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Abstract

We study a class of noncommutative surfaces, and their higher dimensional analogs, which

come from generic subalgebras of twisted homogeneous coordinate rings of projective space.

Such rings provide answers to several open questions in noncommutative projective geometry.

Specifically, these rings R are the first known graded algebras over a field k which are

noetherian but not strongly noetherian: in other words, R#kB is not noetherian for some

choice of commutative noetherian extension ring B: This answers a question of Artin, Small,

and Zhang. The rings R are also maximal orders, but they do not satisfy all of the w conditions
of Artin and Zhang. In particular, they satisfy the w1 condition but not wi for iX2; answering a
question of Stafford and Zhang and a question of Stafford and Van den Bergh. Finally, we

show that the noncommutative scheme R-proj has finite global dimension.
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1. Introduction

In algebraic geometry, the correspondence between projective schemes over a field
k and N-graded k-algebras is classical. In the last decade or so, many of the ideas of
projective geometry have been successfully generalized to the setting of noncommu-
tative graded rings. This new subject is known as noncommutative projective
geometry, and while of theoretical interest in its own right, it has also provided the
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solutions to many purely ring-theoretic questions. For example, the graded domains
of dimension two, which correspond to noncommutative curves, have now been

completely classified [2]. The noncommutative analogs of the projective plane P2

have been identified and classified as well. The generic noncommutative projective
plane is called the Sklyanin algebra; despite its simple presentation by generators and
relations, before the geometric approach of [3,4] was developed it was not even
known that this algebra was noetherian.

The classification theory of graded algebras of dimension three, or noncommu-
tative projective surfaces, has also progressed substantially in recent years; for a
survey of some of these results see [23]. In this paper, we study a class of algebras
of dimension at least three and show that they provide counterexamples to a
number of open questions in the literature. In particular, these give new examples
of noncommutative surfaces with much different behavior than any of those
studied previously. Moreover, the construction of these algebras is quite simple and
general.

Definition 1.1. Let S ¼ "iX0 Si be a generic Zhang twist (see Section 3) of a
polynomial ring in ðt þ 1Þ variables over an algebraically closed field k for some tX2:
Then let R be the subalgebra of S generated by any generic codimension-one
subspace of S1:

To give a very explicit example of the surface case, for t ¼ 2 we may take

S ¼ kfx; y; zjxz ¼ pzx; yz ¼ qzy; xy ¼ pq�1yxg

for any scalars p; qAk which are algebraically independent over the prime subfield of
k: Then let R be the subalgebra of S generated over k by any two linearly
independent elements r1; r2AS1 such that the k-span of r1 and r2 does not contain x;
y; or z:

For the rest of this introduction, we assume that all algebras A ¼ "N

i¼0 Ai are N-

graded and finitely generated by A1 as an algebra over A0 ¼ k; where k is an
algebraically closed field. A point module over A is a cyclic N-graded left module M;
generated in degree 0, such that dimk Mi ¼ 1 for all iX0: In case A is commutative,
the isomorphism classes of point modules over A are in natural correspondence with
the closed points of the scheme proj A:More generally, for many specific examples of
noncommutative graded rings one may show explicitly that the set of point modules
is parameterized by a commutative scheme, and the geometry of this scheme often
gives important information about the ring itself; for example see [3,4]. This is a very
useful technique, and so it is natural to wonder in what generality the point modules
for a ring will form a nice geometric object. Let a k-algebra A be called strongly (left)
noetherian if A#kB is a left noetherian ring for all commutative noetherian k-
algebras B: A recent theorem of Artin and Zhang (see Theorem 6.2 below) shows
that the point modules for any strongly noetherian k-algebra are naturally
parameterized by a commutative projective scheme over k:
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The strong noetherian property holds for many standard examples of
noncommutative rings, including all finitely generated commutative k-algebras, all
twisted homogeneous coordinate rings of projective k-schemes, and the AS-regular
algebras of dimension 3 [1, Section 4]. On the other hand, Resco and Small [19] have
given an example of a noetherian finitely generated algebra over a field which is not
strongly noetherian. This algebra is not graded, however, nor is the base field
algebraically closed, and so the example falls outside the paradigm of noncommu-
tative projective geometry. Artin, Small and Zhang have asked if perhaps every
finitely generated N-graded noetherian k-algebra is strongly noetherian. We will
prove the following theorem which answers this question in the negative.

Theorem 1.2 (Theorem 6.8). The ring R of Definition 1.1 is a connected N-graded k-
algebra, finitely generated in degree 1, which is noetherian but not strongly noetherian.

We offer two different proofs that R is not strongly noetherian. First, we will
classify the set of point modules for R; from which we can see that R fails to satisfy
Artin and Zhang’s theorem (Theorem 6.2). For the second proof, we construct an
explicit commutative noetherian ring B such that R#kB is not noetherian. The ring
B that works is an infinite affine blowup of affine space, which was defined in [1] and
is an interesting construction in itself.

In [5], Artin and Zhang describe a categorical approach to noncommutative
geometry. Let A-gr be the category of all noetherian graded left A-modules, and let
A-tors be the subcategory of all modules with finite k-dimension. If A is
commutative, then part of Serre’s theorem states that the category coh X of
coherent sheaves on the commutative projective scheme X ¼ proj A is equivalent to
the quotient category A-qgr ¼ A-gr=A-tors [13, Exercise II.5.9]. Using this as
motivation, for any graded algebra A the noncommutative projective scheme A-proj is
defined to be the pair ðA-qgr; pðAÞÞ; where pðAÞ is the image of A in A-qgr and plays
the role of the structure sheaf. One defines cohomology groups for MAA-qgr by

setting HiðMÞ ¼ ExtiA-qgrðpðAÞ;MÞ:
Some homological conditions on the ring A called the w conditions arise naturally

in this approach. Let Ak ¼ A="N

n¼1 An; then we say that A satisfies wi if

dimk Ext
j

Aðk;MÞoN for all 0pjpi and all MAA-gr: We say that A satisfies w if

A satisfies wi for all iX0: The most important of these conditions is w1: if A satisfies w1
then a noncommutative version of Serre’s theorem holds (see Theorem 10.3 below),
which shows that the ring A is determined in large degree by its associated scheme
A-proj together with the natural shift functor.

The w conditions hold trivially for commutative rings, but Stafford and Zhang [24,
Theorem 2.3] gave an example of a noetherian ring T of dimension 2 for which w
fails. The ring T fails wi for all iX0; and so it does not satisfy the noncommutative
Serre’s theorem. The algebra R of Definition 1.1 is a more interesting example of the
failure of w; since w1 holds and the noncommutative Serre’s theorem is valid for R:
The following theorem thus answers a question of Stafford and Zhang from [24,
Section 4].
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Theorem 1.3 (Theorem 10.6). R is a noetherian connected finitely N-graded

k-algebra, finitely generated in degree 1, for which w1 holds but wi fails for

all iX2: &

One consequence we will draw is that the category R-qgr is necessarily quite
different from the standard examples of noncommutative schemes, which come from
rings satisfying w:

Theorem 1.4 (Theorem 10.11). The category R-qgr is not equivalent to the category

coh X of coherent sheaves on X for any commutative projective scheme X : More

generally, R-qgrfA-qgr for any graded ring A which satisfies w2:

A maximal order is the noncommutative analog of a commutative integrally
closed domain; see Section 9 for the formal definition. In [23, p. 194], the authors
ask whether the w conditions perhaps must hold for all maximal orders, one reason
being that all of the noetherian examples in [24] for which w fails are equivalent
orders to maximal orders which do satisfy w: We show to the contrary the following
result.

Theorem 1.5 (Theorems 9.5 and 10.6). R is a connected, finitely N-graded maximal

order for which wi fails for iX2:

For a graded ring A; the global dimension of A-qgr is the supremum of all n such
that ExtnA-qgrðM;NÞa0 for some M;NAA-qgr: Similarly, we define the cohomo-

logical dimension of A-proj to be the supremum of all n such that HnðFÞa0 for some
FAA-qgr: Despite the failure of w for R; the following theorem shows that R-qgr is
not too badly behaved.

Theorem 1.6 (Theorem 11.7). R-qgr has global dimension at most t þ 1 and

cohomological dimension at most t; where t ¼ GKðRÞ � 1:

The starting point for our study was the work of David Jordan on rings generated
by two Eulerian derivatives [14]. These rings are more or less the algebras R of
Definition 1.1 for t ¼ 2: Jordan had classified the point modules for such algebras
and showed that the strong noetherian property must fail, but did not show these
algebras were noetherian. Our results imply in fact that rings generated by a generic
finite set of Eulerian derivatives are noetherian, answering a question in [14]—see
Section 13 for more details.

The results in this paper form part of the author’s Ph.D. Thesis [20], and in
some cases extra details may be found there. In collaboration with Stafford
and Keeler we have recently developed a geometric approach to the study of the
rings R which shows that they may be thought of as a kind of peculiar
noncommutative blowing up of projective space; details will be given in a further
paper.
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2. Basic definitions

In this section, we fix some terminology concerning noncommutative graded rings.
The reader may wish to skim this section and refer back to it later when necessary.

We make the convention throughout that 0 is a natural number, so that N ¼ ZX0:
The rings A we study in this paper are all N-graded algebras A ¼ "N

i¼0 Ai over an

algebraically closed field k: We assume throughout that all algebras A are connected,
that is that A0 ¼ k; and finitely generated as an algebra by A1: Let A-Gr be the
abelian category whose objects are the Z-graded left A-modules M ¼ "N

i¼�N
Mi;

and where the morphisms HomA-GrðM;NÞ are the module homomorphisms f
satisfying fðMnÞDNn for all n: Let A-gr be the full subcategory of A-Gr consisting of
the noetherian objects. For MAA-Gr and nAZ; the shift of M by n; denoted M½n
; is
the module with the same ungraded module structure as M but with the grading
shifted so that ðM½n
Þm ¼ Mnþm: Then for M;NAA-Gr we may define

HomAðM;NÞ ¼
MN

i¼�N

HomA-GrðM;N½i
Þ:

The group HomðM;NÞ is a Z-graded vector space and we also write HomðM;NÞi

for the ith graded piece HomðM;N½i
Þ: Under mild hypotheses, for example if M is
finitely generated, the group HomðM;NÞ may be identified with the set of ungraded
module homomorphisms from M to N: It is a standard result that the category A-Gr

has enough injectives and so we may define right derived functors ExtiA-GrðM;�Þ of
HomA-GrðM;�Þ for any M: The definition of Hom generalizes to

ExtiAðM;NÞ ¼
MN

i¼�N

ExtiA-GrðM;N½i
Þ:

See [5, Section 3] for a discussion of the basic properties of Ext:
For a module MAA-Gr; a tail of M is any submodule of the form MXn ¼

"N

i¼n Mi: A subfactor of M is any module of the form N=N 0 for graded submodules

N 0DN of M: For the purposes of this paper, MAA-Gr is called torsion if for all
mAM there exists some nX0 such that ðAXnÞm ¼ 0: Note that if MAA-gr; then M is
torsion if and only if dimk MoN: We say that MAA-Gr is left bounded if Mi ¼ 0
for i{0; and right bounded if Mi ¼ 0 for ic0: M is bounded if it is both left and right
bounded. A ( finite) filtration of MAA-Gr is a sequence of graded submodules 0 ¼
M0DM1D?DMn ¼ M; we call the modules Mi=Mi�1 for 0oipn the factors of the
filtration.

A point module over A is a graded module M such that M is cyclic, generated in
degree 0; and dimk Mn ¼ 1 for all nX0:Note that a tail of a point module is a shift of
some other point module. A point ideal is a left ideal I of A such that A=I is a point
module, or equivalently such that dimk In ¼ dimk An � 1 for all nX0: Since A is
generated in degree 1; the point ideals of A are in one-to-one correspondence with
isomorphism classes of point modules over A:
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We will use Gelfand–Kirillov dimension, or GK-dimension for short, as our
dimension function for modules; the basic reference for its properties is [15]. Given
MAA-gr; the Hilbert function of M is the function HðnÞ ¼ dimk Mn for nAZ: If A is
a finitely generated k-algebra and AM is a finitely generated module, then GKðMÞ
depends only on the Hilbert function of M [15, 6.1]. In particular, if M has a Hilbert

polynomial, that is dimk Mn ¼ f ðnÞ for nc0 and some polynomial fAQ½n
; then
GKðMÞ ¼ deg f þ 1 (with the convention degð0Þ ¼ �1). We say MAA-Gr is
(graded) critical if GKðM=NÞoGKðMÞ for all nonzero graded submodules N of
M: If A is an N-graded noetherian ring, then the GK-dimension for A-modules is
exact: in other words, given any exact sequence 0-M 0-M-M 00-0 in A-gr; one
has GKðMÞ ¼ maxðGKðM 0Þ;GKðM 00ÞÞ [17, 4.9].

3. Zhang twists

Let k be an algebraically closed field. Fix from now on a commutative polynomial
ring U ¼ k½x0;y; xt
 in t þ 1 indeterminates, graded as usual with deg xi ¼ 1 for all

i; and the corresponding projective space Proj U ¼ Pt: By a point of Pt we always
mean a closed point. The main results of this paper require that tX2; so we assume
this throughout.

Let the symbol 3 indicate the multiplication operation in U : For any graded
automorphism f of U we may define a new graded ring ðS;%Þ; where S has the
same underlying vector space as U and f%g ¼ fnðf Þ3g for fAUm; gAUn: This is just
a special case of the (left) twisting construction studied by Zhang [31].

Let md stand for the ideal in U of a point dAPt: For a homogeneous element
fAU ; we use the notation fAmd and f ðdÞ ¼ 0 interchangeably to indicate that f

vanishes at d: Corresponding to the automorphism f of U is an automorphism j of

Pt which satisfies mjðdÞ ¼ f�1ðmdÞ for all dAPt: Automorphisms f1;f2 of U give

the same automorphism j of Pt if and only if f1 ¼ af2 for some aAk� [13, II.7.1.1].
Moreover, automorphisms of U which are scalar multiples give isomorphic twisted
algebras S [31, 5.13]. Thus a particular twist S of U is determined up to isomorphism
by j and we write S ¼ SðjÞ: We remark that an alternative description of S may be
given using twisted homogeneous coordinate rings [23, Section 3]. In this language,

S ¼ BðPt;Oð1Þ;j�1Þ where Oð1Þ is the twisting sheaf of Serre on Pt:
Since S and its subalgebras are our main interest in this paper, our notational

convention from now on (except in the appendix) will be to let juxtaposition indicate
multiplication in S and to use 3 when multiplication in U is intended. However, we
let exponents retain their old commutative meaning, so that if md is a point ideal of

U then m2
d is short for md3md ; the ideal of polynomials vanishing twice at d:

Many important properties pass from a graded ring to any Zhang twist. In
particular, it is easy to see that S is a noetherian domain of GK dimension t þ 1;
since these properties are obvious for U [31, Propositions 5.1, 5.2 and 5.7]. Suppose
that MAU-Gr; and let 3 indicate the action of U on M: Then M obtains an S-
structure using the rule sx ¼ fnðsÞ3x for sASm; xAMn: This defines a functor y :
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U-Gr-S-Gr which is an equivalence of categories [31, 3.1]. For any graded ideal I

of U ; yðIÞ is a graded left ideal of S: We often simply identify the underlying
k-spaces of these ideals and call both I :

Since the equivalence of categories preserves Hilbert functions and the property of
being cyclic, it is clear that the point modules over S are the modules of the form

yðU=mdÞ ¼ S=md for dAPt: We will use the following notation:

Notation 3.1. Given a point dAPt; let PðdÞ be the left point module yðU=mdÞ ¼
S=md of S:

We may also describe point modules over S by their point sequences. If M is a
point module over S; then the annihilator of Mn in S1 ¼ U1 is some codimension 1

subspace which corresponds to a point dnAPt: The point sequence of M is defined to

be the sequence ðd0; d1; d2;yÞ of points of Pt: Clearly, two S-point modules are
isomorphic if and only if they have the same point sequence.

Lemma 3.2. Let d be an arbitrary point of Pt:

(1) PðdÞ has point sequence ðd;jðdÞ;j2ðdÞ;yÞ:
(2) ðPðdÞÞ

XnDPðjnðdÞÞ½�n
 as S-modules.

Proof. (1) By definition PðdÞ ¼ S=md : If fAS1; then fSn ¼ fnðf Þ3UnDmd if and
only if fnðf ÞAmd ; in other words fAf�nðmdÞ ¼ mjnðdÞ:

(2) By part (1), ðPðdÞÞ
Xn is the shift by ð�nÞ of the point module with point

sequence ðjnðdÞ;jnþ1ðdÞ;yÞ: &

Finally, we record the following simple facts which we shall use frequently.

Lemma 3.3. Let MAS-gr:

(1) If M is cyclic 1-critical, then MDPðdÞ½i
 for some dAPt and iAZ:
(2) M has a finite filtration with factors which are graded cyclic critical

S-modules.

Proof. (1) The equivalence of categories U-GrBS-Gr preserves the GK-dimension
of finitely generated modules, since it preserves Hilbert functions, and so it also
preserves the property of being GK-critical. It is standard that the cyclic 1-critical
graded U-modules are just the point modules over U and their shifts. Under the
equivalence of categories, the corresponding S-modules are the S-point modules and
their shifts.

(2) Each module NAU-gr has a finite filtration composed of graded cyclic
critical U-modules, so the same holds for S-modules by the equivalence of
categories. &
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4. The algebras Rðu; cÞ

Let S ¼ SðjÞ for some jAAutPt: For any codimension-1 subspace V of S1 ¼ U1;
we let R ¼ k/VSDS be the subalgebra of S generated by V : The vector subspace

V of U1 corresponds to a unique point cAPt: Then R is determined up to
isomorphism by the geometric data ðj; cÞ and we write R ¼ Rðj; cÞ: We emphasize
again that we always assume that tX2 from now on; for smaller t the ring R is not
very interesting.

We shall see that the basic properties of Rðj; cÞ depend closely on properties of the

iterates of the point c under j: It is convenient to let ci ¼ j�iðcÞ for all iAZ: Then the

ideal of the point ci is f
iðmcÞ: In case c has finite order under j; that is jnðcÞ ¼ c for

some n40; the algebra Rðj; cÞ behaves quite differently from the case where c has
infinite order. For example, if jn ¼ 1 for some nX0 then it is easy to see that S and
hence R are PI rings. The finite order case turns out to have none of the interesting
properties of the infinite order case, and so in this paper we will only consider the
case where c has infinite order under j:

Standing Hypothesis 4.1. Assume that ðj; cÞAðAutPtÞ � Pt is given such that c has
infinite order under j; or equivalently the points fcigiAZ are distinct.

We note some relationships among the various Rðj; cÞ: In particular, part (1) of
the next lemma will allow us to transfer our left sided results to the right.

Lemma 4.2. Let ðj; cÞAðAutPtÞ � Pt; and let c be any automorphism of Pt:
Then

(1) Rðj; cÞopDRðj�1;jðcÞÞ:
(2) Rðj; cÞDRðcjc�1;cðcÞÞ:

Proof. (1) Set S ¼ SðjÞ and S0 ¼ Sðj�1Þ; identifying the underlying spaces of each
with that of U : Let f be an automorphism of U corresponding to j: Then it is
straightforward to check that the vector space map defined on the graded pieces of U

by sending fAUm to f�mðf ÞAUm is a graded algebra isomorphism from Sop to S0:
The isomorphism maps ðmcÞ1 to ðmjðcÞÞ1 and so it restricts to an isomorphism

Rðj; cÞopDRðj�1;jðcÞÞ:
(2) Similarly, let s be an automorphism of U corresponding to c: It is easy to

check that the vector space map of U defined by f/s�1ðf Þ is an isomorphism of

SðjÞ onto Sðcjc�1Þ which maps ðmcÞ1 to s�1ðmcÞ1 ¼ ðmcðcÞÞ1; and so restricts to an

isomorphism Rðj; cÞDRðcjc�1;cðcÞÞ: &

In the next theorem we will prove an important characterization of the elements of
R ¼ Rðj; cÞ which is foundational for all that follows. First we need the following
lemma; the proofs of it and several other technical commutative results which appear
later in the paper may be found in the appendix.
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Lemma 4.3 (Lemma A.8). Let m1;m2;y;mn be the ideals of U corresponding to

distinct points d1;y; dn in Pt: Then ðm13m23?3mnÞXn ¼ ð
Tn

i¼1 miÞXn:

Theorem 4.4. Let R ¼ Rðj; cÞ: Then for all nX0;

Rn ¼ f fAUn j f ðciÞ ¼ 0 for 0pipn � 1g:

Proof. By definition R ¼ k/VSDS; where V ¼ ðmcÞ1 considered as a subset of U :
For n ¼ 0 the statement of the theorem is R0 ¼ U0 ¼ k; which is clearly correct, so
assume that nX1: Then

Rn ¼ Vn ¼ fn�1ðVÞ3fn�2ðVÞ3?3fðVÞ3V :

Now fiðVÞ ¼ ðmci
Þ1; and the points ci are distinct by Hypothesis 4.1. Thus by

Lemma 4.3 we get that

Rn ¼ðmcn�1
Þ13?3ðmc1Þ13ðmc0Þ1 ¼ ½ðmcn�1

Þ3?3ðmc1Þ3ðmc0Þ
n

¼ ½ðmcn�1
Þ-?-ðmc1Þ-ðmc0Þ
n:

The statement of the theorem in degree n follows. &

The theorem has a number of easy consequences. The first will be a simple
calculation of the Hilbert function of R; which depends on the following
fundamental commutative result which is proved in the appendix.

Lemma 4.5 (Lemma A.9). Let d1; d2;y; dn be distinct points in Pt; for some nX1;
and let m1;m2;y;mn be the corresponding graded ideals of U : Let ei40 for all

1pipn: Set J ¼
Tn

i¼1 mei

i : Then dimk Jm ¼ mþt
t

� �
�
P

i
eiþt�1

t

� �
for all mXð

P
eiÞ � 1:

In particular, if J ¼
Tn

i¼1 mi then dimk Jm ¼ mþt
t

� �
� n for mXn � 1:

Lemma 4.6. Let R ¼ Rðj; cÞ: Then dimk Rn ¼ nþt
t

� �
� n for all nX0: In particular,

GKðRÞ ¼ t þ 1:

Proof. The Hilbert function of R follows from Theorem 4.4 and Lemma 4.5. Since
we always assume that tX2; it is clear that the Hilbert polynomial of R has degree t

and so GKðRÞ ¼ t þ 1: &

Lemma 4.7. The rings R ¼ Rðj; cÞ and S ¼ SðjÞ have the same graded quotient ring

D and Goldie quotient ring Q: The inclusion R+S is a essential extension of left (or

right) R-modules.

Proof. Since both R and S are domains of finite GK-dimension, they both have
graded quotient rings and Goldie quotient rings [18, C.I.1.6], [15, 4.12]. Clearly, the

ARTICLE IN PRESS
D. Rogalski / Advances in Mathematics 184 (2004) 289–341 297



graded quotient ring D0 of R is contained in the graded quotient ring D of S: Since
we assume always that tX2; we may choose a nonzero polynomial gAS1 with
gAmc0-mc1 : Then Theorem 4.4 implies that gAR1 and S1gDR2: Thus

S1DR2ðR1Þ�1DD0 and consequently D0 ¼ D: Then Q; the Goldie quotient ring of
the domain D; is also the Goldie quotient ring for both R and S: The last statement
of the proposition is now clear. &

5. The noetherian property for R

Let S ¼ SðjÞ and R ¼ Rðj; cÞ: In this section we will characterize those choices of
j and c satisfying Hypothesis 4.1 for which the ring R is noetherian. To do this, we
will first analyze the structure of the factor module RðS=RÞ in detail, and then use
this information to understand contractions and extensions of left ideals between R

and S:
The following notation will be convenient in this section.

Notation 5.1. (1) An ¼ f0; 1;y; n � 1g for n40 and An ¼ | for np0:
(2) For BDZ; set B þ m ¼ fb þ m j bABg:

Definition 5.2. Let BDN: We define a left R-module TBDS by specifying its graded
pieces as follows:

ðTBÞn ¼ ffASn j f ðciÞ ¼ 0 for iAAn\Bg:

We then define the left R-module MB ¼ TB=RDðS=RÞ:

We should check that TB really is closed under left multiplication by R: If gARm

and fAðTBÞn; then gf ¼ fnðgÞ3f : Now gðciÞ ¼ 0 for iAAm by Theorem 4.4 and

f ðciÞ ¼ 0 for iAAn\B by definition. Thus ½fnðgÞ3f 
ðciÞ ¼ 0 for

iAðAm þ nÞ,ðAn\BÞ+ðAnþm\B), and so gfAðTBÞnþm as required. Also, by Theorem

4.4 the extreme cases are R ¼ T| and S ¼ TN: In particular, RDTB always holds,

and so MB is well defined.

Lemma 5.3. The Hilbert function of MB is given by

dimkðMBÞn ¼ jAn-Bj:

Proof. Immediate from Lemma 4.5. &

In the special case of Definition 5.2 where B is a singleton set, MB is just a shifted
R-point module, as follows.
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Lemma 5.4. Let jAN: Then M ¼ Mf jg is an R-point module shifted by j þ 1: In fact,
MDRðPðc�1ÞÞ½�j � 1
:

Proof. By Lemma 5.3 the Hilbert function of M is

dimk Mn ¼
0; 0pnpj;

1; j þ 1pn

(

so that M does have the Hilbert function of a point module shifted by j þ 1: For
convenience of notation set m ¼ j þ 1; and let us calculate annRðMmÞ: Now fMm ¼ 0

for fARn if and only if f ðTf jgÞmDRmþn: Since Mma0; we may choose gAðTf jgÞm

such that geR; then gðcjÞa0: Also, because dimk Mm ¼ 1 it is clear that ðTf jgÞm ¼
Rm þ kg; and so f ðTf jgÞmDR if and only if fgAR: Now fg ¼ fmðf Þ3g; and so by

Theorem 4.4 we have that fgAR if and only if fmðf ÞðcjÞ ¼ 0; equivalently f ðc�1Þ ¼ 0;

since m ¼ j þ 1: In conclusion, annRðMmÞ ¼ mc�1
-R:

Thus we have an injection of R-modules given by right multiplication by g:

c : ðR=ðmc�1
-RÞÞ½�m
!g Tf jg=R ¼ M:

By Lemma 4.5, R=ðmc�1
-RÞ has the Hilbert function of a point module and so both

sides have the same Hilbert function. Thus c is actually an isomorphism. In
particular, M is cyclic and so is a shifted R-point module.

We also have the injection R=ðmc�1
-RÞ-S=ðmc�1

Þ ¼ Pðc�1Þ; and since both sides
have the Hilbert function of a point module this is also an isomorphism of R-
modules. So MDRðPðc�1ÞÞ½�j � 1
: &

We may now understand the structure of RðS=RÞ completely.

Proposition 5.5. The modules fMf jggjAN are independent submodules of S=R: Also,

for BDN;

MB ¼
M
jAB

Mf jg:

Proof. We first show the independence of the Mf jg: It is enough to work with

homogeneous elements; fix nX0 and let
P

jAN fj ¼ 0 for some fjAðMf jgÞn:

Let fj ¼ gj þ R for some elements gjAðTf jgÞnDSn: Thus
P

gjARn: Suppose that

some fja0; and let k ¼ minfj j fja0g: Now ðMf jgÞpj ¼ 0 for all j by Lemma 5.3,

and so we must have kpn � 1: Then kAAn\f jg for any jak; so that gjðckÞ ¼ 0 for

all jak; by the definition of Tf jg: Since
P

gjARn; Theorem 4.4 implies that

ð
P

gjÞðckÞ ¼ 0 also holds and so gkðckÞ ¼ 0: But then gkAðTfkgÞn-ðmck
Þ ¼ Rn; and

thus fk ¼ 0; a contradiction. We conclude that all fj ¼ 0; and so the Mf jg are

independent.
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For the second statement of the proposition, by Lemma 5.3 the Hilbert function of

MB is dimkðMBÞn ¼ jAn-Bj; while the Hilbert function of "jAB Mf jg is

dimk

M
jAB

Mf jg

" #
n

¼ #fjAB j jpn � 1g ¼ jAn-Bj:

Thus the Hilbert functions are the same on both sides of our claimed equality. SinceP
jAB Mf jgDMB is clear and we know that the Mf jg are independent by the first

part of the proposition, the equality follows. &

Corollary 5.6. (1) Given BDN; MB is a noetherian R-module if and only if the set B

has finite cardinality.
(2) RðS=RÞD"N

j¼0 RPðc�1Þ½�j � 1
: In particular, RðS=RÞ is not finitely generated.

Proof. Condition (1) is clear since a point module is noetherian. Condition (2)
follows by taking B ¼ N in the proposition and using also Lemma 5.4. &

Next, we analyze the noetherian property for some special types of R-modules
which may be realized as subfactors of S=R:

Proposition 5.7. For fARn; let N ¼ ðSf-RÞ=RfAR-Gr: Set D ¼ fiAN j f ðciÞ ¼ 0g
and B ¼ ðD � nÞ-N: Then

(1) NDMB½�n

(2) N is noetherian if and only if jDjoN:

Proof. First, if we set T ¼ fgAS j gfARg and M ¼ T=R; then NDM½�n
: So it is

enough for (1) to show that T ¼ TB:
Let gASm be arbitrary. Note that AnDD since fARn: Then

gf ¼ fnðgÞ3fAR

3½fnðgÞ3f 
ðciÞ ¼ 0 for all iAAnþm

3fnðgÞðciÞ ¼ 0 for all iAAnþm\D

3gðciÞ ¼ 0 for all iAðAnþm\DÞ � n

3gðciÞ ¼ 0 for all iAAm\ðD � nÞ ðsince AnDDÞ

3gATB by Definition 5:2:

Thus T ¼ TB and (1) holds.
For (2), note that D has finite cardinality if and only if B does, and apply

Corollary 5.6(1). &

ARTICLE IN PRESS
D. Rogalski / Advances in Mathematics 184 (2004) 289–341300



Proposition 5.8. For fARn; let M ¼ S=ðR þ Sf ÞAR-Gr: Set D ¼ fiAN j f ðciÞ ¼ 0g:
Then

(1) MDMD;
(2) M is noetherian if and only if jDjoN:

Proof. Set B ¼ N\D: We will show that R þ Sf ¼ TB: Then we will have that

S=ðR þ Sf Þ ¼ S=TBDðMN=MBÞDMD by Proposition 5.5.
Suppose that hAðR þ Sf Þm; then h ¼ g1 þ g2f ¼ g1 þ fnðg2Þ3f for some g1ARm

and g2ASm�n: Now g1ðciÞ ¼ 0 for iAAm; and f ðciÞ ¼ 0 for iAD; so that hðciÞ ¼ 0 for

iAAm-D: So we have ðR þ Sf ÞDTB: Note that ðR þ Sf Þm ¼ Rm ¼ ðTBÞm for mon:

Now, we can calculate the Hilbert function of R þ Sf : By Propositions 5.7(1) and
Lemma 5.3, we have that dimkððSf-RÞ=Rf Þm ¼ jAm�n-ðD � nÞj ¼ jAm-Dj � n

for mXn; since AnDD: Since the Hilbert functions of R; Sf ; and Rf are all known,

one may calculate that dimkðR þ Sf Þm ¼ mþ2
2

� �
� jAm-Dj for mXn; which is equal

to dimkðTBÞm: Thus R þ Sf ¼ TB:

Part (2) is then immediate from Corollary 5.6(1). &

Given a left ideal I of R; we may extend to a left ideal SI of S; and then contract
back down to get the left ideal SI-R of R: The factor ðSI-RÞ=I is built up out of
the 2 types of modules we considered in Propositions 5.7 and 5.8.

Lemma 5.9. Let I be a finitely generated nonzero graded left ideal of R; and set

M ¼ ðSI-RÞ=I : Then M has a finite filtration 0 ¼ M0DM1D?DMm ¼ M such

that each factor Miþ1=Mi is isomorphic with shift to a subfactor of either ðSsi-RÞ=Rsi

or S=ðR þ SsiÞ for some nonzero homogeneous siAR:

Proof. Let I ¼
Pn

i¼1 Rri for some homogeneous riAR: If n ¼ 1 the result is obvious,

so assume that nX2:

Set J ¼
Pn�1

i¼1 Rri: By induction on n; ðSJ-RÞ=J and hence also its surjective

image ðSJ-RÞ þ I=I have filtrations of the required type. It is enough then to show
that

N ¼ ðSI-RÞ=ððSJ-RÞ þ IÞ ¼ ðSI-RÞ=ððSJ þ RrnÞ-RÞ

has the required filtration. But N injects into L ¼ SI=ðSJ þ RrnÞ: Now R is an Ore
domain by Lemma 4.7, so we may choose a homogeneous element 0arAR such that
rrnAJ: Then L is a surjective image (with shift) of S=ðR þ SrÞ; so N is a shift of a
subfactor of S=ðR þ SrÞ: &

In certain circumstances the noetherian property passes to subrings. The following
lemma is just a slight variant of a number of similar results in the literature (for
example, see [1, Lemma 4.2]).
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Lemma 5.10. Let A+B be any extension of N-graded rings. Suppose that B is left

noetherian, and that ðBI-AÞ=I is a noetherian left A-module for all finitely generated

homogeneous left ideals I of A: Then A is left noetherian.

Proof. It is enough to prove that A is graded left noetherian, that is that all
homogeneous left ideals are finitely generated. Let I be a homogeneous left ideal of
A: Then BI is a homogeneous left ideal of B; which is finitely generated since B is
noetherian, and so we may pick a finite set of homogeneous generators

r1; r2;y; rnAI such that BI ¼
Pn

i¼1 Bri: Let J ¼
Pn

i¼1 Ari: Then BI ¼ BJ; and since

J is finitely generated over A we may apply the hypothesis to conclude that
ðBJ-AÞ=J ¼ ðBI-AÞ=J is a noetherian A-module. The submodule I=J of
ðBI-AÞ=J is then noetherian over A; in particular finitely generated over A:
Finally, since J is finitely generated over A; so is I : &

We note the definition of an unusual geometric condition on a set of points of a
variety, which appeared in [1, p. 582].

Definition 5.11. Let C be an infinite set of (closed) points of a variety X : We say C is
critically dense in X if every proper Zariski-closed subset YD! X contains only finitely
many points of C:

We may now prove our main result characterizing the noetherian property for R:

Theorem 5.12. Let R ¼ Rðj; cÞ for some ðj; cÞAðAutPtÞ � Pt such that Hypothesis

4.1 holds. As always, set ci ¼ j�iðcÞ: Then

(1) Rðj; cÞ is left noetherian if and only the set fcigiX0 is critically dense in Pt:

(2) Rðj; cÞ is right noetherian if and only the set fcigip�1 is critically dense in Pt:

(3) Rðj; cÞ is noetherian if and only the set fcigiAZ is critically dense in Pt:

Proof. (1) Set C ¼ fcigiX0 and suppose that C is critically dense. Then for any

nonzero homogeneous polynomial fAR; the set D ¼ fiAN j f ðciÞ ¼ 0g has finite
cardinality, so by Propositions 5.7 and 5.8 the left R-modules ðSf-RÞ=Rf and
S=ðR þ Sf Þ are noetherian. By Lemma 5.9, for any finitely generated homogeneous
left ideal I of R; the left R-module ðSI-RÞ=I is noetherian. By Lemma 5.10, R is a
left noetherian ring.

Conversely, if C fails to be critically dense, then we may choose a nonzero
homogeneous polynomial hAS which vanishes at infinitely many points of C: Since
by Lemma 4.7 we know that R+S is an essential extension of R-modules, there
exists a homogeneous gAR such that 0af ¼ ghAR: Then f also vanishes at infinitely
many points of C; and so by Proposition 5.7, the left R-module ðSf-RÞ=Rf is not
noetherian. Since this module is a subfactor of R; we conclude that R is not a left
noetherian ring.

(2) Using Lemma 4.2(1), this part follows immediately from part (1).
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(3) This follows from the fact that for any infinite sets C1;C2DPt; C1,C2 is
critically dense if and only if both C1 and C2 are. &

In Section 12 we will examine the critical density condition appearing in Theorem
5.12 more closely. In particular, we shall prove that there exist many choices of j
and c for which Rðj; cÞ is noetherian:

Proposition 5.13 (See Theorem 12.3 below). Let j be the automorphism of Pt defined

by ða0 : a1 : ? : atÞ/ða0 : p1a1 : p2a2 : ? : ptatÞ; and let c be the point ð1 : 1 : ? :

1ÞAPt: If the scalars fp1; p2;y; ptg are algebraically independent over the prime

subfield of k; then fjiðcÞgiAZ is critically dense and Rðj; cÞ is noetherian. &

The noetherian case is our main interest, so in the remainder of the paper (except
Section 12) we will assume the following hypothesis.

Standing Hypothesis 5.14. Let ci ¼ j�iðcÞ: Assume that j and c are chosen such that

the point set fcigiAZ is critically dense in Pt; so that Rðj; cÞ is noetherian. We will

refer to this as the critical density condition.

Below, we will frequently use the following exact sequence to study an arbitrary
cyclic left R-module R=I :

0-ðSI-RÞ=I-R=I-S=SI-S=ðR þ SIÞ-0: ð5:15Þ

We note for future reference what the results of this section tell us about the terms of
this sequence.

Lemma 5.16. Assume the critical density condition, and let 0aI be a graded left ideal

of R:

(1) As left R-modules, ðSI-RÞ=I and S=ðR þ SIÞ have finite filtrations with factors

which are either torsion or a tail of the shifted R-point module RðPðc�1ÞÞ½�i
 for

some iX0: In particular, S=ðR þ SIÞ is a noetherian left R-module.
(2) RðS=JÞ is a noetherian module for all nonzero left ideals J of S:

Proof. (1) Let 0afAR be arbitrary. Since fcigiAZ is a critically dense set, f ðciÞ ¼ 0

holds for only finitely many iAZ: Then by the results 5.4–5.8, the left R-modules
ðSf-RÞ=Rf and S=ðR þ Sf Þ are isomorphic to finite direct sums of shifted point
modules of the form RðPðc�1ÞÞ½�i
 for various iX0:Now using Lemma 5.9, it is clear
that ðSI-RÞ=I has a filtration of the right kind. Similarly, S=ðR þ SIÞ is a
homomorphic image of S=ðR þ Sf Þ for any 0afAI ; so it also has the required
filtration and is clearly noetherian.

(2) It is immediate from the exact sequence (5.15) for I ¼ Rr and part (1) that

RðS=SrÞ is noetherian for any homogeneous 0arAR: It is enough to show that

RðS=SxÞ is noetherian for an arbitrary homogeneous 0axAS: There is some
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nonzero homogeneous yAR such that yxAR; by Lemma 4.7. Then since ðS=SyxÞ is a
noetherian R-module, so is S=Sx: &

6. Point modules and the strong noetherian property

Let S ¼ SðjÞ and R ¼ Rðj; cÞ for ðj; cÞ satisfying the critical density condition, so
that R is noetherian. Recall the definition of the strong noetherian property:

Definition 6.1. A k-algebra A is called strongly (left) noetherian if A#kB is a left
noetherian ring for all commutative noetherian k-algebras B:

Artin and Zhang showed that the point modules for a strongly noetherian
algebra have a nice geometric structure. The following is a special case of their
theorem.

Theorem 6.2 (Artin and Zhang [6, Corollaries E4.11, E4.12]). Let A be a connected

N-graded strongly noetherian algebra over an algebraically closed field k:

(1) The point modules over A are naturally parameterized by a commutative

projective scheme over k:
(2) There is some dX0 such that every point module M for A is uniquely determined

by its truncation M=MXd : &

Using an explicit presentation for the ring, Jordan [14] classified the point modules
for the algebra R in a special case. In this section, we classify the point modules for
the rings Rðj; cÞ in general using a different method which does not rely on relations
and get a similar result. The classification will show that part (2) of Theorem 6.2 fails
for R; and so R cannot be strongly noetherian.

In this section we will make frequent use of the criterion for R-membership given
in Theorem 4.4 without comment. Also, recall that 3 indicates multiplication in the
polynomial ring U ; and juxtaposition indicates multiplication in S (or R). Some of
the results in this section will rely on the following technical commutative lemma
which is proved in the appendix.

Lemma 6.3 (Lemma A.10). Let the points d1; d2;y; dn; dnþ1APt be distinct, and

assume that the points d1;y; dn do not all lie on a line. Let miDU be the homogeneous

ideal corresponding to di:

(1) ð
Tn

i¼1 miÞn�13ðmnþ1Þ1 ¼ ð
Tnþ1

i¼1 miÞn:

(2) ð
Tn

i¼1 miÞn�13ðm1Þ1 ¼ ð
Tn

i¼2 mi-m2
1Þn:

(3) ð
Tn

i¼2 mi-m2
1Þn3ðmnþ1Þ1 ¼ ð

Tnþ1
i¼2 mi-m2

1Þnþ1:

(4) Let b1; b2APt; with corresponding ideals n1; n2; be such that bjadi for j ¼ 1; 2

and 1pipn: Then ð
Tn

i¼1 mi-n1Þn ¼ ð
Tn

i¼1 mi-n2Þn implies b1 ¼ b2:
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We have already seen that the point modules over S are easily classified up to

isomorphism—they are simply the fPðdÞ j dAPtg (recall Notation 3.1). There is a
close relationship between the point modules over the rings S and R; as we begin to
see in the next proposition.

Proposition 6.4. (1) Let M be a point module over R: Then MXnDRðPXnÞ for some S-
point module P and some nX0:

(2) If RPðd1ÞXnDRPðd2ÞXn for d1; d2APt and some nX0; then d1 ¼ d2:

Proof. (1) We have M ¼ R=I for a unique point ideal I of R: We will use the exact
sequence (5.15); there are two cases.

Suppose first that ðSI-RÞ=I ¼ 0: Then we have an injection R=I-S=SI :
By Lemma 5.16(1) we know that GKRðS=ðR þ SIÞÞp1; and clearly GKRðR=IÞ ¼ 1;
so that GKRðS=SIÞ ¼ 1 since GK-dimension is exact for modules over the graded
noetherian ring R: By Lemma 5.16(2), RðS=SIÞ is finitely generated, and so
GKSðS=SIÞ ¼ GKRðS=SIÞ ¼ 1 since for finitely generated modules the GK-
dimension depends only on the Hilbert function. Now may choose a filtration of
S=SI composed of cyclic critical S-modules, where the factors must be shifts of S-
point modules and Sk (Lemma 3.3). Since M is a R-submodule of S=SI ; this forces
some tail of M to agree with a tail of an S-point module.

Suppose instead that N ¼ ðSI-RÞ=Ia0: Then N is a nonzero submodule of the
point module M; so it is equal to a tail of M: By Lemma 5.16(1), some tail of N; and
thus a tail of M; must be isomorphic as an R-module to a tail of some
Pðc�1Þ½�i
DPðc�1�iÞXi (using also Lemma 3.2).

(2) By Lemma 3.2, we have for any dAPt that PðdÞ
XnDPðjnðdÞÞ½�n
 as S-

modules. Thus we may reduce to the case where n ¼ 0:
Since annS PðdiÞ0 ¼ mdi

; we must have md1-R ¼ md2-R: In degree m this

means

ðmc0-?-mcm�1
-md1Þm ¼ ðmc0-?-mcm�1

-md2Þm: ð6:5Þ

Suppose first that d1; d2efcigiAN: Since the point set fcigiAZ is critically dense, it

follows that for mc0 the points fcigm�1
i¼0 do not all lie on a line. Then by Lemma

6.3(4), Eq. (6.5) for mc0 implies that d1 ¼ d2:
Otherwise we may assume, without loss of generality, that d1 ¼ cj for some jX0

and that d2efcig j�1
i¼0 : Then the equation (6.5) for m ¼ j þ 1 violates Lemma 4.5

unless d1 ¼ cj ¼ d2: &

We may now classify the point modules over the ring Rðj; cÞ:

Theorem 6.6. Assume the critical density condition (Hypothesis 5.14).

(1) For any point dAPt
\fcigiX0; the S-point module PðdÞ is an R-point module, with

point ideal ðR-mdÞ:
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(2) For each iX0; the S-module PðciÞXiþ1 is a shifted R-point module. There is a

Pt�1-parameterized family of nonisomorphic R-point modules fPðci; eÞ j eAPt�1g
with Pðci; eÞ

Xiþ1DRPðciÞXiþ1 and Pðci; eÞpiDRPðciÞpi for any eAPt�1:

These are exactly the point modules whose point ideals contain the left ideal

ðR-m2
ci
Þ of R:

(3) All of the point modules given in parts (1) and (2) above are nonisomorphic, and

every point module over Rðj; cÞ is isomorphic to one of these.

Proof. Suppose that dAPt; so PðdÞ ¼ S=md by definition. For any iX0;

R1ðPðdÞÞi ¼ 0 3 R1SiDmd 3 ðmci
Þ13UiDmd 3 d ¼ ci: ð6:7Þ

(1) Let defcigiX0: In this case it is clear from (6.7) that PðdÞ is already an R-point

module. Also, the corresponding point ideal is annRPðdÞ0 ¼ R-md :

(2) Fix some iX0: From (6.7) it is clear that M ¼ RPðciÞ ¼ Mpi"MXiþ1 where
Mpi is the torsion submodule of M and MXiþ1 is a shifted R-point module.

We define a left ideal J ¼ JðiÞ of R by setting Jpi ¼ ðR-mci
Þpi and JXiþ1 ¼

ðR-m2
ci
Þ
Xiþ1: To check that J really is a left ideal of R; one calculates

R1Ji ¼ fiðmc0Þ13Ji ¼ ðmci
Þ13ðRi-mci

ÞiDRiþ1-m2
ci
¼ Jiþ1:

We will now classify the point ideals of R which contain J: By Lemma 4.5, the
Hilbert function of R=J must be

dimkðR=JÞn ¼
1; npi;

t; nXi þ 1:

(

Then using Lemma 4.5 again, the natural injection

ðR=JÞ
Xiþ1 ¼

ðmc0-mc1-?-mci
Þ
Xiþ1

ðmc0-mc1-?-m2
ci
Þ
Xiþ1

+ðmci
=m2

ci
Þ
Xiþ1

is an isomorphism of left R-modules, since the Hilbert functions on both sides are the
same.

As a module over the polynomial ring U ; we have an isomorphism

ðmci
=m2

ci
Þ
Xiþ1D

Mt

j¼1

ðU=mci
Þ
Xiþ1

which by the equivalence of categories U-GrBS-Gr translates to an S-isomorphism
as follows:

Sðmci
=m2

ci
Þ
Xiþ1D

Mt

j¼1

PðciÞXiþ1:
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By part (1), PðciÞXiþ1DPðc�1Þ½�i � 1
 is a shifted R-point module, so we conclude

that M ¼ ðR=JÞ
Xiþ1 is a direct sum of t isomorphic shifted R-point modules. Then

every choice of a codimension-one vector subspace V ¼ L=ðJiþ1Þ of ðR=JÞiþ1

generates a different R-submodule N of M with M=NDRPðciÞXiþ1; and then J þ RL

is a point ideal for R: Clearly any point ideal containing J must arise in this way, and

the set of codimension-one subspaces of ðR=JÞiþ1 is parameterized by Pt�1: Thus, the

set of point ideals of R which contain J is naturally parameterized by a copy of Pt�1:

For each eAPt�1; we have a corresponding point ideal I containing J and we set
Pðci; eÞ ¼ R=I : Then Pðci; eÞ

Xiþ1DRPðciÞXiþ1 and Pðci; eÞpiDðR=JÞpiDRPðciÞpi:

Finally, note that all of the point ideals constructed above contain ðR-m2
ci
Þ:

Conversely, if I is any point ideal which contains ðR-m2
ci
Þ; then I contains J; since

J=ðR-m2
ci
Þ is torsion and I ; being a point ideal, is closed under extensions inside R

by torsion modules. Then I is one of the point ideals we already constructed. This
finishes the proof of part (2).

(3) Note that for fixed i the Pðci; eÞ are nonisomorphic for distinct e by
construction; then it follows easily from Proposition 6.4(2) that all of the point
modules we have constructed in parts (1) and (2) are non-isomorphic.

Suppose that M is an R-point module. Let P be the set of all R-modules
isomorphic to a shift of one of the R-point modules constructed in parts (1) and (2)

above. By Proposition 6.4, MXnDRPðdÞ
Xn for some nX0 and dAPt: For mc0; note

that jmðdÞefcigiX0 and so MXmþnAP by part (1) above. Thus to finish the proof of

(3) it is enough by induction to show that given any R-point module N; if NX1AP
then NAP:

Let N be an R-point module such that NX1AP: Let I ¼ annR N0 be the point ideal
of N: There are a number of cases.

Case 1: Suppose first that NX1DRPðdÞ½�1
 for some defcigiX�1: Then

ðR-mdÞR1DI ; in other words

ðmj�1ðdÞ-mc1-mc2-?-mcn
Þn3ðmc0Þ1DInþ1

for each nX0: By the critical density condition, for nc0 the points fc1;y; cng will
not lie on a line, so that Lemma 6.3(1) applies and gives

ðmj�1ðdÞ-mc0-mc1-mc2-?-mcn
Þnþ1DInþ1:

In other words, ðR-mj�1ðdÞÞXmDI for mc0: Note that j�1ðdÞefcigiX0; so that

ðR-mj�1ðdÞÞ is one of the point ideals appearing in part (1) above. Since I is a point

ideal and is thus closed under extensions inside R by torsion modules,
ðR-mj�1ðdÞÞDI and so comparing Hilbert functions, ðR-mj�1ðdÞÞ ¼ I : Thus

NDRðPðj�1ðdÞÞAP:
Case 2: If NX1DRPðc�1Þ; then ðR-mc�1

ÞR1DI ; using Lemma 6.3(2) and a similar

argument to that in case 1, this implies that ðR-m2
c0
Þ
XmDI for mc0: Then since I is
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a point ideal, ðR-m2
c0
ÞDI : By part (2) above this forces NDPðc0; eÞ for some

eAPt�1; and so NAP:

Case 3: Let NX1DPðci; eÞ½�1
 for some iX0 and eAPt�1: Then ðR-m2
ci
ÞR1DI :

Now the same argument as in the other cases, except using Lemma 6.3(3), will show

that NDPðciþ1; e0ÞAP for some e0APt�1: &

The failure of the strong noetherian property for R ¼ Rðj; cÞ now follows
immediately from Theorem 6.6(2). This proves Theorem 1.2 from the introduction.

Theorem 6.8. Assume the critical density condition. Then R ¼ Rðj; cÞ is a connected

graded noetherian algebra, finitely generated in degree 1, which is noetherian but not

strongly noetherian.

Proof. We only need to prove that R is not strongly noetherian. For each iX0;

Theorem 6.6(2) provides a whole Pt�1 of point modules Pðci; eÞ which have
isomorphic truncations Pðci; eÞpi: By Theorem 6.2(2), R cannot be a strongly

noetherian k-algebra. &

We remark that the point modules over R still appear to have an interesting
geometric structure. By Theorem 6.6, there is a single point module corresponding to

each point dAPt
\fcigiX0 and a Pt�1-parameterized family of exceptional point

modules corresponding to each point ci with iX0: Since blowing up Pt at a point in

some sense replaces that point by a copy of Pt�1; the intuitive picture of the geometry
of the point modules for R is an infinite blowup of projective space at a countable
point set.

7. Extending the base ring

Let S ¼ SðjÞ and R ¼ Rðj; cÞ for ðj; cÞ satisfying the critical density condition,

and let ci ¼ j�iðcÞAPt
k as usual. We now know by Theorem 6.8 that R is not

strongly noetherian, but this proof is quite indirect and it is not obvious which choice
of extension ring B makes R#kB non-noetherian. In this section we construct such a
noetherian commutative k-algebra B which is even a UFD.

Let B be an arbitrary commutative k-algebra which is a domain. We will use
subscripts to indicate extension of the base ring, so for example we write RB ¼
R#kB: The automorphism f of U extends uniquely to an automorphism
of UB fixing B; which we also call f: We continue to identify the underlying
B-module of SB with that of UB; and we use juxtaposition for multiplication in SB

and the symbol 3 for multiplication in UB; as in our current convention (see Section
3). The multiplication of SB is still given by fg ¼ fnð f Þ3g for fAðSBÞm; gAðSBÞn; in

other words, SB is the left Zhang twist of UB by the twisting system ffigiAN; just as
before.
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Let d be a point in Pt
k: Since the homogeneous coordinates for d are defined only

up to a scalar multiple in k�; given fAUB the expression f ðdÞ is defined up to a
nonzero element of k; we will use this notation only in contexts where the ambiguity
does not matter. For example, the condition f ðdÞ ¼ 0 makes sense and is equivalent
to the condition fAmd3UB; where mdDU and md3UB is a graded prime ideal of UB:

The natural analog of Theorem 4.4 still holds in this setting:

Proposition 7.1. For all nX0; we have

ðRBÞn ¼ f fAðUBÞn such that f ðciÞ ¼ 0 for 0pipn � 1g:

Proof. As subsets of UB; using Theorem 4.4 we have

ðRBÞn ¼ Rn#B ¼
\n�1

i¼0

mci

 !
n

#B ¼
\n�1

i¼0

ðmci
3UBÞn

and the proposition follows. &

We now give sufficient conditions on B for the ring R#kB to fail to have the left
noetherian property.

Proposition 7.2. Assume that B is a UFD. Suppose that there exist nonzero

homogeneous elements f ; gAðUBÞ1 satisfying the following conditions:

(1) f ðciÞ divides gðciÞ in B for all iX0:
(2) For all ic0; f ðciÞ is not a unit of B:
(3) gcdð f ; gÞ ¼ 1 in UB:

Then R#kB is not a left noetherian ring.

Proof. Note that UBDB½x0; x1;y; xt
 is a UFD, since B is, so condition (3) makes
sense.

For convenience, fix some homogeneous coordinates for the ci: For each nX0; we
may choose a polynomial ynASn with coefficients in k such that ynðciÞ ¼ 0 for
�1pipn � 2 and ynðcn�1Þa0: This is possible, for example, by Lemma 4.5. By
hypothesis (1), for each nX0 we may write On ¼ gðcnÞ=f ðcnÞAB: Now let tn ¼
ynðOnf � gÞAðSBÞnþ1 for each nX0:

Since fðynÞ vanishes at ci for 0pipn � 1 and ½Onf � g
ðcnÞ ¼ 0; the element tn ¼
fðynÞ3ðOnf � gÞ is in ðRBÞnþ1; by Proposition 7.1. We will show that for nc0 we

have tnþ1e
Pn

i¼0ðRBÞti; which will imply that RB is not left noetherian.

Suppose that tnþ1 ¼
Pn

i¼0 riti for some riAðRBÞnþ1�i: Writing out the explicit

expressions for the ti; this is

ynþ1ðOnþ1f � gÞ ¼
Xn

i¼0

riyiðOif � gÞ:
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Considering these expressions in UB; after some rearrangement we obtain (since f ; g

have degree 1)

f ynþ1Onþ1 �
Xn

i¼0

riyiOi

" #
3f þ f �ynþ1 þ

Xn

i¼0

riyi

" #
3g ¼ 0:

Now by hypothesis (3), g must divide the polynomial

h ¼ f ynþ1Onþ1 �
Xn

i¼0

riyiOi

" #
¼ Onþ1fðynþ1Þ �

Xn

i¼0

Oif
iþ1ðriÞ3fðyiÞ:

We note that ½fðynþ1Þ
ðcnþ1ÞAk� by the definition of the yi; and ½fiþ1ðriÞ
ðcnþ1Þ ¼ 0
for 0pipn; since riAðRBÞn�iþ1: Thus evaluating at cnþ1 we conclude that

hðcnþ1ÞAOnþ1k� and thus gðcnþ1Þ divides Onþ1: But since Onþ1 ¼ gðcnþ1Þ=f ðcnþ1Þ;
this implies that f ðcnþ1Þ is a unit in B: For all nc0; this contradicts hypothesis (2),

and so tnþ1e
Pn

i¼0ðRBÞti for nc0; as we wished to show. &

Next, we construct a commutative noetherian ring B which satisfies the hypotheses
of Proposition 7.2. We shall obtain such a ring as an infinite blowup of affine space,
to be defined presently. See [1, Section 1] for more details about this construction.

Let A be a commutative domain, and let X be the affine scheme Spec A: Suppose
that d is a closed nonsingular point of X with corresponding maximal ideal pDA;

and let z0; z1;y; zr be some choice of generators of the ideal p such that z0ep2: The

affine blowup of X at d (with denominator z0) is X 0 ¼ Spec A0 where A0 ¼
A½z1z�1

0 ; z2z
�1
0 ;y; zrz

�1
0 
:

Consider the special case where A ¼ k½y1; y2;y; yt
 is a polynomial ring, X ¼ At;

and d ¼ ða1; a2;y; atÞ: The affine blowup of At at d with the denominator ðy1 � a1Þ
is X 0 ¼ Spec A0 for the ring

A0 ¼ A½ðy2 � a2Þðy1 � a1Þ�1;y; ðyt � atÞðy1 � a1Þ�1
:

Note that also A0 ¼ k½y1; ðy2 � a2Þðy1 � a1Þ�1;y; ðyt � atÞðy1 � a1Þ�1
; so A0 is itself
isomorphic to a polynomial ring in t variables over k and X 0 ¼ At as well. The
blowup map X 0-X is an isomorphism outside of the closed set fy1 ¼ a1g of X :

Given a sequence of points fdi ¼ ðai1; ai2;y; aitÞgiX0 such that ai1aaj1 for iaj; we

may iterate the blowup construction, producing a union of commutative domains

ADA0DA1DA2D?;

where each Ai is isomorphic to a polynomial ring in t variables over k: In this case we

set B ¼
S

Ai and Y ¼ Spec B; and call Y (or B) the infinite blowup of At at the

sequence of points fdig: Explicitly, B ¼ A½fðyj � aijÞðy1 � ai1Þ�1 j 2pjpt; iX0g
:
That there should be some connection between such infinite blowups and the

algebras Rðj; cÞ is strongly suggested by the following result (cf. Theorem 5.12).
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Theorem 7.3 (Artin et al. [1, Theorem 1.5]). The infinite blowup B is a noetherian ring

if and only if the set of points fdigiX0 is a critically dense subset of At:

Now we show the failure of the strong noetherian property for the noetherian

rings Rðj; cÞ explicitly. Below, we will identify automorphisms of Pt with elements of
PGLtþ1ðkÞ ¼ GLtþ1ðkÞ=k� [13, p. 151]; explicitly, we let matrices in GLtþ1ðkÞ act on
the left on the homogeneous coordinates ða0 : a1 : ? : atÞ of Pt; considered as
column vectors.

Theorem 7.4. Let ðj; cÞAðAutPt
kÞ � Pt

k satisfy the critical density condition. There is

an affine patch AtDPt such that fcigiAZDAt: Let B be the infinite blowup of At at the

points fcigiX0: Then R ¼ Rðj; cÞ is noetherian, but B is a commutative noetherian k-

algebra which is a UFD such that R#kB is not a left noetherian ring.

Proof. By changing coordinates, we may replace j by a conjugate without loss of
generality, so we may assume that when represented as a matrix j is lower
triangular. Also, we may multiply this matrix by a nonzero scalar without changing

the automorphism of Pt it represents, and so we also assume that the top left entry of
the matrix is 1.

By assumption the set of points fcigiAZ is critically dense in Pt; and so Rðj; cÞ is
noetherian. Let X0 be the hyperplane fx0 ¼ 0g of Pt: Since j is upper triangular,
jðX0Þ ¼ X0; so if some ciAX0 then fcigiAZDX0 which contradicts the critical density

condition. So certainly fcigiAZDAt ¼ Pt
\X0: Since the top left entry of j is 1, we

may fix homogeneous coordinates for the ci of the form ci ¼ ð1 : ai1 : ai2 : ? : aitÞ:
Let yi ¼ xi=x0; so that k½y1; y2;y; yt
 is the coordinate ring of At: In affine
coordinates, ci ¼ ðai1; ai2;y; aitÞ:

If ai1 ¼ aj1 for some ioj; then since j is lower triangular it follows that ai1 ¼ ak1

for all kAðj � iÞZ: Then the hyperplane fai1x0 � x1 ¼ 0g of Pt contains infinitely
many of the ci; again contradicting the critical density of fcigiAZ: So the scalars

fai1giAZ are all distinct, and the infinite blowup B of At at the points fcigiX0 is well

defined. The ring B is generated over k½y1; y2;y; yt
 by the elements fðyj � aijÞðy1 �
ai1Þ�1 j 2pjpt; iX0g: Clearly the points fcigiX0 must be critically dense subset

of At; since they are a critically dense subset of Pt: Thus B is noetherian by
Theorem 7.3.

The ring B is obtained as a directed union of k-algebras Ai which are each
isomorphic to a polynomial ring. In each ring Ai the group of units is just k�; and so
this is also the group of units of B: It follows that if zAAi is an irreducible element of
B; then z is irreducible in Ai: Since B is noetherian, every element of B is a finite
product of irreducibles, and the uniqueness of such a decomposition follows by the
uniqueness in each UFD Ai: Thus B is a UFD.

Fix the two elements f ¼ y1x0 � x1 and g ¼ y2x0 � x2 of UBDB½x0; x1;y; xt
:
Since f and g are homogeneous of degree 1 in the xi and are not divisible by any non-
unit of B; it is clear that f and g are distinct irreducible elements of UB; and so in
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particular gcdð f ; gÞ ¼ 1: Now f ðciÞ ¼ y1 � ai1 and gðciÞ ¼ y2 � ai2; so Oi ¼
gðciÞ=f ðciÞ ¼ ðy2 � ai2Þðy1 � ai1Þ�1AB and thus f ðciÞ divides gðciÞ for all iX0:

Finally, f ðciÞ ¼ ðy1 � ai1Þ is not in the group of units k� of B:We see that all of the
hypotheses of Proposition 7.2 are satisfied, and so R#kB is not left noetherian. &

8. Special subcategories and homological lemmas

Let S ¼ SðjÞ and R ¼ Rðj; cÞ; and assume the critical density condition
(Hypothesis 5.14), in particular that R is noetherian. First, we introduce some
notation for the subcategories of S-Gr and R-Gr which are generated by the
‘‘distinguished’’ S-point modules PðciÞ:

Definition 8.1. (1) Let S-dist be the full subcategory of S-gr consisting of all S-
modules M with a finite S-module filtration whose factors are either torsion or a
shift of PðciÞ for some iAZ:

(2) Let R-dist be the full subcategory of R-gr consisting of all R-modules M having
a finite R-module filtration whose factors are either torsion or a shift of the module

RPðciÞ for some iAZ:

Note that by Theorem 6.6(1) and (2), RPðciÞ is finitely generated for any iAZ and
so part (2) of the definition makes sense. We also define S-Dist to be the smallest full
subcategory of S-Gr containing S-dist and closed under direct limits. The
subcategory R-Dist of R-Gr is defined similarly. We will use frequently later in
this section the fact that S=RAR-Dist, which follows from Corollary 5.6.

If C is any abelian category, a full subcategory D of C is called Serre if for any
short exact sequence 0-M 0-M-M 00-0 in C; MAD if and only if both M 0AD
and M 00AD: All of the subcategories defined above are clearly Serre. In fact, we may
describe S-dist as the smallest Serre subcategory of S-gr which contains all of the
PðciÞ½j
; a similar description holds for the other categories.

The special categories over the two rings are related as follows.

Lemma 8.2. Let MAS-gr. Then RMAR-dist if and only if SMAS-dist. Similarly, if

MAS-Gr then RMAR-Dist if and only if SMAS-Dist.

Proof. If SMAS-dist, then it follows directly from Definition 8.1 that RMAR-dist.
Conversely, suppose that RMAR-dist. Clearly GKRðMÞp1; so we have GKSðMÞp1
since we can measure GK-dimension using the Hilbert function. By Lemma 3.3, M

has a finite filtration over S with cyclic critical factors, which must in this case be
shifts of Sk and S-point modules. Suppose that a shift of PðdÞ is one of the factors
occurring. Then N ¼ RPðdÞAR-dist. By the definition of R-dist, some tail of N is
isomorphic to a shift of some RPðciÞ for some iAZ: Using Lemma 3.2, this forces

RPðdÞDRPðcjÞ for some jAZ and so by Proposition 6.4(2) we have d ¼ cj: Thus the

only point modules which may occur as factors in the S-filtration of M are shifts of
the PðcjÞ for jAZ and so MAS-dist.
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The second statement is an easy consequence of the definitions of S-Dist and R-
Dist and the first statement. &

In the rest of this section, we gather some definitions and lemmas concerning
homological algebra over the rings R and S: Let A be a connected N-graded k-
algebra, finitely generated in degree 1, and let k ¼ ðA=AX1Þ:We say that A satisfies wi

if dimk Ext
jðk;MÞoN for all MAA-gr and all 0pjpi; and that A satisfies w if A

satisfies wi for all iX0: If MAA-gr, the grade of M is the number jðMÞ ¼
minfi j ExtiAðM;AÞa0g: We say that A is Cohen–Macaulay if jðMÞ þGKðMÞ ¼
GKðAÞ for all MAA-gr. Finally, A is Artin–Schelter regular (or AS-regular) if A has
finite global dimension d; finite GK-dimension, and satisfies the Gorenstein condition:

ExtiAðAk;AÞ ¼ 0 if iad; and ExtdAðAk;AÞDkA (up to some shift of grading).

The ring S obtains many nice homological properties simply because it is a Zhang
twist of a commutative polynomial ring.

Lemma 8.3. (1) S has global dimension t þ 1:
(2) S is Cohen–Macaulay.

(3) S is Artin–Schelter regular.

(4) S satisfies w:

Proof. All of these properties are standard for the polynomial ring U : Properties
(1)–(3) follow for the Zhang twist S of U by Zhang [31, Propositions 5.7, 5.11]. Then
since S is Artin–Schelter regular it satisfies w [5, Theorem 8.1]. &

Recall from Section 3 that there is an equivalence of categories y : U-GrBS-Gr,
and that we identify the graded left ideals of S and the graded ideals of U : Under
the equivalence of categories we have yðU=IÞDS=I : Also, graded injective
objects correspond under the equivalence and so it is immediate that

ExtiU-GrðM;NÞDExtiS-GrðyM; yNÞ as vector spaces for all M;NAU-Gr and all

iX0: On the other hand, the relationship between Ext groups over the two rings is
more complicated, since the shift functors in S and U do not correspond under the
equivalence of categories. We work out this relationship in detail for cyclic modules,
which is the only case we will need.

Lemma 8.4. Let M ¼ U=I and N ¼ U=J for some graded ideals I and J of U : For

any nAZ we have

(1) yððU=f�nðJÞÞ½n
ÞDðS=JÞ½n
:
(2) ExtiSðS=I ;S=JÞnD ExtiUðU=I ;U=f�nðJÞÞn as k-spaces.

Proof. (1) Obviously, the property of being cyclic is preserved by the equivalence of
categories, and so yððU=f�nðJÞÞ½n
Þ is a cyclic S-module generated in degree �n:
Thus we need only show that the annihilator in S of a generator is the left S-ideal J;
but this is immediate from the definition of the equivalence y:
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(2) By definition, ExtiUðU=I ;U=f�nðJÞÞn ¼ ExtiU-GrðU=I ; ðU=f�nðJÞÞ½n
Þ and

ExtiSðS=I ;S=JÞn ¼ ExtiS-GrðS=I ; ðS=JÞ½n
Þ: We know that yðU=IÞDS=I ; and

yððU=f�nðJÞÞ½n
ÞDðS=JÞ½n
 by part (1). We are done since the Ext groups in the
graded category correspond under the equivalence of categories. &

The next proposition shows that the critical density of the set fcigiAZ; besides
characterizing the noetherian property for R; also has implications for the
homological properties of the S-point modules PðciÞ: The proof of the following
commutative lemma may be found in the appendix.

Lemma 8.5 (Lemma A.12). Let I and J be homogeneous ideals of U : There is some

dX0 such that for all nAZ for which U=ðI þ fnðJÞÞ is bounded, ExtiUðU=I ;U=fnðJÞÞ
has right bound pd: &

Proposition 8.6. Assume the critical density condition, and let NAS-gr.

(1) dimk Ext
p
SðPðciÞ;NÞoN for 0pppt � 1 and any iAZ:

(2) Let MAS-dist. Then dimk Ext
p
SðM;NÞoN for 0pppt � 1:

Proof. (1) Since N is finitely generated, it is easy to see that each graded piece of

E ¼ Ext
p
SðPðciÞ;NÞ is finite dimensional over k: So it is enough to show that E is

bounded. Note that E is automatically left bounded since N is [5, Proposition
3.1.1(c)]. It remains to show that E is right bounded. Using a finite filtration of N by
cyclic modules, one reduces quickly to the case where N is cyclic, say N ¼ S=I :

In case I ¼ 0; E ¼ Ext
p
SðPðciÞ;SÞ ¼ 0 for 0pppt � 1 by the Cohen–Macaulay

property of S (Lemma 8.3(2)).
Now assume that Ia0: By Lemma 8.4(3), we have for each nX0 the k-space

isomorphism

Ext
p
SðS=mci

;S=IÞnDExt
p
UðU=mci

;U=f�nðIÞÞn:

Now f�nðIÞDmci
; or equivalently IDmciþn

; can hold for at most finitely many n;

since the points fcigiAZ are critically dense. Thus for nc0 we have f�nðIÞD/ mci
; and

the module U=ðf�nðIÞ þ mci
Þ is bounded. By Lemma 8.5, there is some fixed dX0

such that Ext
p
UðU=mci

;U=f�nðIÞÞn ¼ 0 as long as nXd: We conclude that

Ext
p
SðS=mci

;S=IÞn ¼ 0 for nc0; as we wish.

(2) Since MAS-dist; we may choose a finite filtration of M with factors which are
shifts of the point modules PðciÞ or Sk: Since S satisfies w by Lemma 8.3(4),

dimk Ext
p
Sðk;NÞoN for all pX0; and now the statement follows by part (1). &

For an N-graded algebra A; if L and N are Z-graded right and left A-modules,

respectively, then the k-space TorA
i ðL;NÞ has a natural Z-grading which we

emphasize by using the notation TorA
i ðL;NÞ: To study homological algebra over R;

we will generally try to reduce to calculations over the ring S: In particular, we will
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often use the following convergent spectral sequence, which is valid for any graded
modules RM and SN [25, Eq. (2.2)]:

Ext
p
SðTorR

q ðS;MÞ;NÞ)
p
Ext

pþq
R ðM;NÞ: ð8:7Þ

We also note for reference the 5-term exact sequence arising from this spectral
sequence [21, 11.2]:

0-Ext1SðS#RM;NÞ-Ext1RðM;NÞ-HomSðTorR
1 ðS;MÞ;NÞ

-Ext2SðS#RM;NÞ-Ext2RðM;NÞ: ð8:8Þ

In order to make effective use of the spectral sequence, we need some information
about Tor:

Lemma 8.9. Fix some MAR-gr: Also, let Q be the right point module of R such that

ðS=RÞRD"N

i¼1 Q½�i
 (Corollary 5.6(2), applied to the right side, which is valid by

Lemma 4.2(1)). Then

(1) TorR
q ðS;MÞAS-dist for any qX1: If M is torsion, then TorR

q ðS;MÞAS-dist for

qX0:
(2) dimk Tor

R
q ðQ;MÞoN for qX1:

Proof. (1) From the long exact sequence in TorR
q ð�;MÞ associated to the short exact

sequence of R-bimodules 0-R-S-S=R-0; we see that

TorR
q ðS;MÞDTorR

q ðS=R;MÞ ð8:10Þ

as left R-modules, for all qX2: Also, at the bottom of the long exact sequence we
have

0-TorR
1 ðS;MÞ-TorR

1 ðS=R;MÞ-M-y ð8:11Þ

Thus there is at least an injection of left R-modules TorR
q ðS;MÞ-TorR

q ðS=R;MÞ for
all qX1: Now computing N ¼ TorR

q ðS=R;MÞ using a free resolution of M; it is a

subfactor of some direct sum of copies of ðS=RÞAR-Dist; so NAR-Dist: Then

TorR
q ðS;MÞAR-Dist and thus in S-Dist for qX1; using Lemma 8.2. But since we

may calculate TorR
q ðS;MÞ using a resolution of M by free modules of finite rank, we

have TorR
q ðS;MÞAS-dist for qX1:

If M is torsion, we need to show in addition that TorR
0 ðS;MÞ is in S-dist: It is

enough to show this for M ¼ k; in which case one calculates immediately that

TorR
0 ðS;MÞDS=SRX1DS=mc0 ¼ Pðc0Þ which is obviously in S-dist:

(2) As in part (1), N ¼ TorR
q ðS=R;MÞAR-Dist and TorR

q ðS;MÞ is in S-dist and

thus in R-dist; by Lemma 8.2, for all qX1: Since MAR-gr; we get using (8.10) and
(8.11) that NAR-gr and so NAR-dist for all qX1:
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Note that by the definition of R-dist; the Hilbert function of N is forced to satisfy
dimk NmoC for some constant C; all mX0: Then since Tor commutes with direct
sums [5, Proposition 2.4(1)], ND"N

i¼1 TorqðQ;MÞ½�i
 as graded vector spaces, and

so we must have dimk Tor
R
q ðQ;MÞoN for qX1: &

As an easy consequence of the spectral sequence, we may show that R and S have
no nontrivial extensions by torsion modules in the category of R-modules.

Lemma 8.12. Ext1RðRk;RÞ ¼ 0 ¼ Ext1RðRk;SÞ:

Proof. Consider the long exact sequence in ExtRðk;�Þ associated to the short exact
sequence 0-R-S-S=R-0:

y-HomRðk;S=RÞ-Ext1Rðk;RÞ-Ext1Rðk;SÞ-y : ð8:13Þ

Now RðS=RÞ is torsionfree, since it is isomorphic to a direct sum of point modules by
Corollary 5.6(2). Thus HomRðk;S=RÞ ¼ 0:

To analyze the group Ext1Rðk;SÞ; we use the beginning of the 5-term exact

sequence (8.8) for M ¼ Rk and N ¼ S:

0-Ext1SðS#Rk;SÞ-Ext1Rðk;SÞ-HomSðTorR
1 ðS; kÞ;SÞ-y : ð8:14Þ

Now by Lemma 8.9(i), TorR
i ðS; kÞ is in S-dist for all iX0; in particular,

GKSðS#RkÞp1 and GKSðTorR
1 ðS; kÞÞp1: Then Ext1SðS#Rk;SÞ ¼ 0 by the

Cohen–Macaulay property of S (Lemma 8.3(2)) and HomSðTorR
1 ðS; kÞ;SÞ ¼ 0 since

S is a domain with GKðSÞ ¼ t þ 141: Thus by (8.14) Ext1Rðk;SÞ ¼ 0; and by (8.13)

Ext1Rðk;RÞ ¼ 0 as well. &

9. The maximal order property

Let A be a noetherian domain with Goldie quotient ring Q: We say A is a maximal

order in Q if given any ring T with ADTDQ and nonzero elements a; b of A with
aTbDA; we have T ¼ A: If A is commutative, then A is a maximal order if and only
if A is integrally closed in its fraction field [17, Proposition 5.1.3].

We are interested in an equivalent formulation of the maximal order property. For
any left ideal I of A; we define OrðIÞ ¼ fqAQjIqDIg and OlðIÞ ¼ fqAQjqIDIg:
Then A is a maximal order if and only if OrðIÞ ¼ A ¼ OlðIÞ for all nonzero ideals I of
A [17, Proposition 5.1.4]. If A is an N-graded algebra with a graded ring of fractions
D; then for any homogeneous ideal I of A we may also define Og

r ðIÞ ¼ fqADjIqDIg
and Og

l ðIÞ ¼ fqADjqIDIg: In the graded case we have the following criterion for the

maximal order property.
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Lemma 9.1. Let A be an N-graded noetherian domain which has a graded quotient ring

D and Goldie quotient ring Q: Then A is a maximal order if and only if Og
r ðIÞ ¼ A ¼

Og
l ðIÞ holds for all homogeneous nonzero ideals I of A:

This result is stated in [26, Lemma 2], but the reference given there is faulty and so
we will supply a brief proof here.

Proof. We may write DDT ½z; z�1; s
 for some division ring T and automorphism s
of T : Then since T is a maximal order, it follows by Maury and Raynaud [16,
Propositions IV.2.1,V.2.3] that D is a maximal order in Q:

Assume that Og
r ðJÞ ¼ A ¼ Og

l ðJÞ for all homogeneous ideals J of A: Let I be any

ideal of A; and let qAOrðIÞ: Then DI is a 2-sided ideal of D [12, Theorem 9.20], and
also qAOrðDIÞ: Since D is a maximal order in Q; this forces qAD:

Given any d ¼
P

diAD where diADi; let n be maximal such that dna0 and setedd ¼ dn: Let eII be the 2-sided homogeneous ideal generated by eaa for all aAI : Write

q ¼
Pn

i¼m di; then since IqDI ; we have eIIdnDeII and so dnAOg
r ðeIIÞ ¼ A: Then q �

dnAOrðIÞ: By induction on n � m we get that q � dnAA and so qAA: Thus OrðIÞ ¼ A;
and an analogous argument gives OlðIÞ ¼ A; so A is a maximal order. The opposite
implication is trivial. &

Let S ¼ SðjÞ and R ¼ Rðj; cÞ and assume the critical density condition. Our next
goal is to show that R ¼ Rðj; cÞ is a maximal order. First, we note that the ring S has
this property.

Lemma 9.2. S ¼ SðjÞ is a maximal order.

Proof. By Zhang [31, Theorem 5.11], S is ungraded Cohen–Macaulay and
Auslander–regular, since U has both properties; also, since S is graded it is trivially
stably free. By Stafford [22, Theorem 2.10], any ring satisfying these three properties
is a maximal order. &

We will also require the following lemma concerning the annihilators of modules
in R-Dist:

Lemma 9.3. (1) If MAR-Dist; then either RM is torsion or else annR M ¼ 0:
(2) In particular, if I is a nonzero ideal of R then RðSIS=ISÞ is torsion.

Proof. (1) Consider the S-point module PðciÞ for some iAZ: By Lemma 3.2(1), PðciÞ
has point sequence ðci; ci�1; ci�2;yÞ: Then annR PðciÞ ¼

T
N

j¼0 mci�j
-R; and by the

critical density of the points fcig we conclude that annR PðciÞ ¼ 0: Now the
statement follows easily from the definition of R-Dist:

(2) Since M ¼ RðSIS=ISÞ is a homomorphic image of a direct sum of copies of
ðS=RÞ; we have MAR-Dist: Since also IM ¼ 0; by part (1) RM is torsion. &

ARTICLE IN PRESS
D. Rogalski / Advances in Mathematics 184 (2004) 289–341 317



Recall that R and S have the same graded quotient ring D (Lemma 4.7). For any
graded left R-submodules M;N of D; we identify HomRðM;NÞ with
fdAD j MdDNg: Similarly, if M;N are graded left S-submodules of D we identify
HomSðM;NÞ and fdAD j MdDNg:

Proposition 9.4. Let I be a nonzero homogeneous ideal of R: Then Og
l ðIÞDS and

Og
r ðIÞDS:

Proof. Consider Og
r ðIÞ for some nonzero homogeneous ideal I of R: We have that

Og
r ðIÞ ¼ fqADjIqDIgDfqADjSIqDSIg ¼ HomSðSI ;SIÞ:

We will show that HomSðSI ;SIÞDS: Since S is a maximal order by Lemma 9.2, we
know that Og

r ðSISÞ ¼ HomSðSIS;SISÞ ¼ S: Set M ¼ SIS=SIAS-gr:
Now from the exact sequence of R-bimodules 0-SI-SIS-M-0; we get the

following long exact sequence in Ext:

0-HomSðM;SISÞ-HomSðSIS;SISÞ-HomSðSI ;SISÞ

-Ext1SðM;SISÞ-y

in which the terms are again R-bimodules and the maps are all R-bimodule maps. By
a right sided version of Lemma 9.3(2), which is valid by Lemma 4.2(1), MR must be

torsion. Then since the left R-structure of Ext1SðM;SISÞ comes from the right side of

M; it follows from the fact that SM is finitely generated that the left R-module

structure of Ext1SðM;SISÞ is also torsion.

Now HomSðM;SISÞ ¼ 0; since S is a domain and GKðMÞoGKðSÞ: Thus
HomSðSI ;SISÞ is an R-subbimodule of D which is an essential left R-module
extension of HomSðSIS;SISÞ ¼ S by a torsion module. But by Lemma 8.12,

Ext1Rðk;SÞ ¼ 0 and so S has no nontrivial torsion extensions. This forces

HomSðSI ;SISÞ ¼ S; and thus Og
r ðIÞ ¼ HomSðSI ;SIÞDHomSðSI ;SISÞ ¼ S:

The proof that Og
l ðIÞDS follows by applying the same argument in the extension

of rings RopDSop; and again invoking Lemma 4.2(1). &

Now we may complete the proof that R is a maximal order.

Theorem 9.5. Assume the critical density condition, so that R is noetherian. Then R is a

maximal order.

Proof. Let I be any nonzero homogeneous ideal of R: Then HomRðRI ; RIÞ ¼
Og

r ðIÞDS; by Proposition 9.4. Set M ¼ ðHomRðI ; IÞÞ=R; then RM is a submodule of

RðS=RÞ; so MAR-Dist: Since IM ¼ 0; Proposition 9.3(1) implies that M is a torsion

module. But Ext1Rðk;RÞ ¼ 0 by Lemma 8.12, and so R may not have any nontrivial

torsion extensions. Since RDHomRðI ; IÞ is an essential extension, this forces Og
r ðIÞ ¼
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HomðI ; IÞ ¼ R: Applying the same argument in Rop; we get Og
l ðIÞ ¼ R as well. Thus

R is a maximal order by Lemma 9.1. &

10. The v condition and R-proj

We begin this section by reviewing some definitions from the theory of
noncommutative projective schemes which we will use in the next two sections.
See [5] for more details.

Let A be a noetherian N-graded ring which is finitely generated in degree one.
Let A-Tors be the full subcategory of torsion objects in A-Gr: Then A-Tors
is a localizing subcategory of A-Gr; which means that the quotient category
A-Qgr ¼ A-Gr=A-Tors is defined, and the exact quotient functor p: A-Gr-A-Qgr
has a right adjoint o; which is called the section functor. For torsionfree MAA-Gr
we may describe opðMÞ explicitly as the unique largest essential extension M 0

of M such that M 0=M is torsion. For all MAA-qgr; oðMÞ is torsionfree and
poðMÞDM:

The noncommutative projective scheme A-Proj is defined to be the ordered pair
ðA-Qgr; pðAÞÞ; where pðAÞ is called the distinguished object. We write
A-ProjDB-Proj if there is an equivalence of categories A-QgrBB-Qgr under which
the distinguished objects correspond. We also work with the subcategories of
noetherian objects A-gr;A-tors;A-qgr ¼ A-gr=A-tors; and we set A-proj ¼
ðA-qgr; pðAÞÞ:

The category A-Qgr has enough injectives and so Ext groups are defined in this
category. The shift functor M/M½1
; which is an autoequivalence of the category
A-Gr; descends naturally to an autoequivalence of A-Qgr: For M;NAA-Qgr we
define

ExtpðM;NÞ ¼
MN

i¼�N

Ext
p
A-QgrðM;N½i
Þ:

Now we define cohomology and graded cohomology for A-Proj by setting HiðNÞ ¼
ExtiðpðAÞ;NÞ and HiðNÞ ¼ ExtiðpðAÞ;NÞ for NAA-Qgr: The section functor o
may be described using cohomology as oðMÞ ¼ H0ðMÞ for all MAA-Qgr:

For making explicit computations, it is useful to note that for all M;NAA-gr and
all pX0;

Ext
p
A-QgrðpðMÞ; pðNÞÞD lim

n-N

Ext
p
AðMXn;NÞ: ð10:1Þ

In case M ¼ A; we have the following additional formula for all pX1 (see [5,
Proposition 7.2(2)]):

HpðpðNÞÞD lim
n-N

Ext
pþ1
A ðA=AXn;NÞ: ð10:2Þ
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If A is commutative this last formula amounts to the usual correspondence between
sheaf cohomology in A-proj and local cohomology for the ring A:

Recall the w conditions which were defined in Section 8. Artin and Zhang proved
the following noncommutative analog of Serre’s theorem:

Theorem 10.3 (Artin and Zhang [5, Theorem 4.5]). Let A be a right noetherian

N-graded algebra, and let A ¼ pðAÞ be the distinguished object of A-proj: Then B ¼
"iX0 H

0ðA½i
Þ is naturally a graded ring and there is a canonical homomorphism

c : A-B: If A satisfies w1 then c is an isomorphism in large degree, and

B-projDA-proj:

In other words, if A satisfies w1 then the noncommutative projective scheme A-proj;
together with the shift functor M/M½1
; determines the ring A up to a finite-
dimensional vector space.

In this section, we will analyze the w conditions for R ¼ Rðj; cÞ; assuming the
critical density condition throughout. We shall show that R satisfies w1; but that wi

fails for R for iX2: In particular, R satisfies the noncommutative Serre’s theorem,
and is the first example of a noetherian algebra which satisfies w1 but not all of the w
conditions.

We will say that wiðMÞ holds for a particular module MAA-Gr if Ext
j
Aðk;MÞoN

for 0pjpi: The reader may easily prove the following simple facts.

Lemma 10.4. Let 0-M 0-M-M 00-0 be an exact sequence in R-gr; and let

NAR-gr:

(1) If w1ðM 0Þ and w1ðM 00Þ hold then w1ðMÞ holds.
(2) If w1ðMÞ holds then w1ðM 0Þ holds.
(3) If dimk NoN then w1ðNÞ holds. &

To prove w1 for R we will reduce to the case of S-modules.

Proposition 10.5. Suppose that NAS-gr: Then w1ðRNÞ holds.

Proof. Consider the first 3 terms of the 5-term exact sequence (8.8) for M ¼ Rk:

0-Ext1SðS#Rk;NÞ-Ext1Rðk;NÞ-HomSðTorR
1 ðS; kÞ;NÞ-y :

Now TorR
i ðS; kÞ is in S-dist for any iX0; by Lemma 8.9(1). Then by Proposition 8.6,

we conclude that dimk Ext
j
SðTorR

i ðS; kÞÞ;NÞoN for j ¼ 0; 1 and iX0: Thus

dimk Ext
1
Rðk;NÞoN: &

The following result completes the proofs of Theorems 1.3 and 1.5 from the
introduction.
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Theorem 10.6. Assume the critical density condition and let R ¼ Rðj; cÞ:

(1) R satisfies w1:
(2) Ext2Rðk;RÞ is not bounded, and wi fails for all iX2:

Proof. (1) By Lemma 10.4(1) and induction it is enough to show that w1ðMÞ holds
for all graded cyclic R-modules M:

Let R=I be an arbitrary graded cyclic left R-module. If I ¼ 0; then w1ðRRÞ holds by
Lemma 8.12. Assume then that Ia0: Consider the exact sequence (5.15). Now
w1ðRðS=SIÞÞ holds by Proposition 10.5. By Lemma 5.16(1), both ðSI-RÞ=I and
S=ðR þ SIÞ have finite filtrations with factors which are either torsion or shifted R-
point modules with a compatible S-module structure. Then w1ððSI-RÞ=IÞ and
w1ðS=ðR þ SIÞÞ hold, by Proposition 10.5 and Lemma 10.4(1),(3). Finally, applying
Lemma 10.4(1),(2) to (5.15) we get that w1ðR=IÞ holds.

(2) Consider the long exact sequence in ExtRðk;�Þ that arises from the short exact
sequence of R-modules 0-R-S-S=R-0:

y-Ext1Rðk;SÞ-Ext1Rðk;S=RÞ-Ext2Rðk;RÞ-y : ð10:7Þ

Now Ext1Rðk;SÞ ¼ 0; by Lemma 8.12. On the other hand,

Ext1Rðk;S=RÞD
MN
i¼1

Ext1Rðk;Pðc�1ÞÞ½�i


by Corollary 5.6(2), since Ext commutes with direct sums in the second coordinate
[5, Proposition 3.1(1)(b)]. By Theorem 6.6(2), it is clear that the point module
Pðc�1Þ has a nontrivial extension by k½1
; since any point module Pðc0; eÞ de-

fined there satisfies ðPðc0; eÞ½1
Þ
X0DRPðc�1Þ: Thus Ext1Rðk;Pðc�1ÞÞa0; and so

"N

i¼1 Ext
1
Rðk;Pðc�1ÞÞ½�i
DExt1Rðk;S=RÞ is not right bounded. Then by the

exact sequence (10.7), Ext2Rðk;RÞ is also not right bounded. In particular,

dimk Ext
2
Rðk;RÞ ¼ N and wi fails for R for all iX2 by definition. &

We see next that the failure of wi for R for iX2 is reflected in the cohomology of
R-proj: We recall the noncommutative version of Serre’s finiteness theorem which
was proved by Artin and Zhang, which we have restated slightly.

Theorem 10.8 (Artin and Zhang [5, Theorem 7.4]). Let A be a left noetherian finitely

N-graded algebra which satisfies w1: Then A satisifes wi for some iX2 if and only if the

following two conditions hold:

(1) dimk H
jðNÞoN for all 0pjoi and all NAA-qgr:

(2) HjðNÞ is right bounded for all 1pjoi and all NAA-qgr:

Proof. This follows immediately from the proof of [5, Theorem 7.4]. &
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Lemma 10.9. Let A be a left noetherian finitely N-graded algebra satisfying wi: Then

dimk Ext
jðM;NÞoN for 0pjoi and for all M;NAA-qgr:

Proof. Let A ¼ pðAÞ: Since any MAA-gr is an image of some finite sum of shifts of
A; in A-qgr there is an exact sequence

0-M0-F-M-0;

where we have F ¼ "n
i¼1 A½di
 for some integers diAZ: Then ExtjðF;NÞD"n

i¼1

ExtjðA;N½�di
Þ ¼ "n
i¼1 H

jðN½�di
Þ and so dimk Ext
jðF;NÞoN for all 0pjoi

by Theorem 10.8.
We induct on j: If j ¼ 0 then there is an exact sequence

0-HomðM;NÞ-HomðF;NÞ from which it follows that dimk HomðM;NÞ
oN: For 0ojoi; there is the long exact sequence

y-Extj�1ðM0;NÞ-ExtjðM;NÞ-ExtjðF;NÞ-y

and since dimk Ext
j�1ðM0;NÞoN by the induction hypothesis, we have

dimk Ext
jðM;NÞoN as well. This completes the induction step and the proof. &

We can now make the failure of the Serre’s finiteness theorem for R-proj explicit.

Lemma 10.10. Let R ¼ pðRÞAR-qgr be the distinguished object of R-proj: Then

dimk H
1ðRÞ ¼ N:

Proof. Set S ¼ pðSÞAR-Qgr: The exact sequence 0-R-S-S=R-0 descends to
an exact sequence 0-R-S-S=R-0 in R-qgr: For MAR-Qgr; the cohomology

H0ðMÞ may be identified with the zeroeth graded piece of the module oðMÞ; where o
is the section functor. Recall also that for torsionfree MAA-Gr; opðMÞ is the largest
essential extension of M by a torsion module. Since Ext1Rðk;SÞ ¼ 0 by Lemma 8.12,

RS has no nontrivial torsion extensions and so oðSÞ ¼ S: In particular,

dimk H
0ðSÞ ¼ dimk S0 ¼ 1: On the other hand, S=R ¼ "N

i¼1 Pðc�1Þ½�i
 is an infinite

direct sum of shifted R-point modules by Corollary 5.6(2). For each iX0; by Lemma
6.6(2) there is some R-point module Pðci; eiÞ which satisfies Pðci; eiÞXiþ1DPðc�1Þ½�i �
1
: Then M ¼ "N

i¼0 Pðci; eiÞ is an essential extension of S=R by a torsion module, so

MDoðS=RÞ and it follows that dimk H
0ðS=RÞXdimk M0 ¼ N: Now the long

exact sequence in cohomology forces dimk H
1ðRÞ ¼ N as well. &

The following result, which proves Theorem 1.4 from the introduction, shows that
the category R-qgr is necessarily quite different from any of the standard examples.

Theorem 10.11. Assume the critical density condition.

(1) Suppose that A is a left noetherian finitely N-graded k-algebra which satisfies w2:
Then the categories A-qgr and R-qgr are not equivalent.
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(2) R-qgr is not equivalent to coh X ; the category of coherent sheaves on X ; for any

commutative projective scheme X :

Proof. (1) The proof is immediate from Lemmas 10.9 and 10.10.
(2) This follows from part (1) and the usual commutative Serre’s theorem. &

11. Global and cohomological dimension of R-proj

In this section, our goal is to show that R-proj has finite global dimension, and
thus finite cohomological dimension. We will also give upper bounds for these
numbers.

Let us recall the definitions of these concepts:

Definition 11.1. Let A be a connected finitely generatedN-graded algebra. The global

dimension of A-qgr (or A-proj) is

gldimðA-qgrÞ ¼ supfi j ExtiðM;NÞa0 for some M;NAA-qgrg:

The cohomological dimension of A-proj is

cdðA-projÞ ¼ supfi jHiðNÞa0 for some NAA-qgrg:

If A-qgr has finite global dimension, then it is immediate that A-proj has finite
cohomological dimension. We remark that it is not known if there exists any graded
algebra A such that cdðA-projÞ ¼ N:

Now let S ¼ SðjÞ and R ¼ Rðj; cÞ; and assume the critical density condition as
usual. It is easy to compute the global and cohomological dimensions of S-proj:

Lemma 11.2. cdðS-projÞ ¼ gldimðS-qgrÞ ¼ GKðSÞ � 1 ¼ t:

Proof. Since S is a Zhang twist of the polynomial ring U ; we have an isomorphism

S-projDðcohPt;OPtÞ; and the values of both dimensions for the commutative

scheme Pt are well known. &

The main machinery we will use to study Ext groups in R-qgr is Proposition 11.6
below, which needs the spectral sequence given in the following lemma.

Lemma 11.3. For any system in R-Gr of the form y-Mn-y-M1-M0 and any

NAS-Gr there is a convergent spectral sequence of the form

E
pq
2 ¼ lim

n-N

Ext
p
SðTorR

q ðS;MnÞ;NÞ)
p

lim
n-N

Ext
pþq
R ðMn;NÞ:

ARTICLE IN PRESS
D. Rogalski / Advances in Mathematics 184 (2004) 289–341 323



Proof. Consider the spectral sequence (8.7) for arbitrary RMAR-Gr:

Ext
p
SðTorR

q ðS;MÞ;NÞ)
p
Ext

pþq
R ðM;NÞ:

Let C be the category of all N-indexed directed systems of modules in R-Gr of the
form

y-Mn-y-M1-M0:

Let D be the analogous category of directed systems of modules in S-Gr: Both of
these categories have enough projectives and injectives. For example, if P is a
projective object of R-Gr; then any object in C of the form

y-0-0-0-P!D P!D y!D P ð11:4Þ

is projective, and clearly every object in C is an image of a direct sum of objects of
this form. See [30, Exercises 2.3.7, 2.3.8] for more details. The functor S#R� :
R-Gr-S-Gr extends to a functor G :C-D: We also have a functor F :D-Ab
defined by fLngnAN/limn-N HomSðLn;NÞ; where Ab is the category of abelian

groups. It is easy to see that G is right exact; since Ab has exact direct limits [30,
Theorem 2.6.15], F is left exact. Finally, G sends any direct sum of objects in C of the
form in (11.4) to a projective object in D: Then corresponding to the composition of
functors F3G is a Grothendieck spectral sequence (see [21, Theorem 11.40])

E
p;q
2 ¼ RpFðLqGðM:ÞÞ)

p
RpþqðFGÞðM:Þ

which we leave to the reader to show unravels to the spectral sequence required by
the lemma. &

To get the most out of the spectral sequence, we also note the following simple
lemma.

Lemma 11.5. Let A be a connected graded noetherian ring, and let

y-Mn-y-M1-M0 a directed system of modules in A-gr: For each n; let

tðMnÞ be the torsion submodule of Mn: Then for any NAA-gr and pX0;

lim
n-N

Ext
p
AðMn;NÞD lim

n-N

Ext
p
AðMn=tðMnÞ;NÞ

as k-spaces.

Proof. Since direct limits are exact in the category of abelian groups [30, Theorem
2.6.15], there is a long exact sequence in limn-N Extð�;NÞ arising from short
exact sequence of complexes 0-tðM:Þ-M:-M:=tðM:Þ-0: Given fixed n; the
module tðMnÞ is bounded and so for some n0

cn the natural map tðMn0 Þ-tðMnÞ is
zero, and then the natural map Ext

p
AðtðMnÞ;NÞ-Ext

p
AðtðMn0 Þ;NÞ is zero. Thus
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limn-N Ext
p
AðtðMnÞ;NÞ ¼ 0 for all pX0; and the desired result follows from the long

exact sequence. &

Proposition 11.6. Let NAS-Gr; and let MAR-gr:

(1) As graded vector spaces, for all mX0 we have

ExtmR-QgrðpðMÞ; pðNÞÞD lim
n-N

ExtmS ðS#RMXn;NÞ:

(2) In case M ¼ R; for mX1 we have

HmðpðNÞÞD lim
n-N

Extmþ1
S ðS=SRXn;NÞ:

Proof. (1) We use the spectral sequence of Lemma 11.3:

E
pq
2 ¼ lim

n-N

Ext
p
SðTorR

q ðS;MXnÞ;NÞ)
p

lim
n-N

Ext
pþq
R ðMXn;NÞ:

Our goal is to show that E
pq
2 ¼ 0 for any pair of indices p; q with qX1:

Fix qX1: For fixed nX0; we claim first that there is some n0
Xn such that the

natural map c1 : Tor
R
q ðS;MXn0 Þ-TorR

q ðS;MXnÞ is 0. As in Lemma 8.9, there is a

right point module Q of R such that S=RD"N

i¼1 Q½�i
 as right R-modules. Now by

the fact that Tor commutes with direct sums [5, Proposition 2.4(1)] we get a
commutative diagram

where the top two vertical maps are at least injections (see Lemma 8.9) and the ci are
the natural maps.

Now Tn ¼ TorR
q ðQ;MXnÞ is bounded, by Lemma 8.9(2). Also, clearly the left

bound lðnÞ of Tn satisfies limn-N lðnÞ ¼ N: It follows that for n0
cn the natural map

y : Tn0-Tn is 0: The restriction of the map c3 to any summand is just a shift of the
map y; so c3 ¼ 0 for n0

cn: Finally, the commutative diagram gives c1 ¼ 0 for n0
cn:

This proves the claim.

ARTICLE IN PRESS
D. Rogalski / Advances in Mathematics 184 (2004) 289–341 325



Write nE
pq
2 ¼ Ext

p
SðTorR

q ðS;MXnÞ;NÞ: Since c1 ¼ 0 for n0
cn; the natural map

nE
pq
2 -n0E

pq
2 is also zero for n0

cn: Since n was arbitrary, we have E
pq
2 ¼

limn-N nE
pq
2 ¼ 0:

Therefore only the E
pq
2 with q ¼ 0 are possibly nonzero, and the spectral sequence

collapses, giving an isomorphism of vector spaces for all mX1 as follows (using
also (10.1)):

ExtmR-QgrðpðMÞ; pðNÞÞD limn-N ExtmRðMXn;NÞD lim
n-N

ExtmS ðTorR
0 ðS;MXnÞ;NÞ

¼ lim
n-N

ExtmS ðS#RMXn;NÞ:

(2) Assume that M ¼ R: Setting Tn ¼ TorR
q ðQ;R=RXnÞ in this case (where Q is as

in part (1)) it is obvious that Tn is bounded, since R=RXn is, and it is still true for
qX1 that the left bound lðnÞ of Tn satisfies limn-N lðnÞ ¼ N [5, Proposition 2.4(6)].
Then the same argument as in part (1) shows that the spectral sequence

E
pq
2 ¼ lim

n-N

Ext
p
SðTorR

q ðS;R=RXnÞ;NÞ)
p

lim
n-N

Ext
pþq
R ðR=RXn;NÞ

also collapses, so we have (using (10.2)) that

Hm
RðpðNÞÞD lim

n-N

Extmþ1
R ðR=RXn;NÞD lim

n-N

Extmþ1
S ðTorR

0 ðS;R=RXnÞ;NÞ

¼ lim
n-N

Extmþ1
S ðS=SRXn;NÞ

for all mX1: &

Armed with the preceding results, we can now show that R-qgr has finite global
dimension, and calculate upper bounds on the values of the global dimension and
cohomological dimension for R-proj: This proves Theorem 1.6 from the introduc-
tion.

Theorem 11.7. Assume the critical density condition for R ¼ Rðj; cÞ; and recall that

t ¼ GKðRÞ � 1: Then

(1) gldimðR-qgrÞpt þ 1:
(2) cdðR-projÞpt:

Proof. (1) Given any MAR-gr and NAS-Gr; Proposition 11.6(1) and Lemma 11.5
show that

Ext
p
R-qgrðpðMÞ; pðNÞÞD lim

n-N

Ext
p
SðS#MXn;NÞD lim

n-N

Ext
p
SðNn

0;NÞ;

where Nn
0 ¼ ðS#MXnÞ=tðS#MXnÞ: For all nX0; the S-module Nn

0 is torsionfree.
By the graded Auslander–Buchsbaum formula [11, Exercise 19.8], a torsionfree
module in U-gr has projective dimension at most ðdim UÞ � 1 ¼ t; since it has depth
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X1; by the equivalence of categories U-GrBS-Gr we infer that each Nn
0 has

projective dimension at most t over S: Then for p4t each term of the direct limit is 0

and so Ext
p
R-qgrðpðMÞ; pðNÞÞ ¼ 0:

Now if L is an arbitrary graded cyclic R-module, then either L ¼ R; in which case
we have the exact sequence 0-R-S-S=R-0; or L ¼ R=I for Ia0; in which there
is the exact sequence (5.15): 0-ðSI-RÞ=I-R=I-S=SI-S=ðR þ SIÞ-0: Since
S=R; ðSI-RÞ=I ; and S=ðR þ SIÞ all have finite filtrations with factors which have an
S-structure compatible with their left R-structure (Lemmas 5.6 and 5.16), we

conclude that Ext
p
R-qgrðpðMÞ; pðLÞÞ ¼ 0 for p4ðt þ 1Þ: Since any L0AR-gr has a finite

filtration by cyclic modules, we see that Ext
p
R-qgrðpðMÞ; pðL0ÞÞ ¼ 0 for all M;L0AR-gr

and p4ðt þ 1Þ; and so gldimðR-qgrÞpt þ 1:

(2) We will show that for any NAS-Gr; ExtpR-qgrðpðRÞ; pðNÞÞ ¼ 0 for p4ðt � 1Þ:
Then the bound cdðR-projÞpt will follow by a similar argument as in part (1). Let

JðnÞ be the left S-ideal mc0-mc1-y-mcn�1
: By Theorem 4.4, Rn ¼ ðJðnÞÞn; and

furthermore JðnÞ is generated in degrees rn; by Lemma 4.3. It is easy to see then that

JðnÞ is the largest extension of SRXn inside S by a torsion module.
Now by Proposition 11.6(2) and Lemma 11.5, we have

Ext
p
R-qgrðpðRÞ; pðNÞÞD lim

n-N

Ext
pþ1
S ðS=SRXn;NÞD lim

n-N

Ext
pþ1
S ðS=JðnÞ;NÞ:

But each S=JðnÞ is torsionfree and hence has projective dimension at most t; by the
same argument as in part (1), so every term in the direct limit is zero when
p4ðt � 1Þ: &

Before leaving the subject of cohomological dimension, we wish to mention
another approach to cohomology for noncommutative graded algebras which is
provided by the work of Van Oystaeyen and Willaert on schematic algebras [27–29].
An algebra graded A is called schematic if it has enough Ore sets to give an open
cover of A-proj; we shall not concern ourselves here with the formal definition. For
such algebras one can define a noncommutative version of Čech cohomology which
gives the same cohomology groups as the cohomology theory we studied above.

It turns out that the theory of schematic algebras is of no help in computing the
cohomology of R-proj: Indeed, if A is a connected N-graded noetherian schematic
algebra then ExtnAðAk;AÞ is torsion as a right A-module for all nAN [29, Proposition

3], hence finite dimensional over k: But we saw in Theorem 10.6 that

dimk Ext
2
RðRk;RÞ ¼ N: Thus we have incidentally proven the following proposition.

Proposition 11.8. Assume the critical density condition. Then R ¼ Rðj; cÞ is a

connected N-graded noetherian domain, generated in degree one, which is not

schematic.

The previously known nonschematic algebras have not been generated in degree
one [29, p. 12].
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12. The critical density property

We saw in Theorem 5.12 that the noetherian property for Rðj; cÞ depends on the

critical density of the set of points C ¼ fjiðcÞgiAZ; and we have been assuming that

C is critically dense ever since. In this section, we justify this assumption by showing
that the critical density of C holds for generic choices of j and c: We will only
concern ourselves with pairs ðj; cÞ such that Hypothesis 4.1 holds, that is such that c

has infinite order under j: Next, we will show that in case char k ¼ 0; the set C is
critically dense if and only if it is dense, which is a much simpler condition to check.
Finally, we discuss rings generated by Eulerian derivatives, which was the context in
which rings of the form Rðj; cÞ first appeared in the literature [14]. We translate our
earlier results into this language, and show that they solve several open questions
in [14].

Throughout this section we write ci ¼ j�iðcÞ: As we did earlier in Section 7, we

think of automorphisms of Pt as elements of PGLtþ1ðkÞ ¼ GLtþ1ðkÞ=k�; which act

on the left on column vectors of homogeneous coordinates for Pt: We write
diagðp0; p1;y; ptÞ for the automorphism which is represented by a diagonal matrix
with diagonal entries p0; p1;y; pt:

Let us define precisely our (somewhat nonstandard) intended meaning of the word
‘‘generic’’.

Definition 12.1. A subset U of a variety X is generic if its complement is contained in
a countable union of proper closed subvarieties of X :

If the base field k is uncountable, a generic subset is intuitively very large. For
example, if k ¼ C then a property which holds generically holds ‘‘almost
everywhere’’ in the sense of Lebesgue measure. For any results below which involve
genericity we will assume that k is uncountable.

In the next theorem we will prove that C is critically dense for j a suitably general

diagonal matrix, and c chosen from an open set of Pt: The proof will depend on the
following combinatorial lemma.

Lemma 12.2. Fix dX1; and set N ¼ ðtþd
d
Þ: Let U ¼ k½x0; x1;y; xt
 be the polynomial

ring, and give monomials in U the lexicographic order with respect to some fixed

ordering of the variables. Let f1; f2;y; fN be the monomials of degree d in U ¼
k½x0; x1;y; xt
; enumerated so that f1of2oyfN in the lex order. Fix some sequence

of distinct nonnegative integers a1oa2o?oaN : Then the polynomial detð f
aj

i ÞAU is

nonzero.

Proof. Set F ¼ detð f
aj

i ÞAU : Let SN be the symmetric group on N elements, with

identity element 1; then F is a sum of terms of the form hs ¼ 7
QN

i¼1 f
asðiÞ

i for sASN :

It is straightforward to check that the monomial f a1
1 f a2

2 ?f aN

N is the unique largest in

the lex order occurring among the hs; and that it occurs only in h1 and thus may not
be cancelled by any other term. &
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The next theorem includes, in particular, the result of Proposition 5.13 which we
stated earlier without proof.

Theorem 12.3. Let j ¼ diagð1; p1; p2;y; ptÞ with fp1; p2;yptg algebraically inde-

pendent over the prime subfield of k: Let c ¼ ðb0 : b1 : ? : btÞAPt with bia0 for all

0pipt: Then C ¼ fjiðcÞgiAZ is critically dense and Rðj; cÞ is noetherian.

Proof. We have the explicit formula c�n ¼ ðb0 : b1p
n
1 : b2pn

2 : ? : btp
n
t Þ: We will

actually prove that the set of points C is in general position: that is, that at most ðnþd
d
Þ

of the points lie on any degree d hypersurface of Pt: This will obviously imply that C
is critically dense.

Suppose that C fails to be in general position. Then there is some dX1 and a

sequence of N ¼ ðtþd
d
Þ integers a1oa2o?oaN such that the points ca1 ; ca2 ;y; caN

lie on a degree d hypersurface in Pt: We may assume that the ai are nonnegative,
since if the fcai

g lie on a degree d hypersurface then the same is true of the points

fj�mðcai
Þg ¼ fcaiþmg for any mAZ: Let f1; f2;y; fN be the distinct degree d

monomials in the variables xi of U : It follows that detð fiðcaj
ÞÞ ¼ 0:

Given the explicit formula for cn; one calculates that

detð fiðcaj
ÞÞ ¼ B½detð f

aj

i Þ
ð1 : p�1
1 : p�1

2 : ? : p�1
t Þ ¼ 0;

where B is a monomial in the bi and hence is nonzero by hypothesis. Now by Lemma

12.2 the polynomial detð f
aj

i Þ is a nonzero homogeneous element of U ; which clearly

has coefficients in the prime subfield of k: Thus p�1
1 ; p�1

2 ;y; p�1
t satisfy some nonzero

nonhomogeneous relation with coefficients in the prime subfield of k; contradicting
the hypothesis on the fpig:

Thus the set C must be in general position, and so is critically dense. Then
certainly c must also have infinite order under j; so that Hypothesis 4.1 holds. Now
Rðj; cÞ is noetherian by Theorem 5.12. &

Next, let us show that for generic choices of j and c (in the sense of Definition

12.1), the ring Rðj; cÞ is noetherian. Because of Lemma 4.2(2), for every fixed cAPt

we get the same class of rings fRðj; cÞ j jAAutPtg: Thus we might as well fix some
arbitrary c and vary j only.

Theorem 12.4. Assume that the base field k is uncountable. Fix cAPt: There is a

generic subset Y of X ¼ AutPt such that Rðj; cÞ is noetherian for all jAY :

Proof. By Lemma 4.2(2) there is no harm in assuming that c ¼ ð1 : 1 : ? : 1Þ:
Choose some homogeneous coordinates ðzijÞ0pi;jpt for XDPðMtþ1ðkÞÞ: Just as in

the proof of Theorem 12.3, we see that C ¼ fcigiAZ fails to be in general position

if and only if there exists some dX1 and some choice of N ¼ ðtþd
d
Þ nonnegative
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integers a1oa2o?oaN such that det fiðcaj
Þ ¼ 0; where the fi are the degree d

monomials in U :
Each condition det fiðcaj

Þ ¼ 0 is a closed condition in the coordinates of X ;

moreover it does not hold identically, otherwise for no choice of j would C be in
general position, in contradiction to the proof of Theorem 12.3. There are countably
many such conditions, and so the complement Y of the union of all of these closed
subsets is generic by definition. Thus for jAY we have that C is in general position
and so Rðj; cÞ is noetherian, by Theorem 5.12. &

It is not hard, in contrast to the preceding theorems, to come by examples of ðj; cÞ
for which the ci are distinct but not even dense, much less critically dense. One such
example should suffice to illustrate this situation.

Example 12.5. Suppose that t ¼ 2 and char k ¼ 0: Let

j ¼
1 1 0

0 1 1

0 0 1

264
375

with c ¼ ð0 : 0 : 1Þ: Then C is not dense in P2:

Proof. One easily calculates the formula c�n ¼ ðnðn � 1Þ=2 : n : 1Þ for nAZ: Since

char k ¼ 0; the ci are obviously distinct. But the polynomial f ¼ x0x2 þ 1
2

x2x1 � 1
2

x2
1

vanishes at ðnðn � 1Þ=2 : n : 1Þ for every nAZ; and so fcigiAZ is not dense. &

A similar argument will show more generally that if the Jordan canonical form of a
matrix representing j has a Jordan block of sizeX3 or more than one Jordan block of

size 2; then given any cAPt; the set C is not dense in Pt: See [20] for further details.

12.1. Improvements in characteristic zero

Theorems 12.3 and 12.4 hold for an algebraically closed field of arbitrary
characteristic. In case where char k ¼ 0; we will show that one can get a better result
by invoking the following theorem of Cutkosky and Srinivas.

Theorem 12.6 (Cutkosky and Srinivas [10, Theorem 7]). Let G be a connected

commutative algebraic group defined over an algebraically closed field k of

characteristic 0: Suppose that gAG is such that the cyclic subgroup H ¼ /gS is

dense in G: Then any infinite subset of H is dense in G:

The theorem has the following consequence.

Proposition 12.7. Let char k ¼ 0: Then C ¼ fjiðcÞgiAZ is critically dense in Pt if and

only if C is Zariski dense in Pt:
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Proof. If C is critically dense in Pt; then C is of course dense in Pt by de-
finition.

Now assume that C is dense. Choose a matrix LAGLtþ1ðkÞ to represent j (so

L is unique up to scalar multiple). Now set V ¼
P

iAZ kLiDMtþ1ðkÞ: Let eccAAtþ1

be a particular choice of coordinates for c; and think of elements of Atþ1 as

column vectors. Then the linear evaluation map ecc : V-Atþ1 defined by N/Necc
descends to a map c :PV-Pt which sends ji to jiðcÞ for all iAZ: The map ecc
must be surjective, else C would lie on a proper linear subspace of Pt: Note also

that since L satisfies its characteristic polynomial, dimk Vpt þ 1: This forces ecc
to be an isomorphism, and so c is an isomorphism of projective spaces. In

particular, writing H ¼ fjigiAZ; we have via the automorphism c that H is dense

in PV :
Now let G ¼ PV-PGLtþ1ðkÞ: Then G is an algebraic group, since it is the closure

of the subgroup H of PGLtþ1ðkÞ [8, Proposition 1.3]. Since any two elements of V

commute, G is commutative. Note also that G is an open subset of the projective
space PV ; so G is irreducible and in particular connected. Finally, we always assume
that the field k is algebraically closed, so the hypotheses of Theorem 12.6 are all
satisfied.

Now H is dense in G; so H is critically dense in G by Theorem 12.6. Then as a
subset of PV ; H is critically dense in PV : Finally, applying c again we get that C is

critically dense in Pt: &

Thus in case char k ¼ 0; the question of the noetherian property for Rðj; cÞ
reduces to the question of the density of C ¼ fjiðcÞgiAZ; which is easy to analyze for

particular choices of j and c: in particular, C will be dense if and only if c is not

contained in a proper closed set XD! Pt with jðX Þ ¼ X : Let us note some specific
examples. Note that part (1) of the following example is a significant improvement
over Theorem 12.3 if the field has zero characteristic.

Example 12.8. Let char k ¼ 0:

(1) Suppose that j ¼ diagð1; p1;y; ptÞ; and that the multiplicative subgroup of k�

generated by p1; p2;ypt is DZt: Let c be the point ða0 : a1 : ? : atÞ: Then

Rðj; cÞ is noetherian if and only if aia0 for all 0pipt:
(2) Let

j ¼

1 1

0 1

p2

y

pt

26666664

37777775
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such that the multiplicative subgroup of k� generated by the p2;y; pt is DZt�1:

Let c ¼ ða0 : a1 : ? : atÞAPt: Then Rðj; cÞ is noetherian if and only if aia0 for

all 1pipt:

Proof. (1) Let f be the automorphism of U corresponding to j; explicitly (up to
scalar multiple), fðxiÞ ¼ pixi; if we set p0 ¼ 1: Suppose that J is a graded ideal of U

with fðJÞ ¼ J: Then if we choose mc0 such that Jma0; then there is some 0afAJm

with fð f ÞAkf ; since the action of f on the finite-dimensional vector space Jm has an
eigenvector. If f ¼

P
bI xI (where I is a multi-index), then fð f Þ ¼

P
bI pI xI : The

hypothesis on the pi forces pI to be distinct for distinct multi-indices I of degree m; so

f must be a scalar multiple of a single monomial in the xi: Thus any closed set XD! Pt

with jðXÞ ¼ X is contained in the union of hyperplanes
St

i¼0fxi ¼ 0g: It follows
that if all aia0 then C is dense. Conversely, if some ai ¼ 0 then C is contained in the
hyperplane xi ¼ 0 and C is not dense. Now the result follows from Lemma 12.7 and
Theorem 5.12.

(2) The automorphism f of U corresponding to j is given by fðx0Þ ¼ x0 þ x1;
fðx1Þ ¼ x1; and fðxiÞ ¼ pixi for 2pipt: If J is a graded ideal of U with fðJÞ ¼ J;
then as above there is some 0afAJm with fð f ÞAkf : We leave it to the reader to
show that this forces f to be scalar multiple of a monomial in x1; x2;y; xt only; the
rest of the proof is as in part (1). &

Lemma 12.7 and Example 12.8(1) fail in positive characteristic. The next example,
which we thank Mel Hochster for suggesting, shows this explicitly.

Example 12.9. Let k have characteristic p40 and let yAk be transcendental over the

prime subfield Fp: Suppose that t ¼ 2; and let j ¼ diagð1; y; y þ 1Þ and c ¼ ð1 : 1 : 1Þ:
The multiplicative subgroup of k� generated by y and y þ 1 is isomorphic to Z2; but

both sets of points fcigiX0 and fcigip0 are dense but not critically dense in Pt: The ring

Rðj; cÞ is neither left nor right noetherian.

Proof. It is easy to see since y is transcendental over Fp that the multiplicative

subgroup of k� generated by y and y þ 1 is isomorphic to Z2:

We have c�n ¼ jnðcÞ ¼ ð1; yn; ðy þ 1ÞnÞ; so c has infinite order under j: If n ¼ p j

for some jX0; then ðy þ 1Þn ¼ yn þ 1: Therefore c�n is on the line X ¼ fx0 þ x1 �
x2 ¼ 0g for all n ¼ p j: On the other hand, suppose that nX0 is not a power of p:
Then some binomial coefficient ðn

i
Þ with 0oion is not divisible by p; and the

binomial expansion of ðy þ 1Þn contains the nonzero term ðn
i
Þyi: Since y is

transcendental over Fp; this implies ðy þ 1Þnayn þ 1 and so c�n is not on the line

X : Thus for nX0; c�n is on X if and only if n is a power of p: It follows that the set of
points fcigip0 is not critically dense. By Theorem 5.12, R is not right noetherian.

Put D ¼ fcigip0; and consider the Zariski closure %D of this set of points. Since the

line X contains infinitely many points of D; XD %D: For all nAZ; jnðXÞ also con-

tains infinitely many points of D; and so
S

nAZ j
nðXÞD %D: Finally, one checks that
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the jnðX Þ are distinct lines for all nAZ: It follows that %D ¼ P2; and D is a Zariski
dense set.

Analogously, one may check that if Y is the curve fx1x2 þ x2x0 � x0x1g ¼ 0; then

cnAY for nX0 if and only if n ¼ p j for some jX0; so that fcigiX0 is not critically

dense. Yet a similar proof as above shows that fcigiX0 is Zariski dense. According to

Theorem 5.12, R is also not left noetherian. &

13. Algebras generated by Eulerian derivatives

The original motivation for our study of the algebras Rðj; cÞ came from the results
of Jordan [14] on algebras generated by two Eulerian derivatives. In this final section
we show that Jordan’s examples are special cases of the algebras Rðj; cÞ; and so we
may use our previous results to answer the main open question of [14], namely
whether algebras generated by two Eulerian derivatives are ever noetherian. In fact,
we will prove that an algebra generated by a generic finite set of Eulerian derivatives
is noetherian.

Fix a Laurent polynomial algebra k½y71
 ¼ k½y; y�1
 over the base field k:

Definition 13.1. For pAk\f0; 1g; we define the operator DpAEndk k½y71
 by the

formula f ðyÞ/f ðpyÞ�f ðyÞ
py�y

: For p ¼ 1; we define D1AEndk k½y71
 by the formula

f/df =dy: For any pa0; we call Dp an Eulerian Derivative.

It is also useful to let y�1 be notation for the operator y�1 : yi/yi�1 for iAZ:
We now consider algebras generated by a finite set of Eulerian derivatives. There

are naturally two cases, depending on whether D1 is one of the generators.

Theorem 13.2. Suppose that fp1;yptgAk\f0; 1g are distinct, and assume that the

multiplicative subgroup of k� these scalars generate is DZt: Let R ¼ k/Dp1 ;Dp2 ;y;

Dpt
S: Then RDRðj; cÞ for

j ¼ diagð1; p�1
1 ; p�1

2 ;y; p�1
t Þ and c ¼ ð1 : 1 : ? : 1Þ:

R is noetherian if either char k ¼ 0 or if the fpig are algebraically independent over the

prime subfield of k:

Proof. Set p0 ¼ 1 and let wi ¼ y�1 þ ðpi � 1ÞDpi
for 0pipt: The automorphism f of

U corresponding to j is given (up to scalar multiple) by f : xi/p�1
i xi for 0pipt:

An easy calculation shows that SðjÞ has relations fxjxi � p�1
j pixixjg for 0piojpt;

clearly these relations generate the ideal of relations for SðjÞ; since SðjÞ has the
Hilbert function of a polynomial ring in t þ 1 variables.
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As in [14, Section 2], it is straightforward to prove the identities wjwi � p�1
j piwiwj

for all 0pi; jpt; so there is a surjection of algebras given by

c : SðjÞ- k/y�1;Dp1 ;y;Dpt
SDEnd k½y71


xi/wi; 0pipt:

Now the hypothesis that the fpig generate a rank t subgroup of k� ensures that c
is injective: this is proved for the case t ¼ 2 in [14, Proposition 1]; the proof in general
is analogous. Thus c is an isomorphism of algebras. Then one checks that the image
under c of the subalgebra Rðj; cÞ of SðjÞ is k/Dp1 ;Dp2 ;y;Dpt

S ¼ R:

The noetherian property for R follows from Example 12.8(1) in case char k ¼ 0; or
from Theorem 12.3 if the fpig are algebraically independent over the prime subfield
of k: &

The case where D1 is one of the generators is very similar, and we only sketch the
proof.

Theorem 13.3. Assume that char k ¼ 0: Let fp2; p3;yptgAk\f0; 1g be distinct, and

assume that the multiplicative subgroup of k� that the fpig generate is DZt�1: Let

R ¼ k/D1;Dp2 ;Dp3 ;y;Dpt
S: Then RDRðj; cÞ for

j ¼

1 1

0 1

p�1
2

y

p�1
t

26666664

37777775 and c ¼ ð0 : 1 : 1 : ? : 1Þ:

The ring R is noetherian.

Proof. Let p1 ¼ 1; and let wi ¼ y�1 þ ðpi � 1ÞDpi
for 1pipt: As in the preceding

proposition, one calculates the relations for the algebra SðjÞ; and using these and
the identities in [14, Section 2], one gets an algebra surjection

c : SðjÞ- k/y�1;D1;Dp2 ;y;Dpt
S;

x0/ � D1;

xi/wi; 1pipt:

The hypothesis on the fpig implies that c is an isomorphism, by an analogous proof
to that of [14, Proposition 1]. Then Rðj; cÞ is mapped isomorphically onto R: The
noetherian property for R follows from Example 12.8(2). &
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The results above easily imply that a ring generated by a generic set of Eulerian
derivatives is noetherian.

Theorem 13.4. Assume that k is uncountable. Let Vi be the closed set fyi ¼ 0g in At:

There is a generic subset YDAt
\
St

i¼1 Vi such that if ðp1; p2;y; ptÞAY then R ¼
k/Dp1 ;Dp2 ;yDpt

S is noetherian.

Proof. Let k½y1; y2;yyt
 be the coordinate ring of At; and write Vð f Þ for the

vanishing set in At of fAk½y1; y2;yyt
: Let F be the prime subfield of k; and set

A ¼ F½y1; y2;yyt
: The set Y of points ðp1; p2;y; ptÞDAt where the fpig are

algebraically independent over F is the complement in At of
S

fAA Vð f Þ: But since F
is countable, A is also countable and so Y is a generic subset of At (Definition 12.1).
Now apply Theorem 13.2. &

We can also produce an example of a ring generated by Eulerian derivatives that is
not noetherian, the existence of which was also an open question in [14].

Proposition 13.5. Assume that char k ¼ p40 and that k has transcendence degree at

least 1 over its prime subfield Fp: Then there exist scalars p1; p2Ak such that the ring

k/Dp1 ;Dp2S is not noetherian.

Proof. Let yAk be transcendental over Fp: Consider the ring Rðj; cÞ of Example

12.9, where j ¼ diagð1; y; y þ 1Þ and c ¼ ð1 : 1 : 1Þ: As in Example 12.9, the scalars
y; y þ 1 generate a rank 2 multiplicative subgroup of the field k; so setting p1 ¼ y and
p2 ¼ y þ 1 we have Rðj; cÞDk/Dp1 ;Dp2S by Theorem 13.2. But as we saw in

Example 12.9, Rðj; cÞ is not noetherian. &
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Appendix A. Castelnuovo–Mumford regularity

In this appendix, we discuss the notion of Castelnuovo–Mumford regularity
and use some recent results in this subject to prove the technical lemmas in
the main body of the paper. We thank Jessica Sidman for alerting us to these
methods.

Let U ¼ k½x0; x1;y; xt
 be a polynomial ring over an algebraically closed field
k; graded as usual with degðxiÞ ¼ 1 for all i: All multiplication in this appendix is
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commutative, and so we omit the 3 notation which we introduced in Section 3.
Generally speaking, the notion of regularity for a U-module M is a convenient way
of encapsulating information about the degrees of the generators of all of the
syzygies of M:

Definition A.1 (Eisenbud [11, p. 509]). Let MAU-gr: Take a minimal graded free
resolution of M:

0-
Mrðtþ1Þ

i¼1

U ½�ei;tþ1
-?-
Mr0
i¼1

U ½�ei;0
-M-0:

If ei;jpm þ j for all i; j then we say that M is m-regular. The regularity of M; reg M;

is the smallest integer m for which M is m-regular (if M ¼ 0 then we set
reg M ¼ �N).

There are other equivalent characterizations of regularity, with different advantages;
see for example [7, Definition 3.2].

Regularity behaves well with respect to exact sequences.

Lemma A.2 (Eisenbud [11, Corollary 20.19]). Let 0-M 0-M-M 00-0 be a short

exact sequence in U-gr: Then

(1) reg M 0pmaxðreg M; reg M 00 þ 1Þ:
(2) reg Mpmaxðreg M 0; reg M 00Þ:
(3) reg M 00pmaxðreg M 0 � 1; reg MÞ:

Let us define some related notions. For I a graded ideal of U ; we define the
saturation of I to be

I sat ¼ fxAU jðUXnÞxDI for some ng:

The ideal I sat is the unique largest extension of I inside U by a torsion module. If

I sat ¼ I then we say that I is saturated.
A module or ideal that is m-regular stabilizes in degree m in the following

important ways.

Lemma A.3. (1) If MAU-gr is m-regular, then M is generated in degrees less than or

equal to m:
(2) If I is a graded ideal of U then ðsat IÞ

Xm ¼ IXm for m ¼ reg I :

(3) If I is a graded ideal of U ; then I is m-regular if and only if IXm is m-regular.
(4) If MAU-gr then the Hilbert function of FðnÞ ¼ dimk Mn of M agrees with the

Hilbert polynomial of M in degrees Xðreg M þ 1Þ � ðt þ 1� pdðMÞÞ; where pdðMÞ
is the projective dimension of M:

Proof. (1) is immediate from Definition A.1, and (2) and (3) follow from [7,
Definition 3.2]. For (4), note that the Hilbert function of U ; f ðnÞ ¼ dimk Un; agrees
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with its Hilbert polynomial ðn þ tÞðn þ t � 1Þ?ðn þ 1Þ=t! for nX� t: Then
calculating the Hilbert function of M from its minimal free resolution, the result
follows from the definition of regularity. &

The regularity of an ideal IDU might be much greater than the minimal
generating degree of I ; but at least there is the following bound.

Lemma A.4 (Bayer and Mumford [7, Proposition 3.8]). Let I be a homogeneous ideal

of U ; and let d be the minimal generating degree of I : Then reg Ipð2dÞt!:

The key ingredients in the proofs of our needed lemmas will be the following
recent theorems of Conca and Herzog concerning the regularity of products.

Theorem A.5 (Conca and Herzog [9, Theorem 2.5]). If I is a graded ideal of U with

dimU=Ip1; then for any MAU-gr we have reg IMpreg I þ reg M:

Theorem A.6 (Conca and Herzog [9, Theorem 3.1]). Let I1; I2;y; Ie be (not

necessarily distinct) nonzero ideals of U generated by linear forms. Then

regðI1I2?IeÞ ¼ e:

We may now make the following observations about the regularity of an ideal of a
finite set of points with multiplicites.

Lemma A.7. Let d1; d2;y; dn be distinct points of Pt with ideals m1;m2;y;mn: Let

0oei for 1pipn and set e ¼
P

ei: Let J ¼ me1
1 -me2

2 -?-men
n :

(1) reg Jpe:
(2) If the points d1; d2;y; dn do not all lie on a line, then reg Jpe � 1:

Proof. (1) Let I ¼ me1
1 me2

2 ?men
n : It is easy to see that J is saturated, and that J=I is

torsion, so that J is the saturation of I : By Theorem A.6, reg Ipe: Then JXe ¼
ðI satÞ

Xe ¼ IXe by Lemma A.3(2). By Lemma A.3(3), reg Jpe:

(2) The hypothesis on the points forces some three of the points fdig to be non-
collinear (in particular nX3); by relabeling we may assume that d1; d2; d3 do not lie
on a line. Then one may check that U=ðm1-m2-m3ÞX1 is isomorphic to

ðU=m1"U=m2"U=m3ÞX1 and so this module is 1-regular. Then by Lemma

A.3(2), U=ðm1-m2-m3Þ is 1-regular, so using Lemma A.2 we get that m1-m2-m3

is 2-regular.

Now L ¼ ðm1-m2-m3Þðme1�1
1 -me2�1

2 -me3�1
3 -me4

4 -?-men
n Þ is ðe � 1Þ-regu-

lar, using part (1) and Theorem A.5. Since Lsat ¼ J; a similar argument as in part (1)
shows that J is ðe � 1Þ-regular. &

Now we prove the series of results which we used in the body of the paper. The
first is an immediate corollary of the proof of part (1) of the preceding lemma.
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Lemma A.8 (Lemma 4.3). Let m1;m2;y;mn be the ideals of U corresponding to

distinct points d1;y; dn in Pt: Then ð
Qn

i¼1 miÞXn ¼ ð
Tn

i¼1 miÞXn:

Next is a simple Hilbert function calculation, which is presumably well known.
Because this lemma is so fundamental above, we include a brief proof which uses the
methods of regularity.

Lemma A.9 (Lemma 4.5). Let ei40 for all 1pipn; and let e ¼
P

ei: Set J ¼Tn
i¼1 mei

i for some distinct point ideals m1;m2;y;mn: Then dimk Jm ¼ ðmþt
t
Þ �P

iðeiþt�1
t

Þ for all mXe � 1:

In particular, if J ¼
Tn

i¼1 mi then dimk Jm ¼ ðmþt
t
Þ � n for mXn � 1:

Proof. We leave it to the reader to show that the Hilbert polynomial of the

module U=mei

i is the constant ðeiþt�1
t

Þ; for example by induction on ei: Then

since the points di are distinct, the Hilbert polynomial of J is HðmÞ ¼ ðmþt
t
Þ �P

iðeiþt�1
t

Þ:
By Lemma A.7(1) reg Jpe: By the Auslander–Buchsbaum formula we have since

depthðU=JÞ ¼ 1 that pdðU=JÞ ¼ t; and so pdðJÞ ¼ t � 1: Now it follows from
Lemma A.3(4) that the Hilbert function of J agrees with its Hilbert polynomial in
degrees Xe � 1: &

Lemma A.10 (Lemma 6.3). Let the points d1; d2;y; dn; dnþ1APt be distinct, and

assume that the points d1;y; dn do not all lie on a line. Let miDU be the homogeneous

ideal corresponding to di:

(1) ð
Tn

i¼1 miÞn�1ðmnþ1Þ1 ¼ ð
Tnþ1

i¼1 miÞn:

(2) ð
Tn

i¼1 miÞn�1ðm1Þ1 ¼ ð
Tn

i¼2 mi-m2
1Þn:

(3) ð
Tn

i¼2 mi-m2
1Þnðmnþ1Þ1 ¼ ð

Tnþ1
i¼2 mi-m2

1Þnþ1:

(4) Let b1; b2APt; with corresponding ideals n1; n2; be such that bjadi for j ¼ 1; 2

and 1pipn: Then ð
Tn

i¼1 mi-n1Þn ¼ ð
Tn

i¼1 mi-n2Þn implies b1 ¼ b2:

Proof. (1) Set K ¼
Tn

i¼1 mi; L ¼ mnþ1; and M ¼
Tnþ1

i¼1 mi: By Lemma A.7, we have

that reg Kpn � 1 and reg Lp1: Then by Theorem A.5, regðKLÞpn: Since clearly

M ¼ ðKLÞsat; by Lemma A.3(2) it follows that ðKLÞn ¼ Mn: Finally, by Lemma

A.3(1), K is generated in degrees pn � 1 and L is generated in degree 1: Thus
Kn�1L1 ¼ ðKLÞn ¼ Mn:

(2)–(3) The proofs of these parts are very similar to the proof of (1) and are
omitted.

(4) The ideals K ¼ ð
Tn

i¼1 mi-n1Þ and L ¼ ð
Tn

i¼1 mi-n2Þ are each n-regular by

Lemma A.7, so both are generated in degrees pn: Now since b1adi for all i; if
b1ab2 then the ideals K and L must differ in large degree, so they must differ in
degree n: &
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We close with a simple application of regularity to the analysis of bounds for Ext
groups.

Lemma A.11. Given M;NAU-gr; there is a constant dAZ; depending only on reg M

and reg N; such that regðExtiUðM;NÞÞod for all iX0:

Proof. Take a minimal graded free resolution of M:

0-
Mrðtþ1Þ

i¼1

U ½�ei;tþ1
-?-
Mr0
i¼1

U ½�ei;0
-M-0:

By the definition of regularity, ei;jpreg M þ ðt þ 1Þ for all i; jX0: Applying

Homð�;NÞ to the complex with the M term deleted produces a complex

0-L0 !
c0

L1 !
c1

?!c
t

Ltþ1-0

where Lj ¼ "
rj

i¼1 N½�ei;j
: Then reg Ljpðreg M þ reg N þ t þ 1Þ for all jX0:

Now consider the map ci : Li-Liþ1 for some iX0: Certainly Li is generated in

degrees less than or equal to reg Li; by Lemma A.3(1). Then Im ci is also generated

in degrees less than or equal to reg Li: By Lemma A.4, regðIm ciÞpf ðreg LiÞ where
f ðxÞ ¼ ð2xÞt!: By Lemma A.2(1),

regðker ciÞpmaxðreg Li; regðIm ciÞ þ 1Þpf ðreg LiÞ þ 1:

Finally, ExtiðM;NÞDker ci=Im ci�1 and so by A.2(3),

regðExtiðM;NÞÞpmaxð f ðreg LiÞ þ 1; f ðreg Li�1ÞÞ

p f ðreg M þ reg N þ t þ 1Þ þ 1

and thus we may take d ¼ f ðreg M þ reg N þ t þ 1Þ þ 1: &

The final lemma is an easy corollary of the preceding one.

Lemma A.12 (Lemma 8.5). Let I ; J be any homogeneous ideals of U ; and let f be an

automorphism of U : Then there is some fixed dX0 such that for all nAZ such that

U=ðI þ fnðJÞÞ is bounded, ExtiUðU=I ;U=fnðJÞÞ is also bounded for all i; with d as a

right bound.

Proof. If U=ðI þ fnðJÞÞ is bounded, then En ¼ ExtiUðU=I ;U=fnðJÞÞ is certainly

also bounded, since it is killed by I þ fnðJÞ: It is clear from the definition of
regularity that the modules fU=fnðJÞgnAZ all have the same regularity, and so by

Lemma A.11 there is some bound dX0 such that reg Enpd for all nAZ: Then if En is
bounded, d is a right bound for it, by Lemma A.3(4). &
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