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A b s t r a c t - - A n  accelerated monotone iterative method for a boundary value problem of second- 
order discrete equations is presented. This method leads to an existence-comparieon theorem as 
well as a computational algorithm for the solutions. The monotone property of the iterations gives 
improved upper and lower bounds of the solution in each iteration, and the rate of convergence of the 
iterations is either quadratic or nearly quadratic depending on the property of the nonlinear function. 
Some numerical results are presented to illustrate the monotone convergence of the iterative sequences 
and the rate of convergence of the iterations. © 2000 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

In studying some problems arising in solid state physics, chemical reactions, population dynamics, 
and other topics, we often meet discrete boundary value problems. Besides, they are also natural 
consequences of the discretization of differential boundary value problems. There are numerous 
works which are devoted to the discrete boundary value problems (see [1-9]). Let N >_ 2 be 
a positive integer, I N-1 = {1,2 . . . .  , N  - 1} and I g = I1N-i U {0, N}. For the function u : 
I N , R,  we define 

, 2 . ( t )  = . ( ,  - 1) - 2 . ( t )  + u( ,  + 1), t e I ~  -1 ,  

1 , I1N_I. PNU(t) = ~ (u(t -- 1) + 10u(t) + u( t  + 1)) t e 

In  this  paper ,  we consider  the  following discrete boundary  value problem: 

-~2u(t)+PNf(N,u(t)) = 0 ,  t E I  N-l, 

u(0) = a ,  u(N) =/~, 
(1.1) 
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where the given function f( . ,  u), which in general is nonlinear in u, is assumed to be continuous 
differentiable in u, and a,/3 E R are known constants. This problem comes from the discretization 
of the following continuous boundary value problem: y"(x) = f(x,  y), 0 < x < 1; y(0) = a, y(1) 
=/3, by the fourth-order Numerov's method (see [10-12]). If f ( . ,  u) is nonlinear in u, problem (1.1) 
requires some kind of iterative scheme for the computation of numerical solutions. By the method 
of upper and lower solutions, the author in [12] proposed a monotone iteration for problem (1.1). 
This monotone iteration leads not only to the existence and uniqueness of a solution but  the 

process of iteration gives also a computational algorithm for numerical solutions. However, the 
iteration process used in the above work is of Picard type, and the rate of convergence of the 
iterations is of linear order. To increase the rate of convergence while maintaining the monotone 

property of the iteration, we propose an accelerated monotone iterative scheme. An advantage 
of this scheme is that  it leads to a monotone sequence which converges either quadratically or 
nearly quadratically with only the usual differentiability requirement on the function f( . ,  u). On 
the other hand, since the initial iteration in the monotone iterative scheme is either an upper 
solution or a lower solution, which can be constructed directly from the equation without any 
knowledge of the solution, this method eliminates the search for the initial iteration as is often 
needed in the Newton's method. This elimination gives a practical advantage in the computation 
of numerical solutions. 

The outline of this paper is as follows. In Section 2, we give an accelerated iterative scheme 
for the construction of monotone sequences by the method of upper and lower solutions. This 
iterative scheme is reduced to the Newton's iterative scheme if f(-,  u) possesses a concavity 
or convexity property between upper and lower solutions. The proof of the quadratic rate of 
convergence of the iterations is given in Section 3, where some explicit estimates for the rate 
of convergence are given. Finally, in Section 4, numerical results are presented and the rate of 
convergence of the monotone iterations are compared with that  by the Picard's method. 

2.  A C C E L E R A T E D  M O N O T O N E  I T E R A T I O N S  

Without  further mention, we assume that  all the inequalities involving vectors are componen- 
twise. Define S = {u(t) [ u(t) : I N ~ Rn}. To obtain sequences which converge to solutions 
of (1.1), we need to a pair of upper and lower solutions which are defined as follows. 

DEFINITION 2.1. A function ~(t) E S is cMled an upper solution of problem (1.1) if 

--~2~(t)+ P N f ( N , ~ ( t ) )  >_0,  t e l l  N-I,  (2.1) 

~(0) > a, ~(N) _>/3, (2.2) 

and u(t) E 8 is called a lower solution if 

- " u ( t ) +  P N f ( N , u ( t ) )  <_0, t E I  g - ' ,  (2.3) 

u(0) _< a, u(Y) _</3. (2.4) 

The pair ~(t), u(t) are said to be ordered if~(t) >> u(t) for all t E I N. 

It is obvious that  every solution of problem (1.1) is an upper solution as well as a lower solution. 
Given u(t), v(t), and w(t) in $, we say that  w E [u, v] if u(t) < w(t) <_ v(t), for all t E I N. Let M 
be a given constant and set 

M 
1~-~2, 

Af(M) = 
5 + cos(Tr/N) M 

' 

We have the following positive lemma (see [12]). 

M_>0,  

M < 0 .  

(2.5) 
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LEMMA 2.1. Let u(t) e $ such that 

-~2u(t) + Py(M(t)u(t))  >_ O, t • IN -1, 

u(O) >_ O, u(N) > O, 

where M(t) • ,5. Set M = mintei~-i  M(t) and M = maxtelo~ M(t). Ifmax(AZ(M),Af(M)) < 1, 
then u( t ) > 0 for a11 t • Io N. 

By Lemma 2.1, we have that for all M(t), g(t) • $, the linear problem 

-52u(t) + PN(M(t)u(t)) = g(t), t • I N-l ,  

u(O) = a, u(N) = j3 

is uniquely solvable in $ provided max(A;(M),Af(M)) < 1, where M = mintez~-i M(t) and 

M = maxteioN M(t). 
Let ~(t) and u(t) be a pair of ordered upper and lower solutions of problem (1.1). To compute 

the solution of problem (1.1), we use the following iterative scheme: 

-~2u(m+l)(t) + PN (M(m)(t)u(m+l)(t)) 

u ( m + l ) ( 0 ) = a ,  u(m+l)(N)=~, ( m = 0 , 1 , 2 , . . . ) ,  

where u (°)(t) is either ~(t) or u(t), and 

The functions ~(rn) (t), u (m) (t) in the definition of M (m) (t) are obtained from (2.6) with u (°) = ~(t) 
and u (°) = u(t), respectively. It is clear from (2.7) that 

whenever u(m)(t) _< v(t) <_ u(t) <_ ~(m)(t), t • IoN. Moreover, if f( . ,u) is a C2-function then 

and 

when f U U ( N , u ( t ) ) > 0 i n  [u(m),~ (m)] 

when fuu ( N , U ( t ) )  <_0in [u(m),~(rn)]. 

Hence, if fu( ' ,  u) is either monotone nondecreasing or monotone nonincreasing in u, then the 
iteration process (2.6) is reduced to the Newton's form 

u ( m + l ) ( 0 ) = a ,  u (m+l)(N)=z,  (re=O, 1,2, . . . )  

(e.g., see [13]). To show that the sequence given by (2.6) is well defined for an arbitrary 
Cl-function f( . ,u)  it is crucial that  the sequences {~('~)(t)}, {u(m)(t)} possess the property 
~(m)(t) > u(m)(t) for every m = 1, 2 . . . .  and all t E I N. This is shown in the following lemma. 
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LEMMA 2.2. Let ~(t) and u(t) be a pair of ordered upper and lower solution and set 

M(t) = m a x  {fu  ( ~ , u ( t ) ) : u ( t ) < _ u ( t ) < _ ~ ( t ) } ,  t •  I N , 

M ' ( t ) - - m i n { f u ( N , u ( t ) ) : u ( t ) < _ u ( t ) < _ g ( t ) } ,  t • I  N , 

M = maxM( t ) ,  M = min M(t), M'  = min M'(t). 
telo ~ t e g - '  telo" 

I f M '  > -8  and max(Af(M),Af(M)) < 1, then sequences {~(m)(t)}, {u(m)(t)}, and {M(m)(t)} 
given by (2.6) and (2.7) with u-°(t) = ~(t) and u(°)(t) -- u(t) are ali well defined and possess the 
property 

u_(t) <u_(m)(t) _< u(m+l) (t) _< ~(m+l) (t) <~(m)(t) _<~(t), t • I N , m ---- 1,2 . . . . .  (2.10) 

PROOF. Since M(°)(t) = M(t) and max(Af(M),Af(M)) < 1, we have from Lemma 2.1 that  the 
first iterations ~(1)(t) and _uO)(t) are well defined. By (2.6), (2.8), and Definition 1.1, we have 
that for all t • I N- i ,  

__(~2 (~(1)(t)-  U(1)(t)) _~_ PN (/(0)($)(~(1)(t) - _u(1)(t))) 

__(~2 (U(1)($)- ~t(0)($)) _[_ PN (/(0)($)(U-(1)($)- ~t(0)(t))) ~ 0, 

+ . .  ( . ( o )  (,) (,) _ o 

Since max(Af(M),Af(M)) < 1, Lemma 2.1 implies that  

u-(°)(t) < u-(1)(t) < ~ ( ' ( t )  __ ~(°)(t), t • / o  N 

Therefore, M (1)(t) is well defined. Assume, by induction, that _u (m)(t), ~(m)(t), and M (m) (t) are 
all well defined and 

u(t) < _U(m-1)(t) _~ u(m)(t) ~ ~(m)(t) < ~(m-1)(t) _~ ~(t), t • /O N , 

for some m >_ 1. Let 

M (m) = min M(m)(t), -~(m) = maxM(m)(t)" 
t e I ( - '  teIo ~ 

Since M '  > - 8  and M'(t) <_ M(m)(t) < M(t), for all t E I0 N, we have that - 8  < M (m) < M and 

- 8  < ~ (m)  _< ~ .  We show that max(Af(M(m)),Af(M(m))) < 1. There are three cases. 

(i) - 8  < ~ ( m )  < 0. It is easy to check that (5 +cosOr/N))/(24N2sin20r/(2N))) <_ 1/8, and 

so we have max(Af(M(m)),Af(M(m))) < 1. 

(ii) ~ ( m )  > 0 and M (m) _> 0. In this case, Af(M (m)) _< Af(M) and Af(M (m)) _< Af(M). 

Therefore, max(Af(M(m)),Af(M(m))) _< max(Af(M),Af(M)) < 1. 

(iii) ~ ( m )  > 0 and - 8  < M (m) < 0. In this case, Af(M (m)) < 1 because of (5 + cos(zc/N))/ 
(24N 2 sin2(r/(2N))) <_ 1/8 and Af(M (m)) < Af(M) < 1. Then we have max(Af(_M_M(m)), 

JV(~¢m))) < 1. 
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Hence by Lemma 2.1, ~(m+l)(t) and u(m+l)(t) are well defined. Moreover, the iteration pro- 
cess (2.6) implies that 

Using relation (2.8) yields 

By Lemma 2.1, u( '0( t )  <_ u(m+l)(t), for all t E I N. A similar argument gives ~(m+l)(t) <_ 
~(m)(t) and ~(m+l)(t) > u(m+l)(t), for all t E I N. Furthermore, M(m+l)(t)  is well defined. The 
conclusion of the lemma follows from the principle of induction. 

The following theorem gives an existence-uniqueness result as well as a computational algorithm 
for (1.1). 

THEOREM 2.1. Let the hypothesis in Lemma 2.2 hold. Then the sequences {~(m)(t)}, {u(m)(t)} 
given by (2.6) with ~(°)(t) = ~(t) and u(°)(t) = u(t), converge monotonically from above and 
below to the solutions ~*(t) and u_*(t) of (1.1), respectively. Moreover, for all m = 1, 2 , . . . ,  

u(t) _< u(m)(t) <_ '_u(m+i)(t) _< u*(t) <_ ~*(t) <_ ~(m+i)(t) < ~(m)(t) <_ ~(t), t • I N, (2.11) 

and for any one solution u*(t) of (1.1) in [u,~], we have u* • [u*,~*]. IfA[(M___') < 1, in addition, 
then -~*(t) =- u*(t) and is the unique solution of (1.1) in [u,~]. 

PROOF. In view of (2.10), there exist limits _u*(t) and ~*(t) such that 

lim ~(m)(t) = ~* (t), lim u (m)(t) = u* (t), t • I0 N 
Tr~ ---~OO m - - - *  ( x )  

and (2.11) holds. Letting m ~ ec in (2.6) shows that both ~*(t) and u*(t) are the solutions 
of (1.1). Let u*(t) be any other solution of (1.1) in [u,~]. Assume that 

u(m)(t) <_ u*(t) <_ ~(m)(t), t • I N, (2.12) 

for some m k 0. Then (2.6) and (1.1) imply that 

Relation (2.8) ensures that  

It follows from Lemma 2.1 that ~(m+l)(t) > u*(t), for all t • I N. Using the similar argument 
gives _u(m+l)(t) < u*(t), for all t • I0 N. By the induction principle, the monotone property (2.12) 
holds for all m > 0. Letting m ---* co in (2.12), we get u*(t) < u*(t) < ~*(t) which gives 
u* • [u_*,~*]. The proof of the uniqueness of the solution can be found in [4]. 

When fu( . ,u)  is monotone nondecreasing or monotone nonincreasing in u, iteration (2.6) is 
reduced to the Newton's iteration (2.9). As a consequence of Theorem 2.1, we have the following 
conclusion. 

COROLLARY 2.1. Let the hypothesis in Lemma 2.2 hold. Assume that f ( . , u )  is a C2-function 
of u. Then the sequence {~(m)(t)} given by (2.9) with ~(°)(t) = ~(t) converges monotonically 
from above to a solution ~*(t) of (1.1) in [~,~1 if f uu ( ( t /N) ,u ( t ) )  > 0 for t • I N and u • [u,~]. 
Similarly, the sequence {u(m)(t)} given by (2.9) with u(°)(t) = u(t) converges monotonically from 
below to a so lu t ion  _u* (t) of (1.1) in [u_u_, 51 if f~u(( t /N) ,  u(t)) <_ 0 for t • I N and u • [_u, g]. 
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3.  R A T E  O F  C O N V E R G E N C E  

In this section, we show the quadratic and nearly quadratic rate of convergence of the sequences 
given by (2.6) and (2.9). We first introduce the concept of monotone matrix. An n x n real matrix 
A = (Ai,j) is called a monotone matrix if A Z  >_ 0 implies Z _> 0 for any vector Z E R n. A 
necessary and sufficient condition for the monotonicity of an n x n real matrix A is the existence 
of the inverse A -1 _> 0 (see [14,15]). Define the symmetric tridiagonal matrices A = (Ai0) and 
B = (Bi,j) as 

5 
Ai , i  = 2, Bi,~ 6' 

1 
Ai,i-1 = - 1 ,  Bi,i-1 = -~ ,  

1 
A i , i + l  = -1 ,  B i , i + l  = - ~ ,  

i = 1 , 2 , . . . , N -  1, 

i = 2 , 3 , . . . , N -  1, 

i =  1 , 2 , . . . , N -  2. 

By Lemma 2.1, we have the following result. 

LEMMA 3.1. Let D = d i a g ( M ( 1 ) , M ( 2 ) , . . . , M ( g  - 1)). Then the matrix A + (1 /N2)BD is 

monotone provided max(Af(M),Af(M)) < 1, where M = mintei~-x M(t)  and ~7 = maxtes~-x 
M(t). 

The following theorem gives an estimate for the rate of convergence of the sequences from (2.6). 

THEOREM 3.1. Let the hypothesis in Lemma 2.2 hold. Assume that f ( . ,  u) is a C2-function of u. 
Let also {~(m)(t)}, {_u(m)(t)} be the sequences given by (2.6), and ~*(t) and u_*(t) 5e the limits 
of them, respectively. Then there exists constant p, independent of m, such that 

max ~ (m+l ) ( t ) -~* ( t )  < pmax ~ ( m ) ( t ) - W ( t )  • max ~ ( '~ ) ( t ) -  u(m)(t) 
telo ~ - teIg teIg - ' 

moa~ _u(m+l)(t)-u* (t) _<pmaxt~zg _u(m)(t)-u*(t)_ .maxtezg u( '~)(t)-u(m)(t)  ' (3.1) 

= 1 , 2 , . . . )  

and if u_*(t) - ~*(t), then 

+tm  - u*(t) tn~ i~oN 
(3.2) )' 

< / ) _ m a x ( g ( m ) ( t ) - g * ( t )  + m a x  u_(m)(t)-u*(t) , ( m =  1 ,2 , . . . ) .  
-- \ t 6 i o  N t6Io N 

PROOF. Consider the sequence {~(m)(t)}. By (1.1) and (2.6), 

t 6 I N- l ,  

~(m+l)(t) = ~*(t), t = 0, N. 

By (2.7) and the mean-value theorem, there exist ~(m)(t) in [_u(m),~ (m)] and ~(m)(t) in [~.,~(m)] 
such that 

M(m)(t) = fu ( N , ~ ( m ) ( t ) )  , t E Io ~, 
(3.3) 
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respectively. Since 

for some intermediate  value 8(ra)(t) between ~(m)(t) and @m)(t),  we have 

It follows from [~(m)(t) - 7?(m)(t)l <- ]u(m)(t) - u(m)(t)l <-- maxtEIg lu(m)(t) -- U('~)(t)l tha t  

o'tmi~ -u(m)(t) - tt(m)(t) " PN (u(m)( t )  --U*(t) ) , 

~(m+l) (t) = ~* (t), t = O, N,  

where a = maxteioN a(t )  and a(t)  = m a x { f u u ( t / N ,  u(t)) : u_(t) < u(t)  ~_ ~(t)}.  Let 

D m = diag ( M ( m ) ( 1 ) , . . . , M ( m ) ( N -  1 ) ) ,  

~(m) = ( ~ ( m ) ( 1 ) , . . . , ~ ( m ) ( N  - 1)) T U* = (~*(1),.  , ~* (N  - 1)) T 

Then we have that  for all m >_ 1, 

( ) 
Taking - 8  < ~' ~_ min{0 ,M'} ,  we have 

A +  B D  (m) >_ A + N2 " 

Furthermore,  by ~(m) >_ ~ , ,  

91 

t E Ii N-I, 

_ a max 5 ( m ) ( t ) _ u  (m)(t) B U ( m ) - U *  . 

Since Af(7) < 1, we have from Lernma 3.1 that  

9, -1 

and therefore, 

- -  O" ,), - -  1 u(rn ) 
_ m a x  ~ ( m ) ( t ) - u ( m ) ( t )  ( A + - ~ B )  B - -U* • 

Using the vector norm, we obtain 
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which gives tha t  

t~1o ~max ~(m+l)(t)  - ~*(t) _< ptmt~oN ~(m)(t) -_u(m)(t) .tmt~oN ~(m)(t) - ~*(t) 

where p = (a/N2)I[(A + (7 /N2)B) - IHoo .  ][Bl[oo. The  proof  of the second relation in (3.1) is 
similar. 

An addi t ion of the relations in (3.1) yields 

max  ~(m+l)(t)  - ~*(t) + max u(m+l)(t)  -_u*(t)  
t ~ 1 o  ~ t ~ X o  ~ - 

<_ p ( m a x  ]~(m)(t) - ~*(t) + max u(m)(t) - u*(t)  ~ .  max  ~(~)( t )  - u(~)( t )  . 
\tEloN I tEIo n ,/ tEIo N 

If ~*(t) = __u*(t), we have [~(m)(t) -_u(m)(t)[ < [~(m)(t) - ~ * ( t ) [  + I_u*(t) -u_(m)(t)[.  Therefore,  

(3.2) holds. 

Theorem 3.1 gives a nearly quadrat ic  convergence of the sequences {~(m)(t)} and {_u(m)(t)}, 
and a quadrat ic  convergence for the sum of these two sequences. The  following theorem shows 
tha t  if f~(-, u) is monotone  nondecreasing or monotone  nonincreasing in u, then  one of the  two 
sequences converges quadrat ical ly  to the solution. 

THEOREM 3.2. Let  the conditions in Theorem 3.1 hold. Then there exists a constant p, inde- 
pendent  of  rn, such that 

( )' 
_max  g(m)(t) - g*(t)  , (m = 1 , 2 , . . . ) ,  (3.4) max  g(m+l)(t)  -- g*(t)  _< 0 \tEioN t E Io N 

if  f u u ( t / N , u ( t ) )  >_ 0 for t • Io N and u • [u,~], and 

)' 
( _max  _u (m) (t) - u* (t) , (m = 1, 2 , . . .  ), (3.5) max  _u(m+l)(t) - u_*(t) (_ p \ telo N t E Io N 

A (t/N,u) <_ o  ort • SON and u • 

PROOF. Consider the case f u u ( t / N , u ( t ) )  >_ O. In this case, M(m)( t )  = fu ( t /N ,~ (m) ( t ) ) .  This  
implies ~(m)(t) = ~(m)(t),  where ~(m)(t) is the intermediate  value appeared in (3.3). Since ~(~)(t)  
is in [~,,~(m)], we see tha t  

~(m)(t) -- rl(m)(t) ~ ~(m)(t) -- ~*(t) ~_ tn~i~oN ~(m)(t) - ~*(t) . 

The  a rgument  in the proof  of Theorem 3.1 shows tha t  (3.4) holds with 

= A + B /  • IIBII~, p 

where (7 and ~ is the same as before. The  proof  for (3.5) is similar. 

4 .  N U M E R I C A L  R E S U L T S  

In this section, we give some numerical results. Consider problem (1.1) with 

(;) (;) f ,u  = n u  2 sin t - r e s i n  2 t , 

where t¢ > 0 is given constant .  It can be checked tha t  ~(t)  - ((zr2 + 1) /2 ) ( t /N) (1  - ( t / N ) )  
is an upper  solution and u_(t) -- 0 is a lower solution. Set N = 20 and n = 2. We use the  
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Table 1. 

m u(m)(2) u(m)(4) u('~)(6) u('~)(8) u(m)(lO) 
l 0.314664 0.598534 0.823685 0.968128 1.017873 

2 0.309029 0.587809 0.809051 0.951097 1.000043 

3 0.309018 0.587788 0.809020 0.951060 1.000004 

Table 2. 

m u(m)(2) u(m)(4) ~(m)(6) u(m)(8) u(m)(lO) 
1 0.248095 0.469177 0.642157 0.752009 0.789644 

2 0.307159 0.584143 0.803841 0.944827 0.993394 

3 0.309017 0.587784 0.809016 0.951055 0.999998 

Table 3. 

n Picard Acceler. 

50 12 5 

100 13 5 

200 13 5 

400 13 5 

800 14 5 

i t e r a t ive  scheme (2.6) to  solve this  p rob lem and denote  by u(m)(t) the  m Ith value of  i t e ra t ion .  

Numer ica l  resul ts  show t h a t  if u (°)(t) = ~( t ) ,  t hen  u (m) (t) is a monotone  nonincreas ing  sequence 

(see Table  1), while if u(°)(t) = u(t), then  u('~)(t) is a mono tone  nondecreas ing  sequence (see 

Table  2). T h e  mono ton ic i ty  in Tables  1 and  2 agrees wi th  t h a t  descr ibed  by T h e o r e m  2.1. In  all 

c om pu ta t i ons ,  we also find t h a t  the  above  two sequences t end  to the  same l imit .  Th is  coincides  

wi th  t he  uniqueness  resul t  in Theorem 2.1, because  the  uniqueness  condi t ion  of t he  so lu t ion  is 

sat isf ied in th is  example .  

Next ,  s t a r t i ng  the  same ini t ia l  values ~(°)(t)  = ~( t )  and u(°)( t )  = u( t ) ,  we c o m p u t e  t he  

sequences  ~(m)(t)  and  u (m)(t) f rom i t e ra t ion  (2.6) and  the  following P ica rd  i te ra t ion:  

-52u(m+')(t) + PN (M(t)u(m+l)(t)) 

u ('~+1)(0) = a,  u (m+l)(N) = Z, (m = 0, 1, 2 , . . .  ), 

where  M(t)  = max{ fu( t /N ,u( t ) )  : u(t) < u(t) <_ ~(t )} ,  t E I N (see [4]). The  las t  two co lumns  of 

Table  3 give the  number  of i t e ra t ions  by  these  two i te ra t ions  for the  different n, where  a to le rance  

= 10 - 6  for maxtEioN Ig(m)(t) --u_(m)(t)] is used. 
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