The number of self-conjugate core partitions ${ }^{\text {st}}$

Christopher R.H. Hanusa ${ }^{\mathrm{a}, *}$, Rishi Nath ${ }^{\mathrm{b}}$
${ }^{\text {a }}$ Department of Mathematics, Queens College (CUNY), 6530 Kissena Blvd., Flushing, NY 11367, USA
${ }^{\text {b }}$ Department of Mathematics and Computer Science, York College (CUNY), Jamaica, NY 11451, USA

ARTICLE INFO

Article history:

Received 31 January 2012
Revised 20 August 2012
Accepted 21 August 2012
Available online 31 October 2012
Communicated by David Goss

MSC:

primary 05A17, 11P81
secondary 05A15, 05E10, 20C20, 20C30

Keywords:

Core partition
t-Core
t-Quotient
Self-conjugate
Positivity
Monotonicity

Abstract

A conjecture on the monotonicity of t-core partitions in an article of Stanton [Dennis Stanton, Open positivity conjectures for integer partitions, Trends Math. 2 (1999) 19-25] has been the catalyst for much recent research on t-core partitions. We conjecture Stantonlike monotonicity results comparing self-conjugate $(t+2)$ - and t-core partitions of n. We obtain partial results toward these conjectures for values of t that are large with respect to n, and an application to the block theory of the symmetric and alternating groups. To this end we prove formulas for the number of selfconjugate t-core partitions of n as a function of the number of self-conjugate partitions of smaller n. Additionally, we discuss the positivity of self-conjugate 6 -core partitions and introduce areas for future research in representation theory, asymptotic analysis, unimodality, and numerical identities and inequalities.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

In this paper we address the structure of self-conjugate core partitions. A t-core partition (more briefly t-core) is a partition where no hook of size t appears. We let $c_{t}(n)$ be the number of t-core partitions of n and let $s c_{t}(n)$ be the number of self-conjugate t-core partitions of n.

The study of self-conjugate partitions arises from the representation theory of the symmetric group S_{n} and the alternating group A_{n}. At the turn of the century, Young discovered that the irreducible

[^0]characters of S_{n} are labeled by partitions of n, and in particular, the self-conjugate partitions label those that split into two conjugate irreducible representations of A_{n} upon restriction. About the same time, Frobenius discovered that the hook lengths on the diagonal of a self-conjugate partition determine the irrationalities that occur in the character table of A_{n}.

The study of core partitions also arises in representation theory; Nakayama conjectured in the forties (later proved by Brauer and Robinson) that two irreducible characters of S_{n} are in the same t-block if their labeling partitions have the same t-core. For this result and more on the development of the theory, see James and Kerber [JK81]. More recently, core partitions have found to be related to mock theta functions, actions of the affine symmetric group, and Ramanujan-type congruences.

Self-conjugate partitions and core partitions intersect in several important ways. Hanusa and Jones [HJ12] prove that for a fixed t, self-conjugate t-core partitions are in bijection with minimal length coset representatives in the Coxeter group quotient $\widetilde{C}_{t} / C_{t}$ and they determine the action of the group generators on the set of self-conjugate t-cores. Self-conjugate core partitions are central to an ongoing investigation into the representation-theoretic Navarro conjecture in the case of the alternating groups [Nat09a].

1.2. Positivity and monotonicity

The last several decades have seen a growing interest in counting core partitions; restricting to the case of self-conjugate partitions has opened new directions in research. Here we survey results on core partitions and their self-conjugate analogues and we propose a new conjecture that parallels one of Stanton.

The t-core positivity conjecture asserts that every natural number has a t-core partition for every integer $t \geqslant 4$. It was finally proved by Granville and Ono [G096] after initial results by Ono and by Erdmann and Michler.

Baldwin et al. [BDFKS06] proved that every integer $n>2$ has a self-conjugate t-core partition for $t>7$, with the exception of $t=9$, for which infinitely many integers do not have such a partition. Olsson [Ols90] and Garvan, Kim, and Stanton [GKS90] proved a generating function for $s c_{t}(n)$, succeeding Olsson's [Ols76] proof of the generating function for $c_{t}(n)$. As an aside, Conjecture 3.12 further highlights the peculiarity of self-conjugate 9 -core partitions.

Recently, simultaneous core partitions have been investigated-partitions that are both s - and t cores, where s and t are relatively prime. Anderson [And02] proved that there are $\binom{s+t}{t} /(s+t)$ many of such partitions, and Olsson and Stanton [OSO7] proved that the largest such partition is of size $n=\frac{\left(s^{2}-1\right)\left(t^{2}-1\right)}{24}$. Ford, Mai and Sze [FMS09] have proved an analog of Anderson's result in the case of self-conjugate simultaneous core partitions, showing that there are $\binom{\left\lfloor\frac{s}{2}\right\rfloor+\left\lfloor\frac{t}{2}\right\rfloor}{\left\lfloor\frac{t}{2}\right\rfloor}$ such partitions when s and t are relatively prime.

In 1999, Stanton [Sta99] posed the following monotonicity conjecture.
Conjecture (Stanton). Suppose that n and t are natural numbers and that $4 \leqslant t \leqslant n-1$. Then

$$
c_{t+1}(n) \geqslant c_{t}(n) .
$$

This was proved for values of t that are large as a function of n by Craven [Cra06] and for large n by Anderson [And08]:

Theorem (Craven). Suppose that n is an integer, and let t be an integer such that $t>4$, and $n / 2<t<n-1$. Then $c_{t}(n)<c_{t+1}(n)$.

Theorem (Anderson). If t_{1} and t_{2} are fixed integers satisfying $4 \leqslant t_{1}<t_{2}$, then $c_{t_{1}}(n)<c_{t_{2}}(n)$ for sufficiently large n.

More recently, Stanton's conjecture was proved for many more values of t and n by Kim and Rouse [KR12], including when $4 \leqslant t \leqslant 198$ and $n>t+1$.

While the monotonicity criterion is conjectured for partitions in general, the set of self-conjugate partitions do not satisfy a monotonicity criterion for any $n \geqslant 5$. (This is Corollary 3.8; see Appendix A for a table of values.) However, we have found experimentally that $s c_{t+2}(n) \geqslant s c_{t}(n)$ for almost all values of $t \geqslant 4$ and $n \geqslant 4$. Parallel to Stanton's monotonicity conjecture, we propose the following monotonicity conjectures for self-conjugate core partitions.

Conjecture 1.1 (Even Monotonicity Conjecture).

$$
s c_{2 t+2}(n)>s c_{2 t}(n) \quad \text { for all } n \geqslant 20 \text { and } 6 \leqslant 2 t \leqslant 2\lfloor n / 4\rfloor-4 .
$$

Conjecture 1.2 (Odd Monotonicity Conjecture).

$$
s c_{2 t+3}(n)>s c_{2 t+1}(n) \quad \text { for all } n \geqslant 56 \text { and } 9 \leqslant 2 t+1 \leqslant n-17
$$

In this article, we discuss the given upper and lower bounds for these conjectures and prove the following partial results towards these conjectures.

Theorem 1.3.

$$
s c_{2 t+2}(n)>s c_{2 t}(n) \quad \text { when } n / 4<2 t \leqslant 2\lfloor n / 4\rfloor-4 \text {. }
$$

Theorem 1.4.

$$
s c_{2 t+3}(n)>s c_{2 t+1}(n) \text { for all } n \geqslant 48 \text { and } n / 3<2 t+1 \leqslant n-17 .
$$

Along the way, we prove formulas for $s c_{t}(n)$ as a function of the number of self-conjugate partitions of m for $m \leqslant n$ in Theorems 3.4 and 3.11. As a supplement to the positivity literature, we discuss the positivity of 6 -core partitions of n in Conjecture 3.5.

1.3. Defect zero blocks of S_{n} and A_{n}

For those readers familiar with the representation theory of the symmetric group S_{n} and the alternating group A_{n}, we provide a consequence of Theorem 1.4. (For more information on the representation theory, see [JK81, Chapter 4] or [Ols93, Chapter 6].)

Let t be an odd prime. From [Ols93, Proposition 12.2], we know that the defect zero t-blocks of S_{n} restrict to defect zero t-blocks of A_{n} in the following way. When blocks B_{1} and B_{2} are labeled by distinct t-core partitions λ_{1} and λ_{2} of n which satisfy $\lambda_{2}=\lambda_{1}^{*}$, then they restrict to the same defect zero t-block of A_{n}. When a block B is labeled by a self-conjugate partition of n, it splits into two distinct defect zero t-blocks of A_{n} upon restriction. These are the splitting blocks of S_{n}.

So, in particular, Theorem 1.4 implies the following.
Theorem 1.5. Let p and q be primes such that $n / 3<p<q<n-17$. For any prime t, let \mathbb{B}_{t}^{*} be the set of defect zero t-blocks of A_{n} that arise from splitting t-blocks of S_{n}. Then $\left|\mathbb{B}_{p}^{*}\right|<\left|\mathbb{B}_{q}^{*}\right|$.

Given a partition λ, let χ_{λ} be the irreducible character of S_{n} associated to λ and consider $\prod_{i, j} h_{i j}$ the product of all the hook lengths that appear in the Young diagram of λ. The Frame-Thrall-Robinson hook length formula says that the character degree $\chi_{\lambda}(1)$ is $n!/ \prod_{i, j} h_{i j}$ [FRT54]. For $m \in \mathbb{Z}^{+}$, define $\nu_{t}(m)$ to be the highest power of t dividing m. We have the following additional corollary.

Corollary 1.6. Let p and q be primes such that $n / 3<p<q<n-17$. For any prime t, let $\operatorname{Irr}_{t}^{*}\left(S_{n}\right)$ be the set of irreducible characters χ of S_{n} which split upon restriction to A_{n} such that $\nu_{t}\left(\left|S_{n}\right| / \chi(1)\right)=0$. Then $\left|I T r_{p}^{*}\left(S_{n}\right)\right|<\left|\operatorname{Irr} r^{*}\left(S_{n}\right)\right|$.

1.4. Organization

This paper is organized as follows. In Section 2, we recall basic facts about partitions, t-cores, and t-quotients, and prove new results on self-conjugate partitions. In Section 3, we discuss monotonicity and positivity results and conjectures depending on the parity of t. Our research in self-conjugate partitions branches out in many directions-the last section of this paper brings attention to future research directions in representation theory, asymptotic analysis, unimodality, and numerical identities and inequalities.

We note that the results and perspective of Craven in [Cra06] motivate much of our approach, and we obtain some similar results.

2. Self-conjugate partitions, \boldsymbol{t}-cores and \boldsymbol{t}-quotients

2.1. Definitions

In order to state our results, we recall some basic definitions. More details can be found in [Ols93, Sections 1-2] or [JK81, Chapter 2]. A partition λ of n is a non-increasing sequence $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ of positive integers such that $\sum_{k} \lambda_{k}=n$. Each λ_{k} will be called a component of λ. The Young diagram associated to a partition λ is an up- and left-aligned series of rows of boxes, where the k-th row has λ_{k} boxes. We label the positions of boxes in the Young diagram using matrix notation; the (i, j)-th position is the box in the i-th row and j-th column, so that the box in position $(1,1)$ is the upperleftmost box. Given a partition λ, its conjugate λ^{*} is a partition where the number of boxes in the k-th column of λ^{*} is the number of boxes in the k-th row of λ. A partition is self-conjugate if $\lambda^{*}=\lambda$.

For a box B in position (i, j), its hook $H_{i j}$ is a set of boxes in the Young diagram consisting of B and the set of boxes in the i-th row to the right of B and the boxes in the j-th column below B; its hook length $h_{i j}$ is the number of boxes in $H_{i j}$. A diagonal hook or diagonal hook length corresponds to a box on the (main) diagonal of the Young diagram. Because a self-conjugate partition λ is uniquely determined by its diagonal hook lengths, we will use the notation $\delta(\lambda)=\left(\delta_{1}, \ldots, \delta_{d}\right)$ to refer to the decreasing sequence of diagonal hook lengths $h_{i i}$. If λ contains a hook H of length k, we say that H is an k-hook, and we can obtain an integer partition λ^{\prime} of $n-k$ from λ by removing H in the following way: delete the boxes that constitute H from the Young diagram and migrate the detached partition (if there is one) up-and-to-the-left.

The following lemmas are related to hook lengths in self-conjugate partitions and are provided without proof.

Lemma 2.1. Let λ be a self-conjugate partition of n defined by its diagonal hook lengths $\delta_{1}>\cdots>\delta_{d}>0$. Then for $1 \leqslant i \leqslant j \leqslant d$, the hook length $h_{i j}$ equals $\left(\delta_{i}+\delta_{j}\right) / 2$. When $1 \leqslant i \leqslant d<j$, the hook length $h_{i j}$ is strictly less than $\delta_{i} / 2$.

Lemma 2.2. Let λ be a self-conjugate partition of n defined by its diagonal hook lengths $\delta_{1}>\cdots>\delta_{d}>0$. Then $h_{i j} \leqslant n / 2$ for all positions (i, j) in the Young diagram of λ, with the possible exception of $h_{11}=\delta_{1}$.

We define $S C(n)$ to be the set of self-conjugate partitions of $n, S C_{t}(n)$ to be the set of self-conjugate t-core partitions of n and $s c(n)=|S C(n)|$ and $s c_{t}(n)=\left|S C_{t}(n)\right|$. Clearly $S C_{t}(n) \subseteq S C(n)$.

The generating function for the number of t-core partitions is due to Olsson [Ols76, Proposition 3.3], while the generating function for the number of self-conjugate t-core partitions is due to Olsson [Ols90, Eq. (2.40)] and Garvan, Kim, and Stanton [GKS90, Eq. (7.1)]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} c_{t}(n) q^{n}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n t}\right)^{t}}{1-q^{n}} \tag{1}
\end{equation*}
$$

Fig. 1. The 5 -core $(5,1,1,1,1)$ and 5 -quotient $((1,1), \varnothing,(2,1), \varnothing,(2))$ of the partition with diagonal hooks $\delta=(29,15)$.

$$
\sum_{n=0}^{\infty} s c_{t}(n) q^{n}=\left\{\begin{array}{ll}
\prod_{n=1}^{\infty}\left(1-q^{2 t n}\right)^{(t-1) / 2} \cdot \frac{1+q^{2 n-1}}{1+q^{t(2 n-1)}} & \text { if } t \text { is odd } \tag{2}\\
\prod_{n=1}^{\infty}\left(1-q^{2 t n}\right)^{t / 2} \cdot\left(1+q^{2 n-1}\right) & \text { if } t \text { is even }
\end{array}\right\}
$$

The t-core λ^{0} of λ is the partition obtained from λ by repeatedly removing t-hooks until none remain; by Theorem 2.7.16 in [JK81], λ^{0} is unique. We introduce without definition the t-quotient of λ, a sequence $\left(\lambda_{(0)}, \ldots, \lambda_{(t-1)}\right)$ of partitions which record the hooks of λ which are divisible by t. We say that a t-quotient is self-conjugate when $\lambda_{(k)}$ is the conjugate partition of $\lambda_{(t-1-k)}$ for all $0 \leqslant k \leqslant t-1$. The following results can be found in [Ols93] as Propositions 3.6 and 3.5.

Proposition 2.3. Given a partition λ of n, its t-core $\lambda^{0} \vdash n_{0}$ and t-quotient $\left(\lambda_{(0)}, \ldots, \lambda_{(t-1)}\right)$ satisfy $n=$ $n_{0}+t \sum_{k=0}^{t-1}\left|\lambda_{(k)}\right|$. Further, there are exactly $\sum_{k=0}^{t-1}\left|\lambda_{(k)}\right|$ hooks in λ that are divisible by t.

Proposition 2.4. A partition λ of n is self-conjugate if and only if its t-core λ^{0} and t-quotient $\left(\lambda_{(0)}, \ldots, \lambda_{(t-1)}\right)$ (with the appropriate normalization) are both self-conjugate.

For the interested reader, the series of examples starting with 2.7.14 and ending with 2.7.28 in [JK81] provide details on how calculate the t-core and t-quotient of a partition (by way of its abacus diagram). To show the symmetry inherent in the t-core and t-quotient of a self-conjugate partition, Fig. 1 shows the 5 -core and 5 -quotient of the partition defined by diagonal hooks $\delta=(29,15)$.

2.2. Counting self-conjugate t-cores

The following result describes the possible ways to remove a minimal amount of t-hooks from a self-conjugate partition to obtain a self-conjugate partition. This is discussed further in Section 4 of [Nat09b].

Lemma 2.5. Let λ be a self-conjugate partition of n that is not a t-core.
(1) When t is even, there exists a pair of off-diagonal t-hooks such that upon their removal, the resultant partition is a self-conjugate partition of $n-2 t$.
(2) When t is odd, then one of the following must exist: a pair of off-diagonal t-hooks as in (1) or a diagonal t-hook such that upon its removal, the resultant partition is a self-conjugate partition of $n-t$.

The following result is key in proving our main results.
Theorem 2.6. Let n and t be positive integers. Then

$$
\begin{equation*}
s c_{2 t}(n)=s c(n)-\sum_{1 \leqslant i \leqslant\left\lfloor\frac{n}{4 t}\right\rfloor} s c_{2 t}(n-4 i t) \widehat{p}_{t}(i) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
s c_{2 t+1}(n)=s c(n)-\sum_{\substack{i, j \geqslant 0 \\ 1 \leqslant 2 i+j \leqslant\left\lfloor\frac{n}{2 t+1}\right\rfloor}} s c_{2 t+1}(n-(2 i+j)(2 t+1)) \widehat{p}_{t}(i) s c(j), \tag{4}
\end{equation*}
$$

where $\widehat{p}_{t}(n)$ is the number of sequences of length t of (possibly empty) partitions $\lambda_{(k)}$ such that $\sum_{k}\left|\lambda_{(k)}\right|=n$.
Proof. Consider the set $\overline{S C}_{2 t}(n)$ of self-conjugate partitions of n that are not $2 t$-cores and let $\bar{s}_{2 t}=$ $\left|\overline{S C}_{2 t}(n)\right|$, whereby $s c(n)=s c_{2 t}(n)+\bar{s}_{2 t}(n)$. By Lemma 2.5, the $2 t$-core of any non- $2 t$-core must be obtained by the removing an even number of $2 t$-hooks. Furthermore, by Proposition 2.4 , its $2 t$-core and (non-empty) $2 t$-quotient are both self-conjugate. When one removes $2 i 2 t$-hooks, the $2 t$-core is a partition of $n-(2 i)(2 t)$ and there are $\widehat{p}_{t}(i)$ possible $2 t$-quotients. Summing over valid values of i gives Eq. (3).

Consider the set $\overline{S C}_{2 t+1}(n)$ of self-conjugate partitions of n that are not $(2 t+1)$-cores and let $\bar{s}_{2 t+1}(n)=\left|\bar{S}_{2 t+1}(n)\right|$. The argument proceeds similarly as above, with the additional condition that the core of a non- $(2 t+1)$-core can be obtained by removing $2 i$ off-diagonal $(2 t+1)$-hooks and/or j diagonal $(2 t+1)$-hooks, in which case the $(2 t+1)$-quotient has a non-empty partition $\lambda_{(t+1)}$ of j that is itself self-conjugate. (Note that this means j will never be 2.) There are a total of $\hat{p}_{t}(i) \operatorname{sc}(j)$ possible $(2 t+1)$-quotients which remove a total of $(2 i+j)(2 t+1)$-hooks, and their $(2 t+1)$-cores are partitions of $n-(2 i+j)(2 t+1)$. Summing over valid values of i and j gives Eq. (4).

2.3. Bounding the growth of $\operatorname{sc}(n)$

We establish bounds on $\frac{s c(n-2)}{s c(n)}$ and $\frac{s c(n-4)}{s c(n)}$, which will be used in the next section to prove Theorems 1.3 and 1.4. The technique used here is an adaptation of Section 3 in [Cra06].

Lemma 2.7. Let n be an integer greater than or equal to 19. Then $\frac{s c(n-2)}{s c(n)}<\frac{n}{n+2}$.
Proof. For a given $n \geqslant 27$, define two sets of self-conjugate partitions:
A_{n} : The set of self-conjugate partitions of n whose diagonal hooks satisfy $\delta_{1}-\delta_{2} \geqslant 4$. If n is odd, also include $\delta=(n)$.
B_{n} : The set of self-conjugate partitions of n whose diagonal hooks satisfy $\delta_{1}=\delta_{2}+2$ and whose parts are not all the same (when n is a square number).
C_{n} : The set of self-conjugate partitions of n in neither A_{n} nor B_{n}.
There is a bijection $f: S C(n-2) \rightarrow A_{n}$ which takes a self-conjugate partition of $n-2$ and adds one box to the first row and to the first column. We conclude that $\left|A_{n}\right|=\operatorname{sc}(n-2)$.

When B_{n} is non-empty, there is also an surjection $g: S C(n-2) \rightarrow B_{n}$. (B_{n} is non-empty for all values of $n \geqslant 19$.) For $\lambda \in S C(n-2)$, define $g(\lambda) \in B_{n}$ by the following steps. First, if λ has one diagonal hook, define $g(\lambda)$ to have diagonal hooks ($\frac{n+1}{2}, \frac{n-3}{2}, 1$) if $n \equiv 1 \bmod 4$ or $\left(\frac{n-1}{2}, \frac{n-5}{2}, 3\right)$ if $n \equiv 3 \bmod 4$. Otherwise, suppose that the diagonal hooks of λ are $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{d}\right)$; create a self-conjugate partition λ^{\prime} with diagonal hooks $\boldsymbol{\delta}^{\prime}=\left(\delta_{1}^{\prime}, \ldots, \delta_{d}^{\prime}\right)$, where

$$
\left\{\begin{array}{ll}
\delta_{1}^{\prime}=\frac{\delta_{1}+\delta_{2}}{2}+2 \text { and } \delta_{2}^{\prime}=\frac{\delta_{1}+\delta_{2}}{2}-2 & \text { if } \frac{\delta_{1}+\delta_{2}}{2} \text { is odd } \\
\delta_{1}^{\prime}=\frac{\delta_{1}+\delta_{2}}{2}+1 \text { and } \delta_{2}^{\prime}=\frac{\delta_{1}+\delta_{2}}{2}-1 & \text { if } \frac{\delta_{1}+\delta_{2}}{2} \text { is even }
\end{array}\right\},
$$

and which keeps all other diagonal hooks the same ($\delta_{i}^{\prime}=\delta_{i}$ for all $3 \leqslant i \leqslant d$). Next, determine (if it exists) the first i such that $\delta_{i}^{\prime} \geqslant \delta_{i+1}^{\prime}+4$. Define $g(\lambda)$ to be the partition which adds one box to the $(i+1)$-st row and to the $(i+1)$-st column of λ^{\prime}. If no such i exists, then δ^{\prime} is of the form $(2 m+1,2 m-1, \ldots, 2 k+3,2 k+1)$ for $m>k>0$. If λ has two diagonal hooks, then define $g(\lambda)$ to have diagonal hooks $\left(\frac{n-4}{2}, \frac{n-8}{2}, 5,1\right)$. Otherwise, λ^{\prime} has three or more diagonal hooks and $\delta_{d}^{\prime}>1$; define $g(\lambda)$ to have diagonal hooks ($\delta_{1}^{\prime}+2, \delta_{2}^{\prime}+2, \delta_{3}^{\prime}, \ldots, \delta_{d}^{\prime}-2$).

The function g is well defined because the image of every self-conjugate partition satisfies $\delta_{1}=$ $\delta_{2}+2$ and is a surjection because for the function $h: B_{n} \rightarrow s c(n-2)$ that removes the last box in the last row and the last box in the last column, then for any $\beta \in B_{n}$, it is true that $g(h(\beta))=\beta$.

For $\beta \in B_{n}$, define the set $\Lambda_{\beta} \subset S C(n-2)$ to be the preimages of $\beta \in B_{n}$ under g. The largest that this set can be is for the following $\beta^{*} \in B_{n}$, with diagonal hooks

$$
\delta\left(\beta^{*}\right)=\left\{\begin{array}{ll}
((n+2) / 2,(n-2) / 2) & n \equiv 0 \bmod 4 \\
((n+1) / 2,(n-3) / 2,1) & n \equiv 1 \bmod 4 \\
((n-4) / 2,(n-8) / 2,5,1) & n \equiv 2 \bmod 4 \\
((n-1) / 2,(n-5) / 2,3) & n \equiv 3 \bmod 4
\end{array}\right\} .
$$

In each of these cases, $\left|\Lambda_{\beta^{*}}\right|<n / 2$.
From the definitions of f and g, we can now bound $\operatorname{sc}(n)$ as a function of $s c(n-2)$ when $n \geqslant 27$:

$$
s c(n)=\left|A_{n}\right|+|B(n)|+|C(n)|>s c(n-2)+s c(n-2) /(n / 2)+0=\frac{n+2}{n} s c(n-2) .
$$

The equation $\frac{s c(n-2)}{s c(n)}<\frac{n}{n+2}$ also holds for $19 \leqslant n \leqslant 26$.
Lemma 2.8. Let n be an integer greater than or equal to 8 . Then $\frac{s c(n-4)}{s c(n)}<\frac{n}{n+4}$.

Proof. Lemma 2.7 implies

$$
\frac{s c(n-4)}{s c(n)}=\frac{s c(n-4)}{s c(n-2)} \cdot \frac{s c(n-2)}{s c(n)}<\frac{n-2}{n} \cdot \frac{n}{n+2}=\frac{n-2}{n+2}<\frac{n}{n+4}
$$

for $n \geqslant 21$. The equation $\frac{s c(n-4)}{s c(n)}<\frac{n}{n+4}$ also holds for $8 \leqslant n \leqslant 20$.
Remark. The sequence $\{s c(n)\}_{n \geqslant 0}$ (A000700 in the On-Line Encyclopedia of Integer Sequences [OEIS]) starts

$$
\{1,1,0,1,1,1,1,1,2,2,2,2,3,3,3,4,5,5,5,6,7,8,8,9,11,12,12,14\} .
$$

This, and Lemma 2.7 implies that $\operatorname{sc}(n+2)>\operatorname{sc}(n)$ for integers $n \geqslant 17$. It also follows that $\operatorname{sc}(n+2)-$ $s c(n)>1$ for $n \geqslant 24$.

3. Main results

In this section, we prove formulas for $s c_{t}(n)$ for certain values of t and n, discussing their consequences for our monotonicity conjectures and the positivity of self-conjugate t-cores.

3.1. Monotonicity in large $2 t$-cores

We first discuss formulas for $s c_{2 t}(n)$ for large values of $2 t$.
Because the largest diagonal hook δ_{1} is odd in every self-conjugate core partition, we have the following corollary of Lemma 2.2 .

Corollary 3.1. Every self-conjugate partition of n is a $2 t$-core for all integers t satisfying $2 t>n / 2$. In particular, $s c_{2 t}(n)=s c(n)$ for integers t satisfying $2 t>n / 2$.

Proposition 3.2 establishes a simple formula for $s c_{2 t}(n)$ for values of $2 t$ between $n / 4$ and $n / 2$, which will be useful for proving Theorem 1.3.

Proposition 3.2. Let n be a positive integer and suppose t is an integer satisfying $n / 4<2 t \leqslant n / 2$. Then

$$
\begin{equation*}
s c_{2 t}(n)=s c(n)-t s c(n-4 t) . \tag{5}
\end{equation*}
$$

Proof. When $n / 4<2 t \leqslant n / 2$, the sum in Eq. (3) consists only of its first term, $s c_{2 t}(n-4 t) \widehat{p}_{t}(1)$. Eq. (5) follows because $\widehat{p}_{t}(1)=t$ and from Corollary 3.1 because $2 t>(n-4 t) / 2$.

We must be careful for values of $2 t$ near $n / 2$. Substituting $2 t=2\lfloor n / 4\rfloor$ and $2 t=2\lfloor n / 4\rfloor-2$ into Eq. (5) establishes that when $n \geqslant 12$ and $n \neq 2 \bmod 4, s c_{2\lfloor n / 4\rfloor}(n)=s c_{2\lfloor n / 4\rfloor-2}(n)-1$, which explains the upper bound we give for the even monotonicity conjecture. Explicit formulas are given as Corollary 3.3.

Corollary 3.3. Let n be an integer greater than or equal to 4 . Then

$$
s c_{2\lfloor n / 4\rfloor}(n)=\left\{\begin{array}{ll}
s c(n)-\lfloor n / 4\rfloor & \text { when } n \equiv 0,1,3 \bmod 4 \\
s c(n) & \text { when } n \equiv 2 \bmod 4
\end{array}\right\} .
$$

Furthermore, let n be an integer greater than or equal to 12 . Then

$$
s c_{2\lfloor n / 4\rfloor-2}(n)=s c(n)-(\lfloor n / 4\rfloor-1) .
$$

Proof. In the formula for $s c_{2 t}(n)$, the coefficients of t are simply $s c(n-4 t)$, which depends on n modulo 4. The range for which the formulas are valid comes from solving $n / 4 \leqslant 2\lfloor n / 4\rfloor$ or $n / 4 \leqslant$ $2\lfloor n / 4\rfloor-2$.

Remark. For successively smaller values of $2 t$, formulas similar to those in Corollary 3.3 can be found. For example, when n is an integer greater than or equal to 52 , then

$$
s c_{2\lfloor n / 4\rfloor-12}(n)=\left\{\begin{array}{ll}
s c(n)-11(\lfloor n / 4\rfloor-6) & \text { when } n \equiv 0 \bmod 4 \\
s c(n)-12(\lfloor n / 4\rfloor-6) & \text { when } n \equiv 1,2 \bmod 4 \\
s c(n)-14(\lfloor n / 4\rfloor-6) & \text { when } n \equiv 3 \bmod 4
\end{array}\right\} .
$$

In general for self-conjugate ($2\lfloor n / 4\rfloor-2 i$)-cores, the range of validity of the formula for $s c_{2\lfloor n / 4\rfloor-2 i}$ is for $n \geqslant 4(2 i+1)$. While Eq. (5) does encompass all formulas of this type, these formulas are interesting in their own right.

In general, we can apply Eq. (3) repeatedly to find a formula for $s c_{2 t}(n)$ for all values of $2 t$; the formula only involves polynomials of t and values of $s c(m)$ for $m \leqslant n$.

Theorem 3.4. We have the following formula for $\mathrm{sc}_{2 t}(n)$.

$$
s c_{2 t}(n)=\sum_{\substack{\left.I=\left(i_{1}, \ldots, i_{k}\right) \\|I| \leqslant \frac{n}{4 t}\right\rfloor}}(-1)^{k} \widehat{p}_{t}\left(i_{1}\right) \cdots \widehat{p}_{t}\left(i_{k}\right) s c(n-4|I| t),
$$

where the sum is over all sequences of positive integers $I=\left(i_{1}, \ldots, i_{k}\right)$ such that its sum $|I|=i_{1}+\cdots+i_{k} \leqslant$ $\left\lfloor\frac{n}{4 t}\right\rfloor$.

We now prove Theorem 1.3.
Proof of Theorem 1.3. By Eq. (5), it suffices to prove $(t+1) \operatorname{sc}(n-4 t-4)<t s c(n-4 t)$, which is equivalent to $\frac{s c(n-4 t-4)}{s c(n-4 t)}<\frac{t}{t+1}$. Lemma 2.8 implies that $\frac{s c(n-4 t-4)}{s c(n-4 t)}<\frac{n-4 t}{n-4 t+4}$ when $n-4 t \geqslant 8$; this condition is satisfied because the upper bound for $2 t$ under consideration implies $n-4 t \geqslant n-4(\lfloor n / 4\rfloor-2) \geqslant 8$.

Last, because $n / 4<2 t$ then $(n-4 t)(t+1)<t(n-4 t+4)$, from which we have $\frac{s c(n-4 t-4)}{s c(n-4 t)} \leqslant$ $\frac{n-4 t}{n-4 t+4}<\frac{t}{t+1}$. This completes the proof.

3.2. Positivity and monotonicity in small $2 t$-cores

Before discussing monotonicity for small values of $2 t$, we first discuss what is known about positivity in self-conjugate $2 t$-core partitions.

The only partitions which are 2 -cores are the staircase partitions $\lambda=(k, k-1, \ldots, 2,1)$, which are all self-conjugate. As a consequence, $s c_{2}(n)$ is non-zero exactly when n is a triangular number. Ono and Sze [OS97, Theorem 3] characterize the integers having no self-conjugate 4-core: $s c_{4}(n)=0$ if and only if the prime factorization of $8 n+5$ contains a prime of the form $4 k+3$ to an odd power.

Baldwin et al. [BDFKS06] prove that $s c_{t}(n)$ is positive for $t \geqslant 8$ and $n \neq 2$, and give the example of $s c_{6}(13)=0$ to show that $s C_{6}(n)$ is not always positive. However, they do not characterize when $s C_{6}(n)$ is zero. By using its generating function, we generated the values of $s c_{6}(n)$ for $0 \leqslant n \leqslant 10000$, from which we conjecture the following.

Conjecture 3.5. Let n be a positive integer. Then $s c_{6}(n)>0$ except when $n \in\{2,12,13,73\}$.
In the even monotonicity conjecture, we give the lower bound $2 t$ equals 6 . Indeed, there are integers n such that $s c_{6}(n) \leqslant s c_{4}(n)$, even for values of n larger than 15 . (Corollary 3.3 establishes that $s c_{6}(15)<s c_{4}(15)$.) We conjecture that the set of such integers is finite, again aided by a computer search of non-negative integers n up to 10000 .

Conjecture 3.6. Let n be an integer larger than 15 . Then $S C_{6}(n)<S C_{4}(n)$ when $n \in\{112,180,265\}$ and $s c_{6}(n)=s c_{4}(n)$ when $n \in\{27,28,33,40,73,75,118,190,248\}$.

There are no values of $20 \leqslant n \leqslant 10000$ such that $s c_{8}(n) \leqslant s c_{6}(n)$.

3.3. Monotonicity in large $(2 t+1)$-cores

For $2 t+1>n$, there are no partitions of n containing a hook length of $2 t+1$. By Lemma 2.2 , we know that the values of $s c_{2 t+1}(n)$ for $2 t+1>n / 2$ are determined by the number of self-conjugate core partitions that have $2 t+1$ as its first diagonal hook. In other words,

Corollary 3.7. Let n be a positive integer and suppose that t satisfies $n / 2<2 t+1 \leqslant n$. Then

$$
s c_{2 t+1}(n)=s c(n)-s c(n-2 t-1)
$$

Corollaries 3.1 and 3.7 imply:
Corollary 3.8. For fixed $n \geqslant 5$, the sequence $\left\{s c_{t}(n)\right\}_{t \geqslant 2}$ is not monotonic.
Corollary 3.7 also implies that for t satisfying $n / 2<2 t+1 \leqslant n-2, s c_{2 t+3}(n)-s c_{2 t+1}(n)=s c(n-$ $2 t-3)-s c(n-2 t-1)$. Because $s c(n+2)>s c(n)$ for integers $n \geqslant 17$, we have the following corollary.

$$
s c_{2 t+3}(n)>s c_{2 t+1}(n)
$$

We now establish a formula for $s c_{2 t+1}(n)$ for values of $2 t+1$ between $n / 3$ and $n / 2$.

Proposition 3.10. Let n be a positive integer and suppose t is an integer satisfying $n / 3<2 t+1 \leqslant n / 2$. Then

$$
\begin{equation*}
s c_{2 t+1}(n)=s c(n)-s c(n-2 t-1)-(t-1) \operatorname{sc}(n-4 t-2) \tag{6}
\end{equation*}
$$

Proof. When $n / 3<2 t+1 \leqslant n / 2$, the sum in Eq. (4) is the sum of only two non-zero terms,

$$
s c_{2 t+1}(n-2 t-1) \widehat{p}_{t}(0) s c(1)+t s c_{2 t+1}(n-4 t-2) \widehat{p}_{t}(1) s c(0)
$$

which simplifies to $s c_{2 t+1}(n-2 t-1)+t s c_{2 t+1}(n-4 t-2)$. We remark that $2 t+1>(n-4 t-2) / 2$ and $(n-2 t-1) / 2<2 t+1 \leqslant(n-2 t-1)$, so Corollary 3.7 implies that

$$
\left|\overline{S C}_{2 t+1}(n)\right|=[s c(n-2 t-1)-s c(n-4 t-2)]+t s c(n-4 t-2)
$$

from which Eq. (6) follows.

Remark. Formulas like those in Corollary 3.3 can be found now for odd cores. For example, when n be an integer greater than or equal to 76 , then

$$
s c_{2\lfloor n / 4\rfloor-11}(n)=\left\{\begin{array}{ll}
s c(n)-s c(n-2\lfloor n / 4\rfloor+11)-8(\lfloor n / 4\rfloor-7) & \text { when } n \equiv 0 \bmod 4 \\
s c(n)-s c(n-2\lfloor n / 4\rfloor+11)-9(\lfloor n / 4\rfloor-7) & \text { when } n \equiv 1 \bmod 4 \\
s c(n)-s c(n-2\lfloor n / 4\rfloor+11)-11(\lfloor n / 4\rfloor-7) & \text { when } n \equiv 2 \bmod 4 \\
s c(n)-s c(n-2\lfloor n / 4\rfloor+11)-12(\lfloor n / 4\rfloor-7) & \text { when } n \equiv 3 \bmod 4
\end{array}\right\}
$$

As in the even core case, we can use Eq. (4) to find a formula for $s c_{2 t+1}(n)$ involving polynomials of t and values of $s c(m)$ for $m \leqslant n$.

Theorem 3.11. We have the following formula for $s c_{2 t+1}(n)$.

$$
s c_{2 t+1}(n)=\sum_{\substack{I=\left(i_{1}, \ldots, i_{k}\right) \\ J=\left(j_{1}, \ldots, j_{k}\right) 2|I|+|J| \leqslant\left\lfloor\frac{n}{2 t}\right\rfloor}}(-1)^{k} \widehat{p}_{t}\left(i_{1}\right) \cdots \widehat{p}_{t}\left(i_{k}\right) \operatorname{sc}\left(j_{1}\right) \cdots \operatorname{sc}\left(j_{k}\right) \operatorname{sc}(n-(2|I|+|J|)(2 t+1)),
$$

where the sum is over all pairs of sequences of non-negative integers $I=\left(i_{1}, \ldots, i_{k}\right)$ and $J=\left(j_{1}, \ldots, j_{k}\right)$ such that $i_{l}+j_{l} \geqslant 1$ for all $1 \leqslant l \leqslant k$ and their sums satisfy $2|I|+|J| \leqslant\left\lfloor\frac{n}{2 t+1}\right\rfloor$.

We now prove Theorem 1.4.

Proof of Theorem 1.4. Alongside Corollary 3.9 it remains to establish that $s c_{2 t+3}(n)>s c_{2 t+1}(n)$ for $n / 3<2 t+1 \leqslant n / 2$.

When $n / 2-2<2 t+1 \leqslant n / 2$ and $n \geqslant 34$, then $n-2 t-3>n / 2 \geqslant 17$, so $\operatorname{sc}(n-2 t-1)>\operatorname{sc}(n-2 t-3)$ and we have

$$
s c_{2 t+3}(n)=s c(n)-s c(n-2 t-3)>s c(n)-s c(n-2 t-1)-(t-1) s c(n-4 t-2)=s c_{2 t+1}(n)
$$

When $2 t+1 \leqslant n / 2-2$, Proposition 3.10 implies we need to prove

$$
\begin{equation*}
t s c(n-4 t-6)+\operatorname{sc}(n-2 t-3)<(t-1) \operatorname{sc}(n-4 t-2)+\operatorname{sc}(n-2 t-1) \tag{7}
\end{equation*}
$$

When $n / 2-4<2 t+1 \leqslant n / 2-2$, then $4 \leqslant n-4 t-2 \leqslant 7$ and $0 \leqslant n-4 t-6 \leqslant 3$. If $n-4 t-2=6$, then Eq. (7) is $s c(n-2 t-3)<(t-1)+s c(n-2 t-1)$, which is certainly true when $s c(n-2 t-1)>$ $s c(n-2 t-3)$. Otherwise, $s c(n-4 t-2)=s c(n-4 t-6)=1$, so Eq. (7) becomes $1+s c(n-2 t-3)<$ $s c(n-2 t-1)$, which is true when $n-2 t-1>26$; for the given range of $2 t+1$, this requires $n>48$. (This result also holds for $n=48$ and $t=21$.)

When $n / 3<2 t+1 \leqslant n / 2-4$, we will prove Eq. (7) by proving that $\operatorname{tsc}(n-4 t-6)<(t-1) s c(n-$ $4 t-2$) and relying on the fact that $s c(n-2 t-1) \geqslant s c(n-2 t-3)$ for n and t in our range. Since $n / 2-4 \geqslant 2 t+1$, then $n-4 t-2 \geqslant 8$, so Lemma 2.8 applies to give $\frac{s c(n-4 t-6)}{s c(n-4 t-2)}<\frac{n-4 t-2}{n-4 t+2}$. When $n>18$, then $(n+6) / 4<n / 3$, which in turn is less than $2 t+1$. Therefore $n+2<8 t$, so $(n-4 t-2) t<(n-$ $4 t+2)(t+1)$, implying $\frac{s c(n-4 t-6)}{s c(n-4 t-2)} \leqslant \frac{n-4 t-2}{n-4 t+2}<\frac{t-1}{t}$, from which $t s c(n-4 t-6)<(t-1) s c(n-4 t-2)$, as desired.

Remark. The lower bound of $n=48$ in Theorem 1.4 is necessary-from Proposition 3.10, we have $s c_{23}(47)=s c_{21}(47), s c_{21}(45)=s c_{19}(45), s c_{21}(42)=s c_{19}(42), s c_{19}(39)=s c_{17}(39)$, and $s c_{17}(37)=$ $s c_{15}$ (37). There are other anomalies in for other values of $n \leqslant 41$ and $t \geqslant 11$: we have $s c_{13}(34)=$ $s c_{11}(34), s c_{15}(39)=s c_{13}(39), s c_{13}(41)=s c_{11}(41)$. Also of note are the two cases $s c_{13}(29)<s c_{11}(29)$ and $s c_{15}(31)<S c_{13}(31)$.

3.4. Positivity and monotonicity in small $(2 t+1)$-cores

Robbins [Rob00, Theorem 7] and Baruah and Berndt [BB07, Theorem 5.2] prove that the only integers having at least one self-conjugate 3 -core (in fact, there is exactly one) are of the form $3 d^{2}+2 d$ or $3 d^{2}-2 d$ for some non-negative integer d.

Garvan, Kim, and Stanton [GKS90] characterize the integers having no self-conjugate 5-core: $S C_{5}(n)=0$ if and only if the prime factorization of n contains a prime of the form $4 k+3$ to an odd power. In addition, they cite an observation of Doug McDoniel involving representations of integers as sums of three squares that proves that $s c_{7}(n)=0$ if and only if $n=(8 m+1) 4^{k}-2$ for integers m and k.

Baldwin et al. [BDFKS06] prove that $s c_{9}(n)=0$ for all n of the form $n=\left(4^{k}-10\right) / 3$ and cite a communication with Peter Montgomery which proves that this is a complete characterization of integers having no self-conjugate 9-core partitions.

In the odd monotonicity conjecture, we give the lower bound $2 t+1$ equals 9 . Unlike in the even case, it appears that $S C_{9}(n)<S C_{7}(n)$ for infinitely many values of n; the non-negative values of n up to 10000 for which $S c_{9}(n)<S C_{7}(n)$ are

$$
\begin{aligned}
& \{9,18,21,82,114,146,178,210,338,402,466,594,658,722,786,850,978 \\
& 1106,1362,1426,1618,1746,1874,2130,2386,2514,2642,2770,2898,3154,3282 \\
& 3410,3666,3922,4050,4178,4306,4434,4690,4818,4946,5202,5458,5586,5970 \\
& 6226,6482,6738,6994,7250,7506,8018,8274,8530,8786,9042,9298,9554,9810\} .
\end{aligned}
$$

Note that these include many (but not all) values of $n \equiv 82 \bmod 128$; this condition is neither necessary nor sufficient.

Conjecture 3.12. There are infinitely many positive integers n such that $s c_{9}(n)<s c_{7}(n)$.

Fig. 2. Graphs of $\pi_{t}(n), \sigma_{2 t}(n)$, and $\sigma_{2 t+1}(n)$ for values of n between 100 and 400 (colored from light to dark).

The choice of the lower bound $n \geqslant 56$ in the odd monotonicity conjecture was chosen because $s c_{11}(n)=s c_{9}(n)$ when $n \in\{0,1,2,3,4,5,6,7,8,12,14,15,16,20,22,27,31,32,35,55\}$ and $s c_{11}(n)<$ $s c_{9}(n)$ when n equals 11 or 23 . That these are the only values satisfying $s c_{11}(n) \leqslant s c_{9}(n)$ has been verified for all non-negative $n \leqslant 10000$.

4. Future directions

In addition to the conjectures stated above, we have assembled multiple avenues for future exploration.

4.1. Non-self-conjugate t-core partitions

To find a stronger monotonicity result for defect zero blocks of the alternating group, one would need to understand non-self-conjugate t-core partitions $n s c_{t}(n)$ as well. Defect zero t-blocks arise in two ways. The ones from S_{n} that split upon restriction are counted by $2 s c_{t}(n)$ and those from S_{n} that do not split upon restriction are counted by $\frac{1}{2} n s c_{t}(n)$. Experimentally, $n s c_{2 t+3}(n)>n s c_{2 t+1}(n)$ for $5 \leqslant 2 t+3 \leqslant n \leqslant 500$, so we conjecture the following.

Conjecture 4.1. Suppose p and q are odd primes such that $9<p<q<n-17$. The number of defect zero p-blocks of A_{n} is strictly less than the number of defect zero q-blocks of A_{n}.

4.2. Asymptotics and unimodality in self-conjugate core partitions

A deeper question than the monotonicity of $s c_{t+2}(n)>s c_{t}(n)$ has to do with the distribution of $s c_{t+2}(n)-s c_{t}(n)$ for a fixed n, and as n goes to infinity.

Define the functions $\pi_{t}(n)=\left(c_{t+1}(n)-c_{t}(n)\right) / p(n)$ and $\sigma_{t}(n)=\left(s c_{t+2}(n)-s c_{t}(n)\right) / s c(n)$ which are the normalized net increase in the number of partitions of n that are $(t+1)$-cores and not t-cores and the normalized net increase in the number of self-conjugate core partitions of n that are $(t+2)$-cores and not t-cores. For fixed n, we can see that

$$
\sum_{t=1}^{\infty} \pi_{t}(n)=\sum_{t^{\prime}=0}^{\infty} \sigma_{2 t^{\prime}}(n)=\sum_{t^{\prime}=0}^{\infty} \sigma_{2 t^{\prime}+1}(n)=1
$$

Plotting the functions (of t), $\pi_{t}(n), \sigma_{2 t}(n)$, and $\sigma_{2 t+1}(n)$, for fixed values of n between 100 and 400 gives the graphs in Fig. 2.

In [Cra06], Craven proves the following theorem.
Theorem (Craven). Suppose that $0<q<1$ is a real number. Then as n tends to infinity, $\frac{c_{\lfloor q n\rfloor}(n)}{p(n)} \rightarrow 1$.
As a consequence, as n goes to infinity, $\pi_{t}(n)$ approaches the function that is identically zero. This is seen in Fig. 2(a) by noticing that the function values in the sequence of curves at a fixed value on the x-axis eventually decreases to zero. This appears to be true for self-conjugate partitions as well.

Conjecture 4.2. Suppose that $0<q<1$ is a real number. Then as n tends to infinity, $\frac{s c_{\lfloor q n\rfloor}(n)}{s c(n)} \rightarrow 1$.
It appears that much more is true. Recall that a sequence $\left\{x_{t}\right\}_{0 \leqslant t \leqslant r}$ is unimodal if there exists a number T such that

$$
x_{0} \leqslant x_{1} \leqslant \cdots x_{T-1} \leqslant x_{T} \geqslant x_{T+1} \geqslant x_{T+2} \geqslant \cdots \geqslant x_{r} .
$$

Unimodality is a property that arises naturally in many areas, including combinatorics, geometry, and algebra; Brenti's survey article [Bre94] gives examples and references. In [Sta99], Stanton discusses the unimodality of the coefficients of the generating function for partitions and self-conjugate partitions whose Young diagrams fit inside a given shape.

It appears that for n fixed and large enough, the sequences $\pi_{t}(n), \sigma_{2 t}(n)$, and $\sigma_{2 t+1}(n)$ are unimodal. We state these as conjectures.

Conjecture 4.3. For fixed $n \geqslant 63$, the sequence $\left\{\pi_{t}(n)\right\}_{4 \leqslant t \leqslant n-7}$ is unimodal.

Conjecture 4.4. For fixed $n \geqslant 139$, the sequence $\left\{\sigma_{2 t}(n)\right\}_{8 \leqslant 2 t \leqslant 2\left\lfloor\frac{n}{4}\right\rfloor-8}$ is unimodal. Further, for fixed $n \geqslant 213$, the sequence $\left\{\sigma_{2 t+1}(n)\right\}_{9 \leqslant 2 t+1 \leqslant\left\lfloor\frac{n}{2}\right\rfloor}$ is unimodal.

The formulas given in Propositions 3.2 and 3.10 allow for partial results toward Conjecture 4.4, but the hard work is yet to be done.

More pointedly, we can ask for the shape of the distribution-perhaps it is approaching a normal distribution, but after its peak it appears to decrease with a tail that is fatter than normal. Because the pointwise limit of the distribution is the zero distribution (by Craven's theorem), the "right question" is more along the lines of finding the shape of the distribution as n goes to infinity. We state this as an open question.

Open Question. For n sufficiently large, is there a limiting shape of the distributions of $\pi_{t}(n), \sigma_{2 t}(n)$, and $\sigma_{2 t+1}(n)$?

Ideally, one would be able to find a combinatorial interpretation for $s c_{t+2}(n)-s c_{t}(n)$ to prove its positivity and understand its asymptotics.

Open Question. Is there a simple combinatorial description of $c_{t+1}(n)-c_{t}(n)$? Of $s c_{t+2}(n)-s c_{t}(n)$?

4.3. Numerical identities and inequalities

Another direction is related to numerical identities involving core partitions. Garvan, Kim, and Stanton prove that $s C_{5}(2 n+1)=S C_{5}(n), S C_{5}(5 n+4)=S C_{5}(n)$, and $S C_{7}(4 n+6)=S C_{7}(n)$ using [GKS90, Eq. (7.4)]. Using Ramanujan's theta functions, Baruah and Berndt [BB07] prove $s c_{3}(4 n+1)=s c_{3}(n)$ and Sarmah [Sar12] proves $s c_{9}(8 n+10)=s c_{9}(2 n)$. Further, Berkovich and Yesilyurt [BY08] prove inequalities such as $c_{7}(2 n+2) \geqslant 2 c_{7}(n)$ and $c_{7}(4 n+6) \geqslant 10 c_{7}(n)$.

We aimed to find similar identities and inequalities. Experimental data suggests the following conjectures.

Conjecture 4.5. Let n be a non-negative integer.
(1) Suppose $n \geqslant 49$. Then $\operatorname{sc}_{9}(4 n)>3 s c_{9}(n)$.
(2) Suppose $n \geqslant 1$. Then $s c_{9}(4 n+1)>1.9 s c_{9}(n)$.
(3) Suppose $n \geqslant 17$. Then $s c_{9}(4 n+3)>1.9 s c_{9}(n)$.
(4) Suppose $n \geqslant 1$. Then $\operatorname{sc}_{9}(4 n+4)>2.6 s c_{9}(n)$.

Table 1

A table of values of $s c_{t}(n)$ for $0 \leqslant n \leqslant 60$ and $2 \leqslant t \leqslant n+2$.

Table 1 (continued)

$36 \quad 2629333537414649525763687278879398107117125133144157168178192209$

36

2629333537414649525763687278879398107117125133144157168178192209 29333436414548515662667076859095104113120128139151161170184200

333537414649525763687278879398107117125133144157168178192209 3537404549515662677176859196104114122129139152163172185201 37414649525763687278879398107117125133144157168178192209

414648515762677177869196105115122130141153163173187203 4649525763687278879398107117125133144157168178192209 49525662687177869297105115123131141154165174187204
 5763677178869297106116123131142155165175189205

63687278879398107117125133144157168178192209 687277869397106116124132142155166176189206 7278879398107117125133144157168178192209 78879297107116124132143156166176190207 879398107117125133144157168178192209

Table 2

Table of values of $s c_{2 t+2}(n)-s c_{2 t}(n)$ and $s c_{2 t+3}(n)-s c_{2 t+1}(n)$.

Table 2 (continued)

Conjecture 4.5 gives some conjectures in a family of inequalities of the form $s c_{t}(a n+b)>\alpha s c_{t}(n)$. It appears that for $t=9$ and $a=4$, then there exists a constant $\alpha>1$ where this is true for all b not equal to 2 modulo 4 . It would be of interest to determine the value and interpretation of these constants.

We do not expect identities of the form $s c_{t}(a n+b)=s c_{t}(n)$ for integers a and b for odd $t \geqslant 11$ and even $t \geqslant 8$, nor do we expect inequalities of the form $s c_{t}(a n+b)>\alpha S c_{t}(n)$ for odd $t \leqslant 7$ and even $t \leqslant 6$.

Acknowledgments

Both authors would like to thank Matt Fayers, Ben Ford, and Ken Ono for conversations on this topic. We thank Noam Elkies for his conversations about the positivity of 7-core partitions and the correspondence with representations of integers as the sum of three squares. We also would like to thank Nayandeep Deka Baruah, Jørn Olsson, and an anonymous referee for correcting and suggesting references related to our work. The second author thanks Jean-Baptiste Gramain for his hospitality while visiting the University of Paris and for early discussions on a Stanton-type conjecture for selfconjugate partitions while there.

Appendix A. Tables of values

Tables 1 and 2 present the values of $s c_{t}(n)$ and $s c_{t+2}(n)-s c_{t}(n)$, generated by extracting coefficients from the generating function in Eq. (2).

References

[And02] Jaclyn Anderson, Partitions which are simultaneously t_{1} - and t_{2}-core, Discrete Math. 248 (2002) 237-243.
[And08] Jaclyn Anderson, An asymptotic formula for the t-core partition function and a conjecture of Stanton, J. Number Theory 128 (2008) 2591-2615.
[BDFKS06] John Baldwin, Melissa Depweg, Ben Ford, Abraham Kunin, Lawrence Sze, Self-conjugate t-core partitions, sums of squares, and p-blocks of A_{n}, J. Algebra 297 (2) (2006) 438-452.
[BB07] Nayandeep Deka Baruah, Bruce C. Berndt, Partition identities and Ramanujan's modular equations, J. Combin. Theory Ser. A 114 (6) (2007) 1024-1045.
[BY08] Alexander Berkovich, Hamza Yesilyurt, New identities for 7-cores with prescribed BG-rank, Discrete Math. 308 (22) (2008) 5246-5259.
[Bre94] Francesco Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update, in: Jerusalem Combinatorics '93, in: Contemp. Math., vol. 178, Amer. Math. Soc., Providence, RI, 1994.
[Cra06] David A. Craven, The number of t-cores of size n, preprint, published electronically at http://people.maths.ox.ac.uk/ craven/docs/papers/tcores0608.pdf, 2006.
[FMS09] Ben Ford, Hong Mai, Lawrence Sze, Self-conjugate simultaneous p - and q-core partitions and blocks of A_{n}, J. Number Theory 129 (4) (2009) 858-865.
[GKS90] Frank Garvan, Dongsu Kim, Dennis Stanton, Cranks and t-cores, Invent. Math. 101 (1) (1990) 1-17.
[GO96] Andrew Granville, Ken Ono, Defect zero p-blocks for finite simple groups, Trans. Amer. Math. Soc. 348 (1996) 331347.
[FRT54] J.S. Frame, G. de B. Robinson, R.M. Thrall, The hook graphs of the symmetric group, Canad. J. Math. 6 (1954) $316-324$.
[HJ12] Christopher R.H. Hanusa, Brant C. Jones, Abacus models for parabolic quotients of affine Weyl groups, J. Algebra 361 (2012) 134-162.
[JK81] James Gordon, Adalbert Kerber, The representation theory of the symmetric group, Encyclopedia Math. Appl., vol. 16, Addison-Wesley Publishing Co., Reading, Mass, 1981.
[KR12] Byungchan Kim, Jeremy Rouse, Explicit bounds for the number of p-core partitions, Trans. Amer. Math. Soc., in press.
[Nat09a] Rishi Nath, The Navarro conjecture for alternating groups, p=2, J. Algebra Appl. 6 (2009) 837-844.
[Nat09b] Rishi Nath, On diagonal hooks of self-conjugate partitions, arXiv:0903.2494 [math.CO], 2009.
[OEIS] The on-line encyclopedia of integer sequences, published electronically at http://oeis.org, 2012.
[Ols93] Jørn Olsson, Combinatorics and representations for finite groups, Vorlesungen Fachbereich Math. Univ. Essen 20 (1993).
[Ols76] Jørn Olsson, McKay numbers and heights of characters, Math. Scand. 38 (1976) 125-142.
[Ols90] Jørn Olsson, On the p-blocks of symmetric and alternating groups and their covering groups, J. Algebra 128 (1990) 188-213.
[OS07] Jørn Olsson, Dennis Stanton, Block inclusions and cores of partitions, Aequationes Math. 74 (1-2) (2007) 90-110.
[OS97] Ken Ono, Lawrence Sze, 4-Core partitions and class numbers, Acta Arith. 80 (1997) 249-272.
[Rob00] Neville Robbins, On t-core partitions, Fibonacci Quart. 38 (1) (2000) 39-48.
[Sar12] Bipul Kumar Sarmah, Contributions to partition identities and sums of polygonal numbers by using Ramanujan's theta functions, PhD thesis, Tezpur University, 2012.
[Sta99] Dennis Stanton, Open positivity conjectures for integer partitions, Trends Math. 2 (1999) 19-25.

[^0]: 47 C.R.H. Hanusa gratefully acknowledges support from PSC-CUNY grant TRADA-42-115. Rishi Nath gratefully acknowledges support from PSC-CUNY grant TRADA-42-615.

 * Corresponding author.

 E-mail addresses: chanusa@qc.cuny.edu (C.R.H. Hanusa), rnath@york.cuny.edu (R. Nath).
 0022-314X/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jnt.2012.08.017

