algorithm to �nd an MWCT (G) – a minimum
weighted CT (G) – of a strongly chordal graph with a positive weight attached to
each vertex, a linear algorithm for the same problem on interval graphs and a poly-
nomial algorithm for the same on chordal graphs of bounded clique-size. To the best
of our knowledge these are the �rst attempts on the weighted version. We then pro-
pose an O(n2) time algorithm for �nding an MCI(G) and an MCT (G) of a Helly
circular-arc graph (HC-graph) G. HC-graphs are in general not even perfect (in the
usual sense) and in particular they are not clique-perfect. So, this is the �rst poly-
nomial time solution of the above problems on a class of graphs that is not clique-
perfect.
The line graph of a graph G, denoted L(G), is de�ned as follows: The vertices of

L(G) correspond to edges of G and two vertices in L(G) are adjacent whenever the
corresponding edges of G are. The total graph of G, denoted T (G), has vertex set
V (G)∪E(G) and two vertices of T (G) are adjacent whenever they are neighbors in G.
Clearly T (G) has both G and L(G) as induced subgraphs, see [14] for some interesting
properties of line and total graphs.
For a graph G, its vertex-clique incidence matrix (or just clique-matrix) M (G) is

a 0–1 valued matrix de�ned as follows. Let v1; v2; : : : ; vn be the vertices of G and
C1; C2; : : : ; Cp be the maximal cliques of G. Then M (G) has p rows and n columns
and is de�ned by: For 16i6p and 16j6n, M (G)ij = 1 if and only if vj ∈Ci. For
all graph theoretic terms not de�ned explicitly here, refer [14].
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2. NP-hardness results

The clique-transversal and the clique-independent set problems are known to be
NP-hard on split graphs. We now obtain NP-hardness results on cocomparability
graphs, total graphs, planar graphs and line graphs. The decision versions of the prob-
lems that are proved to be NP-complete are formally speci�ed below:
Problem: CLIQUE-TRANSVERSAL SET
Instance: A graph G = (V; E) and an integer K¿1.
Question: Is there a set of K or fewer vertices that meets all maximal cliques of G?

Problem: CLIQUE-INDEPENDENT SET
Instance: A graph G = (V; E) and an integer K¿1.
Question: Is there a collection of K or more pairwise vertex-disjoint maximal cliques?
It is clear that CLIQUE-INDEPENDENT SET is in NP. However, CLIQUE-

TRANSVERSAL SET is not known to be in NP, for a graph may have an expo-
nential number of maximal cliques and verifying whether a given set indeed meets all
maximal cliques cannot be done in polynomial time in any obvious fashion.

2.1. Complements of bipartite graphs

Theorem 2.1. CLIQUE-INDEPENDENT SET is NP-complete on complements of
bipartite graphs.

Proof. The reduction is from the independent set problem on total graphs of cubic
graphs. The NP-hardness of this problem follows from the fact that the edge-domination
problem is NP-hard on planar cubic graphs [16,21] and that a minimum edge domi-
nating set of a graph G corresponds to a maximum independent set of T (G), the total
graph of G [21]. Let T (G) be the total graph of a cubic graph G= (V; E). We reduce
the problem of �nding �(T (G)) to the problem of �nding �C(H) of a suitably de�ned
complement H of a bipartite graph. Let H=(X; Y; E1) where X ∩Y=∅; X; Y are cliques
and E1⊆X × Y represents edges with one end in X and the other in Y .
To construct H , take X = E and Y = V and E1 = {(e; x); (e; y): e = (x; y)∈E}.

Informally, V and E correspond to the two cliques of H , and a vertex e in X (=E)
is adjacent in H to precisely the two vertices in Y (=V ) on which e is incident in G.
Since G is simple, two vertices in X are adjacent to at most one common vertex in
Y . Hence, no clique in H can contain more than one vertex in both X as well as Y .
Note that, if G 6= K1 or K2, the only maximal cliques of H are V; E; Ce = {e; x; y}

where e=(x; y)∈E, and Cv= {v}∪ {e: e is adjacent to v} where v∈V . Hence, unless
G = K1 or K2, we have

�C(H) = �(T (G))

since the maximum clique-independent set of H will not include the maximal cliques
V or E, and Cr ∩Cs= ∅ if and only if r and s are two non-adjacent vertices of T (G).
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The result now follows from the fact that H can be constructed from G in polynomial
time.

Remark. Along the lines of the above proof, one can also prove that if G is a
triangle-free graph with �(G)¿2, then �(T (G))=�C(T (G)). Now, the edge-domination
problem is NP-hard on bipartite graphs G [21] and we may assume that the bipartite
graph G has �(G)¿2 by using the following attachment at each vertex v of G: add
new vertices av; xv; yv; zv and wv and the edges (v; av); (av; xv); (xv; yv); (yv; zv); (zv; wv)
and (wv; xv). It is easy to see that these transformations increase the size of a mini-
mum edge dominating set of G by exactly 2|V (G)|, Hence, the independent set prob-
lem is NP-hard on total graphs of bipartite graphs with �¿2, and thus, CLIQUE-
INDEPENDENT SET is NP-complete on the class of total graphs.

We now consider the clique-transversal problem on complements of bipartite graphs.
It is known that CLIQUE-TRANSVERSAL SET is NP-hard on complements of com-
parability graphs. This follows from the result of [9] on posets. For a poset (P;4),
de�ne S ⊆P to be an antichain if no two elements of S are comparable. A maxi-
mal antichain is an antichain that is maximal under inclusion. The height of a poset
is the size of a maximum chain (a set of pairwise comparable elements) in the
poset.
It is NP-hard to decide whether a poset has a �ber of size at most k, where a �ber

is de�ned to be any set that meets all maximal antichains of the poset [9]. However,
the poset constructed in the reduction of [9] has height k +1 and hence the associated
comparability graph will have clique number at least k + 1. We now prove a stronger
hardness result for posets of height two, so that the associated comparability graph has
clique number 2, i.e. it is in fact bipartite.

Theorem 2.2. CLIQUE-TRANSVERSAL SET is NP-hard on complements of
bipartite graphs.

Proof. The reduction is from the minimum vertex-cover problem on simple graphs G
with �(G)¿2. Let G=(V ′; E′) be a graph with �(G)¿2 with V ′= {1; 2; : : : ; n}; E′=
{ej = (fj; gj) | 16j6m}. Construct a graph H = (X; Y; E) with E⊆X × Y and X; Y; E
have the same meanings as in the previous theorem. Set

X = E′ ∪
(

n⋃
i=1

{pi; qi | 16i6n}
)
;

Y = V ′ ∪ {hi | 16i6n};
E = {(ej; fj); (ej; gj) | 16j6m} ∪ {(pi; i); (pi; hi); (qi; hi) | 16i6n}:

Since G is simple, by our construction, two vertices in X are adjacent to at most
one common vertex in Y , so no clique in H can have more than one vertex in both
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X and Y . The only maximal cliques (other than Y ) containing hi are {pi; hi; i} and
{pi; qi; hi} and the only maximal clique (other than X ) containing qi is {pi; qi; hi}.
We �rst prove, if 
(G) denotes the size of the minimum vertex-cover of G, �C(H)6


(G)+n. Indeed let 
(G)=k and S={i1; : : : ; ik} be a minimum vertex-cover of G. Then
T = {i1; : : : ; ik ; p1; p2; : : : ; pn} is a clique-transversal set of H because it meets X; Y ,
the cliques comprising i and all vertices in X adjacent to i for 16i6n, the maximal
cliques {ei; fi; gi} for 16i6m and {pi; qi; hi}, {pi; hi; i} for 16i6n and these are the
only maximal cliques in H .
Conversely, let T = {x1; x2; : : : ; xr} be a minimum clique-transversal set of H so

that �C(H) = r. If any xj (16j6r) is equal to hi or qi, replace it with pi to get
T ′ which will meet all the maximal cliques with the exception of (possibly) Y .
Since, to meet {pi; qi; hi} at least one of pi; qi; hi must belong to T , we must have
{p1; p2; : : : ; pn}⊆T ′. Let T ′={y1; y2; : : : ; yr}, if any yi=ej for some 16j6m, replace
ej with one of fj; gj to get T ′′. Now T ′′∩E′=∅. Also T ′′ is a clique-transversal set of
H because if fj is substituted for ej, the only maximal clique causing problems is the
clique with gj and all vertices in Y adjacent to gj, however since pgj ∈T ′′, T ′′ meets
this clique as well. Also clearly |T ′′|=|T |=�C(H). Let T ′′={p1; p2; : : : ; pn; i1; i2; : : : ; is}
with n + s = r. Now for T ′′ to meet all cliques of the form {ej; fj; gj} for 16j6m,
{i1; i2; : : : ; is} must be a vertex-cover of G, so s¿
(G) which implies |T ′′|= �C(H) =
r = n+ s¿n+ 
(G).
Thus, �C(H) = n+ 
(G), and the result (NP-hardness) now follows since H can be

constructed from G in polynomial time.

Since every bipartite graph is a comparability graph [13], we get:

Corollary 2.1. The clique-transversal and the clique-independent set problems are
NP-hard on cocomparability graphs.

Since posets naturally map onto comparability graphs through the Hasse-diagram
concept, we get the following interesting result, which strengthens the result in [9]:

Corollary 2.2. For a poset (P;4) it is NP-hard to determine a set of minimum
cardinality that meets all maximal antichains of the poset even if the height of the
poset is two.

Remark. Using ideas similar to those of the proof of Theorem 2.2, one can prove that
CLIQUE-TRANSVERSAL SET is NP-hard on the class of total graphs. The reduction
is from the vertex-cover problem on triangle-free graphs, which is NP-complete [23].
Given a triangle-free graph G on n vertices, construct G′ by attaching a new P4 at
each vertex of G, note that |V (G′)|=4n and G′ is also triangle free. Now consider the
total graph T (G′) of G. It can be proved that �C(T (G′))= 2n+ 
(G) using techniques
similar to those used in proving Theorem 2.2. It follows that �nding �C(H) for a total
graph H is NP-hard.
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2.2. Planar graphs

We now turn towards planar graphs. Two parameters related to �C(G) and �C(G) are
the neighborhood-covering number �N (G) and the neighborhood-independence number
�N (G) (see [17]). Let G = (V; E). The neighborhood NG(v) (or simply N (v)), stands
for the set {u: (v; u)∈E}. The closed neighborhood NG[v] (or simply N [v]), is given
by N (v) ∪ {v}. A neighborhood-covering set (NC-set) C is a set of vertices such
that E =

⋃{E[v]: v∈C}, where E[v] is the set of edges in the subgraph induced
by N [v]. �N (G) is the size of a minimum NC-set. A neighborhood-independent set
(NI-set) of G is a set of edges in which no two distinct edges belong to the same E[v]
for any v∈V . �N (G) is the size of a maximum NI-set. Clearly �N (G)¿�N (G). The
status of the problem of determining �N (G) and �N (G) for a planar graph G was left
open in [5].
We now proceed to settle the algorithmic complexity of determining �C(G), �C(G),

�N (G) and �N (G) for a planar graph G.

Theorem 2.3. The decision version of the neighborhood covering problem as well
as CLIQUE-TRANSVERSAL SET are NP-complete for a planar graph G with
�= 3.

Proof. The decision version of the neighborhood-covering problem is clearly in NP.
CLIQUE-TRANSVERSAL SET is in NP for a planar graph G since a planar graph
has a polynomial number of maximal cliques. We now prove NP-hardness.
Let H be an arbitrary planar cubic graph. We reduce the problem of determin-

ing the size, 
(H), of a minimum vertex-cover of H , which is known to be NP-
hard [16], to the problem of �nding �N (G) and �C(G) for a planar graph G with
�(G) = 3.
Form G by inserting two new vertices in each edge of H . Formally let H =(V1; E1)

with V1={1; 2; : : : ; n} and E1={ei=(fi; gi) | 16i6m}. In G=(V; E); ui; vi are inserted
on ei for 16i6m. Formally V = V1 ∪ {ui; vi | 16i6m} and E =

⋃m
i=1{(fi; ui); (ui; vi);

(vi; gi)}.
Clearly G has no triangle, in fact girth(G)¿9. So, �N (G) = �C(G) = 
(G). If S is

a minimum vertex-cover of H , then by adding exactly one vertex from {ui; vi} for
16i6m to S one can easily obtain a vertex-cover of G. So 
(G)6
(H) + m.
Conversely, let T be a minimum vertex-cover of G. Clearly, T ∩ {ui; vi} 6= ∅ for

16i6m. Also if both ui; vi ∈T for some i, then we can replace ui by fi in T . So we
may assume |T ∩ (V −V1)|=m. Let S=T ∩V1. Since T meets all edges of G, S must
meet all edges of H , which implies |S|¿
(H). Thus, |T |= 
(G)¿
(H) + m.
Hence we have �N (G) = �C(G) = 
(G) = 
(H) + m. The conclusion now follows

since G can be constructed in polynomial time from H .

We now turn to the related problems of determining �N (G) and �C(G) for a planar
graph G. We �rst state some useful lemmas:
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Lemma 2.1. Let G be a triangle-free graph. Then; any maximal clique of the line
graph of G; L(G); is the set of edges of G incident to some vertex of G.

Lemma 2.2. Let G be as in Lemma 2:1. Then; two maximal cliques in L(G) intersect
if and only if their corresponding vertices (in G) are adjacent in G.

Theorem 2.4. The determination of �N (G) and �C(G) for a planar graph with �=3
is NP-hard.

Proof. The reduction is from the independent set problem on planar cubic graphs which
is NP-hard [16]. Let H = (V; E) be an arbitrary planar cubic graph, |E| = m; |V | = n.
Form G as in Theorem 2.3, then �(G) = 3 and G is triangle free. Let K = L(G) be
the line graph of G; from Lemmas 2.1 and 2.2 and the arguments in the proof of
Theorem 2.3 it follows that �C(K) = �(G) = m+ �(H).
It is clear that K is planar, because from the way it is constructed, K can be obtained

from H by replacing each vertex of H by a triangle and each edge (u; v) of H by a
path of length 2 connecting a vertex in the triangle corresponding to u to a vertex in
the triangle corresponding to v.
Since, replacing each edge of an NI-set by a maximal clique containing it yields a

clique-independent set (CI-set), we have �C(K)¿�N (K). Conversely let T = {C1; C2;
: : : ; Cp} be a clique-independent set of K . De�ne S = {e1; e2; : : : ; ep} where ei is an
edge of the graph K whose endpoints are in Ci for 16i6p. We claim S is an NI-set.
Indeed, if ej; ek ∈ S; (j¡k), then ej; ek are independent as T is a CI-set. Let ej=(r; s)
and ek = (x; y). If possible, let {ej; ek}⊂E[w]. Since �(K) = 3; w∈{r; s; x; y}, say
w= r. So we must have Ck ={r; x; y} as !(K)=3 and an edge of K is in at most one
triangle of K (by the construction of K). This implies that Cj∩Ck 6= ∅, a contradiction.
Thus �N (K)¿�C(K).
Hence �C(K) = �N (K) = m+ �(H). The result now follows since K is planar with

�(K) = 3 and can be obtained from H in polynomial time.

Corollary 2.3. The determination of �N (G) and �C(G) for a line graph G with �(G)=
3 is NP-hard.

Proof. Follows from the reduction of Theorem 2:4.

2.3. Line graphs

From Corollary 2.3, we obtain the NP-completeness of CLIQUE-INDEPENDENT
SET on line graphs. We now turn towards the clique-transversal problem. For a graph
G = (V; E) denote by t(G) the minimum number of edges in E such that every
triangle in G has at least one of those edges. It is shown in [23] that determi-
nation of t(G) is NP-complete, but we now prove a stronger result when �(G) is
bounded.
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Lemma 2.3. The problem of determining t(G) for a graph G with �(G) = 6 and
�(G)¿2 is NP-hard.

Proof. The reduction is from the vertex-cover problem on cubic graphs. Let H=(V; E)
be a cubic graph, with V = {1; 2; : : : ; n}; E = {ej = (gj; hj) | 16j6m}.
Construct G=(V ′; E′) as follows: Initially take n independent edges fi=(ui; u′i) for

16i6n as part of G (these edges correspond to vertices of H). Then for each ej ∈E,
introduce three vertices aj; bj; cj that induce a K3 in G and join aj (resp. bj) to both
ends of fgj (resp. fhj). Also join cj to one of the ends of both fgj and fhj . Note that
V ′ = {ui; u′i | 16i6n} ∪ {aj; bj; cj | 16j6m}; |V ′| = 2n + 3m and that |E′| = 9m + n.
Also, clearly �(G)¿2.
Since H is 3-regular it is evident that �(G)67. Also for 16i6n one can ensure

that, of the three cj’s adjacent to an end of any fi, two of them are adjacent to
one end (of fi) and the third cj is adjacent to the other end (of fi). This will make
sure that �(G) = 6.
If S is a set of t(G) edges meeting all triangles in G, then one can choose S such

that for each j (16j6m) S uses at least one of the two edges fgj ; fhj and exactly
two edges involving aj; bj and cj. Indeed, this can be seen as follows: Let dj (resp. ej)
denote the end of fgj (resp. fhj) to which cj is adjacent. To meet the triangle
{aj; bj; cj}, there is no advantage in choosing the edge (aj; bj), and so assume for
de�niteness that (aj; cj) is chosen. Then one can choose the edge fgj in order to meet
the triangle formed by the ends of fgj and aj and choose the edge (bj; ej) to meet the
triangle formed by bj and the ends of fhj as well as the triangle {bj; cj; ej}.
Conversely, it is easy to see that any such set S must use at least two edges involving

aj; bj and cj for 16j6m irrespective of the number of edges in S from {fgj ; fhj}.
Thus we may assume that S contains 2m edges from E′ − {fi | 16i6n} and a set
U = {fi1 ; fi2 ; : : : ; fik} of k edges from {fi | 16i6n}. Clearly, S meets all triangles in
G i� for each j; 16j6m;U has at least one of fgj ; fhj i.e, i� {i1; i2; : : : ; ik} forms a
vertex-cover of H . Hence t(G) = 2m + 
(H). Since G can be constructed from H in
polynomial time, the result follows.

We now prove the central theorem of this subsection.

Theorem 2.5. Let L(H) be the line graph of H where �(H) = 7. Then CLIQUE-
TRANSVERSAL SET is NP-complete when restricted to such graphs H .

Proof. Presence in NP follows from the fact that a line graph has a polynomial number
of maximal cliques. The reduction is from the problem of �nding t(G) for a graph
G = (V; E) with �(G)¿2 and �(G) = 6.
Let V = {v1; v2; : : : ; vn}. Form H = (V ′; E′) as follows: Initially H will contain G

as an induced subgraph, and for each i; 16i6n, add vertices wi; ui1; ui2; ui3 and ui4;
let {uij | 16j64} induce a K4 in H and join vi to wi and wi to ui1. We observe the
following:
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• dH (v)¿3 for all v∈V since �(G)¿2,
• dH (uij)¿3 for 16i6n; 16j64,
• for 16i6n; NH (wi) = {vi; ui1} and (vi; ui1) =∈E′,
• �(H) = 7 since �(G) = 6.
It follows that the set of edges incident at any vertex in H would form a maximal
clique in L(H), the line graph of H . Also, the edges of any triangle of H will form a
maximal clique of size 3 in L(H). Hence we conclude that �C(L(H)) = tec(H) where
tec(H) denotes the size of a minimum edge-cover of H that includes an edge from
each triangle in H .

Claim. tec(H) = 3n+ t(G).

Proof. For each i; 16i6n, in order to meet the triangles in the K4 formed by uij
(16j64), exactly two edges (assume pi=(ui1; ui4) and qi=(ui2; ui3) for de�niteness)
are chosen. Thus to cover wi, we may choose ri = (vi; wi) (since ui1 is already cov-
ered by pi). The edges pi; qi; ri (16i6n) would cover all the vertices in H and the
optimal way to meet the remaining triangles in H would be to meet the triangles in G
optimally by using t(G) edges from E. It follows that tec(H)=3n+ t(G) and claim is
proved.
Hence �C(L(H)) = 3n+ t(G), and the result now follows from Lemma 2.3 and the

fact that L(H) can be constructed from G in polynomial time.

3. Minimum weighted clique-transversal sets

We now turn to the weighted version of the clique-transversal problem where ver-
tices of the graph have positive weights attached to them and we seek to �nd a
clique-transversal set which has a minimum total weight.

3.1. Strongly chordal graphs

A graph is an interval graph if it is the intersection graph of a family of intervals
on the real line [13]. A graph is chordal if it contains no cycle of length greater than
three as an induced subgraph. An s-sun is a chordal graph with a Hamiltonian cycle
x1; y1; x2; y2; : : : ; xs; ys; x1 such that each yi is of degree two [6]. A strongly chordal
graph is a chordal graph with no s-sun as an induced subgraph, for all s¿3. It is
proven in [10] that a graph is strongly chordal if and only if its vertices have a
strong elimination order v1; v2; : : : ; vn; i.e. for each i; 16i6n; Ni[vj]⊆Ni[vk ] whenever
vj; vk ∈Ni[vi] and j¡k (here Ni[x] stands for the closed neighborhood of x in the
subgraph Gi of G induced by {vi; vi+1; : : : ; vn}).
Let G = (V; E; w) be a strongly chordal graph with a strong elimination order

v1; v2; : : : ; vn and with a positive weight w(v) attached to each vertex v∈V . Construct
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a weighted graph, called the vertex-clique incidence graph H = (V ′; E′; w′) of G, as
follows:
The vertex set of H is V ∪ C where C = {C1; C2; : : : ; Cp} is the set of maximal

cliques of G. In H , two vertices of V are adjacent i� they are adjacent in G, C is an
independent set and Ci ∈C is adjacent to vj ∈V i� vj ∈Ci in G. The weight function
w′ is such that

w′(v) =
{
w(v) if v∈V;
∞ otherwise; i:e: v∈C:

Lemma 3.1. If G=(V; E) is strongly chordal; the graph H constructed above is also
a strongly chordal graph.

Proof. Let v1; v2; : : : ; vn be a strong elimination ordering of the vertices in G. Since
G is chordal, if C1; C2; : : : ; Cp are the maximal cliques of G, we may assume that
Cj =Nij [vij ] for 16j6p, for some 16i1¡i2¡ · · ·¡ip6n. Consider the ordering �
of the vertices of H obtained by �rst taking the ordering v1; v2; : : : ; vn and inserting the
“vertex” Cj just before vij for each j; 16j6p.
We claim � is a strong elimination ordering of H . To prove this, note that, for

16r6n, the vertices that occur later than vr in � (including the vertex vr itself) are
Sr = {vr; vr+1; : : : ; vn; Cqr ; Cqr+1; : : : ; Cp} where qr = min{t: 16t6p; it ¿ r}, and, for
16s6p, the vertices that occur later than Cs in � are Ts = {v: v∈Cs}.
Consider the higher neighborhood Nr[�] = NH [vr] ∩ Sr of the vertex vr in the

ordering �. We have Nr[�]⊆{vr; vr+1; : : : ; vn}, since if (vr; Cj)∈E(H), then vr ∈Cj,
which implies ij6r (by de�nition of ij as the smallest index of a vertex in Cj) and
hence j¡qr and Cj =∈Nr[�]. Let vj; vk ∈Nr[�] with r6j¡k6n. We will prove that
NH [vj] ∩ Sr ⊆NH [vk ] ∩ Sr . Since v1; v2; : : : ; vn was a strong elimination ordering of
G; Ni[vj]⊆Ni[vk ], which implies

NH [vj] ∩ {vr; vr+1; : : : ; vn}⊆NH [vk ] ∩ {vr; vr+1; : : : ; vn}:
Now suppose Cs ∈NH [vj], for some qr6s6p. Then, since r ¡ is6j¡k; (vr; vj)∈

E; (vr; vk)∈E, and (vis ; vj)∈E, we have, by the strong elimination ordering of v1; v2;
: : : ; vn, that (vk ; vis)∈E, which implies vk ∈Cis , or equivalently, Cs ∈NH [vk ]. Hence,

NH [vj] ∩ {Cqr ; Cqr+1; : : : ; Cp}⊆NH [vk ] ∩ {Cqr ; Cqr+1; : : : ; Cp}:
Combining the above two inclusions, we have for 16r6n, and for r6j¡k6n,

NH [vj] ∩ Sr ⊆NH [vk ] ∩ Sr: (1)

Similarly one can prove that, for 16s6p, if vj; vk ∈Ts for some j; k; is6j¡k6n,
then,

NH [vj] ∩ Fs⊆NH [vk ] ∩ Fs; (2)

where Fs is the set of vertices occurring later than Cs (including Cs) in the ordering �.
It is now easy to see that (1) and (2) imply that � is a strong elimination ordering

of H .
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Lemma 3.2. A minimum weighted clique-transversal set of G corresponds to a min-
imum weighted vertex-dominating set of H .

Proof. Follows easily from the way H is constructed and the fact that no Ci can
be in a minimum weighted vertex-dominating set of H since it is assigned in�nite
weight.

Lemma 3.3. The vertex-clique incidence matrix of a chordal graph has O(n + m)
entries equal to 1.

Proof. Let G be a chordal graph and let v1; v2; : : : ; vn be a perfect elimination ordering
of the vertices of G so that for each i; 16i6n; Ni[vi] is a clique. Let C1; C2; : : : ; Cp be
the maximal cliques of G. Clearly each Cj; 16j6p is of the form Nij [vij ] for some
ij; 16ij6n. Moreover the ij’s, 16j6p, are all distinct. Thus p6n and the number
N of 1’s in the matrix is given by

N =
p∑
j=1

|Cj|=
p∑
j=1

|Nij [vij ]|6m+ p6m+ n:

Theorem 3.1. A minimum weighted clique-transversal set of a strongly chordal graph
G can be obtained in O(n+m) time; given a strong elimination ordering of the vertices
of G.

Proof. The O(n) maximal cliques of G can be obtained in linear time. Construct
the vertex-clique incidence graph H of G as detailed above. By Lemma 3.3, the
vertex-clique incidence matrix of G has only O(n + m) entries equal to 1, so we
�nd that H has O(n+m) edges and O(n) vertices. Also, by Lemma 3.1, H is strongly
chordal, and a strong elimination ordering of its vertices can be obtained from a given
one for G in O(n+ m) time. The result now follows from Lemma 3.2 and the linear
algorithm for �nding a minimum weighted dominating set of a strongly chordal graph
given its strong elimination ordering (see [11,15]).

Since interval graphs form a subclass of strongly chordal graphs, we have the
following corollary:

Corollary 3.1. A minimum weighted clique-transversal set of an interval graph can
be obtained in linear time.

3.2. Chordal graphs of bounded clique size

Let G = (V; E) be a chordal graph with !(G) = k where k is a constant. We shall
now prove that the minimum weighted clique-transversal set problem can be solved
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in polynomial time for chordal graphs whose maximum clique size is k for some
constant k (this was also noted by Chang et al. [4] in their paper on generalized clique
transversal on k-trees). A maximum k-colorable subgraph of a graph G is de�ned as
an induced subgraph H of G such that �(H)6k and H has a maximum number of
vertices.

Theorem 3.2 (Yannakakis and Gavril [22]). The maximum weighted k-colorable sub-
graph problem in chordal graphs is polynomial-time solvable when k is �xed.

Lemma 3.4 (Corneil and Fonlupt [7]). Let G = (V; E) be a chordal graph in which
all maximal cliques are of size k. Then; W ⊆V is a clique-transversal set of G if
and only if V −W induces a (k − 1)-colorable subgraph of G.

Theorem 3.3. A minimum weighted clique-transversal set of a chordal graph with
bounded clique size; say !(G) = k for some constant k; can be found in polynomial
time.

Proof. Let G=(V; E; w) be a chordal graph with !(G)=k and a weight w(v) attached
to each v∈V . Let C1; C2; : : : ; Cp be the maximal cliques of G. Form H as follows:
For each Ci (16i6p) with |Ci|¡k add k − |Ci| new vertices and join each of them
to all vertices of Ci. Also assign very large weights M to the newly introduced ver-
tices. Clearly H is a chordal graph with all maximal cliques of size k. From the way
weights are given to the new vertices, it follows that any MWCT (H)⊆V . For some
W ⊆V (H), let H [W ] be a maximum weight (k−1)-colorable subgraph of H . Then by
Lemma 3.4 it follows that V (H)−W ⊆V is a minimum weight clique-transversal set
of G. The result now follows since such a W can be obtained in polynomial time by
Theorem 3.2.

A graph is said to be a k-tree if it can be obtained, starting with a clique of size
k, by repeated addition of a vertex and making it adjacent to an existing k-clique. It
is easy to see that if G is a k-tree, then G is chordal and !(G)6k + 1, so using
Theorem 3.3 we can conclude:

Corollary 3.2 (Chang et al. [4]). A minimum weighted clique-transversal set of a k-
tree G can be obtained in polynomial time when k is �xed.

3.3. Cographs

Cographs are graphs with no induced P4. Cographs may also be de�ned recursively
as follows:
• The graph consisting of an isolated vertex is a cograph.
• If G1 and G2 are cographs, then so is their union G1 ∪ G2 and their join G1 + G2.
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The following interesting characterization of cographs in terms of clique-transversal
sets appears in [18]:

Theorem 3.4. A connected graph G=(V; E) is a cograph if and only if every minimal
clique-transversal set of G is a maximal independent set.

It can be proved (for instance by induction) that any maximal independent set of
a cograph is also a clique-transversal set, and hence, using Theorem 3.4, one can
reduce the problem of �nding the minimum weighted clique-transversal set of a cograph
G to the problem of computing the minimum weighted maximal independent set of
G−{isolated vertices in G}, which can be done in linear time using standard cograph
techniques. We may hence conclude:

Theorem 3.5. A minimum weighted clique-transversal set of a cograph can be com-
puted in linear time.

We now also present a direct approach to the clique-transversal problem on cographs.
Let MWCT (G) stand for any minimum weight clique-transversal set of a graph G with
positive weights attached to its vertices.

Lemma 3.5. If G1 = (V1; E1) and G2 = (V2; E2) with V1 ∩ V2 = ∅ and G = G1 + G2;
then the maximal cliques C of G are precisely those of the form C = C1 ∪ C2 where
Ci is a maximal clique of Gi for i = 1; 2.

Proof. Clearly if C = C1 ∪ C2 with Ci a maximal clique of Gi (i = 1; 2), then C is a
maximal clique of G = G1 + G2. Conversely, if C is a maximal clique of G, de�ne
Ci=C∩Vi for i=1; 2; then C=C1∪C2. If say C1 is not maximal in G1, i.e C1⊂C′

1⊆V1
where C′

1 induces a clique, then we have C = C1 ∪ C2⊂C′
1 ∪ C2⊆V with C′

1 ∪ C2
inducing a clique in G, a contradiction since C is a maximal clique of G.

Let the weight of a set be the sum of weights of its elements. For a family of sets
F = {S1; S2; : : : ; Sk} de�ne Min(S1; : : : ; Sk) to be the set in F with smallest weight. We
now establish recurrence equations for MWCT (G).

Lemma 3.6. Let Gi = (Vi; Ei) for 16i6k where Vi ∩ Vj = ∅ for 16i¡ j6k. Then
(i) MWCT (G1 ∪ G2 ∪ · · · ∪ Gk) =

⋃k
i=1MWCT (Gi);

(ii) MWCT (G1 + G2 + · · ·+ Gk) =Min(MWCT (G1); : : : ; MWCT (Gk)).

Proof. Part (i) is obvious. Part (ii) follows from Lemma 3.5 since all weights are
positive.

The recurrence equations of Lemma 3.6, together with “standard” cograph techniques,
yield Theorem 3.5.
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4. Helly circular-arc graphs

In this section we consider another class of graphs for which the maximal cliques
have a nice structure, viz. Helly circular-arc graphs. A family {Ti}i∈I of subsets of a
set T is said to satisfy the Helly property if J ⊆ I and Ti ∩Tj 6= ∅ for all i; j∈ J imply⋂
j∈J Tj 6= ∅. A graph is a Helly circular-arc graph if it is the intersection graph of

a family of arcs on a circle that satis�es the Helly property [13]. Helly circular-arc
graphs (HC-graphs) form a superclass of interval graphs. In this section, we describe
polynomial algorithms for the clique-transversal and clique-independent set problems
on HC-graphs.

4.1. Preliminaries

Lemma 4.1. If C is a maximal clique of a Helly circular-arc graph G; then G[V−C]
is an interval graph.

Proof. The arcs corresponding to vertices in C intersect pairwise and hence due to
Helly property, they have a point P on the circle in common. Owing to the maximality
of C, arcs corresponding to vertices in V−C do not contain P, or equivalently G[V−C]
is an interval graph.

Lemma 4.2. An HC-graph G on n vertices has at most n maximal cliques.

Proof. Let {Aj=(l(Aj); r(Aj)): 16j6n} denote the circular arcs corresponding to the
n vertices of G where Aj is the arc joining the points l(Aj) and r(Aj) and oriented in
counterclockwise sense from l(Aj) to r(Aj). r(Aj) is called the right endpoint of the
arc Aj.
Now, consider a maximal clique C of G. Due to the Helly property, the arcs corre-

sponding to the vertices in C have a common point, say P, on the circle. Now suppose
we move along the circle in the counterclockwise direction starting from P till we reach
the �rst point Q on the circle which is the endpoint of one of the arcs {Aj: 16j6n},
say that of As. Q must be a right endpoint of As for otherwise the clique C will not
be maximal under inclusion. Moreover, by nature of its choice, this point Q will be
present in all the arcs that correspond to vertices in C.
Thus, it follows that with each maximal clique C one can associate the right endpoint

of an arc AfC where 16fC6n such that C is precisely the set of all arcs that contain
r(AfC ). Moreover, it is easy to see that the above construction ensures that if C1 6= C2
are two maximal cliques, then fC1 6= fC2 . It therefore follows that the number of
maximal cliques is at most n.

Lemma 4.3. Let S1; S2; : : : ; Sk be an ordering of some non-empty subsets of a set
X = {x1; x2; : : : ; xn}. Moreover; for 16j6n let the Si’s to which xj belongs occur
consecutively in the above ordering. Then the minimum cardinality of a subset T ⊆X
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which satis�es T∩Si 6= ∅ for 16i6k equals the maximum number of pairwise disjoint
sets that can be chosen from S1; : : : ; Sk .

Proof. For 16i6n, let ri denote the index of the last set in the ordering S1; S2; : : : ; Sk
to which xi belongs. Consider the following greedy algorithm:
(i) Set i = 1, H = ∅, Y = ∅
(ii) While i6k
• Set H = H ∪ {Si}.
• Let xj ∈ Si be such that rj =max{rp | xp ∈ Si}.
Set Y = Y ∪ {xj} and i = rj + 1.
When the above algorithm terminates, we clearly have Y ∩ Si 6= ∅ for 16i6k and

that H is set of pairwise disjoint Sj’s.
Also we have |H |= |Y |. The conclusion now easily follows.

Remark. Note that the above algorithm runs in O(|X |) time once the ri’s are found.

A (0,1)-valued matrix is said to have circular 1’s property for columns if its rows
can be permuted in such a way that the 1’s in each column occur in a circular con-
secutive order; regard the matrix as wrapped around a cylinder. The following charac-
terization of HC-graphs is due to Gavril:

Theorem 4.1 (Gavril [12]). An undirected graph G is a HC-graph i� its vertex-clique
incidence matrix has circular 1’s property for columns.

4.2. Idea behind the algorithm

Let G = (V; E), where V = {v1; v2; : : : ; vn}, be a HC-graph whose maximal cliques
have been ordered as C1; C2; : : : ; Cp so that the vertex-clique incidence matrix M (G)
has circular 1’s property for columns.
For 16r; s6p the circular segment [r; s] is de�ned as follows:

[r; s] =
{ {z: r6z6s} if r6s;
{1; 2; : : : ; p} − {z: s¡ z¡r} if s¡ r:

Note that [r; s] ∪ [s; r] = {1; 2; : : : ; p} and [r; s] ∩ [s; r] = {r; s}. Also if T is a proper
subset of {1; 2; : : : ; p} comprising of consecutive indices modulo p (i.e., indices p and
1 are considered consecutive) then there is a unique way to write T as a circular seg-
ment [lT ; rT ]. Also if [r; s] is a circular segment, denote by [r; s]c the circular segment
{1; 2; : : : ; p} − [r; s].
For 16j6n, let Cv(j) denote the set of indices of the maximal cliques that contain

vj; and for 16i6p, let INT (i) be the set of indices of the maximal cliques that
intersect Ci. Due to the circular 1’s property of the matrix M (G), it follows that Cv(j)
and INT (i) are circular segments; let INT (i) = [li; ri], 16i6p and Cv(j) = [aj; bj],
16j6n. Without loss of generality, we assume that Cv(j) 6= {1; 2; : : : ; p} for 16j6n,
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for otherwise there exists vj such that vj belongs to all maximal cliques and this happens
if and only if degG(vj) = n− 1 which can be readily checked for.
For 16i6p, consider the set of cliques 
i which is the set of cliques that are

vertex-disjoint with Ci; clearly the set of indices of the cliques in 
i is [li; ri]c. De-
note by MCT (Gi) a set Pi⊆V − Ci of minimum cardinality that meets all cliques
in 
i and by MCI(Gi) a set Qi⊆
i of maximum number of pairwise vertex-disjoint
cliques in 
i. By Lemma 4.3, the remark following it and the circular 1’s ordering of
cliques, it follows that MCT (Gi) and MCI(Gi) can be computed in O(n) time and that
|MCT (Gi)|= |MCI(Gi)|.
Let vxi be the vertex in Ci∩Cli belonging to the maximum number of cliques among

the cliques {Cj: j∈ INT (i)}. Similarly vyi ∈Ci ∩ Cri is de�ned.
For 16i6p, Si=MCI(Gi)∪{Ci} is a CI(G) and Ti=MCT (Gi)∪{xi; yi} is a CT (G)

(in fact, MCT (Gi) ∪ {si; ti} is a CT (G) for any si ∈Ci ∩ Cli and any ti ∈Ci ∩ Cri). It
is clear that

�C(G) = max
16i6p

|Si|= max
16i6p

|MCI(Gi)|+ 1: (3)

Now, for each i, 16i6p,

�C(G)6 |MCT (Gi)|+ 2
= |MCI(Gi)|+ 2 (because |MCT (Gi)|= |MCI(Gi)|)
6 �C(G) + 1 (using(3)):

Combining this with the weak-duality relation �C(G)¿�C(G), we get

�C(G)6�C(G)6�C(G) + 1:

We may thus record the preceding discussion in the following result:

Theorem 4.2. For a HC-graph G; �C(G)6�C(G)6�C(G) + 1.

Remark. It is easy to see that C5, the cycle on �ve vertices, is an HC-graph with
�C(G) = 2 and �C(G) = 3, and so the above bound is tight.

The idea behind our algorithm is the following: Find Si and Ti in the order
i = 1; 2; : : : ; p (recall that |Ti| = |Si| + 1). Check if a Tj exists with |Tj| = |Si| or
if a Sj exists with |Sj| = |Ti| for some j, 16j¡ i. In either case we have a CT (G)
and a CI(G) of equal size and we can output these as the optimal MCT (G) and
MCI(G). If this fails, we have |S1| = |S2| = · · · = |Sp| = �C(G). Then �nd a set of
vertices Zj that meets all cliques in {Ck : k ∈ [aj; bj]c} for 16j6n. If any Zj is such
that |Zj ∪ {vj}| = �C(G), output Zj ∪ {vj} as MCT (G) and S1 as MCI(G). Otherwise
output S1 and T1 as MCI(G) and MCT (G), respectively.

4.3. The algorithm

We now proceed to formally specify the algorithm.
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Algorithm HC-Arc-CT-CI
Input: A Family of Arcs F={Aj: 16j6n} on a circle that satisfy the Helly property.
Output: MCT (G) and MCI(G) where G is the intersection graph of the family F.
Step 0:
Determine and order the maximal cliques and the vertices of G with circular 1’s

property as C1; : : : ; Cp and v1; v2; : : : ; vn. For 16i6p, determine li; ri; xi and yi. Also
for 16j6n, determine aj and bj. (This �nishes all the preprocessing.)
Step 1:
For i = 1; 2; : : : ; p do
(i) Find MCT (Gi) and MCI(Gi) by the algorithm of Lemma 4.3 using the ordering

Cri+1; · · · ; Cli−1 of the cliques in 
i. Set
Si =MCI(Gi) ∪ {Ci} and
Ti =MCT (Gi) ∪ {vxi ; vyi}.

(ii) If i = 1 then set
size = |S1|
CT save = T1 and
CI save = S1:

(iii) If i 6= 1 and |Si|= size + 1 then set
MCI(G) = Si,
MCT (G) = CT save; Exit.

(iv) If i 6= 1 and |Si|= size − 1 then set
MCI(G) = CI save,
MCT (G) = Ti; Exit.

=∗ If algorithm has still not terminated, CI save is actually a maximum clique-
independent set and �C(G)=size; Proceed further to ascertain whether �C(G) is actually
�C(G) + 1. ∗=
Step 2:
For j = 1; 2; : : : ; n do
(i) Run the algorithm of Lemma 4.3 for the ordering Cbj+1; : : : ; Caj−1 to get a transver-

sal set Zj. (Clearly Zj ∪ {vj} is a CT (G).)
(ii) If |Zj|= size − 1 then set:

MCI(G) = CI save,
MCT (G) = Zj ∪ {vj}; Exit.

Step 3: =∗ Still here, so �C(G) = �C(G) + 1 ∗=
Set MCI(G) = CI save, MCT (G) = CT save; Exit.

4.4. Proof of correctness

The correctness of the algorithm follows from the following observations:
(i) The MCT (G) output is a CT (G) and the MCI(G) output is a CI(G).
(ii) Clearly if the algorithm reports �C(G)=�C(G) then the sets output (MCI(G) and

MCT (G)) are the right ones (this follows from observation (i)).
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(iii) Since |MCT (Gi)|= |MCI(Gi)| for 16i6p, it follows that if the algorithm outputs
MCT (G) and MCI(G) from Steps 1 or 2, then |MCI(G)|= |MCT (G)| and so the
sets output are the correct ones by observation (ii).

(iv) The algorithm always outputs a correct MCI(G); this follows from the comment
at the end of Step 1.

(v) The only case that remains is when the algorithm outputs the sets from Step 3.
This case is settled by Lemma 4.4.

Lemma 4.4. If the algorithm outputs S1 as MCI(G) and S2 as MCT (G) from Step
3 with |S2| − |S1|= 1; then for the HC-graph G; �C(G) = �C(G) + 1.

Proof. Suppose on the contrary, �C(G)= �C(G)= t. Then let MCI(G)= {Ci1 ; : : : ; Cit}
with 16i1¡i2¡ · · ·¡it6p and MCT (G)={w1; w2; : : : ; wt} with wk ∈Cik for 16k ≤
t and let wk=vjk for 16k6t. Since {w1; w2; : : : ; wt} meets all maximal cliques of G, we
have: For 16k ¡ t, wk =∈Cik+1 and wt =∈Ci1 , bjk +1¿ajk+1 and bjt +1 ≥ aj1 . When Step
2 is performed with j= j1, we would obtain Zj1 with |Zj1 |= t−1=�C(G)−1= size−1
since the set {vj2 ; : : : ; vjt}⊆V − Ci1 is a set of size t − 1 that meets all the cliques in
{Ck : k ∈ [aj1 ; bj1 ]c}. Hence the algorithm would have output S1; S2 with |S1|= |S2| from
Step 2 itself, a contradiction.

4.5. Complexity analysis

The vertex-clique incidence matrix M can be obtained in O(n2) time once the
circular-arc representation is given using a method like the one of Lemma 4.2.
M has n columns and at most n rows by Lemma 4.2. The ordering of the cliques
so that M has circular 1’s property can be done in O(n2) time [3]. Once this is done,
the determination of li; ri; aj; bj etc can be managed in O(n2) time in a straightforward
manner. Thus Step 0 takes O(n2) time.
Step 1 takes O(n2) time, as p6n and after the cliques have been ordered each

iteration takes O(n) time by Lemma 4.3. Using the same argument one notes that Step
2 can be performed in O(n2) time. Hence we conclude:

Theorem 4.3. For a Helly circular-arc graph G; the clique-transversal and clique-
independent set problems can be solved in O(n2) time.

5. Conclusions

The complexity status of the clique-transversal and the clique-independence problems
on several classes of graphs were determined in this paper. In particular, a polynomial
algorithm was presented for Helly circular-arc graphs. Circular-arc graphs form a su-
perset of HC-graphs and may have an exponential number of maximal cliques. The
above problems are open on circular-arc graphs. The paper also marks the �rst suc-
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cessful attempts at the problems on a class of graphs that are not clique-perfect and of
the weighted versions of the problem. The result on cocomparability graphs also yields
an interesting result in the theory of posets as noted in Corollary 2.2. In light of the
result on cographs, the problem may also be investigated on super-classes of cographs
like permutation and distance-hereditary graphs.
Also on the theoretic side, one may attempt to characterize clique-perfect graphs

and in particular determine whether all clique-perfect graphs are perfect. Note that for
n¿2, �C(C2n+1) = n + 1, �C(C2n+1) = n and if G is the complement of C2n+1 then
�C(G) = 3 and �C(G) = 2. Hence it follows that all clique-perfect graphs are Berge
(i.e. have no odd hole or odd antihole) and that a triangle-free graph is clique-perfect
if and only if it is bipartite. It follows that if the strong perfect graph conjecture holds
then all clique-perfect graphs are perfect.

6. Unlinked References
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