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a b s t r a c t

We study strongly graded vertex algebras and their strongly graded modules, which
are conformal vertex algebras and their modules with a second, compatible grading by
an abelian group satisfying certain grading restriction conditions. We consider a tensor
product of strongly graded vertex algebras and its tensor product strongly gradedmodules.
We prove that a tensor product of strongly graded irreduciblemodules for a tensor product
of strongly graded vertex algebras is irreducible, and that such irreducible modules, up to
equivalence, exhaust certain naturally defined strongly graded irreducible modules for a
tensor product of strongly graded vertex algebras. We also prove that certain naturally
defined strongly graded modules for the tensor product strongly graded vertex algebra are
completely reducible if and only if every strongly graded module for each of the tensor
product factors is completely reducible. These results generalize the corresponding known
results for vertex operator algebras and their modules.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

We prove that a tensor product of strongly graded irreducible modules for a tensor product of strongly graded vertex
algebras is irreducible, and that conversely, such irreducible modules, up to equivalence, exhaust certain naturally defined
strongly graded irreduciblemodules for a tensor product of strongly graded vertex algebras. (These terms are defined below.)
As a consequence,we determine all the strongly graded irreduciblemodules for the tensor product of themoonshinemodule
vertex operator algebra V ♮ with a vertex algebra associated with a self-dual even lattice, in particular, the two-dimensional
Lorentzian lattice.

The moonshine conjecture of Conway and Norton in [2] included the conjecture that there should exist an infinite-
dimensional representation V of the (not yet constructed) Fischer–Griess Monster sporadic finite simple group M such that
the McKay–Thompson series Tg for g ∈ M acting on V should have coefficients that are equal to the coefficients of the
q-series expansions of certain modular functions. In particular, this conjecture incorporated the McKay–Thompson
conjecture, which asserted that there should exist a (suitably nontrivial) Z-graded M-module V =


i≥−1 V−i with graded

dimension equal to the elliptic modular function j(τ )− 744 =


i≥−1 c(i)q
i, where we write q for e2π iτ , τ in the upper half-

plane. Such an M-module, the ‘‘moonshine module’’, denoted by V ♮, was constructed in [8], and in fact, the construction of
[8] gave a vertex operator algebra structure on V ♮ equipped with an action of M. In [8], the authors also gave an explicit
formula for the McKay–Thompson series of any element of the centralizer of an involution of type 2B of M; the case of the
identity element of M proved the McKay–Thompson conjecture.

Borcherds then showed in [1] that the rest of the McKay–Thompson series for the elements of M acting on V ♮ are the
expectedmodular functions. He obtained recursion formulas for the coefficients of McKay–Thompson series for V ♮ from the
Euler–Poincaré identity for certain homology groups associated with a special Lie algebra, the ‘‘monster Lie algebra’’, which
he constructed using the tensor product of the moonshine module vertex operator algebra V ♮ and a natural vertex algebra
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associated with the two-dimensional Lorentzian lattice. The importance of this tensor product vertex algebra motivates the
present paper.

The difference between the terminology ‘‘vertex operator algebra’’, as defined in [8], and ‘‘vertex algebra’’, as defined
in [1], is that a vertex operator algebra amounts to a vertex algebra with a conformal vector such that the eigenspaces of
the operator L(0) are all finite dimensional with (integral) eigenvalues that are truncated from below (cf. [17]). In [14], the
authors use a notion of ‘‘conformal vertex algebra’’, which is a vertex algebra with a conformal vector and with an L(0)-
eigenspace decomposition, and a notion of ‘‘strongly graded conformal vertex algebra’’, which is a conformal vertex algebra
with a second, compatible grading by an abelian group satisfying certain grading restriction conditions.

In a series of papers [10–13,9], the authors developed a tensor product theory for modules for a vertex operator algebra
under suitable conditions. A structure called ‘‘vertex tensor category structure’’, which is much richer than braided tensor
category structure, has thereby been established for many important categories of modules for classes of vertex operator
algebras (see [10]). It is expected that a vertex tensor category together with certain additional structures determines
uniquely (up to isomorphism) a vertex operator algebra such that the vertex tensor category constructed from a suitable
category of modules for it is equivalent (in the sense of vertex tensor categories) to the original vertex tensor category. In
[14], this tensor product theory is generalized to a larger family of categories of ‘‘strongly graded modules’’ for a conformal
vertex algebra, under suitably relaxed conditions. We want to investigate the vertex tensor category in the sense of [10],
but in the setting of [14], associated with the tensor product of the moonshine module vertex operator algebra V ♮ and the
vertex algebra associated with the two-dimensional Lorentzian lattice. The first step in thinking about this is to determine
the irreducible modules for this algebra.

For the vertex operator algebra case, it is proved in [7] that a tensor product moduleW1 ⊗ · · · ⊗Wp for a tensor product
vertex algebra V1 ⊗ · · · ⊗ Vp (where Wi is a Vi-module) is irreducible if and only if each Wi is irreducible. The proof uses a
version of Schur’s Lemma and also the density theorem [15]. It is also proved in [7] that these irreduciblemodulesW are (up
to equivalence) exactly all the irreducible modules for the tensor product algebra V1 ⊗ · · · ⊗ Vp. The proof uses the fact that
each homogeneous subspace of W is finite dimensional. In this paper, we generalize the arguments in [7] to prove similar,
more general results for strongly graded modules for strongly graded conformal vertex algebras.

For the strongly graded conformal vertex algebra case, the homogeneous subspaces of a strongly graded module are no
longer finite dimensional. However, by using the fact that each doubly homogeneous subspace (homogeneous with respect
to both gradings) of a strongly graded conformal vertex algebra is finite dimensional, we prove a suitable version of Schur’s
Lemma for strongly graded modules under the assumption that the abelian group that gives the second grading of the
strongly graded algebra is countable.

To avoid unwanted flexibility in the second grading such as a shifting of the grading by an element of the abelian
group, we suppose that the grading abelian groups A for a strongly graded conformal vertex algebra and Ã (which includes
A as a subgroup) for its strongly graded modules are always determined by a vector space, which we typically call h,
consisting of operators induced by V . We call this kind of strongly graded conformal vertex algebra a ‘‘strongly (h, A)-
graded conformal vertex algebra’’ and its strongly gradedmodules ‘‘strongly (h, Ã)-gradedmodules.’’ Important examples of
strongly (h, A)-graded conformal vertex algebras and their strongly (h, Ã)-gradedmodules are the vertex algebras associated
with nondegenerate even lattices and their modules.

For strongly (hi, Ãi)-graded modules Wi for strongly (hi, Ai)-graded conformal vertex algebras Vi, we construct a tensor
product strongly (⊕p

i=1hi,⊕
p
i=1Ãi)-graded module W1 ⊗ · · · ⊗ Wp for the tensor product strongly graded conformal vertex

algebra V1 ⊗ · · · ⊗ Vp. Then we prove that this tensor product moduleW1 ⊗ · · · ⊗ Wp is irreducible if and only if eachWi is
irreducible, under the assumption that each grading abelian group Ai for Vi is a countable group.

To determine all the irreducible strongly graded modules (up to equivalence) for the tensor product strongly graded
conformal vertex algebra V1 ⊗ · · · ⊗ Vp, the main difficulty is that we need to deal with the second grading by the abelian
groups. For the strongly (⊕p

i=1hi, Ã)-graded modules W for the tensor product strongly (⊕p
i=1hi,⊕

p
i=1Ai)-graded vertex

algebra V1 ⊗· · ·⊗Vp, we assume there is a decomposition Ã = Ã1 ⊕· · ·⊕ Ãp, such thatW is an (hi, Ãi)-gradedmodule (that
is, a strongly graded module except for the grading restriction conditions) when viewed as a Vi-module. We call this kind of
strongly (⊕p

i=1hi, Ã)-graded module a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded module. In the main theorem, we prove that
if such a module is irreducible, then it is a tensor product of strongly graded irreducible modules. Then, as a corollary of the
main theorem, we classify the strongly graded modules for the tensor product strongly graded conformal vertex algebra
V ♮ ⊗ VL, where L is an even lattice, and in particular, where L is the (self-dual) two-dimensional Lorentzian lattice.

It is proved in [6] that every module for the tensor product vertex operator algebra V1 ⊗· · ·⊗ Vp is completely reducible
if and only if every module for each vertex operator algebra Vi is completely reducible. We also generalize the argument in
[6] to prove a similar result for tensor product strongly (h, A)-graded conformal vertex algebras.

This paper is organized as follows. In Section 2, we introduce the definitions and some basic properties of strongly graded
vertex algebras and their strongly graded modules. Then we construct a tensor product of strongly graded vertex algebras
and its tensor product strongly graded modules in Section 3. In Section 4, we introduce the definition of strongly (h, A)-
graded vertex algebra and strongly (h, Ã)-graded module. In Section 5, we prove the main theorem, which classifies the
irreducible strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V1 ⊗ · · ·⊗ Vp-modules. Then we use the main theorem to determine all
the strongly gradedmodules for V ♮⊗VL. In Section 6, we consider strongly graded conformal vertex algebraswhose strongly
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graded modules are all completely reducible and prove that every strongly ((h1, Ã1), . . . , (hp, Ãp))-graded module for the
tensor product strongly graded algebra V1 ⊗ · · · ⊗ Vp is completely reducible if and only if every strongly (hi, Ãi)-graded
module for each Vi is completely reducible.

2. Strongly graded vertex algebras and their modules

We recall the following four definitions from [14].

Definition 2.1. A conformal vertex algebra is a Z-graded vector space

V =


n∈Z

V(n) (2.1)

(for v ∈ V(n), we say the weight of v is n and we write wt v = n) equipped with a linear map V ⊗ V → V [[x, x−1
]], or

equivalently,

V → (End V )[[x, x−1
]]

v → Y (v, x) =


n∈Z

vnx−n−1 (where vn ∈ End V ), (2.2)

Y (v, x) denoting the vertex operator associatedwith v, and equipped alsowith two distinguished vectors 1 ∈ V(0) (the vacuum
vector) and ω ∈ V(2) (the conformal vector), satisfying the following conditions for u, v ∈ V : the lower truncation condition:

unv = 0 for n sufficiently large (2.3)

(or equivalently, Y (u, x)v ∈ V ((x))); the vacuum property:

Y (1, x) = 1V ; (2.4)

the creation property:

Y (v, x)1 ∈ V [[x]] and lim
x→0

Y (v, x)1 = v (2.5)

(that is, Y (v, x)1 involves only nonnegative integral powers of x and the constant term is v); the Jacobi identity (the main
axiom):

x−1
0 δ


x1 − x2

x0


Y (u, x1)Y (v, x2)− x−1

0 δ


x2 − x1
−x0


Y (v, x2)Y (u, x1) = x−1

2 δ


x1 − x0

x2


Y (Y (u, x0)v, x2) (2.6)

(note that when each expression in (2.6) is applied to any element of V , the coefficient of each monomial in the formal
variables is a finite sum; on the right-hand side, the notation Y (·, x2) is understood to be extended in the obvious way to
V [[x0, x−1

0 ]]); the Virasoro algebra relations:

[L(m), L(n)] = (m − n)L(m + n)+
1
12
(m3

− m)δn+m,0c (2.7)

form, n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, x) =


n∈Z

L(n)x−n−2, (2.8)

c ∈ C (2.9)

(the central charge or rank of V );

d
dx

Y (v, x) = Y (L(−1)v, x) (2.10)

(the L(−1)-derivative property); and

L(0)v = nv = (wt v)v for n ∈ Z and v ∈ V(n). (2.11)

This completes the definition of the notion of conformal vertex algebra. We will denote such a conformal vertex algebra
by (V , Y , 1, ω).
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Definition 2.2. Given a conformal vertex algebra (V , Y , 1, ω), amodule for V is a C-graded vector space

W =


n∈C

W(n) (2.12)

(graded by weights) equipped with a linear map V ⊗ W → W [[x, x−1
]], or equivalently,

V → (EndW )[[x, x−1
]]

v → Y (v, x) =


n∈Z

vnx−n−1 (where vn ∈ EndW ) (2.13)

(note that the sum is over Z, not C), Y (v, x) denoting the vertex operator on W associated with v, such that all the defining
properties of a conformal vertex algebra that make sense hold. That is, the following conditions are satisfied: the lower
truncation condition: for v ∈ V andw ∈ W ,

vnw = 0 for n sufficiently large (2.14)

(or equivalently, Y (v, x)w ∈ W ((x))); the vacuum property:

Y (1, x) = 1W ; (2.15)

the Jacobi identity for vertex operators onW : for u, v ∈ V ,

x−1
0 δ


x1 − x2

x0


Y (u, x1)Y (v, x2)− x−1

0 δ


x2 − x1
−x0


Y (v, x2)Y (u, x1) = x−1

2 δ


x1 − x0

x2


Y (Y (u, x0)v, x2) (2.16)

(note that on the right-hand side, Y (u, x0) is the operator on V associated with u); the Virasoro algebra relations onW with
scalar c equal to the central charge of V :

[L(m), L(n)] = (m − n)L(m + n)+
1
12
(m3

− m)δn+m,0c (2.17)

form, n ∈ Z, where

L(n) = ωn+1 for n ∈ Z, i.e., Y (ω, x) =


n∈Z

L(n)x−n−2
; (2.18)

d
dx

Y (v, x) = Y (L(−1)v, x) (2.19)

(the L(−1)-derivative property); and

(L(0)− n)w = 0 for n ∈ C and w ∈ W(n), (2.20)

where n = wtw.

This completes the definition of the notion of module for a conformal vertex algebra.

Definition 2.3. Let A be an abelian group. A conformal vertex algebra

V =


n∈Z

V(n)

is said to be strongly graded with respect to A (or strongly A-graded, or just strongly graded if the abelian group A is understood)
if it is equipped with a second gradation, by A,

V =


α∈A

V (α),

such that the following conditions are satisfied: the two gradations are compatible, that is,

V (α) =


n∈Z

V (α)(n) (where V (α)(n) = V(n) ∩ V (α)) for any α ∈ A;

for any α, β ∈ A and n ∈ Z,

V (α)(n) = 0 for n sufficiently negative; (2.21)

dim V (α)(n) < ∞; (2.22)

1 ∈ V (0)(0) ; (2.23)

ω ∈ V (0)(2) ; (2.24)

vlV (β) ⊂ V (α+β) for any v ∈ V (α), l ∈ Z. (2.25)
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This completes the definition of the notion of strongly A-graded conformal vertex algebra.
For modules for a strongly graded algebra we will also have a second grading by an abelian group, and it is natural to

allow this group to be larger than the second grading group A for the algebra. (Note that this already occurs for the first
grading group, which is Z for algebras and C for modules.)

Definition 2.4. Let A be an abelian group and V a strongly A-graded conformal vertex algebra. Let Ã be an abelian group
containing A as a subgroup. A V -module

W =


n∈C

W(n)

is said to be strongly graded with respect to Ã (or strongly Ã-graded, or just strongly graded if the abelian group Ã is understood)
if it is equipped with a second gradation, by Ã,

W =


β∈Ã

W (β), (2.26)

such that the following conditions are satisfied: the two gradations are compatible, that is, for any β ∈ Ã,

W (β)
=


n∈C

W (β)

(n) (where W (β)

(n) = W(n) ∩ W (β))

for any α ∈ A, β ∈ Ã and n ∈ C,

W (β)

(n+k) = 0 for k ∈ Z sufficiently negative; (2.27)

dimW (β)

(n) < ∞ (2.28)

vlW (β)
⊂ W (α+β) for any v ∈ V (α), l ∈ Z. (2.29)

This completes the definition of the notion of strongly Ã-gradedmodule for a strongly A-graded conformal vertex algebra.

Remark 2.5. It is always possible that there are different gradings onW by Ã, such as by shifting by an element in Ã. However,
in this paper, we shall fix one particular Ã-grading on W .

In order to study strongly graded V -modules for tensor product algebras, we shall need the following generalization:

Definition 2.6. In the setting of Definition 2.4 (the definition of ‘‘strongly graded module’’), a V -module (not necessarily
strongly graded, of course) is doubly graded with respect to Ã if it satisfies all the conditions in Definition 2.4 except perhaps
for (2.27) and (2.28).

Example 2.7. Note that the notion of conformal vertex algebra strongly graded with respect to the trivial group is exactly
the notion of vertex operator algebra. Let V be a vertex operator algebra, viewed (equivalently) as a conformal vertex algebra
strongly graded with respect to the trivial group. Then the V -modules that are strongly graded with respect to the trivial
group (in the sense of Definition 2.4) are exactly the (C-graded) modules for V as a vertex operator algebra, with the grading
restrictions as follows: For n ∈ C,

W(n+k) = 0 for k ∈ Z sufficiently negative (2.30)

and

dimW(n) < ∞. (2.31)

Example 2.8. An important source of examples of strongly graded conformal vertex algebras and modules comes from the
vertex algebras and modules associated with even lattices. We recall the following construction from [8]. Let L be an even
lattice, i.e., a finite-rank free abelian group equipped with a nondegenerate symmetric bilinear form ⟨·, ·⟩, not necessarily
positive definite, such that ⟨α, α⟩ ∈ 2Z for all α ∈ L. Let h = L ⊗Z C. Then h is a vector space with a nonsingular bilinear
form ⟨·, ·⟩, extended from L. We form a Heisenberg algebrahZ =


n∈Z, n≠0

h ⊗ tn ⊕ Cc.

Let (L,¯) be a central extension of L by a finite cyclic group ⟨κ | κ s
= 1⟩. Fix a primitive sth root of unity, say ω, and define

the faithful character

χ : ⟨κ⟩ → C∗

by the condition

χ(κ) = ω.
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Denote by Cχ the one-dimensional space C viewed as a ⟨κ⟩-module on which ⟨κ⟩ acts according to χ :

κ · 1 = ω,

and denote by C{L} the inducedL-module

C{L} = IndL
⟨κ⟩Cχ = C[L] ⊗C[⟨κ⟩] Cχ .

Then

VL = S(h−

Z )⊗ C{L}

has a natural structure of conformal vertex algebra; see [1] and Chapter 8 of [8]. For α ∈ L, choose an a ∈L such that ā = α.
Define

ι(a) = a ⊗ 1 ∈ C{L}

and

V (α)L = span {h1(−n1) · · · hk(−nk)⊗ ι(a)},

where h1, . . . , hk ∈ h, n1, . . . , nk > 0, and where h(n) is the operator associated with h⊗ tn via the ĥZ-module structure of
VL. Then VL is equipped with a natural second grading given by L itself. Also for n ∈ Z, we have

(VL)
(α)

(n) = span


h1(−n1) · · · hk(−nk)⊗ ι(a)| ā = α,

k
i=1

ni +
1
2
⟨α, α⟩ = n


,

making VL a strongly L-graded conformal vertex algebra in the sense of Definition 2.3. When the form ⟨·, ·⟩ on L is also
positive definite, then VL is a vertex operator algebra, that is, as in Example 2.7, VL is a strongly A-graded conformal vertex
algebra for A the trivial group. In general, a conformal vertex algebra may be strongly graded for several choices of A.

Any sublattice M of the ‘‘dual lattice’’ L◦ of L containing L gives rise to a strongly M-graded module for the strongly
L-graded conformal vertex algebra (see Chapter 8 of [8]; cf. [17]). In fact, any irreducible VL-module is equivalent to a
VL-module of the form VL+β ⊂ VL◦ for some β ∈ L◦ and any VL-module W is equivalent to a direct sum of irreducible
VL-modules, i.e.,

W =


γi∈L◦, i=1,...,n

Vγi+L,

where γi’s are arbitrary elements of L◦, and n ∈ N (see [3,5]; cf. [17]). In general, a module for a strongly graded vertex
algebra may be strongly graded for several choices of Ã.

Notation 2.9. In the remainder of this section, without further assumption, we will let A be an abelian group and V be a
strongly A-graded conformal vertex algebra. Also, we will let Ã be an abelian group containing A andW be a doubly graded
V -module with respect to Ã. When we needW to be strongly graded, we will say it explicitly.

Definition 2.10. The subspaces V (α)(n) for n ∈ Z, α ∈ A in Definition 2.6 are called the doubly homogeneous subspaces of V .

The elements in V (α)(n) are called doubly homogeneous elements. Similar definitions can be used forW (β)

(n) in the moduleW .

Notation 2.11. Let v be a doubly homogeneous element of V . Let wt vn, n ∈ Z, refer to the weight of vn as an operator acting
onW , and let A-wt vn refer to the A-weight of vn onW .

Lemma 2.12. Let v ∈ V (α)(n) , for n ∈ Z, α ∈ A. Then for m ∈ Z, wt vm = n − m − 1 and A-wt vm = α.

Proof. The first equation is standard from the theory of graded conformal vertex algebras and the second follows easily
from the definitions. �

Definition 2.13. The algebra A(V ;W ) associated with V and W is defined to be the algebra of operators onW induced by V ,
i.e., the algebra generated by the set

{vn | v ∈ V , n ∈ Z}.

For a subspace V
′

of V , we use A(V
′

;W ) to denote the subalgebra of A(V ;W ) generated by the set

{vn | v ∈ V
′

, n ∈ Z}.

For a subspace W
′

of W , we use A(V ;W
′

) to denote the subalgebra of A(V ;W ) preserving W
′

. Similarly for V
′

and W
′

, we
use A(V

′

;W
′

) to denote the subalgebra of A(V ;W ) generated by the operators onW
′

induced by V
′

.
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Remark 2.14. When W
′

is a submodule of W , there are two possible definitions for A(V ;W
′

) in Definition 2.13. One is as
an algebra associated with V and W

′

, the other is as a subalgebra of A(V ;W ). But it does not matter because they are both
algebras of operators onW

′

generated by the set

{vn | v ∈ V , n ∈ Z}.

Similar comments hold for V
′

a subalgebra of V .

The following lemma follows easily from Lemma 2.12:

Lemma 2.15. The algebra A(V ;W ) is doubly graded by Z and A. Moreover for n ∈ Z,

A(V ;W )(n) = span


(v1)j1 · · · (vm)jm

 m
i=1

wt (vi)ji = n,where m ∈ N, vi ∈ V , ji ∈ Z, for i = 1, . . . ,m


and for α ∈ A,

A(V ;W )(α) = span


(v1)j1 · · · (vm)jm

 m
i=1

A-wt (vi)ji = α,wherem ∈ N, vi ∈ V , ji ∈ Z, for i = 1, . . . ,m


.

Proposition 2.16. Let W be an irreducible doubly graded V-module with respect to Ã. Then we have the following results:

(a) Each weight subspace W(h) (h ∈ C) is irreducible under the algebra A(V ;W(h)).
(b) Each Ã-homogeneous subspace W (β) (β ∈ Ã) is irreducible under the algebra A(V ;W (β)).
(c) Each doubly homogeneous subspace W (β)

(h) (h ∈ C, β ∈ Ã) is irreducible under the algebra A(V ;W (β)

(h) ).

Proof. We only prove statement (a), the proofs of statements (b) and (c) being similar. IfW(h) is not irreducible, we can find
a nontrivial proper submodule U of W(h) under the algebra A(V ;W(h)). This submodule cannot generate all W under the
action by the algebra A(V ;W ), since by Lemma 2.15,

A(V ;W )U =


n∈Z

A(V ;W )(n)U ⊂ U ⊕


m∈Z,m≠h

W(m).

This contradicts the irreducibility ofW . �

Remark 2.17. A V -moduleW decomposes into submodules corresponding to the congruence classes of its weights modulo
Z: For µ ∈ C/Z, let

W(µ) =


n̄=µ

W(n), (2.32)

where n̄ denotes the equivalence class of n ∈ C in C/Z. Then

W =


µ∈C/Z

W(µ) (2.33)

and each W(µ) is a V -submodule of W . Thus if a module W is indecomposable (in particular, if it is irreducible), then all
complex numbers n for whichW(n) ≠ 0 are congruent modulo Z to each other.

Definition 2.18. LetW1 andW2 be doubly graded V -modules with respect to Ã. Amodule homomorphism fromW1 toW2 is
a linear map ψ such that

ψ(Y (v, x)w) = Y (v, x)ψ(w) for v ∈ V , w ∈ W1,

and such that ψ preserves the grading by Ã. An isomorphism is a bijective homomorphism. An endomorphism is a
homomorphism fromW to itself, we denote the endomorphism ring by EndÃ

V (W ).

Remark 2.19. Suppose V , W1, W2, ψ are as in Definition 2.18. Then ψ is compatible with both gradings:

ψ((W1)
(β)

(h) ) ⊂ (W2)
(β)

(h) , h ∈ C,

because ψ commutes with L(0) (see Section 4.5 of [17]), and because ψ preserves the grading by Ã.

Remark 2.20. The endomorphism ring EndÃ
V (W ) is a subring of the commuting ring

EndV (W ) := {linear maps ψ : W → W | ψ(Y (v, x)w) = Y (v, x)ψ(w), for v ∈ V , w ∈ W }.

Proposition 2.21. Suppose W is an irreducible strongly Ã-graded V-module. Then EndÃ
V (W ) = C.
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Proof. For any λ ∈ C, ψ ∈ EndÃ
V (W ), let W

ψ

λ be the λ-eigenspace of ψ . Then Wψ

λ is a V -submodule of W . Because W is
irreducible,Wψ

λ = 0 or W . We still need to showWψ

λ ≠ 0, for some λ ∈ C.
Choose h ∈ C, β ∈ Ã such that W (β)

(h) ≠ 0. Then by Remark 2.19, ψ preserves W (β)

(h) . Since dim W (β)

(h) < ∞ and we are

working over C, ψ has an eigenvector inW (β)

(h) . Therefore Wψ

λ ≠ 0 for some λ ∈ C. �

Proposition 2.22. Suppose A is a countable abelian group. Then EndV (W ) = C.

Proof. From Definition 2.3, V(n) =

α∈A V

(α)

(n) , where each doubly homogeneous subspace V (α)(n) has finite dimension. Since

A is a countable group, there are countably many such doubly homogeneous subspaces V (α)(n) , and hence V has countable
dimension. SinceW is irreducible, from Proposition 4.5.6 of [17], we know

W = span{vnw | v ∈ V , n ∈ Z},

for any nonzero element w in W . Since V has countable dimension, so does W . Then the result follows from Dixmier’s
Lemma, which says that if S is an irreducible set of operators on a vector space W of countable dimension over C, then the
commuting ring of S onW consists of the scalars (cf. Lemma 2.2 in [16], and [18], p. 11), where we take S to be A(V ;W ). �

3. Tensor product of strongly graded vertex algebras and their modules

In this section, we are going to introduce the notion of tensor product of finitely many strongly graded conformal vertex
algebras and their modules.

Let A1, . . . , Ap be abelian groups, and let V1, . . . , Vp be strongly A1, . . . , Ap-graded conformal vertex algebras with
conformal vectors ω1, . . . , ωp, respectively.

Let

A = A1 ⊕ · · · ⊕ Ap.

Then the vector space

V = V1 ⊗ · · · ⊗ Vp

becomes a strongly A-graded conformal vertex algebra, which we shall call the tensor product strongly A-graded conformal
vertex algebra, with the following structure:

Y (v(1) ⊗ · · · ⊗ v(p), x) = Y (v(1), x)⊗ · · · ⊗ Y (v(p), x)

for v(i) ∈ Vi and the vacuum vector is

1 = 1 ⊗ · · · ⊗ 1.

(Here we use the notation 1 for the vacuum vectors of V and each Vi.) The conformal vector is

ω = ω1
⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1⊗ωp.

Then

L(n) = L1(n)⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ Lp(n)

or n ∈ Z. (Here we use the notation Li(n) for the operators on Vi associated with ωi, i = 1, . . . , p.) The A-grading of V is
given by

V =


α∈A

V (α),

with

V (α) = V (α1)1 ⊗ · · · ⊗ V (αp)p ,

where αi ∈ Ai, i = 1, . . . , p, are such that α1 + · · · + αp = α. The Z-grading of V is given by

V =


n∈Z

V(n),

where

V(n) =


n1+···+np=n

(V1)(n1) ⊗ · · · ⊗ (Vp)(np).

(It follows that the Z-grading is given by L(0) defined above.)

Proposition 3.1. The tensor product of finitely many strongly graded conformal vertex algebras is a strongly graded conformal
vertex algebra whose central charge is the sum of the central charges of the tensor factors.
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Proof. The grading restrictions (2.21) and (2.22) clearly hold. The Jacobi identity follows from the weak commutativity and
weak associativity properties, as in Section 3.4 of [17]. �

Notation 3.2. For each i = 1, . . . , p, we identify Vi with the subspace 1⊗· · ·⊗1⊗Vi ⊗1⊗· · ·⊗1 of V . The strongly graded
conformal vertex algebra Vi is a vertex subalgebra of V . However, it is not a conformal vertex subalgebra of V because the
conformal vector of V and Vi do not match.

Remark 3.3. From the definition of tensor product strongly graded conformal vertex algebra, we see that

Y ((1 ⊗ · · · ⊗ 1 ⊗ v(i) ⊗ 1 ⊗ · · · ⊗ 1, x) = 1V1 ⊗ · · · ⊗ 1Vi−1 ⊗ Y (v(i), x)⊗ 1Vi+1 ⊗ · · · ⊗ 1Vp ,

for v(i) ∈ Vi. In particular, we have

[Y (Vi, x1), Y (Vj, x2)] = 0,

for i, j = 1, . . . , p and i ≠ j.

Lemma 3.4. For all n ∈ Z, (v(1) ⊗ · · · ⊗ v(p))n can be expressed as a linear combination, finite on any given vector, of operators
of the form (v(1) ⊗ 1 ⊗ · · · ⊗ 1)i1 · · · (1 ⊗ · · · ⊗ 1 ⊗ v(p))ip .

Proof. Weprove the result as in [7] by induction.When p = 2, taking Resx1 and the constant term in x0 of the Jacobi identity,
we find that

Y (v(1) ⊗ v(2), x2) = Resx0x
−1
0 Y (Y (v(1) ⊗ 1, x0)(1 ⊗ v(2)), x2)

= Resx1(x1 − x2)−1Y (v(1) ⊗ 1, x1)Y (1 ⊗ v(2), x2)

− Resx1(−x2 + x1)−1Y (1 ⊗ v(2), x2)Y (v(1) ⊗ 1, x1),

so that for all n ∈ Z, (v(1) ⊗ v(2))n can be expressed as a linear combination, finite on any given vector, of operators of
the form (v(1) ⊗ 1)n1(1 ⊗ v(2))n2 . (Note that we do not need operators of the form (1 ⊗ v(2))n2(v

(1)
⊗ 1)n1 because of the

Remark 3.3.)
For general p, taking Resx1 and the constant term in x0 of the Jacobi identity, we have

Y (v(1) ⊗ · · · ⊗ v(p), x2) = Resx0x
−1
0 Y (Y (v(1) ⊗ · · · ⊗ v(p−1)

⊗ 1, x0)(1 ⊗ · · · ⊗ 1 ⊗ v(p)), x2)

= Resx1(x1 − x2)−1Y (v(1) ⊗ · · · ⊗ v(p−1)
⊗ 1, x1)Y (1 ⊗ · · · ⊗ 1 ⊗ v(p), x2)

− Resx1(−x2 + x1)−1Y (1 ⊗ · · · ⊗ 1 ⊗ v(p), x2)Y (v(1) ⊗ · · · ⊗ v(p−1)
⊗ 1, x1).

It follows that (v(1) ⊗ · · ·⊗ v(p))n is a linear combination of the operators (v(1) ⊗ · · ·⊗ v(p−1)
⊗ 1)n1 · (1⊗ · · ·⊗ 1⊗ v(p))n2 .

Thus the lemma holds by the induction hypothesis. �

Now we define the notion of tensor product module for tensor product strongly A = A1 ⊕ · · · ⊕ Ap-graded conformal
vertex algebraV = V1⊗· · ·⊗Vp with the notions above. Let Ã1, . . . , Ãp be abelian groups containingA1, . . . , Ap as subgroups,
respectively, and letW1, . . . ,Wp be strongly Ã1, . . . , Ãp-graded modules for V1, . . . , Vp, respectively.

Let

Ã = Ã1 ⊕ · · · ⊕ Ãp.

Then we can construct the tensor product strongly Ã-graded module

W = W1 ⊗ · · · ⊗ Wp

for the tensor product strongly A-graded algebra V by means of the definition

Y (v(1) ⊗ · · · ⊗ v(p), x) = Y (v(1), x)⊗ · · · ⊗ Y (v(p), x) for v(i) ∈ Vi, i = 1, . . . , p,

L(n) = L1(n)⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗ 1 ⊗ Lp(n) for n ∈ Z.

(Here we use the notation Li(n) for the operators associated with ωi onWi, i = 1, . . . , p.) The Ã-grading ofW is defined as

W =


β∈Ã

W (β),

with

W (β)
= W (β1)

1 ⊗ · · · ⊗ W (βp)
p ,

where βi ∈ Ãi, i = 1, . . . , p, are such that β1 + · · · + βp = β . The C-grading ofW is defined as

W =


n∈C

W(n),
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where

W(n) =


n1+···+np=n

(W1)(n1) ⊗ · · · ⊗ (Wp)(np).

It follows that the C-grading is given by the operator L(0) onW defined above. It is clear that the algebra V is also a module
for itself.

Proposition 3.5. The structure W constructed above is a strongly Ã-graded module for the tensor product strongly A-graded
conformal vertex algebra V .

Assumption 3.6. In the remainder of this paper, we always assume that A, and that each Ai (i = 1, . . . , p) is a countable
abelian group.

Using Proposition 2.22, we now prove the following.

Theorem 3.7. Let W = W1 ⊗ · · · ⊗ Wp be a strongly Ã = Ã1 ⊕ · · · ⊕ Ãp-graded V-module, with the notations as above. Then
W is irreducible if and only if each Wi is irreducible.

Proof. The ‘‘only if ’’ part is trivial. For the ‘‘if ’’ part, for simplicity of notation, we take p = 2 without losing any essential
content. Take anonzero submoduleW ⊂ W1⊗W2, letw

(1)
1 , . . . , w

(1)
n ∈ W1 andw

(2)
1 , . . . , w

(2)
n ∈ W2 be linearly independent

such thatΣn
j=1aj(w

(1)
j ⊗w

(2)
j ) ∈ W , where each aj ≠ 0. Take anyw(1) ∈ W1,w(2) ∈ W2. By Proposition 2.22, the commuting

ring consists of the scalars for W1 and W2. Thus by the density theorem (see for example Section 5.8 of [15]), there are
b1 ∈ A(V1;W1 ⊗ W2), b2 ∈ A(V2;W1 ⊗ W2) such that

b1 · w
(1)
1 = w(1), b1 · w

(1)
i = 0, for i = 2, . . . , n.

b2 · w
(2)
1 = w(2), b2 · w

(2)
i = 0, for i = 2, . . . , n.

Then

(b1b2) ·Σn
j=1 aj(w

(1)
j ⊗ w

(2)
j ) = a1(w(1) ⊗ w(2)) ∈ W .

Hencew(1) ⊗ w(2) ∈ W , and soW = W1 ⊗ W2. �

4. Strongly (h,A)-graded vertex algebras and their strongly (h, Ã)-graded modules

For some strongly A-graded vertex algebras V , there is a vector space h consisting of mutually commuting operators
induced by V such that the A-grading of V is given by h in the following way: for α ∈ A, V (α) is the weight space of h of
weight α. Here is an example:

Example 4.1. Consider the strongly L-graded conformal vertex algebra VL in Example 2.8. For h ∈ h, there is an operator
h(0) on VL such that

h(0) · V (α)L = ⟨h, α⟩V (α)L .

We identify h with the set of operators

{h(0) = (h(−1) · 1)0 | h ∈ h}

(see Chapter 8 of [8]). Since the symmetric bilinear form ⟨·, ·⟩ is nondegenerate, V (α)L is characterized as the weight space of
h of weight α.

Consider the tensor algebra T (V [t, t−1
]) over the vector space V [t, t−1

]. Then any V -module W , in particular, V itself,
can be regarded as a T (V [t, t−1

])-module uniquely determined by the condition that for v ∈ V , n ∈ Z, v ⊗ tn acts on W as
vn. In the following definitions, we consider a particular subspace of T (V [t, t−1

]) acting on V andW .

Definition 4.2. A strongly A-graded vertex algebra equipped with a vector subspace

h ⊂ T (V [t, t−1
])

is called strongly (h, A)-graded if there is a nondegenerate pairing

⟨·, ·⟩ : h × A −→ C
(h, α) −→ ⟨h, α⟩

linear in the first variable and additive in the second variable, such that h acts commutatively on V and

V (α) = {v ∈ V | h · v = ⟨h, α⟩v, for all h ∈ h}.
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By Definition 4.2, the strongly graded conformal vertex algebra VL in Example 4.1 is strongly (h, L)-graded, where h is the
set of operators {(h(−1) · 1)0 | h ∈ L ⊗Z C}.

For a strongly (h, A)-graded vertex algebra V , a natural module category is the category of strongly Ã-graded V -modules
W with an action of h, such that the Ã-grading onW is given by weight spaces of h. Here is an example:

Example 4.3. As in Example 2.8, any sublattice M of L◦ containing L gives rise to a strongly M-graded VL-module VM . Take
h = L ⊗Z C and identify h as the set of operators {(h(−1) · 1)0 | h ∈ h} as in Example 4.1. Then for β ∈ M ,

V (β)M = {w ∈ VM | h · w = ⟨h, β⟩w, for all h ∈ h}

so that we have examples of the following:

Definition 4.4. A strongly Ã-graded module for a strongly (h, A)-graded vertex algebra is said to be strongly (h, Ã)-graded if
there is a nondegenerate pairing

⟨·, ·⟩ : h × Ã −→ C
(h, β) −→ ⟨h, β⟩

linear in the first variable and additive in the second variable, such that the operators in h act commutatively onW and

W (β)
= {w ∈ W | h · w = ⟨h, β⟩w, for all h ∈ h}.

Remark 4.5. Submodules and quotient modules of strongly (h, Ã)-graded conformal modules are also strongly (h, Ã)-
graded modules. Irreducible strongly (h, Ã)-graded modules are strongly (h, Ã)-graded modules without nontrivial
submodules. Strongly (h, Ã)-graded module homomorphisms are strongly Ã-graded module homomorphisms which
commute with the actions of h.

The following propositions are natural analogues of Propositions 3.1 and 3.5.

Proposition 4.6. Let V1, . . . , Vp be strongly (h1, A1), . . . , (hp, Ap)-graded conformal vertex algebras, respectively. Let A =

A1 ⊕ · · · ⊕ Ap, h = h1 ⊕ · · · ⊕ hp, and let ⟨·, ·⟩i denote the pairing between hi and Ai, for i = 1, . . . , p. Then the tensor
product algebra V = V1 ⊗· · ·⊗Vp becomes a strongly (h, A)-graded conformal vertex algebra, where the nondegenerate pairing
is given by

⟨·, ·⟩ : h × A −→ C

(h, α) −→

p
i=1

⟨hi, αi⟩i,

where h = h1 + · · · + hp, α = α1 + · · · + αp, for hi ∈ hi, αi ∈ Ai, i = 1, . . . , p, and

V (α) = V (α1)1 ⊗ · · · ⊗ V (αp)p = {v ∈ V1 ⊗ · · · ⊗ Vp | h · v = ⟨h, α⟩v, for all h ∈ h}.

Proof. It is easy to see that the pairing defined above is nondegenerate, and V (α) is characterized uniquely as the eigenspace
of h. �

Proposition 4.7. Let W1, . . . ,Wp be strongly (h1, Ã1), . . . , (hp, Ãp)-graded conformal modules for strongly (h1, A1), . . . ,

(hp, Ap)-graded conformal vertex algebras V1, . . . , Vp, respectively. Let Ã = Ã1 ⊕ · · · ⊕ Ãp, h = h1 ⊕ · · · ⊕ hp, and let ⟨·, ·⟩i

denote the pairing between hi and Ãi, for i = 1, . . . , p. Then the tensor product module W = W1 ⊗· · ·⊗Wp becomes a strongly
(h, Ã)-graded module for the strongly graded vertex algebra V , where the nondegenerate pairing is given by

⟨·, ·⟩ : h × Ã −→ C

(h, β) −→

p
i=1

⟨hi, βi⟩i,

where h = h1 + · · · + hp, β = β1 + · · · + βp, for hi ∈ hi, βi ∈ Ãi, i = 1, . . . , p, and

W (β)
= W (β1)

1 ⊗ · · · ⊗ W (βp)
p = {w ∈ W1 ⊗ · · · ⊗ Wp | h · w = ⟨h, β⟩w, for all h ∈ h}. �

The following proposition is an analogue and consequence of Theorem 3.7.

Theorem 4.8. Let W = W1 ⊗· · ·⊗Wp be a strongly (h, Ã)-graded module constructed in Proposition 4.7. ThenW is irreducible
if and only if each Wi is irreducible.
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5. Irreducible modules for tensor product strongly graded algebra

Our goal is to determine all the strongly (h, Ã)-graded irreducible modules for the tensor product strongly (h, A)-graded
conformal vertex algebra constructed in Proposition 4.6. To do this, we need to define amore specific kind of strongly (h, Ã)-
graded modules as follows:

Definition 5.1. Let V1, . . . , Vp, V be strongly (h1, A1), . . . , (hp, Ap), (h, A)-graded conformal vertex algebras, respectively,
as in the setting of Proposition 4.6. Let W be a strongly (h, Ã)-graded V -module, where Ã is an abelian group containing A
as a subgroup, so that in particular, for β ∈ Ã,

W (β)
= {w ∈ W | h · w = ⟨h, β⟩w, for all h ∈ h}.

Assume that there exists an abelian subgroup Ãi of Ã containing Ai as a subgroup for each i = 1, . . . , p such that

Ã = Ã1 ⊕ · · · ⊕ Ãp,

⟨hi, Ãj⟩ = 0 if i ≠ j

and such thatW is a doubly graded Vi-module with respect to Ãi and the Ãi-grading is given by hi in the following way: For
βi ∈ Ãi,

W (βi) = {w ∈ W | hi · w = ⟨hi, βi⟩w, for all hi ∈ hi}.

ThenW is called a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V-module.

Remark 5.2. Submodules and quotient modules of strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V -modules are also strongly
((h1, Ã1), . . . , (hp, Ãp))-gradedmodules. Irreducible strongly ((h1, Ã1), . . . , (hp, Ãp))-gradedmodules are strongly ((h1, Ã1),

. . . , (hp, Ãp))-graded modules without nontrivial submodules. Strongly ((h1, Ã1), . . . , (hp, Ãp))-graded module homomor-
phisms are strongly (h, Ã)-graded V -module homomorphisms.

Example 5.3. The strongly (h, Ã)-graded tensor product moduleW1 ⊗ · · · ⊗Wp constructed in Proposition 4.7 is a strongly
((h1, Ã1), . . . , (hp, Ãp))-graded V1 ⊗ · · · ⊗ Vp-module.

From Example 2.8, we can see that any VL-module is a strongly L◦-graded module. Based on this fact, it is easy to show
that the following example satisfies the conditions in Definition 5.1.

Example 5.4. Let V ♮ be the moonshine module constructed in [8], which is a strongly (⟨0⟩, ⟨0⟩)-graded conformal vertex
algebra as in Example 2.7; let VL be the conformal vertex algebra associated with the even two-dimensional unimodular
Lorentzian lattice L, which is a strongly (h, L)-graded conformal vertex algebra as constructed in Example 2.8. Then any
strongly (h, L)-graded module for V ♮⊗VL is strongly ((⟨0⟩, ⟨0⟩), (h, L))-graded (note that L is a self-dual lattice, i.e., L◦

= L).

Notation 5.5. For β1 ∈ Ã1, . . . , βp ∈ Ãp, we letW (β1,...,βp) denote the following common weight space of h1, . . . , hp, i.e.,

W (β1,...,βp) := {w ∈ W | hi · w = ⟨hi, βi⟩w, for all hi ∈ hi, i = 1, . . . , p}.

Next we assume W to be a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V1 ⊗ · · · ⊗ Vp-module, with the notation as in
Definition 5.1.

Proposition 5.6. Suppose that W is irreducible. Then for β1 ∈ Ã1, . . . , βp ∈ Ãp, W (β1,...,βp) is irreducible under the algebra of
operators A(V1 ⊗ · · · ⊗ Vp;W (β1,...,βp)).

Proof. The proof is similar to the proof of Proposition 2.16. �

Lemma 5.7. For β ∈ Ã, we have

W (β)
= W (β1,...,βp),

where β = β1 + · · · + βp.

Proof. This is a consequence of Definition 5.1. �

Theorem 5.8. Let W be a strongly ((h1, Ã1), . . . , (hp, Ãp))-graded irreducible V1 ⊗ · · · ⊗ Vp-module, with the notions as in
Definition 5.1. Then W is a tensor product of irreducible strongly (hi, Ãi)-graded Vi-modules, for i = 1, . . . , p.
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Proof. For simplicity of notation, we take p = 2, as above. Since W is irreducible, by Remark 2.17, W =


n̄=µW(n) for
some µ ∈ C/Z, where n̄ denotes the equivalent class of n ∈ C in C/Z. Choose β ∈ Ã such that W (β)

≠ 0. Then there exists
n0 ∈ C such thatW (β)

(n0)
is the lowest weight space ofW (β). SinceW (β)

(n0)
is finite dimensional andwe areworking over C, there

exists a simultaneous eigenvector w0 ∈ W (β)

(n0)
for the commuting operators Li(0) and the operators in hi, i = 1, 2. Denote

by n1, n2 ∈ Z the corresponding eigenvalues for L1(0), L2(0). Then we have n0 = n1 + n2. Denote by β1 ∈ Ã1, β2 ∈ Ã2 the
corresponding weights for h1, h2. By Lemma 5.7, we have W (β)

= W (β1,β2), and β = β1 + β2.
Now the L(−1)-derivative condition and the L(0)-bracket formula imply that

[L1(0), Y (v(1) ⊗ 1, x)] = Y (L1(0)(v(1) ⊗ 1), x)+ x
d
dx

Y (v(1) ⊗ 1, x)

for v(1) ∈ V1. Thus for doubly homogeneous vector v(1) and n ∈ Z,

wt1(v(1) ⊗ 1)n = wt1(v(1) ⊗ 1)− n − 1,

where wt1 refers to L1(0)-eigenvalue on both V1 ⊗ V2 and the space of operators on W . In particular, (v(1) ⊗ 1)n permutes
L1(0)-eigenspaces. Moreover, since (1⊗v(2))n, for v(2) ∈ V2, commuteswith L1(0), it preserves L1(0)-eigenspaces. Of course,
similar statements hold for L2(0), h1(0), h2(0).

By Lemma 5.6,W (β1,β2) is irreducible under the algebra of the operators A(V1 ⊗ V2;W (β1,β2)). ThenW (β1,β2) is generated
byw0 by the irreducibility, and is spanned by elements of the form

(v
(1)
1 ⊗ 1)m1 · · · (v

(1)
k ⊗ 1)mk(1 ⊗ v

(2)
1 )n1 · · · (1 ⊗ v

(2)
l )nlw0

where v(1)i ∈ V1 and v(2)j ∈ V2, v
(1)
i , v

(2)
j are doubly homogeneous, and the A-weights of

m
i=1 v

(1)
i and

n
j=1 v

(2)
j are 0.

Hence W (β1,β2) is the direct sum of its simultaneous eigenspaces for Li(0) and hi, for i = 1, 2, and the L1(0), L2(0)-
eigenvalues are bounded below by n1, n2, respectively. It follows that the lowest weight space W (β1,β2)

(n0)
is filled up by

the simultaneous eigenspace for the operators Li(0) with eigenvalues ni. To be more precise, we use W (β1,β2)
(n1,n2)

to denote

the subspace W (β1,β2)
(n0)

. By a similar argument as in Proposition 5.6, W (β1,β2)
(n1,n2)

is irreducible under the algebra of operators

A(V1 ⊗ V2;W
(β1,β2)
(n1,n2)

).

By the density theorem, the algebra A(V1⊗V2;W
(β1,β2)
(n1,n2)

) fills up EndW (β1,β2)
(n1,n2)

. Because A(V1;W
(β1,β2)
(n1,n2)

) and A(V2;W
(β1,β2)
(n1,n2)

)

are commuting algebras of operators and A(V1 ⊗ V2;W
(β1,β2)
(n1,n2)

) is generated by A(V1;W
(β1,β2)
(n1,n2)

) and A(V2;W
(β1,β2)
(n1,n2)

), we see
that

EndW (β1,β2)
(n1,n2)

= A(V1;W
(β1,β2)
(n1,n2)

)A(V2;W
(β1,β2)
(n1,n2)

).

Choose an irreducible A(V1;W
(β1,β2)
(n1,n2)

)-submodule M1 of W (β1,β2)
(n1,n2)

. Then A(V1;W
(β1,β2)
(n1,n2)

) acts faithfully on M1 since any

element of A(V1;W
(β1,β2)
(n1,n2)

)which annihilatesM1 annihilates A(V2;W
(β1,β2)
(n1,n2)

) · M1 = A(V2;W
(β1,β2)
(n1,n2)

)A(V1;W
(β1,β2)
(n1,n2)

) · M1 =

(End W (β1,β2)
(n1,n2)

)M1 = W (β1,β2)
(n1,n2)

. Thus A(V1;W
(β1,β2)
(n1,n2)

) restricts faithfully to End M1 and hence is isomorphic to a full matrix

algebra. Similarly, A(V2;W
(β1,β2)
(n1,n2)

) is isomorphic to a full matrix algebra. It follows that

EndW (β1,β2)
(n1,n2)

= A(V1;W
(β1,β2)
(n1,n2)

)⊗ A(V2;W
(β1,β2)
(n1,n2)

).

ThenW (β1,β2)
(n1,n2)

has the structure

W (β1,β2)
(n1,n2)

= M1 ⊗ M2

as an irreducible A(V1;W
(β1,β2)
(n1,n2)

) ⊗ A(V2;W
(β1,β2)
(n1,n2)

)-module. Here, as an irreducible A(Vi;W
(β1,β2)
(n1,n2)

)-submodule of W (β1,β2)
(n1,n2)

,
Mi has Ãi-grading βi induced by hi, and has C-grading ni induced by Li(0), respectively, for i = 1, 2.

Let

w0
= y1 ⊗ y2

(where yi ∈ Mi, for i = 1, 2) be a nonzero decomposable tensor in W (β1,β2)
(n1,n2)

. Let Wi be the doubly graded Vi-submodule of
W generated byw0. Then the moduleW1 has a strongly (h1, Ã1)-graded V1-module structure such that

W1 =


n∈C, γ∈Ã

(W1)
(γ )

(n) ,
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where

(W1)
(γ )

(n) = span{(v
(1)
1 ⊗ 1)s1 · · · (v(1)p ⊗ 1)spw

0
|wt v(1)1 − s1 − 1 + · · · + wt v(1)p − sp − 1 = n − n1,

A-wt v(1)1 + · · · + A-wt v(1)p = γ − β1, v
(1)
1 , . . . , v(1)p ∈ V1, s1, . . . , sp ∈ Z}.

This module we constructed satisfies the grading restrictions (2.27) and (2.28) in Definition 2.4, which follows from
the fact that W is a strongly graded V1 ⊗ V2-module and each doubly homogeneous subspace of W1 lies in the doubly
homogeneous subspace of W . Also, W (γ )

1 is the weight space of h1 with weight γ , hence by Definition 4.4, W1 is a strongly
(h1, Ã1)-graded V1-module.

We claim that W1 is V1-irreducible (and similarly for W2). In fact, consideration of the abelian group grading shows
that any nonzero V1-submodule of W1 not intersecting W (β1,β2) will give rise to a nonzero V1 ⊗ V2-submodule of W not
intersecting W (β1,β2). Thus any nonzero V1-submodule of W1 must intersect W (β1,β2). Then consideration of the weight
shows that the (β1, β2)-subspace of any nonzero V1-submodule ofW1 not intersectingW (β1,β2)

(n1,n2)
would give rise to a nonzero

A(V1 ⊗V2;W (β1,β2))-submodule ofW (β1,β2) not intersectingW (β1,β2)
(n1,n2)

. Thus any nonzero V1-submodule ofW1 must intersect

W (β1,β2)
(n1,n2)

. But the irreducible A(V1;W
(β1,β2)
(n1,n2)

)-module A(V1;W
(β1,β2)
(n1,n2)

) · w0 is the full intersection of W1 and W (β1,β2)
(n1,n2)

, so that
the V1-submodule must containw0 and hence be all ofW1. This proves the V1-irreducibility ofW1.

Finally, to show thatW is isomorphic toW1 ⊗W2, consider the abstract tensor product V1 ⊗V2-moduleW1 ⊗W2, where
Wi is the strongly Ãi-graded Vi-module defined above, for i = 1, 2. Define a linear map

ϕ : W1 ⊗ W2 → W
b1 · w0

⊗ b2 · w0
→ b1b2 · w0,

where bi is any operator induced by Vi. Then ϕ is well defined and is a V1 ⊗ V2-module homomorphism. Since W1 ⊗ W2 is
irreducible by Theorem 3.7, ϕ is a module isomorphism. �

Example 5.9. LetVLi be the conformal vertex algebra associatedwith an even lattice Li as in Example 2.8,where i = 1, . . . , p.
Let VL1 ⊗· · ·⊗VLp be the tensor product strongly graded vertex algebra of VL1 , . . . , VLp . By the construction of a lattice vertex
algebra in Example 2.8, we have

VL1 ⊗ · · · ⊗ VLp = VL1⊕···⊕Lp ,

and every irreducible VL1⊕···⊕Lp-module is equivalent to a module of the form

VL1+γ1⊕···⊕Lp+γp = VL1+γ1 ⊗ · · · ⊗ VLp+γp ,

for some γi ∈ L◦

i , i = 1, . . . , p. This example illustrates Theorem 5.8.

Now we can describe our main examples:

Corollary 5.10. The only irreducible strongly (h, L)-graded module of V ♮ ⊗ VL, where L is the unique even two-dimensional
unimodular Lorentzian lattice and h = {(h(−1) · 1)0 | h ∈ L ⊗Z C}, up to equivalence, is itself.

Proof. Let W be an irreducible strongly (h, L)-graded module of V ♮ ⊗ VL. Then by Example 5.4, W is a strongly
((⟨0⟩, ⟨0⟩), (h, L))-graded module of V ♮ ⊗ VL. By Theorem 5.8, it is a tensor product of an irreducible strongly (⟨0⟩, ⟨0⟩)-
graded V ♮-module with an irreducible strongly (h, L)-graded VL-module. By Dong [4], V ♮ is its only irreducible module, up
to equivalence. Also, by Dong [3] (cf. [17], Example 2.8), VL is its only irreducible module because L is self-dual. Therefore

W = V ♮ ⊗ VL

as claimed. �

Remark 5.11. In Corollary 5.10, the two-dimensional self-dual Lorentzian lattice can of course be generalized to any self-
dual nondegenerate even lattice.

6. Complete reducibility

Definition 6.1. Let V be a strongly (h, A)-graded conformal vertex algebra. Then a strongly (h, Ã)-graded V -module is called
completely reducible if it is a direct sum of irreducible strongly (h, Ã)-graded V -modules.

Notation 6.2. In the remainder of this section, wewill always let A = A1⊕· · ·⊕Ap, h = h1⊕· · ·⊕hp, and V = V1⊗· · ·⊗Vp.

Definition 6.3. A strongly ((h1, Ã1), . . . , (hp, Ãp))-gradedmodule for the tensor product conformal vertex algebraV is called
completely reducible if it is a direct sum of irreducible strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V -modules.
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Theorem 6.4. Let V1, . . . , Vp be strongly (h1, A1), . . . , (hp, Ap)-graded conformal vertex algebras, respectively, and let V be their
tensor product strongly (h, A)-graded conformal vertex algebra. Then every strongly ((h1, Ã1), . . . , (hp, Ãp))-graded V-module
is completely reducible if and only if every strongly (hi, Ãi)-graded Vi-module is completely reducible.

Proof. It suffices to prove the result for n = 2. Let W be a strongly ((h1, Ã1), (h2, Ã2))-graded V = V1 ⊗ V2-module. Then
by Proposition 5.7, we can takew ∈ W (β1,β2)

(n1,n2)
, where βi ∈ Ãi, ni ∈ C, for i = 1, 2.

LetM be the strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗V2-submodule of W generated byw, i.e.,M is spanned by elements
of the form

(v
(1)
1 ⊗ 1)s1 · · · (v(1)p ⊗ 1)sp(1 ⊗ v

(2)
1 )t1 · · · (1 ⊗ v(2)q )tqw

where v(1)1 , . . . , v
(1)
p are doubly homogeneous elements in V1 and v(2)1 , . . . , v

(2)
q are doubly homogeneous elements in V2,

respectively, and s1, . . . , sp, t1, . . . , tq ∈ Z. Let Mi be the doubly graded Vi-submodule of M generated by w. Then Mi is a
strongly (hi, Ãi)-graded Vi-module, respectively, for i = 1, 2, in an obvious way as in the proof of Theorem 5.8.

By Proposition 4.7 and Example 5.3, M1 ⊗ M2 is strongly ((h1, Ã1), (h2, Ã2))-graded. Moreover, we have a strongly
((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module epimorphism from M1 ⊗ M2 to M by sending b1w ⊗ b2w → b1b2w, where
bi is an operator induced by Vi, for i = 1, 2. If every strongly (hi, Ãi)-graded Vi-module is completely reducible, thenMi is a
direct sum of irreducible strongly (hi, Ãi)-graded Vi-modules and therefore M1 ⊗ M2 is a direct sum of irreducible strongly
((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules (see Theorem 4.8). Then as a quotient module of M1 ⊗ M2, M is also a direct
sum of irreducible strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules, and consequently,W is a direct sum of irreducible
strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-modules.

Conversely, assume that every strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module W is completely reducible. We first
observe that V1 ⊗ V2 is strongly ((h1, A1), (h2, A2))-graded, hence a ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module itself by
Proposition 4.6 and Example 5.3, and hence is a direct sum of irreducible strongly ((h1, Ã1), (h2, Ã2))-graded modules. Let
W be an irreducible strongly ((h1, Ã1), (h2, Ã2))-gradedV1⊗V2-module. ThenW is a tensor product of an irreducible strongly
(h1, Ã1)-graded module for V1 and an irreducible strongly (h2, Ã2)-graded module for V2 by Theorem 5.8. In particular, V1

has irreducible strongly (h1, Ã1)-graded modules and V2 has irreducible strongly (h2, Ã2)-graded modules, respectively.
LetW1 be a strongly (h1, Ã1)-gradedV1-module andW2 be an irreducible strongly (h2, Ã2)-gradedV2-module. Since every

strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗V2-module is completely reducible,W1 ⊗W2 is a direct sum of irreducible strongly
((h1, Ã1), (h2, Ã2))-graded modules:

W1 ⊗ W2 =


i

Mi

where each Mi is an irreducible strongly ((h1, Ã1), (h2, Ã2))-graded V1 ⊗ V2-module. Fix i and let x(i)1 , . . . , x
(i)
n ∈ W1

and y(i)1 , . . . , y
(i)
n ∈ W2 be linearly independent doubly homogeneous elements such that


j cjx

(i)
j ⊗ y(i)j ∈ Mi, where

cj ∈ C, cj ≠ 0. By the density theorem (as in the proof of Theorem 3.7), each x(i)j ⊗ y(i)j ∈ Mi. Let Wi1 be the doubly graded
V1-submodule of W1 generated by x(i)j0 , for some j0 ∈ {1, 2, . . . , n}. Then Wi1 is a strongly (h1, Ã1)-graded V1-submodule as
in the proof of Theorem 5.8. By the irreducibility of Mi, we see that Mi = Wi1 ⊗ W2 and that Wi1 is an irreducible strongly
(h1, Ã1)-graded V1-submodule of W1. Therefore, W1 ⊗ W2 = (


i Wi1) ⊗ W2. By the density theorem, for any nonzero

w2 ∈ W2,W1 ⊗w2 = (


i Wi1)⊗w2. Hence as a V1-module,W1 ∼= (


i Wi1), and thusW1 is completely reducible. Similarly
for V2. �

Example 6.5. LetVLi be the conformal vertex algebra associatedwith an even lattice Li as in Example 2.8,where i = 1, . . . , p.
Let VL1 ⊗· · ·⊗VLp be the tensor product strongly graded vertex algebra of VL1 , . . . , VLp . By the construction of a lattice vertex
algebra as in Example 2.8, we have

VL1 ⊗ · · · ⊗ VLp = VL1⊕···⊕Lp .

As in Example 2.8, every module for VL1⊕···⊕Lp , hence for VL1 ⊗ · · · ⊗ VLp , is completely reducible. This example illustrates
Theorem 6.4.

Corollary 6.6. Every strongly (h, L)-graded module for the strongly (h, L)-graded conformal vertex algebra V ♮ ⊗ VL, where L is
the unique even two-dimensional unimodular Lorentzian lattice and h = {(h(−1) · 1)0 | h ∈ L ⊗Z C}, is completely reducible.
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