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1. Introduction

Tanenbaum, Trenk, and Fishburn introduced the concept of linear discrepancy in [15] as a way of measuring how far
apart linear extensions must place incomparable elements. They closed that paper with eight questions and challenges. One
called for special results for linear discrepancy of interval orders, and another asked a question about bounding the linear
discrepancy of a poset in terms of the maximum number of elements with which any element is incomparable. This paper
provides results addressing these questions.

We begin by introducing some terminology and notation. If x and y are incomparable elements of a poset P, we will write
X |lpy or simply x || y. The set of all elements of P incomparable to x will be denoted Inc(x). To illustrate the relationship
between a poset P and its co-comparability graph, we will define A(P) = maxXycp |Inc(x)|, which is the maximum degree in
the co-comparability graph of P. When it is clear which poset is under consideration we will simply use A for A(P).

An interval order is a poset P for which we can associate a closed, bounded real interval [£(x), r(x)] to each element
x € Psuchthatforallx,y € P,x <py ifand only if r(x) < £(y). The associated collection of intervals is called an interval
representation of P. Without loss of generality, all interval orders in this paper are presented via an interval representation in
which all endpoints are distinct. (Since we only consider finite interval orders, this is possible by simply adjusting duplicated
endpoints by a very small amount.) An interval graph is the co-comparability graph of an interval order. If P and Q are disjoint
posets, we denote by P + Q the disjoint union of P and Q. When n is a positive integer, n will represent the natural linear
order (or chain)on {1, 2, ..., n}.

A linear extension L of a poset P is a linear order on the elements of P such that if x <p y, then x <; y. The height of an
element x in a linear extension L will be denoted h; (x). We denote the down-set of x, {y € P | y < x}, by D(x). The up-set
U(x) is defined dually. A pair (x, y) isa critical pair in P if x ||, y, D(x) € D(y),and U(y) < U(x). Alinear extension L reverses a
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critical pair (x, y) ify <; x. For any unfamiliar poset terminology or notation we refer the reader to Trotter’s monograph [16].
More information on interval orders and interval graphs can be found in Fishburn’s monograph [5].

For a poset P and a linear extension L of P, we denote the linear discrepancy of L as 1d (P, L), and define Id (P, L) =
maxy |,y |h(x) — hy(y)|. The linear discrepancy of P, denoted Id (P), is the minimum of Id (P, L) over all linear extensions L.
A related concept for a graph G on n vertices is bandwidth, which is the least integer k such that there exists a labelling of
the vertices by {1, 2, ..., n} so that the labels of adjacent vertices differ by at most k.

In general, calculating the bandwidth of a graph is NP-hard, even for trees with maximum degree 3, as shown in [8]. In
fact, Blache et al. showed in [1] that even for trees there is no polynomial time approximation scheme for calculating the
bandwidth. In contrast, Kleitman and Vohra showed in [12] that the bandwidth of an interval graph can be determined in
polynomial time. The difficulties in calculating the bandwidth in the general case have led to a host of work on bounding
and calculating the bandwidth for specific classes of graphs. (See [3,13] for a survey of such results.)

To connect linear discrepancy and bandwidth, Fishburn et al. showed in [6] that the linear discrepancy of a poset is
equal to the bandwidth of its co-comparability graph. In [15], the same authors noted that this implies that determining
if 1d (P) < kis NP-complete. They also proved that the poset consisting of disjoint chains of sizes ay, ..., a, has linear
discrepancy Zi"; a; — 1 — max; |a;/2]. As a special case of this formula, they noted 1d (t + t) = [ (3t — 1)/2] and asked if
Id (P) < [(BA(P) — 1)/2] for every poset P.

Trivially, Id (P) < 2A(P) — 1. The only general improvement upon this bound was provided by Rautenbach in [14]. Via
observations regarding linear extensions, he showed that for a co-comparability graph G, bw (G) < 2A(G) — 2. Thus for P
aposet,Id (P) < 2A(P) — 2.In [4], Choi and West improved this bound to | (3A(P) — 1)/2] for posets of width 2.

In this paper we strengthen Rautenbach’s result for special classes of posets by proving two degree-based bounds on
linear discrepancy. We first prove Theorem 1, a Brooks-type Theorem [2] for the linear discrepancy of interval orders. This
theorem establishes that an interval order P has linear discrepancy at most A(P), with equality if and only if P contains
an antichain of size A(P) + 1. To show the tightness of the stronger bound, we present, for each r, an infinite family of
interval orders having width 2, A(P) = r,and Id (P) = r — 1. In order to facilitate computing the linear discrepancy of our
family of examples, we prove two lemmas about the role of critical pairs in determining linear discrepancy. As a precursor
to showing that 1d (P) < [(3A(P) — 1)/2] if P is a disconnected poset, we show that every poset contains a point whose
removal decreases the linear discrepancy by at most one. The final section suggests avenues for future research.

2. Degree bounds for interval orders

We note that it is implicit in the work of Fomin and Golovach [7] (via a pathwidth argument), that the bandwidth of an
interval graph G is at most A(G), and therefore the linear discrepancy of an interval order P is at most A(P). However, there
is a straightforward proof of this fact. Let L be the linear extension of P ordering the points according to right endpoint. If
x|y with r(x) < r(y), then, since £(y) < r(x) < r(z) for all z between x and y in L, any element placed between x and y in
L must be incomparable to y. Thus, there are at most A — 1 elements between x and y and hence A(P) > 1d (P, L) > 1d (P).
If width (P) = A + 1, then since 1d (P) > width (P) — 1 as shown in [15],1d (P) > A4+ 1 — 1 = A.Thus, ld (P) = A.
Theorem 1 shows that if this is not the case, we can strengthen the upper bound.

Theorem 1. An interval order P has linear discrepancy at most A(P), with equality if and only if it contains an antichain of size
AP)+ 1.

Proof. By the previous remarks, we may assume P is an interval order that does not contain an antichain of size A 4 1. By
induction, we may assume that P does not split into disjoint sets D and U such thatd < uforalld € Dandu € U, as otherwise
Id (P) = max{ld (D), Id (U)}. Fix an interval representation of P, and let m be the interval with largest left endpoint. We
may assume that m also has the largest right endpoint. (Since m must be maximal, we may do this by extending the interval
corresponding to m to the right.)

Form a linear extension L of P by ordering the intervals by right endpoint. Take x € P — {m}. Now since P does not split,
x overlaps an interval z with r(z) > r(x). Therefore, z > x. Since y <p x implies r(y) < £(x), elements of Inc(x) less than x
in L precede x immediately as a consecutive block in L. Since for x # m there are at most A — 1 elements incomparable to x
that can appear to its left, we see that h; (x) — h (y) < A — 1foranyy || x withy < x.

It only remains to address the interval m. First observe that the elements of Inc(m) U {m} are consecutive as above.
Further, note that m is incomparable only to maximal elements by our choice of m. Since the maximal elements of P are an
antichain and width (P) < A, mis incomparable to at most A — 1 points. Thus h; (m) — h;(z) < A — 1 for all z incomparable
to m. Therefore, A — 1 >1d(P,L) > 1d (P). O

As a consequence of the equivalence of linear discrepancy and bandwidth, we have the following analogous result for
the bandwidth of interval graphs.

Theorem 2. The bandwidth of an interval graph G is at most A(G), with equality if and only if it contains a clique of size A(G)+ 1.

The stronger bound provided in Theorem 1 is tight, witnessed by the poset formed by adding one cover to an antichain
on A + 1 points (i.e.,2 4+ 1+ 1+ - - - + 1). However, in this case the tightness is a consequence of the trivial lower bound
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Fig. 1. The interval order F.
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Fig. 2. The interval order F3.

1d (P) > width (P) — 1. In order to show that this upper bound is nontrivial, we produce for each r an infinite family of
interval orders P with width 2, A(P) = r,and Id (P) = r — 1. The following two lemmas restricting the class of linear
extensions that need to be considered will be helpful in establishing the linear discrepancy of the constructed posets.

Lemma 3. For any linear extension L of a poset P, the maximum distance in L between incomparable elements is achieved only
at critical pairs.

Proof. Suppose x and y are such that x <; y and achieve the maximum distance between incomparable elements in L. If
X' <p x, then x’ <; x. Therefore, by the maximality of (x, y), X' <p y and hence D(x) C D(y). Similarly, U(y) € U(x). Thus
(x,y) is a critical pair. O

If (x, y) is a critical pair, we say that (x, y) is bicritical if (y, x) is also a critical pair.

Lemma 4. Let P be a poset. There exists a linear extension of P that is optimal with respect to linear discrepancy and reverses no
critical pairs that are not bicritical.

Proof. Consider a linear extension L of P that reverses at least one non-bicritical critical pair. Among all non-bicritical critical
pairs that L reverses, take (x, y) so that h;(x) — h;(y) is minimal. Since L is a linear extension, D(y) <; y < x <; U(x). Hence,
any element w with y <; w < x is incomparable to both x and y, since (x, y) is a critical pair. Thus, we may form a new
linear extension L’ from L simply by switching the positions of x and y. Furthermore, since (x, y) is a critical pair, if w <; y
and w || y, then w || x. Similarly, if v >; x and v || x, then v || y. Thus, the distance between a pair of incomparable points in L’
is no larger than itisin L, so1d (P, L') < 1d (P, ).

If switching the positions of x and y has introduced a new reversed critical pair (that is not bicritical), then one point of
the critical pair must be x or y, and the other must lie between them in L (and thus in L’). Let this point be z. By symmetry,
we may assume that (y, z) is a critical pair that is not bicritical. Now D(y) € D(z) and U(y) 2 U(z). Since (x, y) is a critical
pair, D(x) € D(y) € D(z) and U(x) 2 U(y) 2 U(z).Since x || z, (x, z) is also a critical pair. Furthermore, since neither (x, y)
nor (y, z) is bicritical, (x, z) is not bicritical.

Now notice that if (y, z) is reversed in L, then (x, z) is reversed in L. Since y <; z <; x, we obtain h;(x) — h;(z) <
h;(x) — h(y), contradicting our choice of (x, y). Thus, L’ reverses fewer non-bicritical critical pairs than L and does not
increase its linear discrepancy. Thus, we may take any optimal linear extension of P and use this process until arriving at an
optimal linear extension that does not reverse any non-bicritical critical pairs. O

Thus equipped, we will define a family of interval orders {Ff{},ti; and show that if k > ¢, then 1d (F,) = A(F}) — 1. For

eacht > 1and k > 3 define the elements of the interval order Fi as follows:

e For0 <i<t—1andO0 <j <k — 2, the interval [2jt + 2i, 2jt + 2i + 1] is the element cﬂ
e For 0 <j < k, the interval [2(j — 1)t — 1, 2jt — 1] is the element b;.

Fig. 1 illustrates the interval representation of a general F, while Fig. 2 shows Fi. Note that | lnc(af)l = 1foralli,j,
|Inc(bj)| =t +2for 1 <j < k—1,and |Inc(bp)| = |Inc(by)| = 1,50 A(F}) = t + 2. We also observe that width (F}) = 2.

Proposition 5. The linear discrepancy of F} is atleast t + 1 — [t/k] = A —1— [ (A — 2)/k].

Proof. First we observe that the only critical pairs in F;, are of the form (b;, biy1). Also, the remaining ai points form a
chain of height t(k — 1). By Lemma 4, to find a linear extension L that is optimal with respect to linear discrepancy, it
suffices to consider only those having the property that L orders the b; by index. Further, by Lemma 3 the distances between
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these pairs of points completely determine the linear discrepancy. Thus, we wish to distribute the t(k — 1) remaining
points as equally as possible in the k gaps among the elements {by, by, ..., by}. This results in one gap containing at least
[t(k —1)/k] =t — |t/k] elements, implying 1d (Fi) >t+1—[t/k]. O

For k > t, the upper bound from Theorem 1 and the lower bound from Proposition 5 combine to imply A —1 > 1d (F,ﬂ) >
t +1 = A — 1. Hence, the stronger inequality of Theorem 1 is tight even for posets of width 2.

3. Linear discrepancy and the removal of points

The dimension of a poset P is the least t such P is the intersection of some set of t linear orders. Dimension is a much
studied property, as discussed in detail in [16]. There are some similarities between linear discrepancy and dimension, but
at other times they stand in fairly stark contrast. For dimension, a theorem of Hiraguchi [9] guarantees that the removal of
any point decreases a poset’s dimension by at most one. However, removing the isolated point from 1 + n illustrates that
the removal of a single point can decrease the linear discrepancy of a poset by an arbitrarily large amount. Fortunately, there
is always some element that behaves well.

Theorem 6. For any poset there exists a point whose removal reduces the linear discrepancy by at most one.

Proof. Let P be a poset. Suppose first that there are two minimal elements x and X’ of P with the same up-set. Let L be a
linear extension of P — {x'} that is optimal with respect to linear discrepancy. Create a new linear extension L’ by inserting
X immediately below x in L. It is clear that L’ is a linear extension of P. Furthermore, since Inc(x) — {x'} = Inc(x') — {x}, the
linear discrepancy of L’ is at most one more than the linear discrepancy of L. Thus the removal of x decreases Id (P) by at
most one.

If no two minimal elements have the same up-set, then there is a minimal element z such that there is no critical pair
of the form (y, z). (A minimal element z with |U(z)| maximum has this property.) Consider a linear extension L of P — {z}
that is optimal with respect to linear discrepancy. Let s be the element of U(z) U {v | (z, v) is a critical pair} for which h;(s)
is minimal. Form a linear extension L’ of P by inserting z immediately below s. By construction, L’ is a linear extension of
P. Since we only wish to show that 1d (P, L/) is at most one more than the linear discrepancy of 1d (P — {z}, L), the only
obstructions are of the form z || z’. By Lemma 3 and our choice of z, we may restrict our attention to critical pairs (z, z') with
hy(z") — hy(z) = 1d (P).

If s € U(z), our choice of s and z’ imply that s <; z/, and thus we must have s || z/, as otherwise z and z’ are comparable.
Ifs & U(z), then (z, s) is a critical pair, so U(s) € U(z) and in particular s || z/, as otherwise we would have z’ >p z. Now
Id (P) = hy(z") —hy(2) = hy(z') — hy(s) +1 < 1d (P — {z}) + 1. Hence the linear discrepancy of P — {z} is at least 1d (P) — 1
asdesired. O

A poset P is k-discrepancy irreducible if Id (P) = k and Id (P — {x}) < k for any x € P. This concept has been used
in [10,11] to provide, together with the work of Tanenbaum et al. in [15], a complete forbidden subposet characterization
of posets with linear discrepancy at most two. However, without Theorem 6, it is not immediate that linear discrepancy
irreducibility is analogous to dimension irreducibility. Specifically, it was not known whether having linear discrepancy at
least k assured the existence of a k-discrepancy irreducible subposet, except for k € {1, 2, 3} as shown in [11,15]. However,
as a consequence of Theorem 6 we have the following corollary.

Corollary 7. If 1d (P) > k, then P contains a k-discrepancy irreducible subposet.

4. Linear discrepancy of disconnected posets
With Theorem 6 established, we are prepared to prove a second degree bound for linear discrepancy.

Theorem 8. A disconnected poset P has linear discrepancy at most L%J

Proof. We proceed by contradiction. Suppose P is a counterexample that is minimal in the number of elements, and hence
irreducible with respect to linear discrepancy. If there is an isolated point x € P, thenld (P) < |P| — 1 = |Inc(x)| = A(P).
Thus, P cannot be a counterexample. Therefore, P cannot have an isolated point. Hence, P — {x} is disconnected for all x € P.
In particular, since A(P — {x}) < A(P) for all x € P, minimality and Theorem 6 imply Id (P) = |(3A(P) — 1)/2] + 1.
Furthermore, Theorem 6 and the irreducibility of P guarantee the existence of a point x so that Q = P — {x} has
Id (Q) = Id(P) — 1. Suppose that A(Q) < A(P) — 1. By the minimality of P, the desired degree bound holds for Q,
and therefore we have

{BA(P) - 1J ) < {BA(Q) - 1J g FA(P) —4J _ {BA(P) _ZJ . {BA(P) - 1J.
2 2 2 2 2

Hence, it follows that A(Q) = A(P).
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Since Q is disconnected, we may let (A, B) be a partition of Q witnessing this fact, named so that |A| < |B|. Observe that
A(A) < A(P) — |B| and A(B) < A(P) — |A|. Let Lg be an optimal linear extension of B, and let L, be an arbitrary linear
extension of A. Form a linear extension L of Q by taking the first [|B| /27 elements of Lg, then all the elements of A ordered
by Ly, and finally the remaining elements of L. Now Id (Q) < Id (Q, L), and so in particular,

LwJ < max=|A| + [@—‘ —1,]Al +1d (B)} .
2 2
Suppose first that [ (3A(P) — 1)/2] < |A| 4+ 1d (B). Now Id (B) < 2A(B) — 2 by Rautenbach’s bound in [14]. Therefore,
L(3A(P) — 1)/2] < |A| + 2A(B) — 2. Combining this with the observation that A(B) < A(P) — |A|, we obtain the bound
Al <2A(P) — L(3A(P) — 1)/2] — 2.Sinceld (Q) = [ (3A(P) — 1)/2], we have |Q| = |A| + |B| > |(3A(P) — 1)/2] + 1.
Therefore, |B| > 2| (3A(P) — 1)/2] + 3 — 2A(P) > A(P) + 1, a contradiction to the fact that |B] < A(Q) = A(P).

Now we suppose | (3A(P) — 1)/2] < |A| + [|B|/2] — 1.Since |A| < |B| and |B| < A(P) — A(A), we then have

FA(P)— 1J <1+ "|B|_‘ e [3|B| —2“ 5 "3A(P)—3A(A)—2_"
2 2 2 2

Therefore, A(A) = 0 and |B| < A(P). Similarly,

3APP) — 1 2|A B —2 3A(P) —2A(B) — 2 3AP) —2
(P) < |A| + |B| < (P) (B) _ P) _ A,
2 2 2 2
Hence A(B) = 0, and Q is the sum of two chains. By the formula for the linear discrepancy of the sum of chains,
1d (Q) = T[|B|/2] + |A| — 1. Therefore |A| = |B| = A(P). In this situation, we see that we cannot form P from Q

by the addition of a single point, since A(P) = A(Q) and P is disconnected. Therefore, if P is a disconnected poset,
Id(P) < 34MP) —1)/2]. O

5. Conclusions and future work

Theorem 8 is quite unusual in that there are few results stated only for disconnected posets. Adding a new element
greater than all the elements in a poset yields a connected poset, and for most combinatorial questions this does not change
anything. However, the proof of Theorem 8 hinges on the large number of incomparabilities in disconnected posets. We see
no reason to believe that the proposed bound Id (P) < [ (3A(P) — 1)/2] does not hold in general, but at the same time we
do not see how our methods could be extended.

Any improvement to the best known bound of 2A(P) — 2, such as a result of the form Id (P) < (2 — &) A(P), would
be very welcome. In fact, even the question of whether the proposed bound holds for posets with A(P) = 4 (i.e., whether
the correct upper bound is 5 or 6) is open. Perhaps an answer to this question would give additional insight into the larger
problem.

Another intriguing direction for future work is to explore the relationship between linear discrepancy and dimension
through their dependence on critical pairs. It is possible that the relationship is simply a fortunate coincidence. However,
if there were an intuitive explanation for this relationship, it would perhaps suggest a proof of the conjecture that if
Id (P) = dim(P) = n > 5, then P contains the standard example S, as a subposet. (See [15,17].) Considering that the
class of interval orders contains poset of arbitrary large dimension but does not contain the standard examples for n > 1, it
would be interesting to see if it can be proved that for interval orders of dimension at least 5, 1d (P) # dim P.
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