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Abstract

We define an almost-cosymplectic-contact structure which generalizes cosymplectic and contact structures of an odd dimensional
manifold. Analogously, we define an almost-coPoisson–Jacobi structure which generalizes a Jacobi structure. Moreover, we study
relations between these structures and analyse the associated algebras of functions.

As examples of the above structures, we present geometrical dynamical structures of the phase space of a general relativistic
particle, regarded as the 1st jet space of motions in a spacetime. We describe geometric conditions by which a metric and a
connection of the phase space yield cosymplectic and dual coPoisson structures, in case of a spacetime with absolute time (a Galilei
spacetime), or almost-cosymplectic-contact and dual almost-coPoisson–Jacobi structures, in case of a spacetime without absolute
time (an Einstein spacetime).
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Nous définissons une structure presque cosymplectique-contact, qui généralise les structures cosymplectiques et de contact d’une
variété de dimension impaire. D’une manière analogue, nous définissons une structure presque coPoisson–Jacobi, qui généralise la
structure de Jacobi. Nous étudions aussi les relations entre ces structures et nous analysons les algèbres des fonctions associées.

Comme exemples de ces structures nous présentons les structures géométriques dynamiques de l’espace des phases d’une parti-
cule relativiste générale regardé comme jet du premier ordre des mouvements dans l’espace-temps. Nous décrivons les conditions
géométriques pour lesquelles une métrique et une connexion de l’espace des phases produisent des structures cosymplectiques et
coPoisson duales dans le cas d’un espace-temps (espace-temps de Galilée) ou presque cosymplectique-contact et presque coPoisson
duales dans l’espace-temps sans temps absolu (espace-temps d’Einstein).
© 2008 Elsevier Masson SAS. All rights reserved.

Keywords: Spacetime; Phase space; Phase connection; Schouten bracket; Frölicher–Nijenhuis bracket; Cosymplectic structure; coPoisson
structure; Contact structure; Jacobi structure; Almost-cosymplectic-contact structure; Almost-coPoisson–Jacobi structure

✩ This research has been supported by the Ministry of Education of the Czech Republic under the project MSM0021622409, by the Grant agency
of the Czech Republic under the project GA 201/05/0523, by MIUR of Italy under the project PRIN 2005 “Simmetrie e Supersimmetrie Classiche
e Quantistiche”, by GNFM of INdAM and by Florence University.

* Corresponding author.
E-mail addresses: janyska@math.muni.cz (J. Janyška), marco.modugno@unifi.it (M. Modugno).
0021-7824/$ – see front matter © 2008 Elsevier Masson SAS. All rights reserved.
doi:10.1016/j.matpur.2008.09.007

https://core.ac.uk/display/82305512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


212 J. Janyška, M. Modugno / J. Math. Pures Appl. 91 (2009) 211–232
Introduction

In [2,3,5–7] we studied geometrical structures on the phase space of a spacetime naturally induced (in the sense
of [10]) by a metric and a phase connection. Some of these structures are well known and some are less standard. In
the present paper, we generalize these structures on odd dimensional manifolds and study general properties of such
structures.

First, in Section 1, we recall some standard structures and introduce new structures, namely almost-cosymplectic-
contact, coPoisson and almost-coPoisson–Jacobi structures. In Section 2 we study algebras of functions which are
associated with the new geometrical structures.

As examples of the above new structures, we study the geometrical structures on the phase space of a spacetime.
Actually, the geometric objects arising in Section 3.1, in the framework of the Galilei’s phase space [2,5,6], involve
mainly the concepts of cosymplectic and (regular) coPoisson structures. On the other hand, the analogous geometric
objects arising in Section 3.2, in the framework of the Einstein’s phase space [3,7], involve mainly the concepts of
almost-cosymplectic-contact and almost-coPoisson–Jacobi structures (eventually contact and Jacobi structures).

In the standard non-relativistic analytical mechanics, the usual phase space is defined by the vertical tangent space,
or by the vertical cotangent space of spacetime. These spaces are even dimensional and equipped with a symplectic
structure induced, respectively, by the metric, or by the canonical Liouville form. Passing to relativistic analytical
mechanics, the above spaces are usually replaced by the tangent space, or by the cotangent space of spacetime.
However, for physical reasons, the velocity of motions needs to be normalized through the time component, in the
Galilei case, or through the metric, in the Einstein case. These constraints yield an odd dimensional phase space, where
the symplectic structure is no longer the appropriate geometric framework. Moreover, we can get rid of normalization
constraints, with all related complications, and also of the choice of units of measurement of time, by describing the
phase space in terms of jets. In the Galilei case we deal with jets of sections (related to absolute time) and in the
Einstein case we deal with jets of submanifolds (related to the Lorentz metric). Indeed, this will be the framework for
the examples of the geometric structures discussed in the present paper.

1. Geometrical structures

We use the inner product i of k-vectors with r-forms defined by iX1∧···∧Xk
β = iXk

. . . iX1β , for each r-form β and
k vector fields X1, . . . ,Xk , with k � r . We use the same symbol for the dual inner product of k-forms with r-vectors.

For the Schouten bracket we use the identity, [11,12,16],

i[P,Q]β = (−1)q(p+1)iP diQβ + (−1)piQdiP β − iP∧Qdβ,

for each p-vector P , q-vector Q and (p + q − 1)-form β . In particular, for each vector field E and 2-vector Λ, we
have i[E,Λ]β = iEdiΛβ − iΛdiEβ , for each closed 2-form β , and i[Λ,Λ]β = 2iΛdiΛβ , for each closed 3-form β .

In what follows, M is a (2n + 1)-dimensional smooth manifold.

1.1. Covariant and contravariant pairs

Definition 1.1. We define a covariant pair to be a pair (ω,Ω) consisting of a 1-form ω and a 2-form Ω of constant
rank 2r , with 0 � r � n, such that ω∧Ωr �≡ 0, and a contravariant pair to be a pair (E,Λ) consisting of a vector field
E and a 2-vector Λ of constant rank 2s, with 0 � s � n, such that E ∧ Λs �≡ 0. Thus, by definition, we have Ωr �≡ 0,
Ωr+1 ≡ 0 and Λs �≡ 0, Λs+1 ≡ 0.

We say that the pairs (ω,Ω) and (E,Λ) are regular if, respectively,

ω ∧ Ωn �≡ 0 and E ∧ Λn �≡ 0.

Let us consider a covariant pair (ω,Ω) and a contravariant pair (E,Λ).
We define the following linear maps and subspaces:

Ω� :T M → T ∗M :X �→ X� =: iXΩ, Λ� :T ∗M → T M :α �→ α� =: iαΛ,

〈ω〉 =: {λω | λ ∈ R} ⊂ T ∗M, 〈E〉 =: {λE | λ ∈ R} ⊂ T M,

kerE =: {α ∈ T ∗M | α(E) = 0}, kerω =: {X ∈ T M | ω(X) = 0}.
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We have dim(imΩ�) = 2r and dim(imΛ�) = 2s.
If (ω,Ω) is regular, then r = n, dim(imΩ�) = 2n, dim(kerΩ�) = 1, dim(kerω) = 2n.
If (E,Λ) is regular, then s = n, dim(imΛ�) = 2n, dim(kerΛ�) = 1, dim(kerE) = 2n.

1.2. Structures given by covariant pairs

According to [12], a pre cosymplectic structure on M is defined by a regular covariant pair (ω,Ω).
Two distinguished types of pre cosymplectic structures appear in the literature. Namely, we recall that a

cosymplectic structure [1] and a contact structure [11] are defined by a covariant pair (ω,Ω) such that, respectively,

dω = 0, dΩ = 0, ω ∧ Ωn �≡ 0, (1.1)

Ω = dω, ω ∧ Ωn �≡ 0. (1.2)

Thus, a contact structure is characterized just by a 1-form ω such that

ω ∧ (dω)n �≡ 0.

We can easily generalize the above structures in the following way.

Definition 1.2. We define an almost-cosymplectic-contact structure to be a covariant pair (ω,Ω) such that

dΩ = 0, ω ∧ Ωn �≡ 0.

Clearly, for dω = 0 we obtain a cosymplectic structure and for Ω = dω a contact structure. So,
almost-cosymplectic-contact structures are regular structures which generalize both cosymplectic and contact struc-
tures.

1.3. Structures given by contravariant pairs

Two distinguished types of contravariant pairs appear in the literature.
Namely, we recall that a Jacobi structure is defined by a contravariant pair (E,Λ) such that

[E,Λ] = 0, [Λ,Λ] = −2E ∧ Λ,

where [, ] denotes the Schouten bracket.
In the particular case when E = 0, we obtain:

[Λ,Λ] = 0

and the pair (E,Λ) =: (0,Λ) is called Poisson structure.
On the other hand, in the particular case when Λ = 0, we obtain [E,Λ] = 0 and [Λ,Λ] = 0 and the pair

(E,Λ) =: (E,0) is called trivial structure.
In the following we assume E �≡ 0 and Λ �≡ 0.

Remark 1.3. In the literature (see for instance [12]) the condition E ∧ Λs �≡ 0 is considered just as a possible non-
necessary property of the Jacobi pair (E,Λ). So, our definition is a little more restrictive; however, the assumption
E ∧ Λs �≡ 0 is quite reasonable and it is needed for our subsequent developments.

In the literature (see for instance [11,12,16]) the Jacobi structure is usually defined by the identities [E,Λ] = 0,
[Λ,Λ] = 2E ∧ Λ. The difference in the sign in the second identity, with respect to our definition, is caused by the
different convention on the inner product, hence by the different sign in definition of Λ�.

In order to exhibit a certain symmetry between geometric structures given by covariant and contravariant pairs, we
introduce the following notions:

Definition 1.4. We define a pre coPoisson structure to be a contravariant pair (E,Λ).
In particular, a coPoisson structure is defined by a contravariant pair (E,Λ) such that

[E,Λ] = 0, [Λ,Λ] = 0.
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Definition 1.5. We define an almost-coPoisson–Jacobi structure to be a 3-plet (E,Λ,ω), where (E,Λ) is a con-
travariant pair and ω a 1-form, such that

[E,Λ] = −E ∧ Λ�(LEω), [Λ,Λ] = 2E ∧ (Λ� ⊗ Λ�)(dω), iEω = 1, iωΛ = 0.

The 1-form ω is said to be the fundamental 1-form of the almost-coPoisson–Jacobi structure.

Remark 1.6. Almost-coPoisson–Jacobi structures generalize both coPoisson and Jacobi structures.
Indeed, if dω = 0, then we have LEω = iEdω = 0, hence from Definition 1.5 we obtain [E,Λ] = 0 and

[Λ,Λ] = 0, i.e. (E,Λ) turns out to be a coPoisson structure.
Moreover, if LEω = 0 and (Λ� ⊗ Λ�)(dω) = −Λ, then we obtain [E,Λ] = 0 and [Λ,Λ] = −2E ∧ Λ, i.e. (E,Λ)

turns out to be a Jacobi structure.

Proposition 1.7. Let (E,Λ) be a regular contravariant pair. Then, there exists a unique 1-form ω, such that
iω(E ∧ Λn) = Λn. Indeed, such an ω satisfies the equalities iEω = 1 and iωΛ = 0.

Thus, the 3-plet (E,Λ,ω) turns out to be an almost-coPoisson–Jacobi structure if and only if
[E,Λ] = −E ∧ Λ�(LEω) and [Λ,Λ] = 2E ∧ (Λ� ⊗ Λ�)(dω).

Thus, a regular almost-coPoisson–Jacobi structure can be defined just as a suitable contravariant pair (E,Λ), as
the additional 1-form ω is naturally determined by the above pair itself.

1.4. Dual structures

Let us consider a covariant pair (ω,Ω) and a contravariant pair (E,Λ).

Definition 1.8. The pairs (ω,Ω) and (E,Λ) are said to be mutually dual if they are regular, the maps

Ω
�

| im(Λ�)
: im

(
Λ�

) → im
(
Ω�

) ⊂ T ∗M and Λ
�

| im(Ω�)
: im

(
Ω�

) → im
(
Λ�

) ⊂ T M

are isomorphisms, and
(
Ω

�

| im(Λ�)

)−1 = Λ
�

| im(Ω�)
,

(
Λ

�

| im(Ω�)

)−1 = Ω
�

| im(Λ�)
, iEΩ = 0, iωΛ = 0, iEω = 1.

Theorem 1.9. (See [12].) The relation of duality yields a bijection between regular covariant pairs (ω,Ω) and regular
contravariant pairs (E,Λ).

Thus, the geometric structures given by dual covariant and contravariant pairs are essentially the same.
In the literature E is called the fundamental vector field [12], or the Reeb vector field [13], and Λ the fundamental

2-tensor of (ω,Ω).

Note 1.10. Summing up, for the convenience of the reader, we provide a schematic table with the main structures
discussed above:

1a) cosymplectic structure = covariant pair (ω,Ω), such that

dω = 0, dΩ = 0, ω ∧ Ωn �≡ 0;
1b) contact structure = covariant pair (ω,Ω), such that

Ω = dω, ω ∧ Ωn �≡ 0;
1c) almost-cosymplectic-contact structure = covariant pair (ω,Ω), such that

dΩ = 0, ω ∧ Ωn �≡ 0;
2a) Jacobi structure = contravariant pair (E,Λ), such that

[E,Λ] = 0, [Λ,Λ] = −2E ∧ Λ;
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2b) Poisson structure = contravariant pair (E,Λ), such that

E = 0, [Λ,Λ] = 0;
2c) coPoisson structure = contravariant pair (E,Λ), such that

[E,Λ] = 0, [Λ,Λ] = 0;
2d) almost-coPoisson–Jacobi structure = 3-plet (E,Λ,ω), such that (E,Λ) is a contravariant pair and ω a 1-form

such that

[E,Λ] = −E ∧ Λ�(LEω), [Λ,Λ] = 2E ∧ (
Λ� ⊗ Λ�

)
(dω), iEω = 1, iωΛ = 0;

3) dual pairs = regular pairs (ω,Ω) and (E,Λ), such that(
Ω

�

| im(Λ�)

)−1 = Λ
�

| im(Ω�)
, iEΩ = 0, iωΛ = 0, iEω = 1.

1.5. Relations between structures

Now, let us consider dual pairs (ω,Ω) and (E,Λ) and state some results.

Lemma 1.11. We have:

〈E〉 = kerΩ�, im
(
Λ�

) = kerω and 〈ω〉 = kerΛ�, im
(
Ω�

) = kerE.

Proof. 1) We have 〈E〉 ⊂ kerΩ�; hence, dim(kerΩ�) = 1 = dim〈E〉 implies 〈E〉 = kerΩ�.
If X ∈ sec(M, im(Λ�)), then there exists α ∈ sec(M, T ∗M), such that iαΛ = X; hence,

ω(X) = ω(iαΛ) = Λ(α,ω) = −iαΛ�(ω) = 0, hence X ∈ sec(M,kerω).

Then, dim(imΛ�) = 2n = dim(kerω) implies im(Λ�) = kerω.
2) In the same way we prove the other two identities. �

Proposition 1.12. We have the splittings:

T M = 〈E〉 ⊕ im
(
Λ�

)
and T ∗M = 〈ω〉 ⊕ im

(
Ω�

)
.

Accordingly, for each X ∈ sec(M, T M) and α ∈ sec(M, T ∗M), we have the splittings:

X = ω(X)E + (
X − ω(X)E

)
and α = α(E)ω + (

α − α(E)ω
)
.

Thus, the maps

Λ� ◦ Ω� :T M → im
(
Λ�

)
and Ω� ◦ Λ� :T ∗M → im

(
Ω�

)
are the “orthogonal” projections of the splittings of T M and T ∗M .

Proof. The equalities dim〈E〉 + dim im(Λ�) = 1 + 2n and 〈E〉 ∩ im(Λ�) = 〈E〉 ∩ kerω = 0 yield T M = 〈E〉 ⊕
im(Λ�).

Clearly, we have:

ω(X)E ∈ sec
(
M, 〈E〉), X − ω(X)E ∈ sec

(
M, im(Λ�)

) = sec(M,kerω).

Then, we obtain:

X − ω(X)E = (
Λ� ◦ Ω�

)(
X − ω(X)E

) = (
Λ� ◦ Ω�

)
(X).

The dual result can be obtained in the same way. �
Proposition 1.13. For each X,Y ∈ sec(M, T M) and α,β ∈ sec(M, T ∗M), we have:

Ω
(
α�,β�

) = −Λ(α,β) and Λ
(
X�,Y �

) = −Ω(X,Y ), (1.3)

i.e. (
Λ� ⊗ Λ�

)
(Ω) = −Λ and

(
Ω� ⊗ Ω�

)
(Λ) = −Ω. (1.4)
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Proof. We have:

Ω
(
Λ�(α),Λ�(β)

) = iΛ�(β)Ω
�
(
Λ�(α)

) = iΛ�(β)

(
α − α(E)ω

) = Λ
(
β,α − α(E)ω

) = −Λ(α,β).

The second identity can be proved in the same way. �
Lemma 1.14. Let us consider the functions f,g,h ∈ map(M,R), the closed forms α,β, γ ∈ sec(M, T ∗M), and the
induced vector fields X,Y,Z ∈ sec(M, T M), given by,

X =: α� + f E, Y =: β� + gE, Z =: γ � + hE, (1.5)

where f = ω(X), g = ω(Y ), h = ω(Z).
Then, the following equality holds:

dΩ(X,Y,Z) = (
iE∧(Λ�⊗Λ�)(dω) − 1

2 i[Λ,Λ]
)
(α ∧ β ∧ γ ) + f (i[E,Λ] + iE∧(LEω)�)(β ∧ γ )

+ g(i[E,Λ] + iE∧(LEω)�)(γ ∧ α) + h(i[E,Λ] + iE∧(LEω)�)(α ∧ β). (1.6)

Proof. Let α̃, β̃, γ̃ be the projections of α,β, γ on sec(M, im(Ω�)) ⊂ sec(M, T ∗M).
We have:

dΩ(X,Y,Z) = dΩ
(
α� + ω(X)E,β� + ω(Y )E,γ � + ω(Z)E

)
= dΩ

(
α�,β�, γ �

) + ω(X)dΩ
(
E,β�, γ �

) + ω(Y )dΩ
(
α�,E,γ �

) + ω(Z)dΩ
(
α�,β�,E

)
.

Then, we obtain:

dΩ
(
α�,β�, γ �

) = α�.Ω
(
β�, γ �

) + β�.Ω
(
γ �,α�

) + γ �.Ω
(
α�,β�

)
− Ω

([
α�,β�

]
, γ �

) − Ω
([

β�, γ �
]
, α�

) − Ω
([

γ �,α�
]
, β�

)
= −α�.Λ(β,γ ) − β�.Λ(γ,α) − γ �.Λ(α,β) + i[α�,β�]iγ �Ω + i[β�,γ �]iα�Ω + i[γ �,α�]iβ�Ω

= −iα�d
(
Λ(β,γ )

) − iβ�d
(
Λ(γ,α)

) − iγ �d
(
Λ(α,β)

)
+ (iα�diβ� − iβ�diα�)iγ �Ω + (iβ�diγ � − iγ �diβ�)iα�Ω + (iγ �diα� − iα�diγ �)iβ�Ω

− iα�∧β�diγ �Ω − iβ�∧γ �diα�Ω − iγ �∧α�diβ�Ω

= Λ
(
α,d

(
Λ(β,γ )

)) + Λ
(
β,d

(
Λ(γ,α)

)) + Λ
(
γ, d

(
Λ(α,β)

))
− dα̃

(
β�, γ �

) − dβ̃
(
γ �,α�

) − dγ̃
(
α�,β�

)
= −iΛdiΛ(α ∧ β ∧ γ ) + α(E)dω

(
β�, γ �

) + β(E)dω
(
γ �,α�

) + γ (E)dω
(
α�,β�

)
= −iΛdiΛ(α ∧ β ∧ γ ) + α(E)

(
Λ� ⊗ Λ�

)
(dω)(β, γ )

+ β(E)
(
Λ� ⊗ Λ�

)
(dω)(γ,α) + γ (E)

(
Λ� ⊗ Λ�

)
(dω)(α,β)

= (iE∧(Λ�⊗Λ�)(dω) − iΛdiΛ)(α ∧ β ∧ γ )

= (
iE∧(Λ�⊗Λ�)(dω) − 1

2 i[Λ,Λ]
)
(α ∧ β ∧ γ ).

Similarly, we obtain:

dΩ
(
α�,β�,E

) = E.Ω
(
α�,β�

) − Ω
([

β�,E
]
, α�

) − Ω
([E,α�,β�

)
= −E.Λ(α,β) + i[β�,E]iα�Ω + i[E,α�]iβ�Ω

= −E.Λ(α,β) + (iβ�diE − iEdiβ� − iβ�∧Ed)α̃ + (iEdiα� − iα�diE − iE∧α�d)β̃

= E.Λ(α,β) + iβ�∧Ed
(
α(E)ω

) + iE∧α�d
(
β(E)ω

)
= iEdiΛ(α ∧ β) − Λ

(
d
(
α(E)

)
, β

) + Λ
(
d
(
β(E)

)
, α

) − α(E)dω
(
E,β�

) + β(E)dω
(
E,α�

)
= (i[E,Λ] + iE∧(LEω)�)(α ∧ β).

Then, the above equalities imply (1.6). �
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It is well known [9,12] that if (ω,Ω) is contact, then (E,Λ) is Jacobi. Thus, the geometric structures given by dual
contact and regular Jacobi pairs are essentially the same. But we obtain the equivalence of structures also for other
types of dual covariant and contravariant pairs.

Theorem 1.15. The following facts hold:

(1) (ω,Ω) is an almost-cosymplectic-contact pair if and only if (E,Λ,ω) is an almost-coPoisson–Jacobi 3-plet;
(2) (ω,Ω) is a cosymplectic pair if and only if (E,Λ) is a coPoisson pair;
(3) (ω,Ω) is a contact pair if and only if (E,Λ) is a Jacobi pair.

Proof. Let us consider a point x ∈ M . All 1-forms on M can be obtained, pointwisely, from closed 1-forms. Then,
according to the splitting (1.5), all vectors X,Y,Z ∈ TxM can be obtained, pointwisely, by means of closed forms;
conversely, all closed forms α,β, γ ∈ sec(M, T ∗M) can be obtained, pointwisely, from all vectors above.

Therefore, from Lemma 1.14 we deduce the following facts, by means of a pointwise reasoning, by taking into
account the fact that the equality (1.6) involves the vectors X,Y,Z and the forms α,β, γ only pointwisely and by
considering their arbitrariness at x ∈ M .

1) dΩ = 0 if and only if [Λ,Λ] = 2E ∧ (Λ� ⊗ Λ�)(dω) and [E,Λ] = −E ∧ (LEω)�, i.e. the pair (ω,Ω) is
almost-cosymplectic-contact if and only if the 3-plet (E,Λ,ω) is almost-coPoisson–Jacobi.

2) Moreover, if dΩ = 0 and dω = 0 then [E,Λ] = 0 and [Λ,Λ] = 0, i.e. (E,Λ) is coPoisson.
On the other hand, if dΩ = 0 and (E,Λ) is coPoisson, then (Λ� ⊗Λ�)(dω) = 0 and (LEω)� = 0, i.e. dω(α�,β�) =

0 and dω(E,α�) = 0, for all 1-forms α,β ∈ sec(M, T ∗M). Then, from the splitting T M = 〈E〉 ⊕ im(Λ�), we have
dω = 0 and the pair (ω,Ω) is cosymplectic.

Hence the pair (ω,Ω) is cosymplectic if and only if the pair (E,Λ) is coPoisson.
3) Finally, if dω = Ω , hence dΩ = 0, we have [E,Λ] = −E ∧ (LEω)� = 0 and [Λ,Λ] = 2E ∧ (Λ� ⊗ Λ�)(Ω) =

−2E ∧ Λ, hence the pair (E,Λ) is Jacobi.
On the other hand, if dΩ = 0 and the pair (E,Λ) is Jacobi, then (Λ� ⊗ Λ�)(dω) = −Λ and (LEω)� = 0, i.e.

dω(α�,β�) = −Λ(α,β) and dω(E,α�) = 0, hence dω = Ω , i.e. the pair (ω,Ω) is contact.
Thus, the pair (ω,Ω) is contact if and only if the pair (E,Λ) is Jacobi. �

1.6. Darboux’s charts

First, let us consider an almost-cosymplectic-contact structure (ω,Ω).

Note 1.16. [11] In a neighborhood of each x ∈ M there exists a local chart (a Darboux’s chart) (t, xi, xi+n), with
i = 1, . . . , n, adapted to an almost-cosymplectic-contact structure (ω,Ω), i.e. such that

ω = dt +
∑

1�i�n

(
ωidxi + ωi+ndxi+n

)
, Ω =

∑
1�i�n

dxi ∧ dxi+n, (1.7)

where ωi,ωi+n ∈ map(M,R).
Indeed, the above almost-cosymplectic-contact pair is cosymplectic if, for instance, ωi = ωi+n = 0 [1] and contact

if, for instance, ωi = −xi+n and ωi+n = 0.

Then, let us consider an almost-coPoisson–Jacobi structure (E,Λ,ω). We can find Darboux’s charts adapted to
this structure, analogously to the case of almost-cosymplectic-contact structures.

Lemma 1.17. Let α,β ∈ sec(M, T ∗M). Then, we have:
[
E,α�

] = (
LEα − α(E)(LEω)

)� + Λ(LEω,α)E,[
α�,β�

] = (
dΛ(α,β) + 2iβ�dα − α(E)(iβ�dω) − 2iα�dβ + β(E)(iα�dω)

)�

− dω
(
α�,β�

)
E.
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Proof. For each h ∈ map(M,R), we have:
[
E,α�

]
.h = E.

(
α�.h

) − α�.(E.h) = E.Λ(α,dh) − Λ
(
α,d(E.h)

)
= i[E,Λ](α ∧ dh) + Λ(LEα,dh)

= −iE∧(LEω)�(α ∧ dh) + Λ(LEα,dh)

= −iEα
(
(LEω)�.h

) + Λ(LEω,α)(E.h) + Λ(LEα,dh)

= (
LEα − α(E)(LEω)

)�
.h + Λ(LEω,α)E.h,

and
[
α�,β�

]
.h = α�.

(
β�.h

) − β�.
(
α�.h

)
= Λ

(
α,dΛ(β,dh)

) − Λ
(
β,dΛ(α,dh)

)
= − 1

2 i[Λ,Λ](α ∧ β ∧ dh) − Λ
(
dh,dΛ(α,β)

) + 2dα
(
β�, dh�

) − 2dβ
(
α�, dh�

)
= (

dΛ(α,β) + 2iβ�dα − 2iα�dβ
)�

.h − iE∧(Λ�⊗Λ�)dω(α ∧ β ∧ dh)

= (
dΛ(α,β) + 2iβ�dα − α(E)(iβ�dω) − 2iα�dβ + β(E)(iα�dω)

)�
.h

− dω
(
α�,β�

)
E.h. �

Proposition 1.18. If f,g ∈ map(M,R), then
[
E,df �

] = (
d(E.f ) − (E.f )(LEω)

)� + Λ(LEω,df )E,[
df �, dg�

] = (
dΛ(df,dg) − (E.f )(idg�dω) + (E.g)(idf �dω)

)� − dω
(
df �, dg�

)
E.

Proof. There are consequences of the above Lemma 1.17, by putting α = df and β = dg. �
Theorem 1.19. The (2s + 1)-dimensional distribution 〈E〉 ⊕ imΛ� is completely integrable and (E,Λ,ω) induces a
regular almost-coPoisson–Jacobi structure on the integral submanifolds of 〈E〉 ⊕ imΛ�.

Proof. By the above Lemma 1.17, the distribution 〈E〉 ⊕ imΛ� is involutive and of constant rank, so it is completely
integrable.

Let us consider a (2s + 1)-dimensional integral submanifold ι :N ↪→ M passing through x ∈ M .
If f̃ , g̃ ∈ map(N ,R), then we can extend them (locally) to f,g ∈ map(M,R), such that f̃ = f ◦ ι, g̃ = g ◦ ι. Then,

we define EN ∈ sec(N , T N) and ΛN ∈ sec(N ,Λ2T N) by:

EN .f̃ = E.f, ΛN (df̃ , dg̃) = Λ(df,dg) = (
df �

)
.g = −(dg)�.f.

Indeed, the above EN and ΛN depend only on f̃ , g̃, since they are computed along the integral curves of
E, (df )�, (dg)� through x and these curves belong to N .

Clearly, (EN ,ΛN ) satisfy the equalities:

EN (ι∗α) = E(α) ◦ ι, ΛN (ι∗α, ι∗β) = Λ(α,β) ◦ ι, ∀α,β ∈ sec(M, T ∗M).

Then, from the naturality of the Schouten bracket [10], we have:

[EN ,ΛN ](ι∗α, ι∗β) = [E,Λ](α,β) ◦ ι,

[ΛN ,ΛN ](ι∗α, ι∗β, ι∗γ ) = [Λ,Λ](α,β, γ ) ◦ ι.

Let us set ωN = ι∗ω and Λ�N :T ∗N → T N : ι∗α �→ (ι∗α)�N =: iι∗αΛN .
Then, iEω = 1 implies iEN ωN = 1 and iωΛ = 0 implies iωN ΛN = 0.
Moreover, for each α,β ∈ sec(M, T ∗M), we have:

ι∗(LEω) = LEN ωN and dωN

(
(ι∗α)�N , (ι∗β)�N

) = dω
(
α�,β�

) ◦ ι.
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Then, we have:

[EN ,ΛN ](ι∗α, ι∗β) = [E,Λ](α,β) ◦ ι

= −(
E ∧ (LEω)�

)
(α,β) ◦ ι = −E(α)Λ(LEω,β) ◦ ι + E(β)Λ(LEω,α) ◦ ι

= −EN (ι∗α)ΛN

(
ι∗(LEω), ι∗β

) + EN (ι∗β)ΛN

(
ι∗(LEω), ι∗α

)
= −(

EN ∧ (LEN ωN )�N
)
(ι∗α, ι∗β).

Similarly, we have:

[ΛN ,ΛN ](ι∗α, ι∗β, ι∗γ ) = [Λ,Λ](α,β, γ ) ◦ ι

= 2
(
E ∧ (

Λ� ⊗ Λ�
)
dω

)
(α,β, γ ) ◦ ι

= 2
(
E(α)dω

(
β�, γ �

) − E(β)dω
(
α�, γ �

) + E(γ )dω
(
α�,β�

)) ◦ ι

= 2
(
EN (ι∗α)dωN

(
(ι∗β)�N , (ι∗γ )�N − EN (ι∗β)dωN

(
(ι∗α)�N , (ι∗γ )�N

)
+ EN (ι∗γ )dωN

(
(ι∗α)�N , (ι∗β)�N

))
= 2

(
EN ∧ (

Λ
�
N ⊗ Λ

�
N

)
dωN

)
(ι∗α, ι∗β, ι∗γ ).

Hence, (EN ,ΛN ,ωN ) is a regular almost-coPoisson–Jacobi 3-plet on N . �
Proposition 1.20. In a neighborhood of each x ∈ M there exists a local chart (a Darboux’s chart) (W ; t, xi, xi+n),
with i = 1, . . . , n, adapted to the almost-coPoisson–Jacobi 3-plet (E,Λ,ω) i.e. such that

E = ∂

∂t
,

Λ =
∑

1�i�s

∂

∂xi+n
∧ ∂

∂xi
−

∑
1�i�s

(
ωi+n ∂

∂t
∧ ∂

∂xi
− ωi ∂

∂t
∧ ∂

∂xi+n

)
,

ω = dt +
∑

1�i�n

(
ωidxi + ωi+ndxi+n

)
, (1.8)

where ωi , ωi+n ∈ map(M,R).

Proof. First, let us suppose that Λ be of rank 2s = 2n and let us consider a Darboux’s chart adapted to the dual
almost-cosymplectic-contact pair (ω,Ω). Then, from (1.7) we can easily see that (1.8) is satisfied.

Next, let us suppose that 2s < 2n.
Let s = 0. Then, iEω = 1 implies that there exists a chart (t, xi, xi+n) such that

E = ∂

∂t
, Λ = 0, ω = dt +

∑
1�i�n

(
ωidxi + ωi+ndxi+n

)
.

Let s > 0. Then, let us consider an integral submanifold N of the distribution 〈E〉⊕ imΛ�. There exists a coordinate
neighborhood (W ; t, xi, xi+n) of each x ∈ N , with i = 1, . . . , n, such that N is given by xj = 0, xj+n = 0, with
j = s + 1, . . . , n, and such that the coordinate neighborhood (W ∩ N; t, xi, xn+i ), with i = 1, . . . , s, is the Darboux’s
chart on N adapted to (EN ,ΛN ,ωN ). �
Remark 1.21. It is easy to see that (E,Λ,ω) given by (1.8) satisfies the conditions for almost-coPoisson–Jacobi
3-plets.

Remark 1.22. Let (E,Λ) be a contravariant pair with s < n. Then, there exists a 1-form ω which satisfies iEω = 1
and iωΛ = 0 (hence also iω(E ∧ Λs) = Λs ). But such a form is not unique.

Moreover, the 3-plet (E,Λ,ω) turns out to be almost-coPoisson–Jacobi if and only if the equalities
[E,Λ] = −E ∧ (LEω)� and [Λ,Λ] = E ∧ (Λ� ⊗ Λ�)(dω) are satisfied. We can see it in adapted Darboux’s charts;
in fact, if the coordinate expressions of E and Λ are given by (1.8), then the functions ωi,ωi+n, with i = 1, . . . , s, are
given uniquely by Λ, but ωi,ωi+n, with i = s + 1, . . . , n, are arbitrary, so ω is not unique.
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Note 1.23. The almost-coPoisson–Jacobi 3-plet given in Darboux’s charts by (1.8) is coPoisson if, for instance,
ωi = ωi+n = 0, with i = 1, . . . , s, and is Jacobi if, for instance, ωi = −xi+n, ωi+n = 0, with i = 1, . . . , s.

2. Lie algebra of functions

Next, we study the algebras of functions associated with the geometrical structure given by a pre coPoisson pair.

2.1. Poisson algebra of functions

First, let us start by considering just a 2-vector Λ ∈ sec(M,Λ2T M).

Definition 2.1. The Poisson bracket of functions f,g ∈ map(M,R) is defined as

{f,g} =: idf ∧dgΛ = iΛ(df ∧ dg) = Λ(df,dg). (2.1)

We have very well known properties (see, for instance, [16]).

Proposition 2.2. For each f,g,h ∈ map(M,R), we have:

{{f,g}, h} + {{g,h}, f } + {{h,f }, g} = 1

2
i[Λ,Λ](df ∧ dg ∧ dh), (2.2)

i.e. the following facts are equivalent:

(1) {{f,g}, h} + {{g,h}, f } + {{h,f }, g} = 0, ∀f,g,h ∈ map(M,R).
(2) The bracket {,} is a Lie bracket.
(3) (Λ) is a Poisson structure, i.e. [Λ,Λ] = 0.
(4) [df �, dg�].h = d{f,g}�.h, ∀f,g,h ∈ map(M,R).

Thus, a Poisson structure yields a Lie algebra of functions (the Poisson algebra of functions) and the map:

Λ� ◦ d : map(M,R) → sec(M, T M)

is a Lie algebra homomorphism with respect to the Poisson bracket of functions and the Lie bracket of vector fields.

Corollary 2.3. If (E,Λ) is a coPoisson pair, then Λ defines a Poisson algebra of functions.

2.2. Jacobi algebra of functions

Then, let us consider a contravariant pair (E,Λ).

Remark 2.4. If (E,Λ) is a Jacobi pair with s > 0, then the Poisson bracket does not satisfy the Jacobi identity.
In fact, the Jacobi identity turns out to be equivalent to E ∧ Λ = 0. But this condition conflicts with our hypothesis
E ∧ Λs �≡ 0.

Definition 2.5. The Hamiltonian lift of a function f ∈ map(M,R) is defined to be the vector field:

Xf =: idf Λ − f E = df � − f E. (2.3)

Definition 2.6. The Jacobi bracket of two functions f,g ∈ map(M,R) is defined as

[f,g] =: {f,g} − f E.g + gE.f = Λ(df,dg) − f E.g + gE.f. (2.4)

Lemma 2.7. For each f,g ∈ map(M,R), we have:

E.{f,g} = {E.f,g} + {f,E.g} + i[E,Λ](df ∧ dg). (2.5)
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Proof. We have:

i[E,Λ](df ∧ dg) = iEdiΛ(df ∧ dg) − iΛdiE(df ∧ dg)

= iEdiΛ(df ∧ dg) − iΛd(E.f dg − E.gdf )

= iEdiΛ(df ∧ dg) − iΛ
(
d(E.f ) ∧ dg

) − iΛ
(
df ∧ d(E.g)

)
= E.{f,g} − {E.f,g} − {f,E.g}. �

Proposition 2.8. (See [11,12,16].) For each f,g,h ∈ map(M,R), we have

[[f,g], h] + [[g,h], f ] + [[h,f ], g]

=
(

1

2
i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ]

(
f dg ∧ dh + g dh ∧ df + hdf ∧ dg

)
. (2.6)

Proposition 2.9. (See [9].) The Jacobi bracket defines a Lie algebra of functions if and only if [E,Λ] = 0 and
[Λ,Λ] = −2E ∧ Λ.

So, a Jacobi pair (E,Λ) defines a Lie algebra of functions with respect to the Jacobi bracket (the Jacobi algebra
of functions).

Remark 2.10. A coPoisson pair does not define a Lie algebra of functions with respect to the Jacobi bracket. Indeed,
for a coPoisson pair, we have

[[f,g], h] + [[g,h], f ] + [[h,f ], g] = iE∧Λ(df ∧ dg ∧ dh),

so, in general, the Jacobi identity is not satisfied. Indeed, it is satisfied in the particular case when E ∧ Λ = 0, but this
condition conflicts with our hypothesis E ∧ Λs �≡ 0.

Proposition 2.11. (See [12].) For each f,g,h ∈ map(M,R), we have:

([Xf ,Xg] − X[f,g]
)
.h

= −
(

1

2
i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) − f i[E,Λ](dg ∧ dh) − gi[E,Λ](df ∧ dh).

Hence, the following facts are equivalent:

(1) [Xf ,Xg] = X[f,g], ∀f,g ∈ map(M,R);
(2) the Hamiltonian lift of functions with respect to a pair (E,Λ) is a Lie algebra homomorphism with respect to the

Jacobi bracket and the Lie bracket of vector fields;
(3) the pair (E,Λ) is a Jacobi structure, i.e. [E,Λ] = 0 and [Λ,Λ] = −2E ∧ Λ.

Note 2.12. Summing up, for the convenience of the reader, we provide a schematic table with the main Lie brackets
discussed above:

1) for a Poisson structure (Λ), we have the Poisson bracket, the Hamiltonian lift and a Lie algebra homomorphism,
according to the equalities,

{f,g} =: Λ(df,dg), Xf =: idf Λ, [Xf ,Xg] = X{f,g};
2) for a Jacobi structure (E,Λ), we have the Jacobi bracket, the Hamiltonian lift and a Lie algebra homomorphism,

according to the equalities,

[f,g] =: {f,g} − f E.g + gE.f, Xf =: idf Λ − f E, [Xf ,Xg] = X[f,g].
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2.3. Uniqueness of the Jacobi structure

Now, we revisit the well known Proposition 2.9 [9] in the context of our almost-coPoisson–Jacobi structures.
Actually, we prove that an almost-coPoisson–Jacobi 3-plet (E,Λ,ω) defines a Lie algebra of functions with respect
to the Jacobi bracket if and only if the pair (E,Λ) is Jacobi.

Let us consider an almost-coPoisson–Jacobi 3-plet (E,Λ,ω).

Lemma 2.13. The following facts are equivalent:

(1) for each f,g,h ∈ map(M,R),( 1
2 i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ](f dg ∧ dh + g dh ∧ df + hdf ∧ dg) = 0,

(2) for each f,g ∈ map(M,R),

{f,g} = −dω(Xf ,Xg). (2.7)

Proof. We have:

iΛ�(LEω)df = −dω
(
E,df �

)
.

Then,
( 1

2 i[Λ,Λ] + iE∧Λ

)
(df ∧ dg ∧ dh) + i[E,Λ](f dg ∧ dh + g dh ∧ df + hdf ∧ dg)

= iE∧(
Λ+(

Λ�⊗Λ�
)
(dω)

)(df ∧ dg ∧ dh) + iE∧Λ�(LEω)(f dg ∧ dh + g dh ∧ df + hdf ∧ dg)

= (E.f )
(
Λ(dg,dh) + (Λ� ⊗ Λ�)(dω)(dg, dh)

)
+ (E.g)

(
Λ(dh,df ) + (

Λ� ⊗ Λ�
)
(dω)(dh, df )

)
+ (E.h)

(
Λ(df,dg) + (

Λ� ⊗ Λ�
)
(dω)(df, dg)

)
+ f (E.g)dω

(
E,dh�

) − f (E.h)dω
(
E,dg�

)
+ g(E.h)dω

(
E,df �

) − g(E.f )dω
(
E,dh�

)
+ h(E.f )dω

(
E,dg�

) − h(E.g)dω
(
E,df �

)
= (E.f )

({g,h} + dω
(
dg�, dh�

) − gdω
(
E,dh�

) + hdω
(
E,dg�

))
+ (E.g)

({h,f } + dω
(
dh�, df �

) − hdω
(
E,df �

) + f dω
(
E,dh�

))
+ (E.h)

({f,g} + dω
(
df �, dg�

) − f dω
(
E,dg�

) + gdω
(
E,df �

))
= (E.f )

({g,h} + dω
(
dg� − gE,dh� − hE

))
+ (E.g)

({h,f } + dω
(
dh� − hE,df � − f E

))
+ (E.h)

({f,g} + dω
(
df � − f E,dg� − gE

))
. �

Proposition 2.14. The almost-coPoisson–Jacobi structure (E,Λ,ω) yields a Lie algebra of functions with respect to
the Jacobi bracket if and only if the Poisson bracket satisfies (2.7).

Proof. It follows from the above Lemma 2.13 end from Lemma 2.8. �
Corollary 2.15. A Jacobi pair (E,Λ) yields a Lie algebra with respect to the Jacobi bracket.

A coPoisson pair (E,Λ) yields a Lie algebra with respect to the Jacobi bracket if and only if Λ = 0.

Proof. Let (E,Λ) be a Jacobi pair. Then, for each α,β ∈ sec(M, T ∗M), we have:

dω
(
α�,β�

) = −Λ(α,β) and dω
(
E,α�

) = 0,
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hence, for each f,g ∈ map(M,R), we obtain

{f,g} =: Λ(df,dg) = −dω
(
df �, dg�

) = −dω(Xf ,Xg),

hence condition (2.7) is satisfied.
Let (E,Λ) be a coPoisson pair. Then, we have dω = 0, hence condition (2.7) is satisfied if and only if {f,g} = 0,

i.e. if and only if Λ = 0. �
Theorem 2.16. An almost-coPoisson–Jacobi 3-plet (E,Λ,ω) yields a Lie algebra of functions with respect to the
Jacobi bracket if and only if the pair (E,Λ) is Jacobi.

Proof. It is sufficient to prove that (2.7) implies that the pair (E,Λ) is Jacobi.
We can prove it in a local chart.
In a Darboux’s chart adapted to an almost-coPoisson–Jacobi 3-plet (E,Λ,ω) according to (1.8) we have:

Xf =
(

−f +
∑

1�i�s

(
ωi+n ∂f

∂xi
− ωi ∂f

∂xi+n

))
∂

∂t

+
∑

1�i�s

(
∂f

∂xi+n
− ωi+n ∂f

∂t

)
∂

∂xi
+

∑
1�i�s

(
ωi ∂f

∂t
− ∂f

∂xi

)
∂

∂xi+n
. (2.8)

Then,

dω(Xf ,Xg) =
(

f
∂g

∂t
− g

∂f

∂t

)
.

s∑
i=1

(
∂ωi

∂t
ωi+n − ∂ωi+n

∂t
ωi

)

+
∑

1�i�s

(
f

∂g

∂xi
− g

∂f

∂xi

)
∂ωi+n

∂t
−

s∑
i=1

(
f

∂g

∂xi+n
− g

∂f

∂xi+n

)
∂ωi

∂t

+
∑

1�i,j�s

(
∂f

∂t

∂g

∂xi
− ∂g

∂t

∂f

∂xi

)
.

(
ωj+nωi+n ∂ωj

∂t
− ωjωi+n ∂ωj+n

∂t

+ ωj+n ∂ωi+n

∂xj
− ωj+n ∂ωj

∂xi+n
+ ωj ∂ωj+n

∂xi+n
− ωj ∂ωi+n

∂xj+n

)

+
∑

1�i,j�s

(
∂f

∂t

∂g

∂xi+n
− ∂g

∂t

∂f

∂xi+n

)
.

(
ωjωi ∂ωj+n

∂t
− ωj+nωi ∂ωj

∂t

+ ωj+n ∂ωj

∂xi
− ωj+n ∂ωi

∂xj
+ ωj ∂ωj+n

∂xi+n
− ωj ∂ωj+n

∂xi
+ ωj ∂ωi

∂xj+n
− ωj+n ∂ωj

∂xi+n

)

+
∑

1�i,j�s

∂f

∂xi

∂g

∂xj

(
ωj+n ∂ωi+n

∂t
− ωi+n ∂ωj+n

∂t
+ ∂ωi+n

∂xj+n
− ∂ωj+n

∂xi+n

)

+
∑

1�i,j�s

(
∂f

∂xi

∂g

∂xj+n
− ∂g

∂xi

∂f

∂xj+n

)
.

(
ωi+n ∂ωj

∂t
− ωj ∂ωi+n

∂t
+ ∂ωi+n

∂xj
− ∂ωj

∂xi+n

)

+
s∑

1�i,j�s

∂f

∂xi+n

∂g

∂xj+n

(
ωj ∂ωi

∂t
− ωi ∂ωj

∂t
+ ∂ωj

∂xi
− ∂ωi

∂xj

)
.

On the other hand,

{f,g} =
∑

1�i�s

(
∂f

∂xi+n

∂g

∂xi
− ∂g

∂xi+n

∂f

∂xi

− ωi+n

(
∂f ∂g

i
− ∂g ∂f

i

)
+ ωi

(
∂f ∂g

i+n
− ∂g ∂f

i+n

))
.

∂t ∂x ∂t ∂x ∂t ∂x ∂t ∂x
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Now, if we assume {f,g} = −dω(Xf ,Xg), then we obtain the following system of partial differential equations,
by comparing the above expressions, for all i, j = 1, . . . , s,

0 = ∂ωi+n

∂t
, 0 = ∂ωi

∂t
, 0 =

∑
1�j�s

(
ωj ∂ωj+n

∂xi+n
− ωj+n ∂ωj

∂xi+n

)
,

0 =
(

∂ωj

∂xi
− ∂ωi

∂xj

)
, 0 =

(
∂ωi+n

∂xj+n
− ∂ωj+n

∂xi+n

)
, δi

j =
(

∂ωi+n

∂xj
− ∂ωj

∂xi+n

)
.

Now, if we use the above identities, then we obtain [E,Λ] = 0 and [Λ,Λ] = −2E ∧ Λ, so, (E,Λ) is a Jacobi
pair. �
3. Examples: dynamical structures

As examples of the geometric structures analyzed above, now we discuss the dynamical structures arising on
the phase space of a spacetime in classical relativistic theories. We consider the relativistic Galilei and the Einstein
spacetimes, emphasizing the analogies and the differences between the two cases.

In order to make our theory explicitly independent from units of measurement, we introduce the “spaces of scales”
[8]. Roughly speaking, a space of scales S has the algebraic structure of R

+ but has no distinguished “basis”. We can
naturally define the tensor product of spaces of scales and the tensor product of spaces of scales and vector spaces.
We can also naturally define rational tensor powers S

m/n of a space of scales S. Moreover, we can make a natural
identification S

∗ � S
−1.

The basic objects of our theory (the metric field, the phase 2-form, the phase 2-vector, etc.) will be valued into
scaled vector bundles, that is into vector bundles multiplied tensorially with spaces of scales. In this way, each tensor
field carries explicit information on its “scale dimension”. Actually, we assume the following basic spaces of scales:
the space of time intervals T, the space of lengths L and the space of masses M. Moreover, we consider the following
“universal scales”: the speed of light c ∈ T

−1 ⊗ L and the Planck constant h̄ ∈ T
∗ ⊗ L

2 ⊗ M.
A time unit is defined to be an element u0 ∈ T, or, equivalently, its dual u0 ∈ T

∗.

3.1. Galilei spacetime

First, we study the geometrical structures arising on the phase space of a Galilei spacetime [2,5,6,14].

3.1.1. Spacetime
We assume absolute time to be an affine 1-dimensional space T associated with the vector space T̄ =: T ⊗ R.
We assume spacetime to be an oriented (3 + 1)-dimensional fibred manifold E equipped with a time fibring

t :E → T .
A spacetime chart is defined to be a chart (xλ) ≡ (x0, xi) of E, adapted to the orientation, to the fibring, to the

affine structure of T and to a time unit u0. Greek indices will span all spacetime coordinates and Latin indices will
span the fibre coordinates. In the following, we shall always refer to spacetime charts. The induced local bases of T E

and T ∗E are denoted, respectively, by (∂λ) and (dλ).
The vertical restriction of forms will be denoted by the “check” symbol ∨.
The differential of the time fibring is the scaled 1-form dt :E → T̄ ⊗ T ∗E, with coordinate expression

dt = u0 ⊗ d0.
We assume spacetime to be equipped with a scaled spacelike Riemannian metric g :E → L

2 ⊗ (V ∗E ⊗ V ∗E).
The contravariant metric is denoted by ḡ :E → L

−2 ⊗ (V E ⊗ V E).
We have the coordinate expressions:

g = gij ď
i ⊗ ďj , with gij ∈ map

(
E,L

2 ⊗ R
)
,

ḡ = gij ∂i ⊗ ∂j , with gij ∈ map
(
E,L

−2 ⊗ R
)
.
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3.1.2. Phase space
A motion is defined to be a section s :T → E. The 1st differential of a motion s is defined to be the map

ds :T → T
∗ ⊗ T E. We have dt (ds) = 1.

We assume as phase space the 1st jet space J1E of motions.
A space time chart (xλ) induces naturally a chart (xλ, xi

0) on J1E.
The velocity of a motion s is defined to be its 1st jet j1s :T → J1E.
We define the contact map to be the unique fibred morphism д :J1E → T

∗ ⊗ T E over E such that д ◦ j1s = ds,
for each motion s. We have д�dt = 1. The coordinate expression of д is:

д = u0 ⊗ д0 ≡ u0 ⊗ (
∂0 + xi

0∂i

)
.

The map д is injective. Accordingly, the 1st jet space can be naturally identified with the subbundle J1E ⊂ T
∗ ⊗

T E, of scaled vectors which project on 1 :T → T̄
∗ ⊗ T̄. Thus, the bundle J1E → E turns out to be affine and

associated with the vector bundle T
∗ ⊗ V E. Indeed, J1E ⊂ T

∗ ⊗ T E is the fibred submanifold over E characterized
by the constraint ẋ0

0 = 1.
We define also the complementary contact map θ =: 1 − д ◦ dt :J1E → T ∗E ⊗ V E. The coordinate expression of

θ is:

θ = θi ⊗ ∂i ≡ (
di − xi

0d
0) ⊗ ∂i .

3.1.3. Vertical bundle of the phase space
Let V0J1E ⊂ V J1E ⊂ T J1E be the vertical tangent subbundle over E and the vertical tangent subbundle over T ,

respectively. The affine structure of the phase space yields the equality V0J1E = J1E ×
E

(T∗ ⊗V E), hence the natural

map ν :J1E → T ⊗ (V ∗E ⊗ V0J1E), with coordinate expression ν = u0 ⊗ ď i ⊗ ∂0
i .

3.1.4. Spacetime connections
We define a spacetime connection to be a torsion free linear connection K :T E → T ∗E ⊗ T T E of the bundle

T E → E. Its coordinate expression is of the type

K = dλ ⊗ (
∂λ + Kλ

μ
νẋ

ν ∂̇μ

)
, with Kλ

μ
ν = Kν

μ
λ ∈ map(E,R).

A spacetime connection K is said to be time preserving if it preserves the time fibring, i.e. if ∇dt = 0. In coordi-
nates, this reads Kλ

0
μ = 0.

A time preserving spacetime connection K is said to be metric if it preserves the metric g, i.e. if ∇g = 0.
In coordinates, it reads:

K0
i
0 = −gij 2φ0,0j ,

K0
i
h = Kh

i
0 = −1

2
gij (2φ0,hj + ∂0ghj ),

Kk
i
h = Kh

i
k = −1

2
gij (∂hgjk + ∂kgjh − ∂jghk),

where φ ∈ sec(E,T
∗ ⊗ L

2 ⊗ Λ2T ∗E) is a scaled spacetime 2-form (which depends on K and on the chosen chart).
The vertical restriction of a metric spacetime connection K is just the Levi Civita connection of the spacetime

fibres.
A spacetime connection K is said to be a Galilei connection if it is time preserving, metric and such that its

curvature tensor R fulfills a symmetry condition which in coordinates reads Rλ
i
μ

j = Rμ
j
λ
i , where Rλ

i
μ

j =:
gjpRλ

i
μp .

3.1.5. Phase connections
We define a phase connection to be a connection of the bundle J1E → E.
A phase connection can be represented, equivalently, by a tangent valued form Γ :J1E → T ∗E ⊗ T J1E, which is

projectable over 1 :E → T ∗E ⊗ T E, or by the complementary vertical valued form ν[Γ ] :J1E → T ∗J1E ⊗ V J1E,
respectively, with coordinate expressions:

Γ = dλ ⊗ (
∂λ + Γλ

i
0∂

0
i

)
, ν[Γ ] = (

di
0 − Γλ

i
0d

λ
) ⊗ ∂0

i , with Γλ
i
0 ∈ map(J1E,R).
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The coordinate expression of an affine phase connection Γ is Γλ
i
0 = Γλ

i
0

0
px

p

0 + Γλ
i
0

0
0.

We can prove [4] that there is a natural bijective map χ :K �→ Γ between time preserving linear spacetime con-
nections K and affine phase connections Γ , with coordinate expression Γλ

i
0

0
μ = Kλ

i
μ.

3.1.6. Dynamical phase connection
The space of 2–jets of motions J2E can be naturally regarded as the affine subbundle J2E ⊂ T

∗ ⊗ T J1E, which
projects on д :J1E → T

∗ ⊗ T E.
A dynamical phase connection is defined to be a 2nd-order connection, i.e. a section γ :J1E → J2E, or, equiva-

lently, a section γ :J1E → T
∗ ⊗ T J1E, which projects on д.

The coordinate expression of a dynamical phase connection is of the type:

γ = u0 ⊗ (
∂0 + xi

0∂i + γ0
i
0∂

0
i

)
, with γ0

i
0 ∈ map(J1E,R).

If γ is a dynamical phase connection, then we have γ �dt = 1.
The contact map д and a phase connection Γ yield the section γ ≡ γ [д,Γ ] =: д�Γ : J1E → T

∗ ⊗ T J1E, which
turns out to be a dynamical phase connection, with coordinate expression,

γ0
i
0 = Γ0

i
0 + Γj

i
0x

j

0 .

In particular, a time preserving spacetime connection K yields the dynamical phase connection γ =: γ [д,K] =:
д�χ(K), with coordinate expression:

γ i
00 = Kh

i
kx

h
0 xk

0 + 2Kh
i
0x

h
0 + K0

i
0.

3.1.7. Phase 2-form and 2-vector
The metric g and a phase connection Γ yield the scaled 2-form Ω , called (scaled) phase 2-form, and the scaled

vertical 2-vector Λ, called (scaled) phase 2-vector,

Ω = Ω[g,Γ ] =: g �
(
ν[Γ ] ∧ θ

)
:J1E → T

∗ ⊗ L
2 ⊗ Λ2T ∗J1E,

Λ = Λ[g,Γ ] =: ḡ � (Γ ∧ ν) : J1E → T ⊗ L
−2 ⊗ Λ2V J1E,

with coordinate expressions:

Ω[g,Γ ] = giju
0 ⊗ (

di
0 − Γλ

i
0d

λ
) ∧ (

dj − x
j

0 d0),
Λ[g,Γ ] = giju0 ⊗ (

∂i + Γi
h

0∂
0
h

) ∧ ∂0
j .

We can easily see that dt ∧ Ω3 �≡ 0 and γ ∧ Λ3 �≡ 0.
There is a unique dynamical phase connection γ , such that γ �Ω[g,Γ ] = 0. Namely, γ = γ [д,Γ ].
In particular, a metric spacetime connection K yields the (scaled) phase 2-form Ω ≡ Ω[g,K] =: Ω[g,χ(K)] and

the (scaled) phase 2-vector Λ ≡ Λ[g,K] =: Λ[g,χ(K)] with coordinate expressions

Ω = −giju
0 ⊗ (

di − xi
0d

0) ∧ d
j

0 + ( 1
2∂jghkx

h
0 xk

0 + ∂0ghjx
h
0 + φ0,0j

)
u0 ⊗ d0 ∧ dj

+ ( 1
2 (∂ighj − ∂jghi)x

h
0 + 1

2φ0,ij

)
u0 ⊗ di ∧ dj ,

Λ = giju0 ⊗ ∂i ∧ ∂0
j − 1

2
gihgjk

(
(∂kglr − ∂hglk)x

l
0 + φ0,kh

)
u0 ⊗ ∂0

i ∧ ∂0
j .

3.1.8. Dynamical structures of the phase space
We have the following result [2,5].

Theorem 3.1. Let us consider a spacetime connection K and the induced objects Γ =: χ(K), γ =: γ [д,Γ ],
Ω =: Ω[g,Γ ] and Λ =: Λ[g,Γ ]. Then, the following assertions are equivalent.

(1) K is a Galilei connection.
(2) Ω is closed, i.e. (−dt,Ω) is a scaled cosymplectic pair.
(3) [γ,Λ] = 0 and [Λ,Λ] = 0, i.e. (−γ,Λ) is a scaled (regular) coPoisson pair.

Moreover, the cosymplectic pair (−dt,Ω) and the coPoisson pair (−γ,Λ) are mutually dual.
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Remark 3.2. If K is a time preserving spacetime connection, then the induced pairs (−dt,Ω[g,K]) and
(−γ [д,K],Λ[g,K]) are scaled.

On the other hand, some results of the general theory of geometrical structures developed in the first two sections
requires unscaled pairs.

Indeed, if we refer to a particle of mass m ∈ M and consider the universal scales h̄ ∈ T
−1 ⊗ L

2 ⊗ M and
c ∈ T

−1 ⊗ L, then we obtain unscaled pairs in the following natural way.
We have the unscaled spacetime 1-form:

mc2

h̄
dt :E → T ∗E.

Moreover, the rescaled contact map Д =: h̄

mc2 д :J1E → T E yields the unscaled phase vector field:

γ ≡ γ [Д,K] = h̄

mc2
γ [д,K] :E → T J1E.

Furthermore, the rescaled metric G =: m
h̄
g :E → T ⊗ V ∗E ⊗ V ∗E yields the unscaled phase 2-form and phase

2-vector:

Ω ≡ Ω[G,K] = m

h̄
Ω[g,K] : J1E → Λ2T ∗J1E,

Λ ≡ Λ[G,K] = h̄

m
Λ[g,K] : J1E → Λ2T J1E.

Thus, if K is a Galilei spacetime connection, then (−mc2

h̄
dt,Ω) and (− h̄

mc2 γ,Λ) turn out to be mutually dual
unscaled cosymplectic and coPoisson pairs of the phase space.

Indeed, the Plank constant does not play any direct role in classical mechanics; nevertheless, such a scale is
necessary for getting unscaled objects as above.

3.2. Einstein spacetime

Then, we study the geometrical structures arising on the phase space of an Einstein spacetime [3,7].

3.2.1. Spacetime
We assume spacetime to be an oriented 4-dimensional manifold E equipped with a scaled Lorentzian metric

g :E → L
2 ⊗ (T ∗E ⊗ T ∗E), with signature (− + ++); we suppose spacetime to be time oriented. The contravariant

metric is denoted by ḡ :E → L
−2 ⊗ (T E ⊗ T E).

A spacetime chart is defined to be a chart (xλ) ≡ (x0, xi) ∈ map(E,R × R
3) of E, which fits the orientation of

spacetime and such that the vector field ∂0 is timelike and time oriented and the vector fields ∂1, ∂2, ∂3 are spacelike.
Greek indices λ,μ, . . . will span spacetime coordinates, while Latin indices i, j, . . . will span spacelike coordinates.
In the following, we shall always refer to spacetime charts. The induced local bases of T E and T ∗E are denoted,
respectively, by (∂λ) and (dλ). We have the coordinate expressions:

g = gλμdλ ⊗ dμ, with gλμ ∈ map
(
E,L

2 ⊗ R
)
,

ḡ = gλμ∂λ ⊗ ∂μ, with gλμ ∈ map
(
E,L

−2 ⊗ R
)
.

3.2.2. Jets of submanifolds
In view of the definition of the phase space, let us consider a manifold M of dimension n and recall a few basic

facts concerning jets of submanifolds [15].
Let k � 0 be an integer. A k-jet of 1-dimensional submanifolds of M at x ∈ M is defined to be an equiv-

alence class of 1-dimensional submanifolds touching each other at x with a contact of order k. The k-jet of a
1-dimensional submanifold s :N ↪→ M at x ∈ N is denoted by jks(x). The set of all k-jets of all 1-dimensional
submanifolds at x ∈ M is denoted by Jkx(M,1). The set Jk(M,1) =: ⊔

x∈M Jkx(M,1) is said to be the k-jet space
of 1-dimensional submanifolds of M . In particular, for k = 0, we have the natural identification J0(M,1) = M , given
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by j0s(x) = x, for each 1-dimensional submanifold s :N ↪→ M . For each integers k � h � 0, we have the natural
projection πk

h :Jk(M,1) → Jh(M,1) : jks(x) �→ jhs(x).
A chart of M is said to be divided if the set of its coordinate functions is divided into two subsets of 1 and

n − 1 elements. Our typical notation for a divided chart will be (x0, xi), with 1 � i � n − 1. A divided chart and a
1-dimensional submanifold s :N ↪→ M are said to be related if the map x̆0 =: x0|N ∈ map(N ,R) is a chart of N . In
such a case, the submanifold N is locally characterized by si ◦ (x̆0)−1 =: (xi ◦ s) ◦ (x̆0)−1 ∈ map(R,R). In particular,
if the divided chart is adapted to the submanifold, then the chart and the submanifold are related.

Let us consider a divided chart (x0, xi) of M .
Then, for each submanifold s :N ↪→ M which is related to this chart, the chart yields naturally the local fibred

chart (x0, xi;xi
α)1�|α|�k ∈ map(Jk(M,1), R

n × R
k(n−1)) of Jk(M,1), where α =: (h) is a multi-index of “range” 1

and “length” |α| = h and the functions xi
α are defined by xi

α ◦ j1N =: ∂0...0s
i , with 1 � |α| � k.

We can prove the following facts:
1) the above charts (x0, xi;xi

α) yield a smooth structure of Jk(M,1);
2) for each 1-dimensional submanifold s :N ⊂ M and for each integer k � 0, the subset jks(N) ⊂ Jk(M,1) turns

out to be a smooth 1-dimensional submanifold;
3) for each integers k � h � 1, the maps πk

h :Jk(M,1) → Jh(M,1) turn out to be smooth bundles.
We shall always refer to such divided charts (x0, xi) of M and to the induced fibred charts (x0, xi;xi

α) of Jk(M,1).

Let m1 ∈ J1(M,1), with m0 = π1
0 (m1) ∈ M . Then, the tangent spaces at m0 of all 1-dimensional subman-

ifolds s :N ↪→ M , such that j1s(m0) = m1, coincide. Accordingly, we denote by T [m1] ⊂ Tm0M the tangent
space at m0 of the above 1-dimensional submanifolds N generating m1. We have the natural fibred isomorphism
J1(M,1) → Grass(M,1) :m1 �→ T [m1] ⊂ Tm0M over M of the 1st jet bundle with the Grassmannian bundle of di-
mension 1. If s :N ↪→ M is a 1-dimensional submanifold, then we obtain T [j1s] = span〈∂0 + ∂0s

i∂i〉, with reference
to a related chart.

3.2.3. Phase space
A motion is defined to be a 1-dimensional timelike submanifold s :T ↪→ E.
For every arbitrary choice of a “proper time origin” t0 ∈ T , we obtain the “proper time scaled function” given by

the equality σ :T → T̄ : t �→ 1
c

∫
[t0,t] ‖ ds

dx̆0 ‖dx̆0.

This map yields, at least locally, a bijection T → T̄, hence a (local) affine structure of T associated with the
vector space T̄. Indeed, this (local) affine structure does not depend on the choice of the proper time origin and of the
spacetime chart.

Let us choose a time origin t0 ∈ T and consider the associated proper time scaled function σ :T → T̄ and the
induced linear isomorphism T T → T × T̄. Moreover, let us consider a spacetime chart (xλ) and the induced chart
(x̆0) ∈ map(T ,R). Let us set ∂0s

λ =: dsλ

dx̆0 .

The 1st differential of the motion s is defined to be the map ds =: ds
dσ

:T → T
∗ ⊗ T E.

We have g(ds, ds) = −c2.
We assume as phase space the subspace J1E ⊂ J1(E,1) consisting of all 1-jets of motions.
For each 1-dimensional submanifold s :T ⊂ E and for each x ∈ T , we have j1s(x) ∈ J1E if and only if

T [j1s(x)] = TxT is timelike.
Any spacetime chart (x0, xi) is related to each motion s. Hence, the fibred chart (x0, xi, xi

0) is defined on tubelike
open subsets of J1E.

We shall always refer to the above fibred charts.
The velocity of a motion s is defined to be its 1-jet j1s :T → J1(E,1).
We define the contact map to be the unique fibred morphism д :J1E → T̄

∗ ⊗ T E over E, such that д ◦ j1s = ds,
for each motion s. We have g(д,д) = −c2. The coordinate expression of д is:

д = cα0(∂0 + xi
0∂i

)
, where α0 =: 1/

√∣∣g00 + 2g0j x
j

0 + gij x
i
0x

j

0

∣∣.
The map д :J1E → T

∗ ⊗ T E is injective. Indeed, it makes J1E ⊂ T
∗ ⊗ T E the fibred submanifold over E

characterized by the constraint gλμẋλẋ
μ = −(c0)

2.
0 0



J. Janyška, M. Modugno / J. Math. Pures Appl. 91 (2009) 211–232 229
We define the time form to be the map τ =: − 1
c2 g�(д) :J1E → T̄ ⊗ T ∗E. We have τ(д) = 1, and ḡ(τ, τ ) = − 1

c2 .
The coordinate expression of τ is:

τ = τλd
λ, where τλ = −α0

c

(
g0λ + giλx

i
0

)
.

We define also the complementary contact map θ =: 1 − д ⊗ τ :J1E → T ∗E ⊗ T E. The coordinate expression
of θ is:

θ = dλ ⊗ ∂λ + (α0)2(g0λ + giλx
i
0

)
dλ ⊗ (

∂0 + x
j

0 ∂j

)
.

3.2.4. Vertical bundle of the phase space
Let V J1E ⊂ T J1E be the vertical tangent subbundle over E. The vertical prolongation of the contact map yields

the mutually inverse linear fibred isomorphisms:

ντ :J1E → T ⊗ V ∗
τ E ⊗ V J1E and ν−1

τ :J1E → V ∗J1E ⊗ T
∗ ⊗ VτE,

with coordinate expressions,

ντ = 1

cα0

(
di − xi

0d
0) ⊗ ∂0

i , ν−1
τ = cα0di

0 ⊗ (
∂i − cα0τi

(
∂0 + x

p

0 ∂p

))
.

Thus, for each Y ∈ sec(J1E,V J1E) and X ∈ sec(E, T E), we obtain:

ν−1
τ (Y ) ∈ fib(J1E,T

∗ ⊗ VτE) and ντ (X) ∈ sec(J1E,T ⊗ V J1E),

with coordinate expressions,

ν−1
τ (Y ) = cα0Y i

0

(
∂i − cα0τi

(
∂0 + x

p

0 ∂p

))
and ντ (X) = 1

cα0
X̃i∂0

i ,

where X̃i = Xi − xi
0X

0.

3.2.5. Spacetime connections
We define a spacetime connection to be a torsion free linear connection K :T E → T ∗E ⊗ T T E of the bundle

T E → E. Its coordinate expression is of the type:

K = dλ ⊗ (
∂λ + Kλ

ν
μẋμ∂̇ν

)
, with Kμ

ν
λ = Kλ

ν
μ ∈ map(E,R).

We denote by K[g] the Levi Civita connection, i.e. the torsion free linear spacetime connection such that ∇g = 0.

3.2.6. Phase connections
We define a phase connection to be a connection of the bundle J1E → E.
A phase connection can be represented, equivalently, by a tangent valued form Γ :J1E → T ∗E ⊗T J1E, which is

projectable over 1 :E → T ∗E ⊗ T E, or by the complementary vertical valued form ν[Γ ] :J1E → T ∗J1E ⊗V J1E,
or by the vector valued form ντ [Γ ] =: ν−1

τ ◦ ν[Γ ] : J1E → T ∗J1E ⊗ (T∗ ⊗ VτE). Their coordinate expressions are:

Γ = dλ ⊗ (
∂λ + Γλ

i
0∂

0
i

)
, ν[Γ ] = (

di
0 − Γλ

i
0d

λ
) ⊗ ∂0

i ,

ντ [Γ ] = cα0(di
0 − Γλ

i
0d

λ
) ⊗ (

∂i − cα0τi

(
∂0 + x

p

0 ∂p

))
, with Γλ

i
0 ∈ map(J1E,R).

We define the curvature of a phase connection Γ to be the vertical valued 2-form:

R = R[Γ ] =: −[Γ,Γ ] :J1E → Λ2T ∗E ⊗ V J1E,

where [, ] is the Frölicher–Nijenhuis bracket.
We can prove that there is a natural map χ :K �→ Γ between linear spacetime connections K and phase connections

Γ , with coordinate expression:

Γλ
i
0 = Kλ

i
0 + Kλ

i
px

p

0 − xi
0

(
Kλ

0
0 + Kλ

0
px

p

0

)
.



230 J. Janyška, M. Modugno / J. Math. Pures Appl. 91 (2009) 211–232
3.2.7. Dynamical phase connection
The space of 2-jets of motions J2E can be naturally regarded as the affine subbundle J2E ⊂ T

∗ ⊗ T J1E, which
projects on д :J1E → T

∗ ⊗ T E.
A dynamical phase connection is defined to be a 2nd-order connection, i.e. a section γ :J1E → J2E, or, equiva-

lently, a section γ :J1E → T
∗ ⊗ T J1E, which projects on д.

The coordinate expression of a dynamical phase connection is of the type:

γ = cα0(∂0 + xi
0∂i + γ0

i
0∂

0
i

)
, with γ0

i
0 ∈ map(J1E,R).

If γ is a dynamical phase connection, then we have γ � τ = 1.
The contact map д and a phase connection Γ yield the section γ ≡ γ [д,Γ ] =: д�Γ :J1E → T

∗ ⊗ T J1E, which
turns out to be a dynamical phase connection, with coordinate expression,

γ0
i
0 = Γ0

i
0 + Γj

i
0x

j

0 .

In particular, a linear spacetime connection K yields the dynamical phase connection γ =: γ [д,K] =: д�χ(K),
with coordinate expression:

γ0
i
0 = K0

i
0 + K0

i
hx

h
0 + Kh

i
0x

h
0 + Kh

i
kx

h
0 xk

0

− xi
0

(
K0

0
0 + K0

0
hx

h
0 + Kh

0
0x

h
0 + Kh

0
kx

h
0 xk

0

)
.

3.2.8. Phase 2-form and 2-vector
The metric g and a phase connection Γ yield the scaled 2-form Ω , called (scaled) phase 2-form, and the scaled

vertical 2-vector Λ, called (scaled) phase 2-vector,

Ω =: Ω[g,Γ ] =: g �
(
ντ [Γ ] ∧ θ

)
:J1E → (

T
∗ ⊗ L

2) ⊗ Λ2T ∗J1E,

Λ =: Λ[g,Γ ] =: ḡ � (Γ ∧ ντ ) :J1E → (
T ⊗ L

−2) ⊗ Λ2T J1E,

with coordinate expressions

Ω = cα0(giμ + c2τiτμ

)(
di

0 − Γλ
i
0d

λ
) ∧ dμ, Λ = 1

cα0

(
gjλ − x

j

0 g0λ
)(

∂λ + Γλ
i
0∂

0
i

) ∧ ∂0
j .

We can easily see that −c2τ ∧ Ω3 �≡ 0 and − 1
c2 γ ∧ Λ3 �≡ 0.

There is a unique dynamical phase connection γ , such that γ �Ω[g,Γ ] = 0. Namely, γ = γ [д,Γ ].
In particular, a metric and time preserving spacetime connection K yields the (scaled) phase 2-form Ω[g,K] =:

Ω[g,χ(K)] and the (scaled) phase 2-vector Λ[g,K] =: Λ[g,χ(K)] with coordinate expressions

Ω = −cα0(giμ + c2τiτμ

)(
di

0 − (
Kλ

i
0 + Kλ

i
j x

j

0 − Kλ
0

0x
i
0 − Kλ

0
j x

i
0x

j

0

)
dλ

) ∧ dμ,

Λ = 1

cα0

(
ghλ − g0λxh

0

)(
∂λ + (

Kλ
i
0 + Kλ

i
j x

j

0 − Kλ
0

0x
i
0 − Kλ

0
j x

i
0x

j

0

)
∂0
i

) ∧ ∂0
h.

3.2.9. Dynamical structures of the phase space
Let us consider a phase connection Γ and the induced phase objects γ =: γ [д,Γ ], Ω =: Ω[g,Γ ], and

Λ =: Λ[g,Γ ].
We define the Lie derivatives:

LΓ τ = (iΓ d − diΓ )τ and LRτ = (iRd + diR)τ.

Then, the following results holds [7]:

Theorem 3.3. The following assertions are equivalent.

(1) Lντ (X)LΓ τ = 0, ∀X ∈ sec(E, T E), and LRτ = 0.
(2) dΩ = 0, i.e. (−c2τ,Ω) is a (scaled) almost-cosymplectic-contact pair.
(3) [− 1

c2 γ,Λ] = 1
c2 γ ∧ Λ�(Lγ τ) and [Λ,Λ] = 2γ ∧ (Λ� ⊗ Λ�)(dτ), i.e. (− 1

c2 γ,Λ,−c2τ) is a (scaled regular)
almost-coPoisson–Jacobi 3-plet.
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Moreover, the almost-cosymplectic-contact pair (−c2τ,Ω) and the (regular) almost-coPoisson–Jacobi 3-plet
(− 1

c2 γ,Λ,−c2τ) are mutually dual.

Lemma 3.4. We have:

Ω − c2LΓ τ = −c2dτ.

Theorem 3.5. The following assertions are equivalent:

(1) LΓ τ = 0.
(2) Ω = −c2 dτ , i.e. (−c2τ,Ω) is a (scaled) contact pair.
(3) [− 1

c2 γ,Λ] = 0 and [Λ,Λ] = 2
c2 γ ∧ Λ, i.e. (− 1

c2 γ,Λ) is a (scaled regular) Jacobi pair.

Moreover, the contact pair (−c2τ,Ω) and the (regular) Jacobi pair (− 1
c2 γ,Λ) are mutually dual.

Next, let us consider a linear spacetime connection K and the induced phase objects Γ =: χ(K), γ =: γ [д,Γ ],
Ω =: Ω[g,Γ ], and Λ =: Λ[g,Γ ].

Theorem 3.6. The following assertions are equivalent:

(1) Lχ(K)τ = 0.
(2) g(Z,Z)((∇Xg)(Y,Z) − (∇Y g)(X,Z) + g(T (X,Y ),Z)) + 1

2g(Z,X)(∇Y g)(Z,Z) − 1
2g(Z,Y )(∇Xg)(Z,Z) = 0,

for each X,Y,Z ∈ sec(E, T E), where T is the torsion of K .
(3) Ω = −c2 dτ , i.e. (−c2τ,Ω) is a (scaled) contact pair.
(4) [− 1

c2 γ,Λ] = 0 and [Λ,Λ] = 2
c2 γ ∧ Λ, i.e. (− 1

c2 γ,Λ) is a (scaled regular) Jacobi pair.

Moreover, if the above conditions are fulfilled, then the contact pair (−c2τ,Ω) and the (regular) Jacobi pair
(− 1

c2 γ,Λ) are mutually dual.

Corollary 3.7. Let K be a torsion free spacetime connection. If ∇g and g ⊗∇g are symmetric (0,3) and (0,5) tensor
fields, respectively, then (−c2τ,Ω) and (− 1

c2 γ,Λ) are mutually dual contact and Jacobi pairs, respectively.

Eventually, let us consider the Levi Civita spacetime connection K[g] and the induced phase objects
Γ ≡ Γ [g] =: χ(K), γ ≡ γ [д, g] =: γ [д,Γ ], Ω ≡ Ω[g] =: Ω[g,Γ ], and Λ[g] =: Λ[g,Γ ].

Then, the equality ∇g = 0 and Theorem 3.6 yield the following result.

Theorem 3.8. We have:

(1) Ω = −c2 dτ , i.e. (−c2τ,Ω) is a (scaled) contact pair.
(2) [− 1

c2 γ,Λ] = 0 and [Λ,Λ] = 2
c2 γ ∧ Λ, i.e. (− 1

c2 γ,Λ) is a (scaled regular) Jacobi pair.

Moreover, the contact pair (−c2τ,Ω) and the (regular) Jacobi pair (− 1
c2 γ,Λ) are mutually dual.

Remark 3.9. If K is a spacetime connection, then the induced pairs (−c2τ,Ω) and (− 1
c2 γ,Λ) are scaled.

On the other hand, some results of the general theory of geometrical structures developed in the first two sections
requires unscaled pairs.

Indeed, if we refer to a particle of mass m ∈ M and consider the universal scales h̄ ∈ T
−1 ⊗ L

2 ⊗ M and
c ∈ T

−1 ⊗ L, then we obtain unscaled pairs in the following natural way.
We have the unscaled spacetime 1-form:

−mc2

τ : E → T ∗E.

h̄
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Moreover, the rescaled contact map Д =: h̄

mc2 д : J1E → T E yields the unscaled phase vector field:

−γ [Д,K] = − h̄

mc2
γ [д,K] : E → T J1E.

Furthermore, the rescaled metric G =: m
h̄
g : E → T ⊗ T ∗E ⊗ T ∗E yields the unscaled phase 2-form and phase

2-vector:

Ω ≡ Ω[G,K] = m

h̄
Ω[g,K] : J1E → Λ2T ∗J1E,

Λ ≡ Λ[G,K] = h̄

m
Λ[g,K] : J1E → Λ2T J1E.

Thus, if K is the Levi Civita spacetime connection, then (−mc2

h̄
τ, m

h̄
Ω) and (− h̄

mc2 γ, h̄
m

Λ) turn out to be mutually
dual unscaled contact and Jacobi pairs of the phase space.

Indeed, the Plank constant does not play any direct role in classical mechanics; nevertheless, such a scale is neces-
sary for getting unscaled objects as above.
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