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a b s t r a c t

HIV-exposed seronegative individuals (HESNs) are persons who remain seronegative despite repeated
exposure to HIV, suggesting an in vivo resistance mechanism to HIV. Elucidation of endogenous factors
responsible for this phenomenon may aid in the development of new classes of microbicides and
therapeutics. We compared cervicovaginal protein abundance profiles between high-risk HESN and two
control groups: low-risk HESN and HIV-positives. Four iTRAQ-based quantitative experiments were
performed using samples classified based on presence/absence of particular gynaecological conditions.
After statistical analysis, two proteins were shown to be differentially abundant between high-risk
HESNs and control groups. Serpin A5, a serine proteinase inhibitor and Myeloblastin, a serine protease,
were up- and downregulated, respectively. Commercially available ELISA assays were used to confirm
differential Serpin A5 levels. These results suggest that HIV resistance in CVF of HESNs is the result of a
delicate balance between two complementary mechanisms: downregulation of serine proteinases and
upregulation of their inhibitors.
& 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Introduction

HIV is responsible for one of the most disastrous epidemics
throughout human history, and approximately 34 million people
are currently infected (UNAIDS, 2013). Unfortunately, the devel-
opment of a prophylactic vaccine will likely not be available soon.
Other strategies include topically applicable (e.g., rectal or vaginal)
or oral antiretrovirals (ARV), which are chemical entities that can

prevent or reduce HIV transmission. However, although these
ARVs are a very promising strategy to reduce HIV spread, some
issues remain, like the uptake and adherence of these compounds
and the improvement of their efficiency (Cutler and Justman,
2008; Rohan and Sassi, 2009; Baeten and Grant, 2013).

HIV-exposed seronegative individuals

HIV-exposed seronegative individuals (HESNs) are frequently
exposed to HIV but are not infected and are thus apparently HIV
resistant in vivo. They comprise less than 5% of the general population
and can be found among commercial sex workers, haemophiliacs
receiving HIV contaminated blood, healthcare workers, children from
HIV-infected mothers, intravenous drug users and seronegative part-
ners in a discordant couple (Hirbod and Broliden, 2007; Horton et al.,
2010; Broliden, 2010; Lederman et al., 2010; Shearer and Clerici, 2010;
Miyazawa et al., 2009; Kulkarni et al., 2003; Shacklett, 2006). Elucida-
tion of endogenous factors that inhibit HIV transmission and prevent
the establishment of a productive infection are of high importance as
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they can be used as a base for the development of new types of ARV
and microbicides with higher efficiency. Therefore, many studies have
been performed to identify physiological factors correlated with the
HESN-status. Mutations of chemokine or Toll-like receptors (TLR),
upregulation of chemokines due to genetic polymorphisms, specific
human leukocyte antigen haplotypes, natural killer cell activity
regulated by the killer Ig-like receptor (KIR)/HLA interaction, presence
of autoantibodies and/or alloantibodies, cytotoxic and helper T lym-
phocyte responses against HIV epitopes, altered cytokine profiles and
production of anti-HIV antibodies have all been linked to HIV
resistance (Guerini et al., 2011; Ghadially et al., 2012; Arenzana-
Seisdedos and Parmentier, 2006; Hirbod and Broliden, 2007;
Kulkarni et al., 2003; Marmor et al., 2006; Shacklett, 2006; Lajoie et
al., 2012; Choi et al., 2012; Sironi et al., 2012; Tomescu et al., 2011; Turk
et al., 2013; Yao et al., 2013; Prodger et al., 2013). In addition, some
studies hypothesize that HIV resistance by HESNs occurs at the viral
entry gate before HIV interacts with dendritic or other target cells
(Belec et al., 2001; Soderlund et al., 2007). Because the cervicovaginal
mucosa is the most important entry point for HIV in women,
resistance to sexually transmitted HIV infection in female HESNs
may be the result of factors present at the lower female genital tract.
Among these, the mucosal epithelium and especially proteins or
peptides present in the cervicovaginal fluid (CVF) may play an
important role (Iqbal et al., 2009; Shen and Smith, 2014).

Cervicalvaginal fluid

The use of CVF as clinical samples has gained interest in recent
years because analysis of the CVF proteome can be used for several
purposes. Knowledge of the CVF proteome may: (1) yield informa-
tion about the aetiology of specific gynaecological pathologies,
(2) lead to the identification of biomarkers for disease diagnosis
and progression or (3) provide insight into physiological phenom-
ena such as HIV resistance. Using antibody-based techniques (e.g.,
ELISA and Western blotting), a plethora of potential biomarkers for
preterm birth, preterm premature rupture of membranes, bacterial
vaginosis and cervical cancer have been discovered (Zegels et al.,
2010). In addition, several studies on HIV resistance have used CVF
from HESNs for the identification of correlates of HIV protection
using antibody-based techniques. Anti-HIV IgA and IgG antibodies
were detected in CVF obtained from heterosexual HESN women
(Archibald et al., 1992; Belec et al., 1994b, 1994a; Beyrer et al.,
1999; Devito et al., 2000; Ghys et al., 2000; Mazzoli et al., 1997;
Choi et al., 2012). Additionally, the levels of the HIV-suppressive
β-chemokine RANTES were found significantly different in CVF
from HESNs (Belec et al., 2001; Iqbal et al., 2005; Yao et al., 2013).
These results indicate that CVF is an important factor for the
establishment of HIV resistance in HESNs. However, the use of
antibody-based techniques limits the research to the analysis of
only a few selected proteins. Therefore, comprehensive studies on
CVF, which take all proteins under consideration, may yield more
HIV resistance factors (Zegels et al., 2010).

HIV resistance factors

Information from qualitative comprehensive proteomics stu-
dies on CVF showed that this biological fluid contains proteins/
peptides with intrinsic anti-HIV activity such as defensins, lacto-
ferrin, lysozyme, cathelicidin and SLPI (Cole and Cole, 2008;
Hirbod and Broliden, 2007; Kazmi et al., 2006; Zegels et al.,
2009). In addition, (Venkataraman et al., 2005) demonstrated that
the cationic fraction of CVF has inherent anti-HIV activity and
hypothesized that this activity is the result of a complex synergism
between different proteins in CVF (Levinson et al., 2012). Later,
a study of Levinson et al. (2012) confirmed these findings
and pointed to HNP1-3 and LL-37 as possible mediators. In

addition, Ghosh et al. (2010) showed that this anti-HIV activity
correlated significantly with CVF levels of MIP-3α, HBD-2 and anti-
gp160 IgG antibodies. Such factors may contribute to the highly
inefficient sexual transmission of HIV, as most unprotected expo-
sures to HIV (499.5%) do not result in infection (Gray et al., 2001).

Three quantitative proteomics studies for the isolation of HIV
resistance biomarkers have been published. Burgener et al. (2008)
employed resp. 2D-DIGE and LC-LTQ-FT (Burgener et al., 2011) and
compared protein abundance profiles from HESN persons with
those from healthy controls. The authors identified resp. 16 and 41
differentially expressed proteins with diverse biological function-
alities, including several serine proteinase inhibitors. Iqbal et al.
(2009) used surface-enhanced laser desorption/ionization time-of-
flight (SELDI-TOF) mass spectrometry for comparison of protein
abundance profiles from HESNs with those from control groups
and found that the serine proteinase inhibitor elafin/trappin-2 is
significantly upregulated in HESNs. In addition, elafin/trappin-2
has recently been identified as a new anti-HIV factor of the innate
immune system of the lower female genital tract (Ghosh et al.,
2009; Drannik et al., 2012b). However, the use of other proteomics
techniques and test populations may help to characterize other
CVF proteins correlated with in vivo HIV resistance. To improve the
reliability of potential resistance factors that inhibit HIV transmis-
sion, it is important to confirm and to validate such factors in
different independent HESN cohorts, whether or not with addi-
tional (genital) infections. Therefore, we analyzed the CVF from an
HESN population of female sex workers from Abidjan, Côte d'Ivoire
using iTRAQ-based quantitative proteomics to further unravel
in vivo HIV resistance.

Results

Sample population

Three different subgroups were selected from a female commercial
sex worker population from Abidjan, Côte d’Ivoire: HR, LR and HIV.We
chose the HR group as the test group because these persons remained
seronegative despite frequent HIV exposure for a long period of time.
Therefore, this group is very likely to be enriched for HESN individuals.
Two different control groups were included in the experiments. The
individuals from the LR group were not (or extremely exceptionally)
exposed to HIV due to the protective measures they have taken and
the relatively low number of clients per week. This group is expected
to be representative for the general population that includes only a
small fraction of HESNs (o5% (Hirbod and Broliden, 2007; Kulkarni et
al., 2003; Shacklett, 2006)). Therefore, these LR individuals act as a
low-risk control group. Comparison between HR and LR may lead to
the identification of proteins specifically correlated with HIV resis-
tance. However, non-protective HIV-specific immune reactions occur
in seropositive persons and HESNs (Biasin et al., 2000). Therefore, it is
possible that adaptive immunity-related proteins can be significantly
different in the HR and LR group, but not in comparison to HIV-
positive persons. This type of result would indicate that the protein is
derived from an HIV-specific immune reaction that does not con-
tribute to the observed HIV resistance. Therefore, we incorporated
HIV-infected persons as a non-resistant control group.

The large amount of potential biomarkers resulting from one
experiment is one of the major downsides of MS-based quantita-
tive methods such as iTRAQ. We conducted four different experi-
ments so that the number of potential biomarkers could be
reduced by statistics. As recently suggested in order to prevent
confounding and bias, the HESN samples must be well documen-
ted, and pathological conditions need to be taken into considera-
tion (Kaul et al., 2011). Indeed, because gynaecological pathologies
can induce significant alterations of the CVF proteome (Zegels et
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al., 2010), all samples within one experiment should originate
from women with no infections or from women with a particular
pathology. Enrichment of pathology in a specific subgroup may
occur, ultimately resulting in proteome profiles that may be the
consequence of the pathology instead of the HESN status. For each
experiment, samples were selected and classified according to the
presence or absence of a pathological condition as follows: no
infections (NI), bacterial vaginosis (BV), infections of the higher
genital tract (IHGT) and mucopurulent cervical discharge (MCD).

Qualitative proteome analysis

In the course of the four experiments, a total of 233 different
proteins were identified after a stringent scaffold analysis. To
correctly calculate the percentage of shared versus total number
of identifications, we made use of the previously published
calculation (Hattan et al., 2005) that takes into account the
redundancy of identifications. The four experiments yielded a
total of 572 (161þ89þ156þ166) identifications of which 260
(4�65) were found in all four experiments, resulting in an overlap
ratio of 45.5% (260/572). The proteins that were identified in the
different experiments are listed in the Supporting information. A
FDR was determined for all four experiments and ratios were all
below 2% (resp. 1.23; 1.30; 1.35 and 1.32%).

A schematic overview of the number of identifications per
experiment and the degree of redundancy is given in Fig. 1. Using
DAVID (Dennis et al., 2003; Huang et al., 2009) (version 6.7), we
classified the identified proteins based on biological function and
cellular localization. We found that the majority of the proteins are
involved in the immune system (18%) and protein metabolism and
modification (14%). All of the other functional categories contained
fewer proteins. In addition, a large fraction of the identified
proteins were found in the extracellular region (38%). These results

are characteristic for CVF, which is a biological fluid with impor-
tant immunological functions (Zegels et al., 2010).

Quantitative proteome analysis

Proteins associated with gynaecopathological conditions
We initially analyzed the data in order to determine whether

gynaecopathological conditions effectively introduce proteome
changes that are detectable by our iTRAQ-based proteomics platform.

Table 2 summarizes the statistically significant differences of
the conditions (compared to NI) and lists the corresponding p-
values. The abundance level of five proteins was significantly
altered in the case of MCD. Transthyretin was the only upregulated
protein, whereas leukocyte elastase inhibitor (LEI or Serpin B1),
serine proteinase inhibitor Kazal-type 5 (SPINK5), cornulin and
suprabasin were significantly downregulated. Proteins S100A8 and
S100A9 were expressed at higher levels, and Serpin B3 and
dermcidin were downregulated in women with IHGT. Eight pro-
teins were differentially expressed in women with BV. Four
proteins were overexpressed (S100A6, S100A12, LEI and Serpin
B4), and four were underexpressed (dermcidin, fatty acid binding
protein (FABP), suprabasin and cystatin A). These results indicate
that certain pathologies affect the proteome composition and may
therefore be a confounding variable as mentioned before.

Proteins associated with HIV resistance
After establishing that the proteome composition is influenced by

certain pathologies, we compared the protein abundance profiles of
the different subgroups. First, HR was compared with LR and HIV in
the first experiment (absence of other gynaecopathological conditions)
to identify proteins that showed clear up- or downregulation in HR.
Twenty-one possible marker candidates were identified, as shown in
Table 3, including several proteinase inhibitors (SPINK5, Serpin A5 and
calpastatin), proteinases (cathepsin B and Myeloblastin), structural
proteins from the cornified envelope (periplakin, involucrin, envopla-
kin and suprabasin) and several other proteins with diverse functions.
The largest abundance difference was found for semenogelin-2, a
protein that is abundantly present in semen coagulum. This protein
was clearly overrepresented in HR compared to HIV (fold change:
16.00) and LR (fold change: 14.93).

We next wanted to investigate whether proteins from this list
also showed differential abundance in the three other experiments
performed on samples from women with pathological conditions.
As the presence of infections results in changes to the CVF
proteome, inclusion of these samples introduces an additional
degree of stringency. Hence, proteins that show a different
abundance profile between HR and LR/HIV in all four experiments
are more confident HIV resistance markers because they overcome
the variabilities of the proteome introduced by the pathologies.

The quantitative data from the four experiments were statisti-
cally analyzed to isolate markers showing significantly different
protein abundances in the HR group (Fig. 2; Table 3). Serpin A5

Fig. 1. Venn diagram showing the overlap of protein identifications between the
four different experiments.

Table 1
Overview of the experimental setup. Four different iTRAQ experiments were performed. In each experiment, three different subgroups differing in HIV exposure and HESN
status, plus an internal standard were compared. The samples for each experiment were matched according to the presence (þ) or absence of bacterial vaginosis (BV),
infections of the higher genital tract (IHGT) and mucopurulent cervical discharge (MCD). NI means no (additional) infection. A total of 48 samples were used.

Type of individual in terms of HIV infection and HESN status Standard iTRAQ experiment

LR HR HIV

NI Samples 1–4 Samples 17–20 Samples 33–36 Samples 1–48 Samples pooled during iTRAQ experiment 1
MCDþ Samples 5–8 Samples 21–24 Samples 37–40 Samples 1–48 Samples pooled during iTRAQ experiment 2
IHGTþ Samples 9–12 Samples 25–28 Samples 41–44 Samples 1–48 Samples pooled during iTRAQ experiment 3
BVþ Samples 13–16 Samples 29–32 Samples 45–48 Samples 1–48 Samples pooled during iTRAQ experiment 4
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was overexpressed in HR as compared to HIV (fold change: 1.69;
po0.001) and LR (fold change: 1.64; po0.001). Myeloblastin
(leukocyte proteinase 3) was underexpressed in HR compared to
HIV (fold change: 0.60; p¼0.02) and LR (fold change: 0.55;
p¼0.01) (Fig. 2; Table 3). The statistical test (i.e., ANOVA) could
only be applied on proteins that were identified in at least three
out of four experiments. Because semenogelin-2 was only identi-
fied in the first experiment, no statistical significance could be
calculated for this protein. We believe that the semenogelin-2
values in the first experiment can be considered as outliers,
possibly due to recent sexual contact of at least one of the HR
individuals (see Discussion).

Confirmation of proteomics experiments by ELISA

To confirm the above experiments, samples from women from
the 3 subgroups with or without MCD were selected (LR: 5 MCD�
and 4 MCDþ , HIV: 6 MCD� and 4 MCDþ , HR: 3 MCD� and
4 MCDþ). These samples were not included in the differential

proteomics experiment described above, but originate from the
same study population. The protein concentration of the samples
was measured three times because the BCA assay often gives
variable results and only slight differences (1.66 for Serpin A5 and
0.57 for Myeloblastin) were expected. Only samples with high
protein concentrations (4100 mg/ml) were selected because BCA
is suboptimal in measuring low protein concentrations and a high
concentration (1 mg/ml) was needed for detection of Serpin A5.
Results (Fig. 3A) show a statistical difference between Serpin A5
levels from HR (median value of 6.59 ng/ml) vs LR (median value
of 4.05 ng/ml) samples (1.63-fold; p¼0.031) and HR (median value
of 6.59 ng/ml) vs. HIV positive (median value of 3.83 ng/ml)
samples (1.72-fold; p¼0.014). Moreover, levels of Serpin A5 levels
did not vary significantly in samples from women with MCD
(median value of 4.29 ng/ml) vs. samples from women without
MCD (median value of 5.12 ng/ml) (Fig. 3B) confirming the above
mentioned observation that MCD did not influence Serpin A5
levels as it did not show up in the list of differentially expressed
proteins from MCD- and MCDþCVF samples (Table 2).

Table 2
Overview of CVF proteins that are significantly up- or downregulated in different pathologies as compared to healthy controls. Fold change (fc) versus healthy controls and
the statistical significance (p-value) of the difference are shown.

MCD/NI IHGT/NI BV/NI

Protein fc p-Value Protein fc p-Value Protein fc p-Value

LEI 0.52 0.048 S100A8 1.79 0.036 LEI 1.56 0.024
Transthyretin 2.97 0.034 S100A9 1.98 0.035 S100A6 2.32 0.017
SPINK5 0.35 0.041 Serpin B3 0.50 0.020 S100A12 2.14 0.032
Cornulin 0.47 0.023 Dermcidin 0.60 0.044 Dermcidin 0.57 0.035
Suprabasin 0.34 0.040 Serpin B4 2.33 0.023

FABP 0.65 0.028
Suprabasin 0.22 0.020
Cystatin A 0.44 0.036

Table 3
Statistical analysis of the protein abundance differences over the four different experiments. The first column shows the proteins that had a significant change of abundance
in HR as compared to HIV and LR in the not infected (NI) group. Fold changes of these differences are shown in the column “NI”. For each protein, the increased (41) or
decreased (o1) fold change (fc) between two different subgroups (HR/LR or HR/HIV) is given. Data about these proteins from all groups is presented in the column “NI, IHGT,
BV and MCD combined”. For each protein, the average (av) normalized ion ratio of the reporter group over the four experiments is presented for the different types (HR, LR,
HIV) with a 95% confidence interval (CI). Furthermore, the fold change (fc; HR/HIV or HR/LR) and statistical significance (p) of the abundance difference are presented.
NC: not calculated due to too few data points.

Protein name NI NI, IHGT, BV and MCD combined

HR/LR HR/HIV HR LR HIV HR/LR HR/HIV

fc fc av CI av CI av CI fc p fc p

SPINK 5 1.52 2.00 1.0470.64 1.0770.69 0.7070.23 0.97 0.95 1.48 0.43
Serpin A5 1.32 1.62 1.8870.23 1.1570.07 1.1270.13 1.64 o0.001 1.69 o0.001
Calpastatin 1.74 2.30 1.6771.89 1.3770.28 1.1170.08 1.22 0.73 1.51 0.53
Periplakin 1.41 2.46 1.0670.41 0.8170.24 0.7670.17 1.30 0.27 1.39 0.19
Involucrin 2.14 3.03 1.3170.83 0.9970.57 0.6970.28 1.32 0.48 1.90 0.19
Envoplakin 1.32 2.46 1.6871.20 1.2570.96 0.8270.22 1.35 0.55 2.05 0.27
Suprabasin 1.52 2.64 1.0070.80 0.7570.66 0.6770.42 1.35 0.59 1.51 0.49
Fibrinogen α chain 0.71 0.38 0.9770.30 1.1270.35 1.0070.66 0.86 0.66 0.97 0.93
Cathepsin B 1.87 2.00 1.1870.14 0.71 NC 0.9970.33 1.67 NC 1.19 NC
Myeloblastin 0.33 0.33 0.8170.31 1.4970.17 1.3670.13 0.55 0.01 0.60 0.02
Plastin-2 0.23 0.25 0.7470.31 1.2970.75 0.8970.23 0.57 0.15 0.83 0.67
Vitamin D-binding protein 0.71 0.50 1.2970.80 0.9270.23 1.1470.22 1.40 0.33 1.13 0.69
Haptoglobin 0.71 0.31 1.1670.51 0.9170.04 1.3470.85 1.28 0.56 0.87 0.68
Prolactin-inducible protein 3.03 4.29 2.0371.20 0.8170.11 0.6670.09 2.49 0.1 3.06 0.07
Histone H2A type 1-A 0.47 0.54 0.7370.24 1.2970.50 1.1870.48 0.57 0.10 0.62 0.18
Dermcidin 2.14 1.32 1.4570.55 1.0870.52 1.1970.37 1.34 0.32 1.22 0.48
Semenogelin-2 14.93 16.00 6.50 NC 0.44 NC 0.41 NC 16.0 NC 14.9 NC
Peptidyl-prolylcis-trans isomerase A 1.32 1.74 0.9170.62 0.9270.3 1.0470.24 0.99 0.99 0.88 0.70
Galectin-3 0.35 0.41 0.9970.48 1.2370.47 1.3370.29 0.80 0.45 0.74 0.29
Ras GTPase-activating-like protein IQGAP1 0.44 0.18 0.6770.45 0.7170.3 1.3670.16 0.95 0.88 0.49 0.03
Protein FAM25 4.92 2.83 1.5370.93 0.5370.18 0.7870.23 2.90 0.06 1.96 0.14
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Unfortunately, Myeloblastin concentration could not be accurately
determined with the two ELISA’s from different manufacturers we
have tested. Problems may be due to matrix effects since the
difference in ELISA signal during titration did not follow the extend
of the dilution.

Discussion

Study design

Analysis of the cervicovaginal proteome from high-risk HESNs
could result in isolation of potent anti-HIV proteins and peptides that
can block viral entry in humans in vivo. A few studies have already
been performed on CVF to identify such proteins. However, most have
used antibody-based methods, such as ELISA or Western blotting,
which restricts the study to the analysis of proteins for which
antibodies are available (Zegels et al., 2010). Moreover, antibody-
based techniques are sometimes incapable of discriminating between
different subtle protein forms (Buhimschi et al., 2008, 2005) or have

difficulties in analyzing certain proteins due to interference from other
proteins (Van de et al., 1994). Therefore, we decided to use proteome-
wide techniques that allowed for analysis and comparison of protein
abundance profiles from HESNs with control groups in an unbiased
manner. Besides, it is important to analyse and confirm potential
resistance factors in several independent cohorts, if possible in
combination with additional genital infections. Until now, all compre-
hensive proteomic studies were performed by using CVF samples from
the same “Pumwani” cohort (Iqbal et al., 2009; Burgener et al., 2008,
2011) and confirmation of potential correlates of protection by other
research groups and in other cohorts are urgently needed. Therefore,
we analysed the cervicovaginal proteome of a HESNs population
originating from female sex workers located at Côte d’Ivoire, many
of which suffered from additional genital infections.

Four iTRAQ experiments were performed in order to identify
proteins and peptides that showed statistically significant altered
abundance patterns in the CVF from HESNs as compared to control
groups. Three subgroups were compared in every experiment: LR
(HIV seronegative individuals, commercial sex work for less than
12 months, under 25 clients/week and dedicated use of condoms),

Fig. 2. Abundance difference between HR, LR and HIV for the proteins Myeloblastin and Serpin A5. Significance levels (p-values) of the differences are shown.

Fig. 3. (A) Abundance levels of Serpin A5 (ng/ml) for the three populations (all including with and without MCD) HIV, HR and LR. (B) Difference in Serpin A5 abundance
levels between samples from women that had MCD (HIV, HR and LR) vs. samples from women without MCD (HIV, HR and LR). Calculation of statistical difference was done
by the non-parametric Mann Witney U-test, due to the restricted number of samples.
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HIV (seropositive commercial sex workers, no further criteria) and
HR (seronegative persons, commercial sex work for more than 48
months, no or sporadic condom use). The samples (n¼4) were
pooled as to level out variability between individual samples. To
limit the chance for false positives, the pooled samples were
composed in such a way that stratification according to patholo-
gical conditions (NI, BV, IHGT and MCD) was possible. As such,
each experiment was performed four-fold, each time on samples
originating from women with a different pathological condition
(total of 48 samples). Hence, correction for these confounding
factors adds another level of stringency to the selection such that
more reliable markers may come out of the procedure.

Effect of additional genital infections

As mentioned above, confounders were included with the aim to
identify trustworthy candidate markers correlated with the HESN-
status without being influenced by the additional pathological condi-
tions. We decided to stratify our samples according to the site of
infection and we selected pathologies that are often caused by a
plurality of pathogens resulting in a strong activation of the immune
system at different regions in the female genital tract (BV: vagina,
MCD: cervix and IHGT: uterus and higher). Although the influence of
these additional infections on the CVF proteome is definitely worth
further investigation, our main purpose was to outselect proteins for
which the expression levels were influenced by genital infections and
thus could not be qualified as markers of HIV susceptibility. Fourteen
proteins were identified, from which five proteins (LEI, transthyretin,
SPINK5, cornulin and suprabasin) were differentially expressed in the
case of MCD. However, the link between those proteins and the
pathological condition remains vague. The inflammation-related pro-
teins S100A8 and S100A9 (Ehrchen et al., 2009) were upregulated in
IHGT, while two other S100 proteins, S100A6 and S100A12 (Pietzsch
and Hoppmann, 2009; Lesniak et al., 2009; Eckert et al., 2004), were
upregulated in BV. Because these proteins promote HIV infection
(Ryckman et al., 2002; Hashemi et al., 2001), they may be partially
responsible for increased HIV susceptibility caused by IHGT and BV
(Cohen et al., 1999; Atashili et al., 2008). Indeed, disruption of the
vaginal flora (like in the case of BV, IHGT and MCD), influences innate
immunity, leading to a higher susceptibility for HIV-infection and
-transmission (Kaul et al., 2008; Mirmonsef et al., 2012). The serine
proteinase inhibitor Serpin B3 was downregulated in IHGT, but Serpin
B4 was upregulated in BV. Dermcidin was downregulated both in
IHGT and BV. In addition, four other proteins were differentially
expressed in BV: LEI was overexpressed, while FABP, suprabasin and
cystatin were downregulated. However, their exact correlation with
this pathology is uncertain. Nevertheless, these results indicate that
the CVF proteome is altered due to the presence of certain pathologies.

Unravelling HIV resistance mechanism

We next analyzed the protein abundance profiles between the
different subgroups. Protein abundance profiles from HR were com-
pared with those from HIV and LR in the first experiment (samples
obtained from women with no infection (NI)) (Kaul et al., 2011). For
the quantification of our proteins we used an iTRAQ labeling method.
For this we selected one label as reference, while the other labels are
relatively expressed as fold change compared to the reference. Since
pooled samples were used for the proteomic analysis, no quantitative
cut off value could be calculated. Although in one experiment,
semenogelin-2 showed a high differential expression, this could not
be reproduced in other experiments. We therefore arbitrarily choose
for a cut off value of 41.3 or o0.77 because it selected the second
most differential abundant proteins. We realized that these fold
changes of Serpin A5 and Myeloblastin are rather small, however they
are consistent over all the experiments. Therefore, given the fact that

in some biological processes small changes in abundance can result in
a large effect, especially in the case of enzyme cascades (e.g. blood
coagulation), we reasoned that small changes in protease-antiprotease
levels could be biologically relevant. Moreover, we previously experi-
enced that differential protein expression levels analysed by iTRAQ are
sometimes more distinct when measured by ELISA.

Twenty-one proteins showed an increased or decreased abun-
dance in HR individuals compared to the control groups and were
listed as potential biomarkers of the HESN status. Of these, those
that may influence HIV infection are discussed here.

SPINK5, which was found to be overexpressed in HR indivi-
duals, inhibits several serine proteinases such as kallikreins,
cathepsin G and trypsin. In addition, it acts in the regulation of
epithelial desquamation and contributes to the integrity and
protective barrier function of the skin (Meyer-Hoffert, 2009;
Deraison et al., 2007). The role of serine proteinases and their
inhibitors in protection against HIV infection will be explained in
more detail below with the discussion of Myeloblastin and Serpin
A5. Galectin-3, a β-galactoside-binding lectin, was found to be
downregulated in HR individuals. Galectin has been reported to be
upregulated upon HIV infection and stabilizes the interaction
between virions and HIV target cells (Ouellet et al., 2005; Fogel
et al., 1999). Therefore, downregulation may hinder cellular infec-
tion. Prolactin-inducible protein was also found to be overexpressed in
HR. Because this protein binds CD4, it may antagonize the interaction
between this receptor and gp120 and thus prevent viral adhesion and
entry of target cells (Debily et al., 2009). The largest fold change was
noted for semenogelin-2. Although semenogelin has been shown to
have intrinsic anti-HIV activity and to bind HIV virions, this protein is
abundantly present in semen (Martellini et al., 2009). In contrast to
women from the LR and HIV group, women from the HR group used
no condoms or much less frequently. Therefore, the increase in the
semenogelin-2 abundancemay be indicative of the unprotected sexual
intercourse of HR women. Notably, this protein was not detected in
the three other experiments, suggesting that the values for
semenogelin-2 in the first experiment are outliers. Indeed, the amount
of seminal proteins in the cervicovagina is inversely correlated with
the time passed between the last unprotected sexual intercourse and
sample collection (Carballada and Esponda, 1997). The abundance of
these proteins is likely to be highly variable and/or too low to detect
reproducibly, and they will thus unlikely be associated with HESN
status. Nevertheless, this observation points to the variability of the
data obtained from experiments with this kind of samples and
underscores the necessity of performing several experiments to filter
out outliers.

Validation of potential HIV resistance mechanism

For this reason, three additional experiments were performed.
These experiments showed that many of the potential markers did not
exhibit a statistically significant change in abundance. These results do
not imply that these proteins are all false positives. Our experimental
setup results in large interindividual variation because samples were
collected from women with different gynaecopathological conditions.
The HESN-related proteins in our study could therefore be identified
with higher confidence (high specificity), but more false negatives are
present due to limited statistical power (low sensitivity). In this
comparison, two proteins still showed a significantly different abun-
dance in the HR-HESN group as compared to the control groups,
namely the serine proteinase inhibitor Serpin A5 (increased abun-
dance in HR) and the serine proteinase Myeloblastin (decreased
abundance in HR). Identification and quantification of these two
proteins was reliable as they were based on more than one peptide.
Although the difference in abundance levels of Myeloblastin could not
be confirmed by ELISA - possibly due to matrix effects - a similar slight
difference in Serpin A5 levels was observed in a Serpin A5 ELISA (RES/
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LR: 1.56-fold (iTRAQ) vs. 1.63-fold (ELISA) and RES/HIV: 1.59-fold
(iTRAQ) vs. 1.72-fold (ELISA)).

Serpin A5: A serine proteinase inhibitor

Serpin A5 is expressed in a wide variety of tissues and biological
fluids and is an inhibitor of several serine proteinases such as activated
protein C and proteinases that are involved in fertilization (Suzuki,
2008). It is also present in seminal plasma; therefore, we initially
speculated that CVF concentrations of Serpin A5 are correlated with
the frequency of unprotected sexual intercourse instead of HIV resis-
tance. However, the abundance of seminal proteins in the CVF is
highly variable as demonstrated by the filtering out of semenogelin-2.
Moreover, since each of the four HIV groups contained samples from
female sex workers reporting never or rare use of condoms, it is
expected that levels of proteins originating from semen would also be
increased in the HIV group. However, this was not the case for Serpin
A5. Therefore, because Serpin A5 was identified to be differentially
abundant in all four iTRAQ experiments and these results were
confirmed on additional samples by using ELISA, it most likely
originates from the female genital tract and not from seminal
contamination.

In addition to its function in fibrinolysis and reproduction,
Serpin A5 has been reported to play a role in tissue regeneration,
vascular permeability and tumor invasion (Suzuki, 2008).
Malmstrom̈ et al. demonstrated that Serpin A5 has broad anti-
microbial activity towards Gram-negative and -positive bacteria
and is resistant to degradation by host and bacterial proteinases. It
has an affinity for negatively charged lipids, allowing it to adhere
to bacterial cell walls, leading to bacterial destruction (Malmstrom
et al., 2009). As shown for other serine proteinase inhibitors,
Serpin A5 can bind enveloped virions such as HIV and inhibit viral
transmission (Burgener et al., 2008; Sallenave, 2002; Moriuchi et
al., 2000). Furthermore, Serpin A5 can be internalized by neutro-
phils, thereby promoting phagocytosis (Baumgartner et al., 2007).

Our findings are interesting in light of recent research suggesting
that serine proteinase inhibitors overexpressed in the CVF may be
involved in HIV resistance. In two independent studies, (Burgener et
al., 2008, 2011) identified 16 and 41 differentially expressed proteins
including several serine proteinase inhibitors, such as those from the
Serpin family (A1, A3, B1, 3, 4, 13, C1, G1) and alpha 2-macroglobulin
like-1 protein. Recently, a study from the same authors demonstrated
that abundance levels of serpins such as Serpin A1 and A3 may vary
according to the menstrual cycle but are independent to epidemiolo-
gical sexual confounders (Rahman et al., 2013). Although Serpin A5
was not mentioned in this paper, it is highly unlikely that the
difference in protein abundance of Serpin A5 described in our study
is influenced by the menstrual cycle because for each of the four
iTRAQ experiments we used pooled samples originating from
4 women. A study of our group also showed that Serpin A1 levels
were influenced by the menstrual cycle, while Myeloblastin levels
were not. Unfortunately, Serpin A5 could not be identified in this
study, possibly because another LC-MS/MS platform was used (data
not shown). Nevertheless, validation of differences in Serpin A5 levels
by means of ELISA on individual samples showed very similar results,
indicating that our findings are most probably independent of the
menstrual cycle.

Iqbal et al. (2009), Drannik et al. (2012b) found a significant
correlation between elafin, a serine proteinase inhibitor, and the HESN
status. Increased CVF concentrations of another serine proteinase
inhibitor, the secretory leukocyte proteinase inhibitor (SLPI), have
been shown to be correlated with reduced rates of perinatal HIV-1
transmission (Pillay et al., 2001). Serine proteinase inhibitors are a
large protein family and have a plethora of biological functions
including regulation of inflammation and immune response, aid in
wound repair, extracellular matrix remodelling and maintaining the

integrity of the epithelial barrier (Mangan et al., 2008). The role of
serine proteinase inhibitors in HIV resistance has not been determined.
Many serine proteinase inhibitors (e.g., Serpin B1, Serpin B4 and elafin)
have anti-inflammatory activities and prevent disruption of the
epithelial barrier by host and bacterial-derived proteinases, thereby
ensuring the structural integrity of the mucosal layer (Benarafa et al.,
2007; Sallenave, 2002; Young et al., 2010). Thus, they may prevent HIV
entry via lesions in the mucosal layer. SLPI has been postulated to bind
the membrane proteins scramblase (Tseng and Tseng, 2000) and/or
annexin II (Ma et al., 2004), thereby preventing fusion and interaction
of the HIV virus with the host cell membrane, respectively. Serine
proteinase inhibitors often inhibit cathepsin G, which is an inflamma-
tory proteinase that enhances HIV replication in vitro (Moriuchi et al.,
2000). Furthermore, some serine proteinase inhibitors such as elafin,
Serpin A1 and C1 directly interact with HIV to inhibit replication
(Elmaleh et al., 2005; Ghosh et al., 2009; Young et al., 2010). Finally,
Serpin A1 has been shown to have in vivo anti-HIV activity and is
downregulated in HIV infection, suggesting an HIV-suppressing role
for this proteinase inhibitor (Bryan et al., 2010). The results from these
studies indicate that serine proteinase inhibitors may be important for
the establishment of in vivo HIV resistance.

Myeloblastin: A serine proteinase

In contrast to other proteomics studies on CVF of HESNs, which
pointed to the involvement of serine protease inhibitors in the
mechanism of HIV resistance, we also demonstrated that decreased
abundance of the serine proteinase Myeloblastin may contribute to
HIV resistance. Although validation by ELISA was so far unsuccessful,
possibly due to matrix effects, literature points to a role of Myelo-
blastin in HIV resistance. Indeed, the activity of Myeloblastin is
counteracted by elafin (Ghosh et al., 2009; Iqbal et al., 2009; Zani et
al., 2009), and SLPI binds to this protein, although with low affinity
(Moreau et al., 2008). Therefore, the reduction of Myeloblastin could
be considered as the ‘mirror part’ of the anti-HIV mechanisms in the
CVF of HESNs, suggesting that simultaneous upregulation of serine
proteinase inhibitors and downregulation of serine proteinases is
involved in the anti-HIV mechanism.

Myeloblastin (also known as leukocyte proteinase 3) is a serine
proteinase that is expressed in the azurophilic granules of neutrophils
and in the granules of monocytes and is secreted at sites of
inflammation. Myeloblastin has several distinct physiological roles
such as eliminating phagocytised micro-organisms and promoting the
influx of inflammatory cells to the site of infection. It can degrade
extracellular matrix proteins and basement membrane proteins (e.g.,
elastin, collagen and laminin), thus disrupting the mucosal barrier. This
improves cellular movement over the epithelial layer but also
enhances HIV transmission through gaps between the epithelial cells
(Hladik and Hope, 2009). In addition, the protein enhances the
production of IL-8 and MCP-1 by endothelial cells, which contributes
to continued inflammation, and recruits neutrophils, monocytes and T
cells (van der Geld et al., 2001). Because many of these cells are in fact
target cells for HIV, Myeloblastin could also indirectly promote HIV
infection. Finally, secretion of Myeloblastin by neutrophils is increased
in HIV-infected persons, which further supports the hypothesis that
Myeloblastin exhibits HIV-promoting activity (Trial et al., 2004).

HESN studies

While we identified several proteins that were differentially
expressed in the first study of Burgener et al. (2008), we generally
did not find correlations of these protein levels with the HESN status.
Only haptoglobin was found to be downregulated in HESN individuals
in both studies (Burgener et al., 2008). A better overlap was observed
with the second study of Burgener et al. (2011) as SPINK 5, suprabasin,
haptoglobin, fibrinogen and dermcidin were also overexpressed in
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HR-HESNs in this study. However, our study setup shows that care
must be taken in pointing some of these proteins (SPINK5, suprabasin
and dermcidin) as correlates of HIV resistance since variation in
abundance may also occur as a result of other gynaecopathological
conditions (Table 2). In contrast, cathepsin B was found to be down-
regulated in Burgener et al. (2011) while it was overexpressed in our
study. Furthermore, although we identified elafin, we did not find the
same correlation between this protein and HIV resistance, as docu-
mented in the study of Iqbal et al. (2009). The discrepancies between
our results and these two studies may be due to different techniques
and HESN cohorts (Wu et al., 2006; Burgener et al., 2010), once more
stressing the importance of investigating several cohorts during the
search for correlates of HIV resistance. Indeed, the HIV-resistance
mechanisms may differ due to particular genetic polymorphisms. For
example, several polymorphisms of the gene coding for Serpin A5
have been described for different ethnic populations (Radtke et al.,
1996; Bungum et al., 2010; Larget-Piet et al., 1993). Therefore, the
HESN status of the women we examined may be associated with a
particular polymorphism of the Serpin A5 gene, which is absent in
other HESNs. Further analysis of other different HESN cohorts and use
of diverse experimental procedures may therefore yield new potential
markers of HIV resistance.

Conclusions

We hypothesize that a reduction of the total serine proteinase
activity in CVF may result in increased resistance to HIV. We suggest
that this decreased activity is not only achieved by an upregulation of
serine proteinase inhibitors (e.g., Serpin A5, elafin, SLPI, Serpin B, C and
G and alpha 2-macroglobulin like-1 protein) but may also be obtained
by a decrease in the abundance of serine proteinases (e.g., Myeloblas-
tin). During the last decades, numerous correlates of HIV protection
were described but rarely confirmed in independent studies. There-
fore, it is important to note that findings of this study were now
observed by different research teams and in different cohorts. The
anti-HIV activity in the CVF of HESN individuals may be the result of
several mechanisms that work cooperatively (Benarafa et al., 2007;
Sallenave, 2002; Young et al., 2010) and at multiple levels (Drannik et
al., 2012a) such as preservation of the epithelial layer integrity, binding
of serine proteinase inhibitors to cellular membrane proteins to
prevent virus infection, direct and indirect deactivation of the virus
by binding to it or by attenuation of the innate or adaptive immune
system (Drannik et al., 2012a; Lajoie et al., 2012; Chege et al., 2012;
Tomescu et al., 2011). Finally, the role of the complex vaginal micro-
flora and the reciprocity with inflammatory mucosal anti-HIV
response, needs further investigation (Schellenberg and Plummer,
2012).

Materials and methods

Sample collection

Vaginal washings were collected in phosphate buffered saline
(PBS) from a female sex worker population attending the con-
fidential clinic of the Projet-RETRO-CI in Abidjan, Côte d’Ivoire
from 1998 to 2001 (Jennes et al., 2003; Ghys et al., 2002). All the
collected samples were directly frozen, transported in liquid
nitrogen and stored at minus 80 1C until analysis to avoid protein
degradation. The study was approved by the ethical committee of
the Ministry of Health, Côte d’Ivoire, the ethical committee of the
Institute of Tropical Medicine, Antwerp, Belgium, and by the
Institutional Review Board of the Centers for Disease Control and
Prevention, Atlanta, GA. A written informed consent was obtained
from all subjects prior to their participation in the study. Women

enrolled in the study were subjected to a gynaecological examina-
tion and were interviewed by trained social assistants to gain
information about demographical, socio-economical, physiological
and pathological parameters. These epidemiological data were
used to create relevant study groups in a very strict way. Although
no available measurable physiological parameters are indicative
for HIV resistance, the HESN status of individuals in the population
was estimated using three reported factors: (1) the duration of the
commercial sex work, (2) the use of condoms and (3) the number
of clients (Camara et al., 2010; Jennes et al., 2004).

Experimental setup

Based on these criteria, three different study populations could
be distinguished: (1) A low-risk group (LR) consisting of HIV-
seronegative individuals who were doing commercial sex work for
less than 12 months, had less than 25 clients per week and always
used a condom. Although a non sex worker population could be
used for this group, the experimental setup described here is more
relevant because this group of LR female sex workers may have
more variables in common with the other groups, which conse-
quently reduces the potential variabilities in the CVF proteome.
(2) A long-term exposed high-risk group (HR) consisting of
women who were active for over 48 months and did not or
sporadically use condoms. During these years (late 1990s) no ARVs
were available in Côte d’Ivoire. Therefore, this group was expected
to be enriched for HIV resistance factors because the individuals
were exposed to HIV for a long time in the absence of HIV
infection. (3) An HIV-positive group of the same cohort of female
sex workers (HIV) was included as an additional control group
(Burgener et al., 2008; Jennes et al., 2004; Marmor et al., 2006;
Kulkarni et al., 2003; Iqbal et al., 2009).

Forty-eight samples were obtained from women who were not
menstruating, were not pregnant and did not have bartholonitis at
the time of the sample collection. In addition, selected women did
not engage in vaginal practices such as the use of herbs or vaginal
douching using African homeopathic drugs or Dettol. Women
reporting douching with water or soap were not excluded because
this is a common practice among female sex workers. For each
subgroup (LR, HR or HIV), 16 samples were selected and divided
over four different experiments (i.e., a pooled sample from four
samples per subgroup per experiment) according to urogenital
clinical manifestations located at different sites in the female
genital tract: the absence of infections (not infected (NI)), the
presence or absence of mucopurulent cervical discharge (MCD,
located in cervix), infections of the higher genital tract (IHGT,
located in uterus and higher) and bacterial vaginosis (BV, located
in vagina). The first experiment (NI) included samples obtained
from not infected (other than HIV infection) individuals. In the
second experiment (MCDþ), all samples were from women with
MCD but lacking BV and IHGT. The third experiment (IHGTþ)
consisted of samples from females devoid of MCD, with IHGT and
without BV. Experiment four (BVþ) included samples from
women with or without MCD but lacking IHGT and with BV.
Stratification of these additional infections was based on a gynae-
cological examination of the individuals by trained health workers.
Table 1 gives an overview of the experimental setup. The protein
concentration of every sample was determined using a BCA assay.
For each experiment, 150 mg was taken from the four samples per
subgroup and pooled in order to create one sample per subgroup
per experiment, resulting in a total of twelve pooled samples. In
order to be able to compare the different experiments with each
other, an internal standard was included in each experiment. This
standard was composed of a mixture of aliquots from all 48
samples and was subsequently divided into four fractions.
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iTRAQ labelling and proteomic analysis

After pooling, samples were digested and labelled according to
the iTRAQ protocol (HIV: label 115; LR: label 117; HR: label 119;
internal standard: label 121). In a first dimension peptides were
separated by using a strong cation exchange (SCX) column. During
SCX separation 20 fractions were offline collected. Each of these
fractions was loaded and separated in a second dimension on a
reverse phase (RP-C18) micro capillary column. Eluting peptides
were spotted on a MALDI target by using an automated fraction
collector. After applying matrix, mass spectrometric analysis was
performed by using MALDI-ToF/ToF. Tandem mass spectra were
screened against a human SwissProt database by using MASCOT.
See Appendix B for more detailed information about iTRAQ
labelling and proteomic analysis.

Data-analysis

Scaffold (version Scaffold 3.00, Proteome Software Inc., Port-
land, OR) was used to validate MS/MS-based peptide and protein
identifications. Peptide identifications were accepted if they could
be established at greater than 95.0% probability as specified by the
stringent Peptide Prophet algorithm (Keller et al., 2002). Protein
identifications were accepted if they could be established at
greater than 95.0% probability and contained at least 1 identified
peptide. Protein probabilities were assigned by the Protein Prophet
algorithm (Nesvizhskii et al., 2003). Applying these stringent
algorithms result in highly confident identifications. False discov-
ery rates (FDR) were performed for every experiment based on the
peptide level by screening the spectra against a target-decoy
database (Elias and Gygi, 2007).

Scaffold Qþ (version Scaffold 3.00, Proteome Software Inc.,
Portland, OR) was used for the relative quantification based upon
detected iTRAQ reporter ions during the tandem mass spectro-
metric analysis of the four different experiments. For each experi-
ment, the obtained values were normalized by dividing them with
the value of the internal standard (label 121). As a result,
abundance profiles could be compared, and inter- and intra-
experimental and statistical testing could be applied.

In the first experiment, we used samples fromwomen who had
no BV, MCD or IHGT and determined that a set of proteins showed
pronounced up- or down regulation in the HR individuals com-
pared to the HIV and LR groups. We performed three other
experiments using samples grouped according to the presence
and absence of specific pathological conditions (BV, MCD and
IHGT). After performing a Kolmogorov-Smirnov test to check the
normality, a parametric one-way ANOVA combined with post-hoc
LSD testing was done in order to isolate those proteins showing a
statistically significant abundance difference between HR and LR/
HIV. The same statistical methods were used to determine
whether the gynaecopathological conditions significantly influ-
ence the composition of the CVF proteome by pairwise compar-
ison between NI and BVþ , MCDþ and IHGTþ . A significance
threshold of 0.05 was applied. Due to the limited number of
samples and the explorative character of the iTRAQ study, no
correction for multiple testing was performed. This way, elimina-
tion of potential useful results was largely avoided, but confirma-
tion of positive results by an orthogonal assay (ELISA, see below) is
necessary. Statistical analysis was performed using SPSS version 15
(SPSS Inc, Chicago, IL, USA).

ELISA assay

Variations in sample protein content determination were
minimalized by calculating the average of three independent
BCA assays. Since we noticed that BCA measurements were not

confident below concentrations of 100 mg/ml, only samples with
protein contents above this value were taken into consideration.
26 individual samples (LR, HR and HIV) originating from the same
cohort but differing from the samples used for the proteomics
experiments, were additionally tested by means of ELISA. Serpin
A5 levels were measured according to manufacturer’s guidelines
of the ELISA (BlueGene Biotech, Shanghai, China). In short, 50 ml of
undiluted samples were pipetted onto a 96-well microtiter plate
precoated with an antibody specific for Serpin A5. A Standardized
preparation of horseradish peroxidase (HRP)-conjugated polyclo-
nal antibody specific for Serpin A5 (100 ml) was added to the wells
and incubated for 1 h at 37 1C. The wells were washed and 100 ml
substrate solution was added. Intensity of colour development was
measured spectrophotometrically at a wavelength of 450 nm
(2103 EnVision Multilabel Plate Reader, PerkinElmer, Zaventem,
Belgium). The Serpin A5 concentration in each sample was inter-
polated from the standard curve. The sensitivity of the assay is
1.0 ng/ml for Serpin A5. The intra-assay precision (coefficient of
variation expressed in %) was determined to be o9%. Due to the
restricted number of samples (LR: 9; HR: 7; HIV: 10), non-
parametric statistical testing (Mann Witney U-test) was performed
to detect significant difference in abundances between subgroups.
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