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Hermite—Fejér interpolation operators based on the zeros of Jacobi polynomials,
in general, are not uniformly convergent for all fe C[ —1,1]. In this work we
investigate weighted approximation by such operators with Jacobi weight functions.
A necessary and sufficient condition for the weight function is given such that
these interpolation polynomials converge in the weighted maximum norm for all
feCl—1,1]. 1995 Academic Press, Inc.

1. INTRODUCTION

Let {x,}7_, be the zeros of the Jacobi polynomial P{*# of degree n,
where o, f> —1. For later purposes we normalize the Jacobi polynomial
with P{*#(1)=("**). The so-called Hermite-Fejér interpolation polyno-
mial H'*A(f, . ) of degree at most 2n — 1 is defined by

H*B(fix)=f(x,), H*(fix)=0, k=12,..,n

for fe C[ —1, 1]. In the following we will use the following notation: ||-||
denotes the sup-norm on the whole interval [ —1,1], and [|-{|, or {|-|{[..»
(for I=[c,d], —1<c<d< 1) will be the sup-norm with respect to the
subinterval /. Furthermore, | -1, will denote the L,-norm with respect to
the mterval [ -1, 1].

It is known (e.g., see [8]) that

IHZ () —flI -0,  V¥feC[-1,1]

is equivalent to the condition a, < 0. On the other hand, if we consider
subsets of [ —1, 1], we have the following (see [8]): for all o, §> —1 and
all closed subintervals /< (—1, 1) fixed,

IH) = [, -0, Vfel[-1,11.
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24 KNOOP AND ZHOU

This means that divergence only happens near the points +1. The
following statement characterizes the behaviour of Hermite-Fejér
interpolation polynomials via L, norms for 0 <p < oo (see [5]):

IHF ()= fI,—»0 ¥feC[-1,1]
if and only if

max{z,f} <l. (1.1)
p

A different approach is to consider the convergence in weighted spaces,
e.g., with Jacobi weights, because the weights vanish at the end points +1.
It may be expected that by a suitable choice of weight function these
operators turn out to have properties similar to those in the case —1 <«,
£ <0

Put

wanlX)=(1=x)(14+x)",  a,b>0,

and

I lap="max Jw,,(x)f(x)]
Hay and Vértesi [3] showed that if a=a+1/2, b=+ 1/2, then for all
feC[—1,1]

VDS = S llap = 0. (12)

In the present paper we will give a necessary and sufficient condition on
a and b such that (1.2) is true for all fe C[ —1,1]. First we have the
following

TueOREM 1.1. For a, f> —1, and a, b= 0, in order that

im (w, o(H )= o1y =0

n— x

holds for all functions in C[ —1, 1] it is sufficient that « < a.

Thus, it follows from this theorem that (1.2) holds for each fe C[ —1, 1]
if e <a and f<b. On the other hand, in the case a2 a or 25, (1.2) no
longer holds for some fe C[ —1, 1]. Hence, it is natural to ask what is the
situation for these a and f. The following theorem anwers this question in
part.

Let 71, be the set of algebraic polynomials of degree at most s, and let

En(f)a‘hz lnf ”f_ P”u,h
Pell,
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be the best approximation constant with respect to 7, and the norm
[-flos. If a=b=0 we shall write E,(f) instead of E,(f)o,. Using this
notation we have

THEOREM 1.2. Let a>a and fe C[ —1, 1] satisfy
En(f)a.ﬂ = 0(” T 2“)~
Then

lim “Wu.o( Hf,a'm(f) —f)H[o, 1= 0 (1.3)

"o oo

if and only if

]
f(f(t)—f(l))u';_,_,H,(l)dz:O, =01, [a—al. (14)
-1

Remark 13. (1) If [x—a]#a—a or a>0, then condition (1.4) is
equivalent to

1
J Suywl 5 (1) dt =0, Jj=0,1,2,..,[a—a].
-1

(2) Denote by w,(f, -} the rth modulus of smoothness of f with
respect to the norm |-|. In [7] Szabados proved that (/1% h)=
olh> =) i1y =0, j=1,2, ... [al; and (1.4) imply (1.3) with w, ,=1
(that means a=0). As E.(f)=0Olw, [, 1/n)), we see that the condition
(=0, j=1,2,.., [a], is not necessary.

(3) Let f=zb and E(f)o,=0(n*+*") Then

lim ”‘“().I)(H:,l'm(f) —f“[ 1.0) =0

n— L

is equivalent to
ol

[ == tywi, ., (ndi=0.  j=0.1,..[f-b]
-1

From Theorems 1.1 and 1.2 we get

THEOREM 1.4, For o, B> —1, in order that (1.2) holds for all f in
C[ =1, 1] it is necessary and sufficient that o <a and f <b.

It is interesting to see that, by Theorem 1.4, (1.1} actually implies

IHE (Y~ flhpap,— 0, ¥feC[-1,1].
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Hence, for those polynomials L, convergence is equivalent to convergence
in the weighed maximum norm with w(x)= (1 —x?)'7,

Furthermore, from Theorem 1.2 we have now the following result, some
special cases of which can be found in [2, 4, 6, 7, 10, and 11].

THEOREM 1.5. For a, B> —1 we have the following equivalent
statements:

(1) ifa=a, <b, then
IO = Flaa= 0 | 0= 00wy (0 di=0,
(2) ifa<a, f=b, then
HH‘,,“"”(f)—./‘H,,,ﬁoafil (S() = (= D)) Wiy f0) dr =0,

(3) ifa=aand =0, then
”H:zm/“(f) _ﬁla.h -0

if and only if

1
j (S = D) W,y (1) de=0

and

1
J | (A= f(—=1)) wiy 4(1)de=0.

2. LEMMAS

We write throughout this paper

200+ 1 268+1

f
cos =

W' *H(0) = 5

sin =
2
Furthermore, the conjugate function of ge C,, is given by

_ | J-"g(0+u)—g(0—u)

8(0) ::ﬂ 0 tan(u/2)
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From this definition one can easily deduce that, if ge C,, 1s an odd
function, then

_ IJ" g(u)sin u u

g(0)=-
mJo cos —cosu

and if ge C,, is even then

du.

— sinf (= u
2(0) = j glu)
7 Jo cosf —cosu

The following estimates can be found in [8] and [11].

LemMma 2.1, We have

C .
W =P (O)PP(cos )2 <~,  Vle [ Son —‘—] : (2.1)
n n n
and
‘ c :
(w=P(8) 2 GO < —=,  VOe [ om —5} : (2.2)
\/,; n n
where

G B0y = P*P(cos 0) w™*"(0).

Furthermore, let M, :={0| 0=arccos x, P!> (x)=0}, then there exists
C> 0, which does not depend on n and 0, such that

1

c
<P cos D)2 <—, VOeM,. (2.3)
n

=10

The following lemma was essentially given in [12].

LemMa 2.2, For Tell,, , the following identity holds:
H>P(T, x)y— T(x)

an! In+a+fp+1)
I'n+a+1)I'n+p+1)

x ((PL01(x))? 1(6) @ 7(0) — 1'(0) P (x) G o))

Here 0 =arccos x, H{8)=T(cos 8), and I' is the gamma function.
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Proof. For brevity we write H=H{" P= P!/ and
Co=n'Tn+oa+f+D{In+a+)n+p+1)} !
The Hermite interpolation formula implies

" . P(x) 1
¥) = T(x)= — P(x (N1 = 2 _
H(T, x) — T(x) (\)E, T'(x)(] \‘)x—xk(l—xi)(P'(xk)F

Let A,;:= 4,.(a, ) be the coeflients of the Gauss-Jacobi quadrature
formula. Then
1

L+a+p — A
2 2 CHA‘II. k-

(L= x2P'(x,))

As for x fixed, the function

4 a2 T v 2 N
P(x) T'(u)l —uw’)—T(x)1—x J—{—T'(,\‘)(l—_\-z) w

X—Uu X —U

is an algebraic polynomial in « of degree at most 2n— 1, and P(x,)=0,
k=1,2, ... n, we obtain

H(T, x)—T(x)
-C, {Pz(u\_)Jkl T'(u)(1 —u?) — T'(x)(1 —x7)

:2l+1+/)’

(1 —w)* (1 +u)’ du

1 xX—u

1 .
+P<-")T'(-\')(1—.\‘E)J Pl = P)
1

X—U

(1—u)* (1 +u)/’du}.

Now letting u=cos 5y and x =cos (/ and making use of the representation
of the conjugate function mentioned at the beginning of this section, we
deduce from above the assertion of the lemma. ||

LemMa 23, Suppose 0<r <oa+3/2, 0<r,<ff+3/2, and r=0. Ler
Tell,, t(#)= T(cos ). Then, for 0 <0< /2,

nr

Y IWREN ) )
mw(“‘/"(()) r(0)w (0}

L 02 AZ0)
= — -‘ 3 dll
47ty sin®(u/2)
| “ ot () @ P ) sinu
- 1— 0y’ —_— i
+n(01x./ﬂ((}) jgﬂ ( cos ) .L([‘J?_ (l —COos ”)/+l au

+O0UlpT N, .. 07" +@T'|l,.,, 07%),

Fi, 2
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where m>a—r—1/2, ¢(x)=./1—x7 and A}, is the rth symmetric dif-

Jerence operator with stepsize h.

Proof.  As £'(0) ' ") is an odd function of ¢, we have

1 J‘” () @™ (u) sin u
du

LY 00y =~
bL8

1 ~0;2 02 7
= - { J +_[ + J‘ }
T {0 02 30,2

We note that there exists C >0 such that C~'u?**' < "™ (1) < Cu?>+!
for all u satisfying 0 <u<n/2 (in short, 0™ #(u)~u?**"). Thus. since
[t'(0) = {T"(x}| @(x), we have

0 cos  —cos u

62 ' (wy @' P {u) sin u NUENTER RS
R <C T, | —
L) cos f) —cos u i 1T J() 0 @
SCHQ)TIH”‘”_()2&+1 2'-1.
Since for 0 < < n/2,
¢ 30
| By — ' P(0)| < C |u—~ 0] 02, Vue{;, —7—]

for the second integral we have the relation

- du

f‘”‘z t(u) ™ Pu) sin u
2 cos ] —cos u

P32 N I 302 |4 Sl
— ) | fegsinu Lo <(,za [ 1fGol sinu
o cos 0 —cosu P 0+ u

=™ ") r”*‘? () sin u

———————— du + OO0 7 T, L),
w2 €OS 00 —cos u o

On the other hand, using the formula

sin u _ l{ 1 I
cosfl—cosu 2 |tan(0)—u)/2 tan(0 + )2 1"

we deduce
j-‘”el £{u) sinu 1 {'-‘”“‘3 "(u) y
———— = — ——— du
wn COs () —cos u 2o tan(0—u)/2
1 plez (1)
+ = ———— du. 24
2000 tan(f+u)/2 (>4

640081 1-3
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Taking v=0—u in the first integral of the right-hand side of (2.4) and
integrating by parts, we get

r30/2 t'(u) J”"’Z 4,,.1'(8)
———— du = — —
a2 tan(f —u)/2 o tan(v/2)
1o A4? (H) + Ol T ~an
" 2Jy sin? /2) dv PN ’

To estimate the second integral of the right-hand side of (2.4), we use the
estimate {tan(0 + u)/2] ~ 6 if ue[6/2, 30/2] to obtain

302 ” u
[ —()—— du
02

g —2r
wan(0 1wz U SOl .67

ryor

Finally, since

1 _ 1 ’2 <1~cosﬁ>j+ 1 <l—cos()>"'H
cos 0 —cosu 1 —cosu o\l —cosu cosfl—cosu \l —cosu ’

and

t'(u) '™ u) sin u

1 _ 0 m+ 1 J"
(1—cos ) 202 (cos @ — cos u)(1 —cos u)” !

" Tl - uza —2r
o [ 1T )
o

2
u,_m+2

(7]

— 0( H(pT!“, " 02a+ I - Zr)’
we arrive at

Y(u) o' *#(u) sin u

—Z (1 —cos Oy f" (

cos 8 —cos u w2 (1 —cosu)/*!

+O0(leT',.,, 0>+'=%).

du

j" t'{u) 0™ P (u) sin u
34,2

The estimates above imply the assertion of this lemma. |

3. PROOF OF THE THEOREMS

Proof of Theorem 1.1. We observe that, as the factor (1 +x)® has no
effect on the convergence, one can assume b > f. To show the assertion of
this theorem we use the following result obtained by Vértesi [9]: there
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exists 7€ {l,,_ | such that |T— f| < CE (), T(x,)=fx;), k=1,2, ..., n
Thus

LH ) = fla s < NHZPUT) =T, + CELf).

As H>PT—Tell,,_,, we get for ¢ >0 and sufficiently large n (see [1,
Theorem 8.4.87)

HHE:L [”( T) - T”u b <C “wu, h( HEIJ‘/})( T) - T)H [+ 1 —eint]s

where C does not depend on n and T. Thus, to complete the proof, it is
enough to verify

” W, h( HL’M /”( T) - T)H [—14em? =] = 0( 1 )

Moreover, as | f—T| < CE,(f), we have t'(0)=o(n) for t(0)= T(cos 0).
Hence, making use of Lemmas 2.1 and 2.2, we only need to prove

w, p(cos @)

max t'(8) w'*#(8)| = o(n). (3.1)

lin<f<n2 U)(l‘ ﬂ)([))

To this end, we choose r; =0, r, =0, r=qa, and m =0 in Lemma 2.3. Then,
for 8 €[ 1/n, n/2], one has

REV I 7(60) w'"(8)

_ W, plcos &) sz AE 1)
= 4n 0 sin? u/2

w, p{cos ) = '(u) @™ P(u) sinu
™ P (6) 3672 1 —cosu

du+ O(l']]). (3.2}

Now the first term on the right-hand side of (3.2} is o(n) as

fm 421(6)

o W-)‘dMZO(n), VHE{;’ —j,.

Furthermore, without loss of generality, we may assume o > 0. Integration
by parts yields

j" (1) @' P (u) sin u

30,2 1l —cosu

o' P (1) sin u

—J‘” (t(u)—(0}) <——1~————-> du+ O] 6+
3072 —cos u

Oliell + |1 07+ 1), (3.3)
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Now, as a>a and w, ,(cos )™ "(0y=0W0* **~ 1) for de[l/m, nj2],
we deduce from the above that the second term of the right-hand side of
(3.2) is o(n). Therefore (3.1) holds. The proof is complete. |

Proof of Theorem 1.2. First we note that feC[—1,1] and
Eff),o=0n ") imply E{fy=o(n ***) In case —2o+4a>=0,
this is trivial because feC[—1,1]. Otherwise we take P*ell ,
n=1,2, ., such that

”fﬁ PITHuAU zo(ni 21+311).
Thus
H/“ Pl’lk “ [ 1 +eim? ] — z'@‘n:J = 0( n- 21+4“)
and (see [ 1, Theorem 8.4.81])
”P;"‘* n P."Zkku[! < C “PZ*" Ty PITI‘”“[ T+e2 %y -2 1 - 27 %n-2)
=()((2kl‘l) - 29(1—4(:)q
which then imply

If =PRSS [Pho,— PR =o(n %),

k=0

Hence (see [ 11, Theorem 1.5]) there exists T€ I7,, , such that
) =f(£1), T(xg) = flxp), k=1,2,..,n,
and
| T—fll,o=o0(n 2+

Now as before
(Hif“ /"(f) -0 W, o =(H ff" Ty —=T) w, o+ o(l). (3.4)

On the other hand, we note that if »> f, then, by Theorem 1.1,
HZ )~ ) wa sl oy =0(1).
Thus, we deduce the following relationship: for b > f,
P = D) waollpo =01y <= IH P (f) = flan =0l 1).

Therefore, by (3.4), we obtain that in the case b>f, formula (1.3) is
equivalent to

IH AT =T, ,=ol1),
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or

H u’u. h( H:"L ’“( T) - T) H[ L+em? ) - 1',‘:13] = O( 1 )

As

I, U H T~ T)”[ et o) = Ol 1),

we see that (1.3} is equivalent to

” ”‘114 ()(H:,l /“( T) - T)H (o1 - (.”,1] = ()‘ l ) (35)

Thus we only need to prove that (3.5) holds if and only if {1.4) holds. Now
Lemmas 2.1-2.3 show for ri=r=a, r,=0, and m=[a~a]+1 in
Lemma 2.3 and ¢/ =arccos x, (e [c/n, n/2],

H'»"NT, x) = T(x)

M ln+a+p+1) .
= P2 M0
F(n-}-1+1)r(”+ﬁ+l)( T o™ (]

H

%’ U 22 A240)
=

— . i
4n Jo  sin” u/2 ‘
1 ’” e Py @ P u)y sinw
+— 1 —cos )’ ———— ]
nw' = A EO ‘ ) J;,,‘,z (1l —cos u)’*! :

+o(0 ).
Next, as

02 A1 D)
W, olcos ) j” SinZaa = ot

and for j=0,1,2, .., m—1 one has

302 )y 0P () sin u e
{1 —cos 8) J 7 du=0 no¥ ) —555— du
0 (1 —cos u) o u’ltre

_ ()()l()zjﬁL { —Zu)s
we see that if we can prove

,rr [r (. ) :
(1 —cos )"+« (P'*#(x))? J MLQ&??—“ du=o0(l), (3.6)
w2 {1 ~cosu)”
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then it follows from the above that for some constant C, ~ 1,

H 9T, %) = T(x)
mo- 1 v ”l,
=C,(P>"(x))? Y (1—cos ())fJ (
0

J=0

(x, #) i
u)w (1) sin u du+0(0'“2")4

(1 —cosu)’*!

Integrating by parts and by the conditions E,(f),,=o0(r" ***%*) and
H0)=f(1) we obtain for some constants d,~ 1, j=0,1,..,m—1,

H (T, x)—T(x)

mr 1

s
=C (PIP(x) Y dil ~_\~)'f (S =f()why  py (1) dr
j=0 !

+o(w, o(x)).

In view of this formula and (2.3) it 1s not difficult to obtain that (3.5) holds
if and only if (1.4) holds.

It thus remains to show (3.6} We note m=[a—a]+ 1. Thusifx—a<
[c—a]+1/2

) ™) sinu g 2
du=0 (10T | | g du
Jm«z (1 —cos uy™*1 L o ,  u

= 0( ”(pTlHu 4 (}2“ - 2a = 2m+ 1).

This estimate implies (3.6) due to Lemma 2.1.
fx—az[a—a]+1/2, then a —a=[a—a]+¢, 1/2<E < 1. Integration
by parts gives

du

J"' () 0> P (u) sin u
so2 (1 —cosu)™™ !

(o ) }2 H }
_ ~<I <iq>_t(0 ) '™ P(30/2) sin(30/2)

2 (T —cos(30/2))"**
i 0Py sinu
- —won (< *Pu) sin L
3042 () = 10)) <(1 —COs u)m+\> d I -1

We first consider {,. Put g(u)= f{cos «). Then ¢(0)= g(0) and

( (30) t 3()))(1 30>" (n )
- - —_— — :) = =
g EY (2 cos 5 o(n .

Since fe[¢/n, n/2],

'™ "(36/2) sin(36/2)
(1—cos(30/2))"*!

()21 2em

~
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By Lemma 2.1,
(1 — COs ())m+u (Pt:‘ /3)(’\.))2 I[
= 0(02m + Zu( Pi,x, lfi(x))l a)(g, ()) ()2:1 - Zm)

+ 0( n Qo+ 2u02m-+— Zu( Pq’l:x. /“(.\'))2 H’.Zuv 2m - Zu)

=o(1),

where w(g, 0) is the modulus of continuity of g with the step .
To estimate /,, we replace ((u) by g(u) and calculate it in case « = m and

o # m separately. First note that
( 1 —cos 0)m+u (Pf'a /J’)(x))Z [2
= (] — cos ())m+u (Pil:x./})(x))z
n =Py sinu '
wa (g(u) — 2(0)) (»———-——“ e u)"'“> di+o(1).

Furthermore, if « =m, the integral is bounded and as i< &<, one gets

0 <a<1/2. Hence,

()Zu—l
(1—cos())"'*"(Pﬁf-f“(x))zz0< - ):o(l).
/]

Thus (3.6) still holds. If « s m, we have, by Lemma 2.1,

WP sinu '
{glu)— g(0)) <W> du

T

( 1 — oS (})m+u (Pf'a. /”(,\’))2 J
3072

()2»1 + 20 22 -1 g
—_— J- wlg, uyu*> -1 du>. (3.7)
o

4]

:o(
Thus if x —m >0, since m>a—q, the right-hand side of (3.6} can be

estimated by o(1). If x —m <0, observe that

n
lim §27 2 { wlg, wyu™ 2 Vdu=0.
350 F

Hence for any £ >0, there exists d,> 0 so that

R4
oy J wlg, )™ Vdu<e,

o
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Let &, be fixed. We see that if e [¢/n, d,], then

()lm+ 20 2% 1 o

J wlg, )™ 2V du
H [

<Oy = J‘” wlg, uy w2 Uy < Ce.
S
If 0e[d,,n/2], the integral on the right-hand side of (3.7) is bounded.
Hence we have the same result if » is sufficiently large. Therefore in all
cases we obtain that the right-hand side of (3.7} is o(1). Thus (3.6) holds,
and the proof is complete. |

Proof of Theorem 14. 1t follows from Theorem 1.2 that {1.2) implies
a<a and ff<b. Theorem 1.1 shows that this condition is sufficient. §

Proof of Theorem 1.5. Put f*(x)=f(—x). Then H'™"Y(f —x)=
H:/""’(f*, x). Thus (1) and (2) are equivalent. We only need to verify (1).
Recalling the proof of Theorem 1.2, we know that for b > f

H(}{(,,a' m(f) -1 W l)”[()‘ 1= o(l) <= HH',,D("/“(f) -4/‘””, r=o(l).
Hence we have to show
.1
[E(H‘nx'm(f) -N W ollla, 1y :‘)(I)QJ (fley—7s(1)) Wo g (1) dr=0.

-1

But this can be obtained directly from Theorem 1.2 if we choose a=a
there.
To prove (3) we note

IH> D)= f) W, gllo, y=o(l) < WH P00 = ) w, ol np=o(l)
and
“(Hi.l'm(f) -/ W 4l roy=o(l) < [(H > D=1 wo gll( 107 =0(1).

Hence {3) follows from (1) and (2), which completes the proof. §
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