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SUMMARY

Oligodendrocyte progenitor cells (OPCs) can repair
demyelinated lesions by maturing into myelin-pro-
ducing oligodendrocytes. However, the OPC poten-
tial to differentiate can be prevented by inhibitory
signals present in the pathological lesion environ-
ment. Identification of these signals is essential to
promote OPC differentiation and lesion repair. We
identified an endogenous inhibitor of remyelination,
Endothelin-1 (ET-1), which is highly expressed in
reactive astrocytes of demyelinated lesions. Using
both gain- and loss-of-function approaches, we
demonstrate that ET-1 drastically reduces the rate
of remyelination. We also discovered that ET-1 acts
mechanistically by promoting Notch activation in
OPCs during remyelination through induction of
Jagged1 expression in reactive astrocytes. Pharma-
cological inhibition of ET signaling prevented Notch
activation in demyelinated lesions and accelerated
remyelination. These findings reveal that ET-1 is
a negative regulator of OPC differentiation and
remyelination and is potentially a therapeutic target
to promote lesion repair in demyelinated tissue.

INTRODUCTION

Current multiple sclerosis (MS) therapies can be effective in

patients with relapsing and remitting MS but have little impact

in promoting remyelination in tissue, leading to permanently

demyelinated lesions with substantial axonal loss (Buck and

Hemmer, 2011; Compston and Coles, 2008). Repair of demyeli-

natedMSplaques is carried out by endogenous oligodendrocyte

(OL) progenitor cells (OPCs) in a process called remyelination

(Ffrench-Constant and Raff, 1986). However, several studies

have shown that OPCs often fail to differentiate in chronic MS

lesions (Chang et al., 2002; Wolswijk, 1998). The molecular

mechanisms that prevent OPC maturation and OL regeneration

under pathological conditions are largely unknown.
588 Neuron 81, 588–602, February 5, 2014 ª2014 Elsevier Inc.
OPCs migrate to demyelinated lesions, proliferate, and even-

tually differentiate into mature OLs to produce myelin (Franklin

and Ffrench-Constant, 2008). This transition from a progenitor

cell to a myelinating OL can be negatively regulated by signals

that are present in the pathological lesion environment. This is

created, in part, by a dense network of reactive astrocytes

(RAs) (Compston and Coles, 2008; McKhann, 1982). It is still

poorly understood how RAs impact OPC development and

whether signals released or expressed by astrocytes limit re-

myelination (Moore et al., 2011; Nair et al., 2008). It is interesting

that recent studies have identified the Notch activator Jagged1

as a signal expressed by RAs in MS tissue that might limit

OPC differentiation and remyelination (John et al., 2002; Stid-

worthy et al., 2004; Zhang et al., 2009). However, it is still

unknown how Jagged1 expression or Notch activation is regu-

lated in demyelinated lesions and whether these pathways are

beneficial or detrimental to the overall remyelination process.

In a previous study, we identified endothelin-1 (ET-1) as a

signaling molecule synthesized in the corpus callosum (CC)

following demyelinating injury (Gadea et al., 2008). ET-1 is a

secreted signaling peptide, which has systemic roles as a vaso-

modulator in the cardiovascular system (Rubanyi and Botelho,

1991). It is interesting that RAs produce ET-1 following various

brain injuries, and we found that this peptide promotes reactive

astrogliosis in demyelinated tissue (Gadea et al., 2008; Jiang

et al., 1993). Despite the abundance of ET-1 following injury,

and its essential role in inducing reactive astrogliosis, the role

or mechanistic action of ET-1 during remyelination has not

been defined.

Here, we use the well-established lysolecithin (LPC) model of

focal demyelination to recapitulate some aspects of the focal

lesions that are found in MS tissue. Specifically, this model

allows us to investigate the time course and cell specificity of

ET-1 signaling and how it regulates remyelination efficiency

in vivo. Using both genetic and pharmacological approaches,

we demonstrate the mechanistic action of ET-1 during remyeli-

nation. We show that astrocyte-derived ET-1 inhibits OPC

differentiation and remyelination through activation of Notch

signaling and that this effect can be reversed by a clinically

used ET receptor (ET-R) panantagonist. Our results present

a therapeutic candidate to promote repair in demyelinated

lesions where OPC differentiation is stalled or limited.

mailto:vgallo@cnmcresearch.org
http://dx.doi.org/10.1016/j.neuron.2013.11.015
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2013.11.015&domain=pdf


Figure 1. ET-1 Expression Is Upregulated in Astrocytes in Demyelinated LPC and MS Lesions

(A and B) In dissected tissue at 3 dpl, RT-PCR analysis revealed that only ET-1 was expressed in control (A) or LPC lesions (B).

(C) At 3 and 7 dpl, there was a strong upregulation of ET-1 in astrocytes in LPC lesions. n = 4. *p < 0.05, unpaired t test, mean ± SEM.

(D and E) Confocal images from NaCl (D) and LPC (E) lesions at 7 dpl costained with anti-GFAP and anti-ET1 antibodies. Scale bar, 25 mm.

(F) Luxol fast blue/MHCII staining of chronic active MS lesions (CA). V, ventricle, NAWM, normal white matter, GM, gray matter. Scale bar, 2.5 mm.

(G) Confocal images of the active border costained with anti-ET-1 and anti-MOG antibodies. Increased numbers of ET-1+ cells were detected in the demyelinated

tissue. Scale bar, 50 mm.

(H) Coimmunolabeling revealed strong ET-1 expression in GFAP+ astrocytes in CA lesions. White arrows indicate colocalized cells. Scale bar, 30 mm.

(I) Elevated ET-1 expression coincided with large numbers of Olig1+ (nuclear) OPCs in CA lesions. No expression of ET-1 was found in OPCs. Scale bar, 30 mm.

See also Figure S1.
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RESULTS

ET-1 Is Expressed by RAs in MS and Murine
Demyelinated Lesions
We have previously demonstrated that the neuropeptide ET-1

is upregulated in the CC following LPC-induced focal demyelin-

ation and that overall ET-1 levels peak at 5 days postlesion (dpl)

(Gadea et al., 2008). While we found ET-1 coexpression in glial

fibrillary acidic protein positive (GFAP+) cells in the subventric-

ular zone (SVZ) during development (Gadea et al., 2009),

expression of ET-1 in astrocytes in LPC lesions had not been

analyzed. Of the three endothelin isoforms, only ET-1 mRNA

was found in the microdissected tissue from the CC and

cingulum, in either saline- or LPC-injected tissue (Figures 1A

and 1B). Further ET-1 expression analysis revealed that ET-1

was specifically upregulated in GFAP+ astrocytes within LPC

lesions (Figures 1D and 1E). The total number of ET-1+GFAP+

cells peaked between 3 and 7 dpl, and gradually decreased un-

til 30 dpl, when only very few double-labeled cells were found

(Figure 1C). Costaining with CD31, an endothelial cell marker,

showed a small increase in the number of CD31+ET-1+ cells

at 3 and 7 dpl, but there was no difference between vehicle-

and LPC-injected hemispheres (Figures S1A, S1B, and S1F

available online). CD31+ET-1+ cells made up approximately

22% and 14% of the total number of ET-1+ cells at 3 and 7
dpl, respectively. (Figure S1E). We found a slight upregulation

of ET-1 in MAC1+ microglia (Figures S1C, S1D, and S1G), but

these cells only comprised 13% and 5% of the total number

of ET-1+ cells at 3 and 7 dpl, respectively. Staining was also

comparatively weak as compared to ET-1 staining in astrocytes

(Figure S1D).

Examination of ET-1 expression in the active borders of

chronic active (CA) MS lesions (Figure 1F) revealed that ET-1

was specifically upregulated in demyelination regions of the

tissue (Figures 1F and 1G). In these areas, large numbers of

ET-1-expressing astrocytes were found (Figure 1H). Further-

more, consistent with our previous observation that a high

density of immature Olig1+ OPCs (Arnett et al., 2004) populate

the active borders of CA MS lesions (Moll et al., 2013),

we found large numbers of OPCs in close proximity to ET-1+

cells in the same active borders (Figure 1I). There was no

evidence of ET-1 expression by immature OPCs (Figure 1I),

but ET-1 expression was also found in MHCII+ T cells (data

not shown).

These results demonstrate that demyelination leads to an

abrupt increase in ET-1 expression within the lesion. This in-

crease in ET-1 was conserved between experimentally induced

lesions in mice and in human MS tissue. The majority of ET-1

expression was found in astrocytes, demonstrating that they

are the predominant source of ET-1 following injury.
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ET-1 Directly Limits OPC Differentiation after
Demyelination
While the effects of ET-1 on specific cell types (including astro-

cytes) have been studied in detail (Schinelli, 2006), the effect

of ET-1 on the important endogenous repair process following

demyelination has not been examined. We have previously

shown that ET-1 directly inhibits OPC differentiation in vitro

and elicits promigratory effects during the development of

the subcortical white matter (Gadea et al., 2009). Therefore,

we sought to understand the potential role of ET-1 following

LPC-induced demyelination in vivo using both gain- and loss-

of-function approaches.

First, we infused exogenous ET-1 into remyelinating lesions

and measured the extent of mature OL regeneration, using the

mature OL markers CC1 and MAG. We and others have found

that, following LPC-induced demyelination, OPC differentiation

into mature OLs begins to occur at approximately 14 dpl (Aguirre

et al., 2007). Based on our immunohistochemical analysis

(Figure 1E) and previous western blot analysis (Gadea et al.,

2008), endogenous ET-1 levels peak during the first week of

remyelination and are very low at 14 dpl. Therefore, we extended

the natural window of ET-1 release following LPC demyelina-

tion by infusing exogenous ET-1 beginning at 14 dpl by using

miniosmotic pumps.

Miniosmotic pumps containing 100 nM ET-1 were installed at

14 dpl and left until 21 dpl (Figure 2A). In the vehicle-infused LPC

lesions at 21 dpl, a large number of CC1+Olig2+ and MAG+ cells

were found, indicating substantial levels of repair (Figures 2B,

2D, 2E, and 2G). In contrast, in the ET-1-infused LPC lesions, a

significant reduction in the number of mature OLs (CC1+Olig2+

and MAG+ cells) was found (Figures 2C, 2D, 2F, and 2G). To

further characterize and label newly generatedOLs, bromodeox-

yuridine (BrdU) was injected once per day at 6, 7, and 8 dpl,

when OPCs are proliferating within the lesion (Figure 2A). We

found that, while there was little change in the number of

Olig2+BrdU+ cells between the vehicle- and ET-1-infused lesions

(Figure 2J), there was a significant decrease in the number of

CC1+Olig2+BrdU+ cells in the ET-1-infused lesions as compared

to saline controls (Figure 2K). This showed that fewer Olig2+

OPCs had matured into CC1+ OLs and that similar numbers of

early OPCs were present following the infusion. Additionally,

these results confirmed that the mature CC1+ cells that we

observed in the vehicle-infused lesions were newly generated.

Altogether, these results indicated that when the window of

ET-1 release is extended into the OPC differentiation phase of

remyelination (14–21 dpl), OL differentiation was delayed.

Loss of ET-1 Expression in Astrocytes Is Sufficient to
Accelerate OPC Differentiation and Remyelination
RAs specifically upregulate ET-1 expression during the first

week after demyelination, when OPC expansion occurs at the

expense of differentiation. The vast majority of ET-1+ cells

following demyelination were also RAs (Figure S1E). Therefore,

we eliminated ET-1 expression in astrocytes following demyelin-

ation to specifically assess the role of astrocyte-derived ET-1 on

remyelination efficiency. An ET-1flox/flox mouse was bred with an

hGFAP-Cre-ERT2mouse to selectively eliminate ET-1 expression

in astrocytes (hGFAP-Cre-ERT2;ET-1flox/flox mouse). First, we
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examined the expression of ET-1 in white matter RAs from de-

myelinated hGFAP-Cre-ERT2;ET-1flox/flox mice with tamoxifen

or vehicle injections (Figures 3A–3C). At the peak of ET-1 expres-

sion (5 dpl), a 76% reduction was found in the total number of

ET-1+GFAP+ cells in the lesion (Figures 3B and 3C).

Infusion of exogenous ET-1 during remyelination limited OPC

differentiation, so we measured OPC maturation following

genetic ablation of ET-1 in astrocytes to determine the effects

on OPC development. Three experimental groups were estab-

lished: (1) ET-1 fl/fl Creneg + tamoxifen, (2) ET-1 fl/fl Cre+ +

vehicle, and (3) ET-1 fl/fl Cre+ + tamoxifen. It is interesting that

we found a significant increase in the number of CC1+Olig2+

(Figures 3D–3F and 3J) and MAG+ cells (Figures 3G–3I and 3K)

in the ET-1 fl/fl Cre+ + tamoxifen mice, as compared to ET-1 fl/fl

Creneg + tamoxifen and ET-1 fl/fl Cre+ + vehicle littermates.

We also observed an increase in the CC1+/NG2+ ratio in the

ET-1 fl/fl Cre+ + tamoxifen mice as compared to controls

(Figure 3L).

Altogether, these results demonstrate that selective deletion

of ET-1 in astrocytes significantly increased the number of

mature OLs in LPC lesions after 2 weeks and shifted the OL ratio

from an immature to mature phenotype. Conversely, extended

expression of ET-1 during remyelination led to a reduction in

the number of mature OLs generated in LPC lesions. These

findings indicate that astrocyte-derived ET-1 acts as an inhibitor

of OPC differentiation and remyelination.

ET-1 Induces Jagged1 Expression in Astrocytes
We wanted to identify the mechanisms by which ET-1 acts to

limit OPC maturation. There are two potential mechanisms of

ET-1 action: (1) direct signaling to OPCs through ET-Rs and (2)

indirect signaling to OPCs through astrocytes. We have pre-

viously shown that ET-1 can act directly on OPCs to limit their

differentiation by activation of ET-Rs on their cell surface,

particularly during migration (Gadea et al., 2009). Therefore, we

wanted to investigate the effect of ET-1 signaling through

astrocytes and the resulting effects of OPC differentiation. We

previously identified ET-1 as a potent activator of astrocytes

(Gadea et al., 2008), but expression of signals by those RAs

that inhibit OPC differentiation following ET-1 exposure was

not explored. It has been previously described that RAs in MS

lesions express high levels of Jagged1, a ligand for the Notch1

receptor (John et al., 2002). In fact, elevated Jagged1 expression

by astrocytes was found in the active borders of CA MS lesions

(John et al., 2002), the same areas where we found high ET-1

expression in astrocytes and a high density of immature OPCs

(Figure 1G). In the same study, Notch1 expression was also

found on OPCs. Independent studies have also shown that

Notch1 inhibits OPC differentiation during both development

and remyelination (Genoud et al., 2002; Zhang et al., 2009). We

tested the functional relevance of Jagged1/Notch1 signaling as

a possible mechanism underlying the effects of ET-1 on OPC

differentiation during remyelination.

First, we sought to determine whether ET-1 has a role in

regulating the expression of Jagged1. In primary cultured

astrocyte monolayers, ET-1 induced a significant increase in

Jagged1 protein expression after 48 hr (Figure 4A). These

increases in Jagged1 were blocked by preincubation with the



Figure 2. ET-1 Limits OPC Differentiation following Demyelination

(A) Following LPC demyelination, miniosmotic pumps containing ET-1 were installed at 14 dpl, when endogenous ET-1 levels are low, and left until 21 dpl.

BrdU was injected once a day, from 6 to 8 dpl, to label proliferating OPCs. Sac indicates when mice were sacrificed.

(B and C) Large numbers of CC1+Olig2+ mature OLs were found in saline-infused control mice (B) at 21 dpl but not ET-1-infused mice (C). White arrows indicate

colocalized cells. Scale bars, 50 mm.

(D) A significant decrease in the number of CC1+Olig2+ OLs was found in ET-1-infused mice. n = 6. **p < 0.01, unpaired t test, mean ± SEM.

(E and F) Compared to controls (E), reduced expression of myelin proteins MAG and MBP were also found in ET-1-infused lesions (F). White arrows indicate

MAG+ cells. Scale bars, 50 mm.

(G) A significant decrease in the number of MAG+ cells was found in ET-1-infused samples. n = 6. **p < 0.01, unpaired t test, mean ± SEM.

(H and I) More BrdU+Olig2+CC1+ cells were found in saline-infused (H) but not ET-1-infused (I) samples. Scale bars, 25 mm. White arrows indicate triple-labeled

cells.

(J and K) No change was found in the total number of BrdU+Olig2+ cells (J), but a significant decrease in the number of BrdU+Olig2+CC1+ cells was found in

ET-1-infused samples (K). n = 5. **p < 0.01, unpaired t test, mean ± SEM. N.S., not significant.
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Figure 3. Selective Elimination of ET-1 in Astrocytes Accelerates OPC Differentiation following Demyelination

(A) hGFAP-Cre-ERT2;ET-1flox/flox mice were generated to selectively reduce ET-1 expression in astrocytes. Following LPC demyelination, tamoxifen was injected

once a day, from 1 to 3 dpl to induce recombination.

(B) Confocal images of anti-ET-1- and anti-GFAP-stained astrocytes. Strong ET-1 expression was seen in astrocytes in the vehicle-injected mice but not the

tamoxifen-induced mice at 5 dpl.

(C) A significant reduction (76%) in the number of ET-1+GFAP+ astrocytes was found in the tamoxifen-induced mice at 5 dpl. n = 4. **p < 0.01, unpaired t test,

mean ± SEM.

(D–I) Confocal images of ET-1 fl/fl Creneg + tamoxifen (Tam)mice in (D) and (G), ET-1 fl/fl Cre+ + vehiclemice in (E) and (H), and ET-1 fl/fl Cre+ + tamoxifenmice in (F)

and (I) at 14 dpl coimmunolabeled with anti-CC1 and anti-Olig2 in (D) through (F) or anti-MAG and anti-MBP in (G) through (I). Scale bar, 40 mm for (D) through (F)

and 50 mm for (G) through (I). White arrows indicate CC1+Olig2+ or MAG+ cells.

(J–L) Analysis of the three groups reveals a significant increase in the number of CC1+Olig2+ OLs (J) and MAG+ OLs (K) in the ET-1 fl/fl Cre+ + tamoxifen mice, as

compared to ET-1 fl/fl Creneg + tamoxifen and ET-1 fl/fl Cre+ + vehicle mice. As shown in (L), a significant increase in the ratio of CC1+ to NG2+ cells was also found

in the ET-1 fl/fl Cre+ + tamoxifen mice, as compared to controls. n = 4. *p < 0.05, and **p < 0.01, ANOVA Bonferroni post hoc, mean ± SEM.
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Figure 4. ET-1 Promotes Jagged1 Expression in Astrocytes and Notch Signaling Is Activated in OPCs during the First Week following

Demyelination

(A) Cultured primary astrocytes were treated with ET-1 for 48 hr, and expression of Jagged1 was measured by western blot.

(B) Significant increases in Jagged1 expression were found following ET-1 exposure, as compared to control and PD142,893-treated groups. n = 3 independent

cultures, with multiple replicates per sample. *p < 0.05, ANOVA Bonferroni post hoc; mean ± SEM.

(C) Confocal images of NaCl and LPC lesions at 7 dpl labeled with anti-GFAP and anti-Jagged1.

(D) A large increase in Jagged1 expression was found in astrocytes in LPC lesions. n = 4. *p < 0.05, unpaired t test, mean ± SEM. Scale bar, 30 mm.

(E) Western blot analysis of microdissected tissue from NaCl and LPC lesions at 3, 7, 14, and 30 dpl.

(F–H) Significant increases in NICD (F), Jagged1 (G), and GFAP (H) expression were found at 7 dpl. n = 7–10. *p < 0.05, **p < 0.01, and ***p < 0.001, unpaired t test,

mean ± SEM. The TNR mouse was used to measure Notch activation in LPC lesions.

(I) Confocal image of EGFP expression in NaCl and LPC lesions at 7 dpl. Scale bar, 50 mm.

(J) Quantification of the number of EGFP+ cells following demyelination. A significant increase was found at 7 dpl in LPC samples. n = 4. ****p < 0.0001, ANOVA

Bonferroni post hoc, mean ± SEM.

(K) Colocalization analysis of LPC lesions at 7 dpl. A large number of cells were EGFP+Olig2+ and EGFP+NG2+ in LPC lesions. Error bars indicate SEM.

(L and M) Confocal images of TNR LPC lesions at 7 dpl coimmunolabeled with anti-NG2 (L) and anti-Olig2 (M).

See also Figure S2.
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ET-R panantagonist PD142,893 (Figures 4A and 4B). These

results indicate that astrocytes express increased levels of

Jagged1 following ET-1 exposure and that this increase is

mediated by ET-Rs.

Notch Signaling Analysis in LPC Lesions during
Remyelination
It has been previously shown that components of Notch

signaling are present in both MS lesions and in experimentally

induced LPC lesions in mice (John et al., 2002; Stidworthy

et al., 2004). Specifically, it was shown that astrocytes express

Jagged1 and OPCs express Notch1. However, to our knowl-

edge, functional activation of Notch signaling in demyelinated

lesions has not been directly demonstrated. We utilized the

transgenic Notch reporter (TNR) mouse, in which enhanced

green fluorescent protein (EGFP) is expressed on canonical

Notch activation (Mizutani et al., 2007), to study the cell

specific activation and time course of Notch signaling following

demyelination.

As demonstrated in previous studies (John et al., 2002; Stid-

worthy et al., 2004), Jagged1 was specifically upregulated

5-fold in astrocytes in LPC lesions at 7 dpl (Figures 4C and

4D). Further analysis of Notch component expression in

microdissected white matter (WM) tissue revealed increases in

Notch intracellular cleaved domain (NICD), Jagged1, and

GFAP protein levels (Figures 4E–4H). Increases in NICD levels

(Figures 4E and 4F) coincided with elevated Jagged1 expression

at 7 dpl (Figures 4E and 4G). In the same set of experiments,

we also observed high levels of GFAP expression at 7 dpl

(Figures 4E and 4H), which indicated that the highest levels of

astrogliosis coincide with maximal Notch activation. We have

previously shown that total ET-1 expression peaks at 5 dpl

(Gadea et al., 2008), and the greatest number of ET-1-expressing

astrocytes peaks between 3 and 7 dpl (Figure 1E), which, as

predicted, immediately precedes the peak of Notch activation

at 7 dpl.

Analysis of functional Notch activation in the TNR mouse

supported our earlier results. EGFP expression was specifically

upregulated in LPC lesions (Figure 4I), with the greatest number

of EGFP+ cells found at 7 dpl (Figure 4J). Costaining of these

EGFP+ cells with Hes1, a direct downstream target of the CSL/

CBF1/RPGJ transcriptional regulators, confirmed the reliability

of the TNR mouse as an indicator of canonical Notch activation

(Figure S2A). Colocalization analysis demonstrated that approx-

imately half of the EGFP+ cells were Olig2+ (Figures 4K and 4M)

and that, as expected, the majority of these cells were NG2+

OPCs (Figures 4K and 4L). It is interesting that we also found a

significant population of EGFP+IBA1+ microglia in the core of

the lesion (Figure 4K). Little or no Notch activation was found

in astrocytes (GFAP) (Figure 4K).

Altogether, these results demonstrate that Notch signaling

is activated at high levels in demyelinated tissue and that

astrocytes are likely a major regulator of Notch activation in

these lesions. ET-1 also acts to promote Jagged1 expression

in astrocytes, indicating that it might regulate Notch activation

in vivo. Components of both the ET-1 and Notch signaling

pathways are activated during the first week following demyelin-

ation, with the peak of ET-1 expression immediately preceding
594 Neuron 81, 588–602, February 5, 2014 ª2014 Elsevier Inc.
increases in GFAP and Jagged1 levels, indicating a possible

functional connection.

The ET-R Antagonist PD142,893 Blocks Notch
Activation In Vivo
We showed in vitro that ET-1 strongly upregulated Jagged1

expression in astrocytes and that these increases could be

blocked using PD142,893 (Figures 4A and 4B). We also found

that activation of Notch signaling in vivo coincidedwith increases

in Jagged1 expression in astrocytes in demyelinated lesions

(Figures 4C, 4D, 4E, and 4G). Therefore, we hypothesized that,

by blocking ET-R activation using PD142,893, we could reduce

Notch activation in vivo. To test this hypothesis, PD142,893

(50 mM) was infused into the remyelinating lesions of TNR mice

using miniosmotic pumps (Figures 5A and 5B), when Notch

activation remained high in OPCs (Figure 5C, bottom panels).

As predicted, strong reductions were found in total Notch

activation following PD142,893 infusion (Figures 5C–5E and

5F). Notch activation was recovered when recombinant Jagged1

Fc (2 mg/ml) was added to a mixture containing PD142,893

(Figure 5F). No overall changes in the total number of OL lineage

cells caused by infusion of the antagonist were observed be-

tween groups (Figure 5G). To further confirm that ET-1 induces

Jagged1 expression, leading to Notch activation, Jagged1

protein expression was examined in the hGFAP-Cre-ERT2;

ET-1flox/flox mouse. Jagged1 levels were significantly reduced

at 7 dpl in microdissected tissue from the ET-1 fl/fl Cre+ + tamox-

ifen mice, as compared to ET-1 fl/fl Creneg + tamoxifen and

ET-1 fl/fl Cre+ + vehicle littermates (Figures 5H and 5I).

These results demonstrate the functional connection of ET-1

and Notch signaling in vivo. PD142,893 strongly blocked Notch

activation in LPC lesions, and exogenous Jagged1 rescues

Notch activation, even when ET-1 signaling is blocked. We

also confirm in our hGFAP-Cre-ERT2;ET-1flox/flox that a reduction

in ET-1 produced by astrocytes is sufficient to reduce overall

Jagged1 levels in the lesion. These findings also confirm

that ET-1 signaling is upstream of Notch activation during

remyelination.

ET-1-Treated Astrocytes Inhibit OPC Differentiation
through Notch Signaling
ET-1 signaling inhibits remyelination and limits OPC differen-

tiation. We propose that one mechanism regulating this effect

is expression of Jagged1 by astrocytes and resulting Notch

activation in OPCs. To specifically assess the functional interac-

tion between astrocytes and OPCs, we used a coculture system.

We have shown that ET-1 promotes Jagged1 expression in

astrocytes and that ET-1 signaling promotes Notch activation

in vivo. To assess Notch activation in cocultures, OPCs from

the TNR mouse were plated on ET-1 pretreated astrocytes.

There was a significant increase in the number of EGFP+NG2+

cells in ET-1-pretreated cocultures, as compared to control

cultures, indicating enhanced Notch signaling in OPCs (Figures

6A–6D). This signaling activation was blocked by preincubation

with PD142,893 (Figures 6A–6D). To ensure that Notch activa-

tion was mediated by astrocyte-OPC contact and not soluble

factors, cocultures were performed in which TNR mouse OPCs

were plated on glass coverslips rather than in direct contact



Figure 5. Inhibition of ET Signaling Blocks Notch Activation in LPC Lesions

(A and B) Miniosmotic pumps (A) were used to infuse drugs into LPC lesions from 6 to 8 dpl (B) to coincide with the peak of Notch activation. Sac indicates when

mice were sacrificed.

(C–E) Low-magnification confocal images of EGFP expression in the core of LPC lesions at 8 dpl in saline-infused mice (C), PD142,893-infused mice (D), and

PD142,893+Jagged1Fc-infused mice (E). Scale bar, 200 mm. NG2+EGFP+ cells (shown below DAPI) show EGFP activation in OPCs within the lesions.

(F) Quantification of the number of EGFP+ cells for each condition. A significant reduction was found in the PD142,893-infused samples. Infusion of PD142,893

in combination with Jagged1Fc restored Notch activation in the lesion. n = 4–5. *p < 0.05, ANOVA Bonferroni post hoc, mean ± SEM.

(G) No significant (N.S.) change was found in the total number of Olig2+ cells per condition. Error bars indicate SEM.

(H) Western blot analysis of Jagged1 expression in microdissected tissue from the hGFAP-Cre-ERT2;ET-1flox/flox mice at 7 dpl. Tam, tamoxifen.

(I) A significant reduction in Jagged1 levels was found in the ET-1 fl/fl Cre+ + tamoxifen mice, as compared to ET-1 fl/fl Creneg + tamoxifen and ET-1 fl/fl Cre+ +

vehicle mice. n = 4–7. *p < 0.05, ANOVA Bonferroni post hoc, mean ± SEM.
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with astrocytes (Figure S3A). This prevented the cell-to-cell con-

tact required for Notch receptor/ligand interaction but still

allowed soluble factors to be released into the cell culture

media. Under these conditions, very few EGFP+NG2+ OPCs

were found, with no difference between the control or ET-1-

pretreated groups (Figure 6D).

Analysis of mature OL formation in these cocultures revealed

a drastic reduction in the number of mature O1+ OLs, when

plated on astrocytes pretreated with ET-1, as compared to

untreated astrocytes (Figures 6E and 6F). Furthermore, a

reduction in the O1+/NG2+ (mature/immature) cell ratio was

seen in ET-1-pretreated cocultures, indicating a delay in OL

lineage progression (Figure 6I). This effect was blocked by

PD142,893 preincubation (Figures 6G and 6I). To ensure that

OPC development was not directly influenced by ET-1 remain-

ing in the culture media following astrocyte pretreatment, an

anti-ET-1 antibody was added to the culture media during

OPC differentiation. We have previously shown that this anti-

ET-1 antibody can functionally block ET-1 signaling in slice
cultures (Gadea et al., 2009). As expected, there was no differ-

ence between the ET-1-pretreated and the ET-1-pretreated/

anti-ET-1 groups, indicating that there was little or no ET-1 re-

maining in the culture media (Figures 6H and 6I). There was

also no difference in the O1+/NG2+ cell ratio in OPCs plated

on glass coverslips (Figures S3A–S3D). This is consistent with

our TNR results, showing little or no Notch activation in these

barrier cocultures (Figure 6D).

Our findings show that Notch signaling is activated during

OPC differentiation in cocultures with astrocytes, and Notch

activation can be increased by preexposing astrocytes to ET-

1. These effects require cell-cell contact between astrocytes

and OPCs and are not mediated by soluble factors released

by astrocytes following ET-1 exposure. Finally, when OPCs

are plated on astrocytes that were preexposed to ET-1, they

exhibit a more immature phenotype and are less likely to

differentiate into mature OLs. These results establish that

astrocytes limit OPC differentiation, particularly when primed

using ET-1.
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Figure 6. ET-1 Pretreated Astrocytes

Limit OPC Differentiation through Notch

Activation

OPCs from the TNR mouse were used to assess

Notch activation in astrocyte-OPC cocultures.

(A–C) Fluorescent images of control (A), ET-1-

pretreated (B), and PD142,ET-1-pretreated (C)

cocultures costained with anti-EGFP and anti-

NG2 antibodies.

(D) A significant increase in the number of

NG2+EGFP+ OPCs was found in the ET-1-pre-

treated cocultures after 48 hr, as compared to

control and PD142,893-pre-treated cocultures.

Little or no Notch activation was found in control

(control CM) or ET-1-pretreated (ET-1 CM)

barrier cocultures. n = 3–5 independent cultures

with multiple replicates per sample. *p < 0.05,

and **p < 0.01, ANOVA Bonferroni post hoc,

mean ± SEM. In wild-type cocultures, OPC dif-

ferentiation was analyzed by measuring the ratio

of O1+ to NG2+ cells.

(E–H) Fluorescent images of control (E), ET-1

(F), PD142,ET-1 (G), and ET-1, anti-ET-1 (H)

cocultures immunolabeled with anti-O1 antibody.

(I) Quantification of the O1+ to NG2+ ratio for each

coculture condition. Significant decreases in the

ratio were found in ET-1-pretreated and ET-1,

anti-ET-1-treated groups after 48 hr. n = 4

independent cultures with multiple replicates

per sample. *p < 0.05, and **p < 0.01, ANOVA

Bonferroni post hoc, mean ± SEM.

Scale bar, 50 mm for all images.

See also Figure S3.
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The ET-R Antagonist PD142,893 Increases the Rate of
OPC Differentiation and Myelination In Vivo
Using a genetic loss-of-function approach, we demonstrated

that OPC differentiation is accelerated following reduction of

ET-1 levels in the lesion (Figure 3). Our data indicate that this is

due, in part, to reduced Notch activation. In fact, selective elim-

ination of Notch1 receptors on OPCs accelerated remyelination

in vivo (Zhang et al., 2009). We also found that PD142,893 was a

potent inhibitor of Notch activation in vivo (Figure 5); therefore,

we tested whether PD142,893 was a therapeutic candidate

to promote remyelination by enhancing OPC differentiation in

demyelinated lesions.

PD142,893 was directly infused into demyelinated lesions us-

ing miniosmotic pumps beginning at 6 dpl (Figure 7A). Relatively

few mature OLs were found in the saline-infused samples

(Figures 7B, 7E, 7H, and 7I), but a robust increase in CC1+ and

MAG+ was seen following PD142,893 infusion (Figures 7C, 7F,

7H, and 7I) at 14 dpl. This effect was blocked when Jagged1

Fc was infused with PD142,893 (Figures 7D, 7G, 7H, and 7I).

Increases in mature OL number were accompanied with a shift

in the O1+/NG2+ cell ratio (Figure 7J). BrdU was used to further

characterize proliferating OPCs in the lesion for each condition

(Figure S4A). At 14 dpl, we observed a significant increase in

the number of CC1+Olig2+BrdU+ cells in the PD142,893-infused

lesions, as compared to saline-infused control (SIC) and

PD142,893 + Jag1Fc-infused mice (Figures S4B–S4E). This

indicated that a greater number of OPCs had differentiated
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into mature OLs. It also showed that the CC1+ cells we observed

at 14 dpl in the PD142,893-infused lesions were newly generated

following demyelination.

Since ET-1 can act directly on OPCs to promote their migra-

tion and inhibit their differentiation (Gadea et al., 2009), it is un-

likely that the effects we observed on OPC differentiation were

entirely Notch mediated. To isolate the effects of Notch signaling

alone, the g-secretase inhibitor DAPT (50 mM) was infused

into demyelinated lesions. g-secretase is responsible for NICD

cleavage, which happens on binding of the Notch receptor by

Jagged1. While there was a significant increase in mature OLs

and in the CC1+/NG2+ ratio following DAPT infusion, the average

increase was lower than in PD142,893-infused samples (Figures

7H and 7I). This indicated that the positive effects of PD142,893

on oligodendrogenesis after demyelination are not entirely

Notch mediated and are likely due to direct block of ET-1

signaling to OPCs, which would lead to enhanced differentia-

tion (Gadea et al., 2009).

Markers of OL lineage progression indicate maturation but

do not necessarily imply increased production of myelin pro-

teins and formation of compact myelin. Therefore, analysis

of myelin production was examined in microdissected tissue

and at the ultrastructural level. As expected, myelin protein

analysis revealed a sharp decrease in MBP, MAG, and

CNPase levels in LPC-injected tissue infused with saline

(Figure 8A, +Saline), compared to nondemyelinated controls

(Figure 8A, left panels). Conversely, there was a strong



Figure 7. PD142,893 Accelerates OPC Differentiation

(A) Miniosmotic pumps were used to infuse drugs into LPC lesions from 6 to 14 dpl.

(B–G) Confocal images of anti-Olig2- and anti-CC1-stained or anti-MAG- and anti-MBP-stained samples from saline-infused mice in (B) and (E), PD142,893-

infused mice in (C) and (F), and PD142,893+Jagged1Fc-infused mice in (D) and (G) at 14 dpl. White arrows indicate CC1+Olig2+ or MAG+ cells. Scale bar, 50 mm.

(H–J) In (H), quantification of the number of CC1+Olig2+ cells in four groups is shown. A significant increase was seen in PD142,893- and DAPT-infused samples.

In (I), a significant increase was also seen in the number of MAG+ cells in PD142,893- and DAPT-infused samples. In (J), an increase in the CC1-to-NG2 ratio was

also found in PD142,893-infused samples. n = 7. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, ANOVA Bonferroni post hoc, mean ± SEM.

See also Figure S4.

Neuron

Endothelin-1 Inhibits Remyelination
recovery in myelin levels in PD142,893-infused samples

(Figures 8A–8D). These increases were sustained until 21 dpl,

at which point myelin levels in the SIC samples had also

recovered (Figures S5B–S5E).

Examination of the myelin sheaths at the ultrastructural

level also showed the benefits conferred by PD142,893 infusion.
Electron microscopy (EM) analysis revealed large increases

in myelin thickness in the PD142,893-infused samples as

compared to SIC samples (Figures 8E and 8F). Due to increases

in myelin thickness, we observed a significant decrease in the

average G-ratio of the PD142,893 samples as compared to

SIC samples (Figure 8G). We also observed no compaction or
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Figure 8. PD142,893 Accelerates Remyelination

(A–D) Miniosmotic pumps were used to infuse drugs into LPC lesions from 6 to 14 dpl. (A) shows a western blot analysis of myelin protein expression in

microdissected tissue from control, nondemyelinated tissue (left two lanes), and from LPC-injected lesions at 14 dpl infused with saline (third lane) or PD142,893

(fourth lane). Significant increases in MBP (B), MAG (C), and CNPase (D) were observed. n = 4–6. *p < 0.05, unpaired t test, mean ± SEM.

(E and F) Electron micrograph of axonal cross-sections in saline-infused (E) and PD142,893-infused (F) samples at 14 dpl. Red scale bar, 1 mm.

(G) G-ratios were calculated from electron micrographs of saline- and PD142,893-infused samples. A significant decrease in the G-ratio was found in the

PD142,893-infused samples, indicating thicker myelin sheaths. n = 3; unpaired t test, p = 0.002.

(H) Model of the effects of ET-1 on astrocytes and remyelination. (1) ET-1 is released at high levels by astrocytes following demyelination. ET-1 then acts through

an astrocyte-mediated indirect pathway or, to a lesser extent, through direct activation of ET-Rs on OPCs (Gadea et al., 2009). (2) High levels of ET-1 in the lesion

promote a reactive phenotype in astrocytes, (3) including an upregulation of Jagged1. (4) Jagged1 on RAs binds to Notch1 receptors on OPCs, which have

migrated to the demyelinated lesion to initiate the remyelination process. Activation of Notch1 receptors on OPCs by RAs inhibits OPC differentiation, leading to

delayed remyelination and fewer mature, myelinating OLs.

See also Figure S5.
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wrapping abnormalities in the myelin sheaths produced in the

PD142,893-infused mice (Figures 8E and 8F).

Altogether, these results indicate that infusion of PD142,893

promotes early differentiation of OPCs into mature, myelinating

OLs. Early differentiation also led to thicker myelin sheaths in

the PD142,893-infused samples. PD142,893 was a more potent

promoter of OPC differentiation than DAPT infusion alone, which

indicates that multiple mechanisms contribute to the observed

beneficial effect. PD142,893 offers a promising therapeutic

avenue for lesion repair, as it strongly limits Notch activation

and promotes remyelination in LPC lesions.

DISCUSSION

Here, we demonstrate that ET-1—which is a soluble factor

released by astrocytes following demyelination—inhibits the

rate of OPC differentiation and remyelination through induction

of Jagged1 in astrocytes and activation of Notch signaling in

OPCs (see model in Figure 8H). We found that ET-1 regulates

the rate of OPC differentiation both in vitro and in vivo and that

ET-R antagonists promote remyelination, at least in part, by

preventing Notch activation. These findings to demonstrate

the importance of ET-1 signaling in myelin pathology and as a

potential therapeutic target to promote remyelination and

prevent OPC differentiation failure in MS lesions.

Although astrocytes are not the only cells that produce and

express ET-1, we found that the largest increases in ET-1

expression following demyelination were in astrocytes. Both

nonselective infusion of ET-R antagonists and selective elimina-

tion of ET-1 expression in astrocytes resulted in the acceleration

of OPC differentiation. This suggests that astrocytes are the

primary source of elevated ET-1 in the subcortical WM following

demyelination. In further support of this notion, our hGFAP-Cre-

ERT2;ET-1flox/flox data showed that the contribution of ET-1 from

microglia or endothelial cells is dispensible to the observed

remyelination phenotype. Although other ET-isoforms exist, we

found no evidence of ET-2 or ET-3 expression in the normal or

demyelinated subcortical WM. Previous studies have shown

that ET-1 is the predominant endothelin isoform in the brain

(Schinelli, 2006); and here, we demonstrate that genetic ablation

of ET-1 produced major effects on Jagged1/Notch1 signaling

and OPC differentiation. It is interesting that a recent study

demonstrated a divergent role for ET-2 as a promoter of remye-

lination in the rat cerebellum (Yuen et al., 2013). This opposing

role of ET-2 could be accounted for by differential ET-R distribu-

tion in these brain regions. Since periventricular lesions are seen

in the subcortical WM of over 80% of MS cases (Adams et al.,

1987; Ge, 2006), our data demonstrating a beneficial effect of

blocking ET-1 in this region is particularly relevant. Of note,

studies of ET-1 following other CNS injuries have been well

documented. Increases in ET-1 levels have been detected in

Alzheimer’s (Minami et al., 1995) and in astrocytes following

hypoxia/ischemia in mice (Tsang et al., 2001). ET-1 is, itself,

also an activator of astrocytes (Gadea et al., 2008; Rogers

et al., 2003). ET-R antagonists have been used to block in-

creases in the number of RAs following cortical stab wound

and optic nerve crush experiments (Koyama et al., 1999; Rogers

et al., 2003). This is consistent with our finding that infusion of
the ET-R panantagonist Bosentan following demyelination

reduces the number of RAs in the CC (Gadea et al., 2008).

Therefore, our results could shed further light on to the role

of astrocytes in mediating recovery and repair in other CNS dis-

orders where ET-1 release is elevated.

There has been a long-standing debate about whether exten-

sive astrogliosis following injury is detrimental or beneficial to

remyelination (Brosnan and Raine, 2013; Nair et al., 2008;

Williams et al., 2007). Early evidence showed that astrocytic

scars formed in chronic MS tissue are impediments to OPC

survival, differentiation, migration, and axonal connectivity

(Fawcett and Asher, 1999; Nair et al., 2008; Silver and Miller,

2004; Su et al., 2011; Wang et al., 2011; Zhang et al., 2010).

More recent evidence has demonstrated that astrocytes can

create a permissive environment for OPC expansion and differ-

entiation within the lesion (Moore et al., 2011; Nair et al., 2008;

Schulz et al., 2012). In this study, we show that RAs express

two major inhibitory signals, first ET-1 and then Jagged1, which

ultimately lead to the inhibition of OPC differentiation. Recent

studies have demonstrated that reactive astrogliosis is not an

all-or-none cellular transformation and that specific inflamma-

tory cues or injuries can induce distinct transcriptional responses

in astrocytes both in vivo and in vitro (Hamby et al., 2012; Zama-

nian et al., 2012). Of note, it has been shown that transforming

growth factor b1 also causes an increase in Jagged1 expression

in astrocytes, suggesting that increases in Notch ligand expres-

sion might be triggered by a host of inflammatory cues (Zhang

et al., 2010). However, we demonstrate that ablation of ET-1 in

astrocytes during remyelination is sufficient to reduce the overall

levels of Jagged1 in the lesion, despite the presence of other

inflammatory signals. This strongly suggests that ET-1 is a

major signal that regulates Jagged1 expression in RAs under

pathological conditions. By modulating astrocytic ET-1, our

results also demonstrate that RAs prevent OPC differentiation

during remyelination and may, therefore, promote a nonpermis-

sive environment for recovery.

Here, we show that astrocytic expression of Jagged1 plays

a key role in Notch regulation in demyelinated lesions. Notch

signaling plays an essential role in neural development, and

its role in the adult brain has gained increased importance in

recent years (Ables et al., 2011). Both Jagged1 and Notch1

have been found in human and in murine demyelinated lesions

in the adult brain (John et al., 2002; Seifert et al., 2007; Stidwor-

thy et al., 2004), but there are conflicting reports on whether

Notch inhibits OPC differentiation during remyelination (Stidwor-

thy et al., 2004; Zhang et al., 2009). Our analysis reveals that

the Notch activator Jagged1 inhibits OPC differentiation and

that the Notch inhibitor DAPT accelerates OPC differentiation

in vivo. Therefore, our results support the notion that Notch

acts as an inhibitor of remyelination and demonstrate that Notch

signaling is regulated by ET-1 through astrocytes. Due to its

importance in awide variety of adult brain functions, understand-

ing how Notch is regulated and identifying endogenous regu-

lators of Notch activation are crucial. Our evidence that ET-1

plays such an essential role as an activator of Notch following

demyelination could improve our understanding of the mecha-

nisms underlying cell differentiation and repair in other types of

brain injury involving reactive astrogliosis and ET-1 release.
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There is extensive evidence demonstrating that OPC matura-

tion and remyelination in LPC lesions occur spontaneously

around 2–3 weeks postlesion, depending on the age of the ani-

mal and location of the lesion (Aguirre et al., 2007; Arnett et al.,

2004; Fancy et al., 2011). Our results suggest that ET-1 release

during early remyelination induces Jagged1 expression in RAs,

which likely sustains expansion of the OPC population in the

lesion prior to differentiation. We hypothesize that extended or

aberrant expression of ET-1 in human MS lesions could account

for stalled OPC differentiation in this disease (Chang et al., 2002;

Wolswijk, 1998). When we tested this hypothesis in LPC lesions,

we found that extended ET-1 expression was sufficient to delay

remyelination. Other studies have shown that there could be a

critical time window for OPC differentiation (Franklin, 2002),

and our present results demonstrate that a prolonged increase

in ET-1 levels is a major contributor of the OPC differentiation

failure under pathological conditions.

Despite strong evidence that ET-1 indirectly inhibits OPC

differentiation through an astrocyte-dependent pathway, we

cannot exclude direct signaling to OPCs, which also express

ET receptors (Gadea et al., 2009; Yuen et al., 2013). In fact,

our lab has shown that ET-1 stimulates OPC migration from

the SVZ in situ and stalls OPCs in a premyelinating state

without any effect on OPC proliferation (Gadea et al., 2009).

This direct function of ET-1 inhibits OPC differentiation during

migration and possibly within the lesion as well (see model in

Figure 8H). These findings, together with the present report,

indicate that ET-1 could act via both direct and indirect path-

ways to limit OPC differentiation. However, it is worth noting

that direct exposure of OPCs to ET-1 has produced mixed

results, and ET-1 or ET-R agonists have been found in other

studies to promote OPC differentiation in vitro (Jung et al.,

2011; Yuen et al., 2013). This conflicting evidence suggests

that the direct effect of ET-1 on OPCs in vitro might not

reflect their response in vivo. Our present studies further

support the notion that direct ET-1 signaling to OPCs may

not play a significant role in regulating differentiation within

the lesion itself. The infusion of DAPT, to isolate Notch effects,

strongly promoted OPC differentiation at a rate almost equiva-

lent to PD142,896 infusion, suggesting that astrocyte-derived

ET-1 and the Jagged1-mediated indirect pathway contributes

much more significantly to limiting the rate of remyelination

within the lesion.

To our knowledge, this is the first study that successfully

identifies an ET-R antagonist as a promyelinating compound

in vivo. PD142,893, a very potent inhibitor of ET-1 signaling,

prevented Jagged1 induction and Notch activation. For ET-1

MS therapy, one of the major challenges will be finding a

white-matter- and astrocyte-specific delivery method to mini-

mize systemic side effects (Schnyder and Huwyler, 2005; Shi

et al., 2001).The ET-R panantagonist Bosentan (Tracleer) (Rubin

et al., 2002) is an approved drug currently used to treat pulmo-

nary arterial hypertension (PAH) and displays an affinity to

ET-Rs that is similar to that of PD142,893 (Maguire et al.,

2012). Some MS patients with PAH respond to Bosentan

(Ledinek et al., 2009). Therefore, PD142,893 and other ET-R

panantagonists could offer a promising therapeutic avenue to

promote lesion repair for patients with MS.
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EXPERIMENTAL PROCEDURES

Animals

TNR (#005854) and C57bl/6n mice were purchased from the Jackson

Laboratory and Charles River Laboratories, respectively. Floxed ET-1 mice

were obtained from Dr. Ralph Shohet at the University of Hawaii and are

described elsewhere (Shohet et al., 2004). The hGFAP-Cre-ERT2 mice were

obtained from Dr. Flora Vaccarino at Yale University and were generated as

previously described (Ganat et al., 2006). Mice used for all experiments were

8–12 weeks old unless otherwise specified. All mouse colonies were main-

tained in the animal facility of Children’s National Medical Center, and all

animal procedures complied with the guidelines of the National Institutes of

Health and with the Children’s Research Institute Institutional Animal Care

and Use Committee guidelines.

Antibodies

For immunohistochemical, immunocytochemical, and western blot pro-

cedures, please reference the Supplemental Experimental Procedures.

Antibodies used for immunohistochemistry were anti-GFP (Abcam, 1:500),

anti-Brdu (Accurate, 1:200, 30 min 2 N HCl followed by 15 min 0.1 M boric

acid brain section pretreatment), anti-NG2 (Millipore, 1:500), anti-GFAP

(Sigma, 1:500), anti-ET-1 (Abbiotec, 1:200), anti-CD31 (BD Biosciences,

1:500), anti-Jagged1 (Iowa Hybridoma Bank, 1:200), anti-iBA1 (Wako, 1:500),

anti-MAG (Santa Cruz Biotechnology, 1:200), anti-MBP (Covance [SMI-99p],

1:1,000), anti-Hes1 (Millipore, 1:1,000), anti-CD11b/MAC1 (ABD Serotec,

1:400), anti-Olig2 (Millipore, 1:500), and anti-APC (Ab-7) (CC-1) (Calbiochem,

1:500). Antibodies used for immunocytochemistry were anti-GFP (Abcam,

1:500), anti-O1 (R&D Systems, 1:500), anti-GFAP (Sigma, 1:500), and anti-

NG2 (Millipore, 1:500). Antibodies used for western blot analysis include

anti-MBP (Covance [SMI-99p], 1:5,000), anti-MAG (Santa Cruz Biotechnology

[sc-15324], 1:200), anti-CNPase (Covance, 1:500), anti-Jagged1 (Santa Cruz

Biotechnology [sc-135955], 1:200), anti-b-actin(C4) (Millipore, 1:5,000), anti-

GFAP (Sigma, 1:5,000), and anti-NICD (Iowa Hybridoma Bank C17.9C6,

1:1,000).

LPC Injection

Mice were deeply anesthetized using 100 mg/kg ketamine and 10 mg/kg

xylazine. LPC (1% Lyso, 2 ml, EMD Chemicals) was injected unilaterally into

the external capsule of 8- to 12-week-old TNR or C57bl/6n mice using a

Hamilton syringe. On the contralateral side, 2 ml of 0.9% NaCl was injected

for control purposes. Injections were made using a stereotaxic apparatus

at the following coordinates: 1.0 mm anterior to bregma, 1.5 mm lateral,

3.0 mm deep. The date of injection was denoted as 0 dpl. Mice were then

left for a period of 3, 7, 14, or 30 dpl and then perfused for immunohisto-

chemical analysis.

Miniosmotic Pump Installation

Mice were deeply anesthetized using 100 mg/kg ketamine and 10 mg/kg

xylazine, and unilateral LPC injections were performed in 8- to 12-week-old

TNR and C57bl/6n mice. Miniosmotic pumps (Durect) were assembled using

a brain infusion kit (#0008851, Durect) with a 3 mm low-profile, 30 gauge stain-

less steel cannula and approximately 1 in. of polyethylene catheter tubing.

Both the catheter tubing and miniosmotic pumps were preloaded with 0.9%

saline, ET-1 (EMDChemicals), PD142,893 (Enzo Life Sciences), DAPT (Tocris),

or a cocktail of PD142,893 and recombinant rat Jagged1 Fc (R&D Systems)

and left overnight at 37�C in 0.9% saline to initiate the pumping process and

ensure steady-state operation. For 6–8, 6–14, and 14–21 dpl infusions, we pre-

loaded pumps (pump #107D) with 100 nM ET-1, 50 mM PD142,893, 50 mM

DAPT, or 50 mM PD142,893 + 2 mg/ml Jagged1 Fc; and for 15-day infusions,

we loaded pumps with 100 mM PD142,893 (pump #1002). Due to differences

in flow rates between the 7-day (#107D) and 14-day pumps (#1002), we had

to adjust the concentration of PD142,893. The approximate PD142,893 deliv-

ery rate for both pumps was 300 pmol/day. For ET-1, the delivery rate was

60 pmol/day. Mice were reanesthetized, and the pumps were installed into

a subcutaneous pocket at the base of the neck. The catheter tubing and

cannula were led to the initial injection site, and the cannula was inserted

into the same skull perforation used for LPC injection, which was still visible.
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The cannula was attached to the skull using cyanoacrylate adhesive

(#0008670, Durect). Brains were then used for immunohistochemical and

western blot analysis.

Cell Cultures

Purified astrocyte cultures were prepared from 20-day-old Sprague-Dawley

rat embryos as described elsewhere (Gallo and Armstrong, 1995; Schinelli

et al., 2001). Astrocytes were left to grow until 70%–80% confluency before

addition of 100 nM ET-1 or 100 mM PD142,893. Cell culture media was

changed in both control and ET-1/antagonist-treated groups every 24 hr,

including new ET-1/antagonist for the treated groups. For cells treated with

both ET-1 and the antagonist, PD142,893 was added 2 hr prior to the addition

of ET-1. For western blot analysis, cells were rinsed twice in ice-cold PBS

and collected in RIPA lysis buffer with protease inhibitor cocktail.

Cocultures

Glass coverslips (Fisher, 25 mM HCl treated) were coated in poly-L-lysine in

6-well plates. Purified astrocytes were plated at 75,000 cells per coverslip

and left to grow until 70%–80% confluent in 10% fetal bovine serum/

Dulbecco’s modified Eagle’s medium (DMEM). Three experimental groups

of astrocytes were then established: (1) untreated; (2) ET-1 treated; and (3)

PD142,893 treated, and then ET-1 treated, as described earlier. Purified

cortical OPC cultures were prepared from embryonic day 20 rats or P5 TNR

mice as previously described (Gallo et al., 1996; Ghiani et al., 1999). OPC

cultures were maintained in DMEM-N1 biotin-containing medium (penicillin,

100 U/ml; streptomycin, 100 mg/ml; human apo-transferrin, 50 mg/ml; biotin,

10 ng/ml; Na selenium, 25 nM; insulin, 2.5 mg/ml; putrescine, 100 mM;

progesterone 20 nM) with added platelet-derived growth factor-AA and basic

fibroblast growth factor (10 ng/ml each, R&D Systems) to inhibit differentiation.

Following astrocyte treatment, OPCs were plated on the astrocytes at a

density of 75,000 cells per coverslip in the DMEM-N1 biotin-containing

medium minus growth factors to allow differentiation. For cocultures treated

with anti-ET-1 antibody (Calbiochem, 1:500), astrocyte monolayers were

pretreated with ET-1, and during the OPC differentiation phase of the culture,

anti-ET-1 was added once per day. Cocultures were then left for a period of

48 hr to differentiate. Coverslips were then used for immunocytochemical

analysis.

Statistical Analysis

Specific numbers of animals or cultures are denoted in each figure legend.

Significance was calculated using GraphPad Prism software (http://www.

graphpad.com) using unpaired t tests for comparisons between two groups.

For multigroup comparisons, a one-way ANOVA with a Bonferroni post hoc

analysis was used.
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