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1. Introduction

Low-energy supersymmetry (SUSY) is one of the most plausible
extensions of the Standard Model (SM). So far, low-energy exper-
iments such as measurements of flavor-changing neutral currents
(FCNCs) have imposed constraints on its breaking mechanism and
mediation. We often assume to put our world be secluded from
the SUSY breaking sector. Then, the SUSY breaking is mediated
only via the gravitational effects [1–3], and the dangerous FCNCs
are suppressed naturally.

It was proposed that the separation is achieved by geometrical
configuration in higher dimensions [1]. This mechanism is simple
and easy to imagine. However, it has been noted that moduli fields
in the bulk may induce the dangerous couplings. The contributions
depend on the background, and the warped one, namely the AdS
space, is successful, because they are warped away [4].

On the other hand, the separation is realized in the four-
dimensional setup by assuming a conformal dynamics in the SUSY
breaking sector. This scenario is called as the conformal sequester-
ing [5]. The renormalization group (RG) evolution of the conformal
dynamics suppresses the contact couplings between the SM and
SUSY breaking sectors.

These two mechanisms are suggested to be dual to each other
according to the AdS/conformal field theory (CFT) correspon-
dence [6]. This implies an equivalence of the mass spectrum of
the superparticles. It has been studied that the tree-level media-
tion of the SUSY breaking is suppressed in both cases [1,5]. Then
the soft parameters arise at the quantum level. There are three
anomalies in supergravity (SUGRA), which are known to mediate
the SUSY breaking [1–3]. In the AdS setup, the mediation is given
by the super-Weyl (SW) anomaly, while the other two anoma-
lies in SUGRA, called the Kähler and sigma-model anomalies, are
known to cancel to each other [3]. In contrast, any cancellation
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or suppression has not been discussed in CFT. In this Letter, we
will show that the conformal dynamics suppresses the Kähler and
sigma-model anomalies.

2. Anomaly mediation

The anomaly-mediated SUSY breaking (AMSB) with respect to
the SW, Kähler and sigma-model transformations is represented
by the non-local operators in SUGRA [3]. However, the result is not
easy to discuss the conformal dynamics. They are easily obtained
from the superconformal formula of SUGRA [7]. Only the leading
terms with respect to 1/M P are phenomenologically significant.
Then the Lagrangian is expanded as

L= [
φ†φQ † Q

]
D + [ΔK ]D − 1

6

[
K 2]

D + [
φ3W

]
F + · · · , (1)

where K and W denote the Kähler and superpotential in the Ein-
stein frame. The chiral superfield field Q denotes the visible and
hidden mattes. It is noted that φ is the chiral compensator field to
fix the gauge degrees of freedom of the superconformal symmetry.
Namely, the frame is not fixed before giving a VEV for φ. The no-
tation [· · ·]D,F means to take D- and F -components in the global
SUSY, respectively. Further, we simply assume a canonical normal-
ization for the matters. The second term in the right-handed side
represents the higher dimensional terms, potentially including di-
rect couplings between the visible and hidden sectors. The third
one is obtained after expanding −3e−K/3. The neglected terms are
phenomenologically irrelevant, since they correspond to higher or-
der terms of 1/Mn

P in the Einstein frame.
The chiral compensator field, φ is a source to mediate the SUSY

breaking via the SW anomaly. It is easy to introduce the Pauli–
Villas (PV) fields Q ′ to see AMSB. Essentially, the superpotential
involves the mass term,

W = M ′ Q ′ Q̄ ′, (2)

with the regularization scale M ′ . After canonically rescaling Q ′ ,
the SUSY breaking B-term is evaluated as B = M ′ Fφ in addition
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to the mass term M = M ′φ. Thus similarly to the evaluation of
the gaugino mass in the gauge-mediated SUSY breaking, the loop
diagram mediating Q ′ gives

Mλ = α

4π

Fφ

φ
. (3)

This has a sign opposite to that of the gauge-mediation because Q ′
is the PV field. We notice that the result is independent of M ′ and
finite even for M ′ → ∞. The Einstein frame is realized by taking1

φ = eK/6
[

1 + θ2
(

eK/2W ∗ + 1

3
Ki F i

)]
. (4)

Then we reproduce the AMSB result from the SW anomaly.
The sigma-model contribution originates in the second term of

the right-handed side in (1). The B-term is from the higher di-
mensional operator in the Kähler potential. In fact, for a hidden
matter Z , δK = c Z Q ′ Q ′ † + h.c. gives δF Q ′ = −cF Z Q ′ , leading to
B = −M ′cF Z by combining to the mass term (2) (e.g., see below).
Note that φ does not contribute to the sigma-model anomaly. Thus
the gaugino mass becomes

Mλ = − α

4π
cF Z . (5)

This result is generalized to the result in [3] straight-forwardly.
Then the anomaly is only from the U (1) subgroup of the connec-
tion, Γ

j
i j ≡ K j
∗

Ki
∗ j . It is also commented that this result depends
on the higher dimensional operator in K and can appear in global
SUSY models [8].

Let us discuss the Kähler anomaly. The third term of the right-
handed side plays a role to mediate the SUSY breaking in (1). It
looks like a higher dimensional operator in the D-term, [· · ·]D , and
the B-term becomes B = 2/3M ′ K Z F Z for both Q and Q̄ , similarly
to the sigma-model anomaly. So the gaugino mass is

Mλ = α

4π

2

3
K Z F Z . (6)

It is stressed that although the result depends on the linear term
of K , it substantially comes from the higher dimensional operator
in (1).

From (3), (5) and (6), we obtain the complete AMSB for the
gaugino mass which is coincide with the result in [3]. In the lit-
erature, the operator is denoted by the superfields, involving the
gravity superfield, R . We can see that the superfield representa-
tion of the non-local terms is derived from the second and third
terms in (1) for the Kähler and sigma-model anomalies. However,
only a part is obtained for that of the SW anomaly, because we
focus on a source of AMSB and introduced only φ in this Letter.

The B-terms are essential to derive AMSB in the above. For the
Kähler and sigma-model anomalies, they come from the higher di-
mensional operators. The Kähler potential is generally written as
(here and in the following, we omit a prime of fields for simplic-
ity)

K = |Z |2 + |Q |2 + |Q̄ |2
+ [

d Z + cQ Z |Q |2 + cQ̄ Z |Q̄ |2 + h.c.
] + · · · , (7)

and the mass term is W = M Q Q̄ . Here the coefficients cQ ,Q̄ ,d
may depend on the (hidden) matters as a background. Expanding
eK/3, we obtain the higher dimensional operators;

−3e−K/3 ⊃ (cQ − d/3) Z |Q |2 + (cQ̄ − d/3) Z |Q̄ |2 + h.c. (8)

These terms are a source of mediating the SUSY breaking in the
Kähler and sigma-model AMSB. The B-term is easily obtained by

1 See [3] for the terms involving spinors.
solving the equation of motion of F Q and F Q̄ . Another approach
is to erase them by rescaling, Q → Q [1 − (cQ − d/3)Z ]. Then the
mass term is modified as

M Q Q̄ −→ M

[
1 −

(
cQ − cQ̄ − 2d

3

)
Z

]
Q Q̄ . (9)

This involves the B-term, and provides the gaugino masses. It is
noted that the tadpole terms of Z are irrelevant after the expan-
sion.

The contributions from the Kähler and sigma-model anomalies,
(5) and (6), exactly cancel to each other, if the Kähler potential is
the sequestered form [3],

K = −3 ln

[
1 − 1

3

(|Q |2 + |Z |2)
]
. (10)

This cancellation is easily seen in (1). The second and third terms
in the right-handed side are a source of the SUSY breaking for the
sigma-model and Kähler anomalies. If we substitute (10) for the
Kähler potential in (1), they cancel to each other. From another
point of view, they correspond to the higher dimensional opera-
tors of −3eK/3. Namely, the higher dimensional operators in the
Einstein frame are practically equivalent to those in the conformal
frame [9]. In the conformal frame, since (10) does not have the
contact terms between the visible and the SUSY breaking sectors,
the Kähler and sigma-model anomalies are absent, and only the
SW anomaly remains.

3. Conformal sequestering

Let us discuss the Kähler and sigma-model anomalies under the
conformal dynamics. In the previous section, we saw that they are
related to the higher dimensional operators in (1). Thus we focus
on the evolution of them in the conformal dynamics.

At the cutoff scale, the Lagrangian is assumed to be general,
involving the (flavor-violating) higher dimensional operators. Let
us first discuss the case when the operators in the D-term lin-
early depend on the matters in the SUSY breaking sector, S . This
means that cQ ,Q̄ and d in (7) are independent of the SUSY break-
ing fields. To see a suppression of them, we rescale the visible
matters as Q → Q [1 − (cQ − d/3)S]. Then the AM contributions
is derived from a coupling of S in front of the mass term in the
superpotential, giving the B-term. Its evolution is represented by
the anomalous dimension of S . Near the fixed point, the B-term
behaves as (see, e.g., [10,11])

W ∼
(

μ

M∗

)γ ∗
S

M S Q Q̄ , (11)

where γ ∗
S is the anomalous dimension at the fixed point. Since S

should be gauge-singlet, γ ∗
S is positive. Thus the B-term becomes

suppressed in the infrared limit compared to the μ parameter,
which is dominated by M .

The bilinear terms with respect to the SUSY breaking fields in
the D-term can also be a source of mediating the SUSY breaking
if the field has a finite vacuum expectation value. Regarding the
visible fields as a background, their evolutions are represented by
the anomalous dimensions [5];

(Δ lnZ) = eLt(Δ lnZ)0. (12)

Here the scale is t = ln(μ/M∗) and (Δ lnZ) is defined as (Δ lnZ)

≡ lnZ + γ ∗t with a wave function renormalization factor, Z .
Since the SUSY breaking sector usually consists of multiple fields,
L forms a matrix. If it is positive, i.e., all eigenvalues are posi-
tive, (Δ lnZ) approaches to zero for the infrared limit t → −∞.
Then the contact terms are absent from the low-energy effective
Lagrangian, because they arise as (Δ lnZ)0 ⊃ c Q Q †. Therefore the
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conformal sequestering is realized for L > 0 [5,10,12]. At the same
time, the sources of the SUSY breaking mediation become small as
well, because they are denoted by the higher dimensional opera-
tors. Thus the Kähler and sigma-model anomalies are suppressed
by the conformal dynamics. Although the coefficients c and d in (9)
may depends on the hidden matters more complexly, they can be
treated similarly, or are practically irrelevant for phenomenology.

Consequently, the B-terms relevant for the Kähler and sigma-
model anomalies are suppressed, and so they are absent in the
conformal sequestering. In contrast, the SW anomaly still remains
after the dynamics, since φ arises as an overall factor in front of
the D-term.2

Let us comment on a choice of the regularization scheme. So
far, we used the PV regularization. If we apply the other scheme
(see, e.g., [3,8,13]), the discussions in the above are not so triv-
ial. In order to see the suppression of AMSB, we focus on the UV
insensitivity.3 When a matter field decouples by a heavy mass,
the threshold corrections give the gaugino mass, M(dec.)

λ . The UV
insensitivity tells us that it exactly cancels with that from the reg-
ularization, that is, the AMSB mass, M(AM)

λ . Thus if we evaluate the
gaugino mass from the matter threshold by postulating a hypo-
thetical mass term, we obtain the AMSB mass as M(AM)

λ = −M(dec.)
λ .

Repeating the same discussions in this Letter, we obtain the same
result.

So far, we focused on the gaugino mass. The soft SUSY breaking
effects also contain scalar masses, scalar trilinear couplings, and
holomorphic scalar mass terms. The SUGRA anomalies mediate the
SUSY breaking to the parameters. Nevertheless, the complete result
has not been known for the Kähler and sigma-model anomalies
(see also [14]). On the other hand, the SUSY breaking is mediated
by the higher dimensional operators in (1). The soft parameters
other than the gaugino mass are also considered to originate in
the terms. We saw that they are suppressed in the geometrical
and conformal sequestering. Thus, if the sequestering is realized in
nature, the Kähler and sigma-model anomalies do not contribute
to the soft parameters.

4. Discussion and conclusions

In this Letter, we discuss the suppression of the Kähler and
sigma-model anomalies in the conformal sequestering. The con-
tributions are obtained from the higher dimensional operators in
the D-term, namely after expanding −3e−K/3. Since the conformal
dynamics suppresses them, the anomalies are found to vanish.

2 The conformal dynamics may affect Ki F i/3 in (4). The evolution, however, de-
pends on details of SUGRA, and we retain the discussion for a future work.

3 The decoupling behaviour from heavy fields is considered to be valid for the
contributions of the Kähler and sigma-model anomalies as well as that of the SW
one, since they are obtained by the extension, (9), which is just analogous to the
SW case, M → Mφ.
A dynamics of the gauge term
∫

d2θ Z W W is treated by using
the anomalous dimensions [11]. However, the operators we focus
on now are represented by the non-local operators at the Planck
scale [3], so its evolution is non-trivial. Instead, the counter term
may exist at the cutoff, and can affect the gaugino mass [3]. If it
has a form of

∫
d2θ f (Z)W W , where f (Z) = αZ +· · · is a function

of Z , its contribution tends to be suppressed by the conformal dy-
namics.

The method in this Letter can also be applied to discuss the
anomaly-induced inflaton decay [9,15]. The decay into the SUSY
breaking sector is obtained by the higher dimensional operators of
Z in the D-term for the Kähler and sigma-model anomalies. Thus
they are naturally suppressed by the conformal dynamics, even
when the SUSY breaking fields do not always appear explicitly in
the operators [16].
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