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Abstract

Polarization properties of high energy photodisintegration of the deuteron are studied within the framework of t
rescattering mechanism (HRM). In HRM, a quark of one nucleonknocked-out by the incoming photon rescatters with a qu
of the other nucleon leading to the production of two nucleons with high relative momentum. Summation of all relevan
rescattering amplitudes allows us to express the scatteringamplitude of the reaction through the convolution of a hard phot
quark interaction vertex, the large anglep–n scattering amplitude and the low momentum deuteron wave function. W
HRM, it is demonstrated that the polarization observables in hard photodisintegration of the deuteron can be expresse
the five helicity amplitudes of NN scattering at high momentum transfer. At 90◦ CM scattering HRM predicts the dominan
of the isovector channel of hardpn rescattering, and it explains the observed smallness of induced,Py and transfered,Cx

polarizations without invoking the argument of helicity conservation. Namely, HRM predicts thatPy andCx are proportional
to theφ5 helicity amplitude which vanishes atθcm = 90◦ due to symmetry reasons. HRM predicts also a nonzero value foCz

in the helicity-conserving regime and a positiveΣ asymmetry which is related to the dominance of the isovector channel i
hard reinteraction. We extend our calculations to the region where large polarization effects are observed inpp scattering as
well as give predictions for angular dependences.
 2004 Published by Elsevier B.V.
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1. Introduction

Hard photodisintegration of the deuteron provides a unique tool for studying the role of quarks and
in nuclear interactions. During the last decade several experiments have been performed [1–6] which indicated
strongly the importance of quark–gluon degrees of freedom in these reactions starting atEγ � 1 GeV.

First QCD based predictions for high momentum transfer photodisintegration of the deuteron were d
within minimal Fock component approximation [7,8]in which it is assumed that only minimal number
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partonic constituents dominate in large angle hard two-body scattering. Within this approximation the
dependences of the set of fixed angle hard two-body reactions can be predicted according to the counting r
dσ/dt ∼ s−(n1+n2+n3+n4−2), in which ni is the number of fundamental constituents in the particlei which is
involved in the reaction. This prediction has been confirmed experimentallypractically for all two-body reaction
for fixed angle hard scattering kinematics in which−t,−u � 2 GeV2.

For high momentum transferγ + d → p + n reaction the above counting rule predicts an energy depend
∼ s−11 [9], which was confirmed experimentally for photon energies starting at 1 GeV [1–3].

The minimal Fock component approximation can be proven rigorously within perturbative QCD (pQC
which the masses of interacting current quarks are neglected. Thus the experimentalsuccess of the minimal Foc
component approximation raised the expectations that the observed energy dependences indicate the
pQCD regime. This was an important question since there were several arguments [10,11] against the ap
of pQCD in the considered energy range as well as the attempts to describe the absolute cross se
hard two-body exclusive reactions within leading twist pQCD have been largely unsuccessful (see, e.g., [12,
underestimating the observed cross sections by several orders of magnitude.1

Since, in QCD the interaction is realized through the exchange of vector gluons, in pQCD (due to va
quark masses) the helicity of interacting particles should be conserved. Therefore, as an independent ch
onset of pQCD one can investigate the effects of hadronic helicity conservation (HHC).

The experiments which are aimed at the studies of polarization observables in hard reactions are be
for HHC studies. The first experiments were performed for elasticpp scattering. While in wide range of ha
scattering kinematics thepp data generally are in agreement with HHC, in some instances the striking disagre
is observed [15]. For example, in�p + �p → p + p scattering atθcm = 90◦ and PLab = 11.75 GeV [15] the
measurements demonstrated that protons polarized transverse to the scattering plane have four times la
probability to scatter with spins parallel than antiparallel to each other. This number is considerably larger t
HHC predication of two [17,18]. Several theoretical approaches have been proposed to describe the
enhancement of the polarization effects (see, e.g., [17–21]), however, the experimental evidence is very lim
meaningful progress in understanding the mechanism of HHC violation.

Since the onset of energy scaling in the cross section of deuteron photodisintegration is observed a
Eγ � 1 GeV andθcm = 90◦, the measurement of polarization observables at the same kinematics will suit idea
for HHC studies. There were several recent studies [5,6,22,23] in polarization properties of high energy d
photodisintegration. With JLAB building up a systematicexperimental program on deuteron photodisintegra
with polarization measurements one may expect a wealth of the new data within next several years [5,16]

In this Letter we study several polarization observables in hard photodisintegration reaction of the deutero
within the recently developed model of hard rescattering(HRM) [24]. HRM is based on the assumption that h
photodisintegration of the deuteron proceeds through two steps: at first, the incoming photon knocks-out a
from one nucleon in the deuteron which then makes a hard rescattering with a quark of the second nu
the deuteron. This assumption allows us to express the disintegration amplitude through the convolutio
deuteron wave function, hardphoton–quark interaction amplitude and the amplitude of hardpn scattering. The
latter was estimated using the experimentalpn scattering data. HRM provides also a convenient framework
calculation of the polarization observables of photodisintegration reaction, expressing them through the helic
amplitudes ofpn scattering. In the next sections within HRM we calculate several polarization observ
which are currently investigated experimentally. HRM gives rather different insight on observed regular
polarization measurements and makes several predictions whose verification can advance our understa
dynamics of hard photodisintegration.

1 The smallness of the calculated cross sections does not rule out completely the relevance of pQCD regime, since one may expect a siz
effects from unaccounted hidden color component of hadronic wave functions [14].
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Fig. 1. Typical quark-rescattering diagram.

2. Hard rescattering mechanism

We are considering a reaction

(1)γ + d → p + n

in which thepolarizationsof γ and/orp are measured. The hard scattering is defined by a requiremen
−t,−u � 2 GeV2, wheret = (q − pp)2 = (pn − pd)2, u = (q − pn)

2 = (pp − pd)2 and q , pd , pp and pn

are four-momenta of incoming photon, target deuteron, outgoing proton and neutron, respectively.
Within HRM [24] it is assumed that final two high-pT nucleons are produced due to hard rescattering of a q

knocked out by incoming photon from one nucleon, with a quark in other nucleon. As a result the sum of di
similar to the one presented in Fig. 1 gives the main contribution to the scattering amplitude of the reaction

We start with analyzing the scattering amplitude corresponding to the diagram of Fig. 1:

〈λA,λB |A|λγ ,λD〉

=
∑

(η1,η2),(ξ1,ξ2),

(λ1,λ2)ζ

∫ {
ψ

†λB,η2
N (pB,x ′

2, k2⊥)

1− x ′
2

ūη2(pB − k2)
[−igT F

c γ ν
] i[uζ (p1 − k1 + q)ūζ (p1 − k1 + q)

(1− x1)s′(αc − α + iε)

× [−ieqε
λγ
µ γ µ

]
uξ1(p1 − k1)

ψ
λ1,ξ1
N (p1, x1, k1⊥)

(1− x1)

}
1

×
{

ψ
†λA,η1
N (pA,x ′

1, k1⊥)

1− x ′
1

ūη1(pA − k1)
[−igT F

c γ µ
]
uξ2(p2 − k2)

ψ
λ2,ξ2
N (p2, x2, k2)

(1− x2)

}
2

(2)× Gµ,ν(r)
dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

Ψ
λD,λ1,λ2
D (α,p⊥)

(1− α)

dα

α

d2p⊥
2(2π)3

,

where the four-momenta:p1, p2, k1, k2, r, pA andpB are defined in Fig. 1. Note thatk1 andk2 define the four-
momenta of residual quark–gluon system of the nucleons withoutspecifying their actual composition.s′ = s −M2

d ,
wheres = (q + pd)2. x1, x ′

1, x2 andx ′
2 are the light-cone momentum fractions of initial and final nucleons ca

out by spectator system in the nucleonsx1(2) = k1(2)+/p1(2)+, x ′
1(2) = k1(2)+/pA(B)+.2 α = p2+/pd+ is the light

cone momentum fraction of the deuteron carried by one of the nucleons andp⊥ is the relative transverse momentu
of the nucleons in the deuteron. The denominator(1 − x1)s

′(αc − α + iε) is obtained from the denominator

2 The light cone four-momentum is defined as(p+,p−,p⊥), wherep± = E ± pz. Here thez axis is defined in the direction opposite
the incoming photon momentum.
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knocked-out quark propagator,(p1 − k1 + q)2 − m2
q + iε by expressing it throughα and

(3)αc = 1+ 1

s′

[
m̃2

N − m̃2
R(1− x1) + m2

qx + (k1 − xp1)
2⊥

x1(1− x1)

]
,

wherem̃2
N = p1−pd+(1 − α) − p2⊥ and m̃2

R = k1−pd+(1 − α)x1 − k2
1⊥ are an effective masses of the off-sh

nucleon and its residual system, respectively.mq represents the current quark mass of the knocked-out quark
scattering process in Eq. (2) can be described through the combination of the following blocks:

(a) Ψ
λD,λ1,λ2
D (α,p⊥), is the light-cone deuteron wave function which describes the transition of the deutero

helicity λD into two nucleons withλ1 andλ2 helicities, respectively.
(b) The term in{. . .}1 describes the “knocking out” aξ1-helicity quark from theλ1-helicity nucleon by an incoming

photon with helicityλγ . Subsequently, the “knocked-out”ζ1-helicity quark exchanges gluon, ([−igT F
c γ ν]),

with a quark from second nucleon producing a finalη2-helicity quark which enters the nucleon B with helic
λB .

(c) The term in{. . .}2 describes the emergingξ2-helicity quark fromλ2-helicity nucleon which then exchang
a gluon, ([−igT F

c γ µ]), with the knocked-out quark and produces a finalη1-helicity quark which enters th
nucleon with helicityλA.

(d) The propagator of the exchanged gluon isGµν(r) = dµν/(r2 + iε) with polarization matrix,dµν (fixed by
light-cone gauge), andr = (p2 − k2 + l) − (p1 − k1 + q), with l = (pB − p2).

In Eq. (2) theψλ,τ
N represents everywhere aτ -helicity single quark wave function ofλ-helicity nucleon anduτ is

the quark spinor defined in the helicity basis. We keep only theuζ ūζ term in the numerator of the knocked-o
quark propagator, since this is the only term that contributes through the soft (dominant) component of the deute
wave function.

Next, we integrate Eq. (2) byα, taking into account only on-mass shell contribution of struck quark propag
i.e., the second term in the decomposition:(αc − α + iε)−1 = P(αc − α)−1 − iπδ(αc − α). The on-mass she
approximation allows us to evaluate the photon–quark interaction vertex, for which, in vanishing current qua
mass approximation one obtains:

(4)

ūζ (p1 − k1 + q)
[−ieqε

λγ
µ γ µ

]
uξ1(p1 − k1) = eq

√
2s′√[1 − (1− α)(1 − x1)] (1− α)(1 − x1) δζ,λγ δλγ ,ξ1.

Two important features of the above equation should be emphasized: (i) an energetic photon selects o
quarks from a nucleon that have the same helicity that the photon has (ξ1 = λγ ); (ii) the helicity of the initial quark
is conserved after it was struck by incoming photon(ζ = ξ1). Inserting Eq. (4) into Eq. (2) and taking thedα

integral by estimating it through the residue at the poleα = αc one obtains:

〈λA,λB |A|λγ ,λD〉

=
∑

(η1,η2),(ξ2),

(λ1,λ2)

∫
eq

√
2

(1− x1)
√

s′
√[1− (1− αc)(1− x1)](1− αc)(1− x1)

×
{

ψ
†λB,η2
N (pB,x ′

2, k2⊥)

1− x ′
2

ūη2(pB − k2)
[−igT F

c γ ν
]
uλγ (p1 − k1 + q)

× ψ
λ1,λγ

N (p1, x1, k1⊥)

(1− x1)

ψ
†λA,η1
N (pB,x ′

1, k1⊥)

1− x ′
1
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× ūη1(pA − k1)
[−igT F

c γ µ
]
uξ2(p2 − k2)

ψ
λ2,ξ2
N (p2, x2, k2)

(1− x2)
Gµ,ν(r)

dx1

x1

d2k1⊥
2(2π)3

dx2

x2

d2k2⊥
2(2π)3

}

(5)× Ψ λD,λ1,λ2(α,p⊥)

(1− α)α

d2p⊥
4(2π)2 .

One can relate the expression in{. . .} to the quark-interchange kernel ofNN interaction. Taking into account th
fact that the deuteron wave function peaks strongly atαc = 1/2 we approximate Eq. (5), choosingαc = 1/2. In
this case inx1 → 0 limit, which corresponds to the Feynman picture of hard scattering [25], Eq. (5) factorize
the product ofγ –quark scattering vertex andquark-exchange amplitude ofNN scattering [24]. In the case of th
minimal Fock component approximation, in whichx1, (1 − x1) ∼ 1, the factorization is correct up to the scali
functionf (θcm), with f (θcm = 90◦) ≈ 1 [24]. Using this factorization, for Eq. (5) one obtains:

〈λA,λB |AQi |λγ ,λD〉

(6)=
∑

(η1,η2),(ξ2),

(λ1,λ2)

∫
eQif (θcm)√

2s′ 〈η2, λB |〈η1, λA|Ai
QIM

(
s, l2

)|λ1, λγ 〉|λ2ξ2〉Ψ λD,λ1,λ2(αc,p⊥)
d2p⊥
(2π)2 ,

where〈η2, λB |〈η1, λA|Ai
QIM(s, l2)|λ1, λγ 〉|λ2, ξ2〉 is the quark-interchange kernel (with quark-i interacting with

the photon) corresponding to the expression in{. . .} in Eq. (5). Here|λ,η〉 representsη-helicity quark wave
function of λ-helicity nucleon. Since the momenta of interacting quarks are large (1− x1 ∼ 1) one can assum
that the interchanging quarks carry the helicities of a parent nucleons (i.e.,η = λ). This allows us to express th
scattering amplitude in Eq. (6) through the helicities of the photon, deuteron and nucleons as follows:

〈λA,λB |AQi |λγ ,λD〉

(7)=
∑
λ2

∫
ef (θcm)√

2s′ Qi〈λA,λB |Ai
QIM

(
s, l2

)|λγ ,λ2〉Ψ λD,λγ ,λ2(αc,p⊥)
d2p⊥
(2π)2 ,

where |λ1, λ2〉 represents two nucleons havingλ1 and λ2 helicities, respectively. Note thatAi
QIM in the above

equation is weighted with the charge of the knocked-out quarkQi , thus it cannot be directly related to the qua
interchange amplitude ofpn → pn scattering.

To calculate the total scattering amplitude within HRM we sum all amplitudes of topologies of Fig. 1. Iden
λA andλB with the helicities of proton and neutron, respectively, one obtains:

(8)〈pλA,nλB |A|λγ ,λD〉 =
∑
i∈D

[〈pλA,nλB |AQi |λγ ,λD〉 − 〈nλB ,pλA |AQi |λγ ,λD〉],
where one sums valence quarks of the deuteron. This sumcan be performed within the quark-interchange mo
of hadronic interactions, which allows us to represent theNN scattering amplitude as follows [18]:

(9)〈a′b′|A|ab〉 = 1

2
〈a′b′|

∑
i∈a,j∈b

[IiIj + �τi · �τj ]Fi,j (s, t)|ab〉,

whereIi andτi are identity and Pauli matrices defined inSU(2) flavor (isospin) space of the interchanged qua
The kernel,Fi,j (s, t) describes an interchange ofi andj quarks.3

3 The additional assumption of helicity conservation allows us to express the kernel in the form [18]:Fi,j (s, t) = 1
2[Ii Ij + �σi · �σj ]F̃i,j (s, t),

whereIi andσi operate inSU(2) helicity (H -spin) space of exchanged (i, j ) quarks [18]. However, for our discussion the assumption
helicity conservation is not required.
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One can use Eq. (9) to calculate the quark-charge weighted QIM amplitude,〈a′b′|AQ|ab〉, to obtain:

〈a′b′|AQ|ab〉∣∣
a,b∈D

= 1

2
〈a′b′|

∑
i∈a,j∈b

[IiIj + �τi · �τj ](Qi + Qj)Fi,j (s, t)|ab〉 = (Qu + Qd)〈a′b′|A|ab〉

(10)= 1

3
〈a′b′|A|ab〉.

The above result can be understood qualitatively: since the number ofu andd quarks in the deuteron are equ
one has the same number of diagrams with knocked outu andd quarks. Using Eqs. (7), (8) and (10) forγ d → pn

amplitude one obtains:

〈pλA,nλB |A|λγ ,λD〉
=

∑
λ2

f (θcm)

3
√

2s′
(〈pλA,nλB |Apn(s, tn)|pλγ , nλ2〉 + 〈pλA,nλB |Apn(s,un)|nλγ pλ2〉

)

(11)×
∫

Ψ λD,λγ ,λ2(αc,p⊥)
d2p⊥
(2π)2 ,

where tn = (pB − 1
2pD)2, un = (pA − 1

2pD)2 and Apn is the helicity amplitude ofpn scattering, which is
factorized from the integral. In the factorization we take into account also the antisymmetry of the de
wave function with respect top ↔ n. This factorization is justified due to the fact that atαc = 1

2 the momenta
involved in the integration,p⊥ � 300 MeV/c are much smaller than the transferred momenta in theApn

amplitude. For the same reason one can approximate the light-cone deuteron wave function that enters in Eq. (
through rather well-known nonrelativistic deuteron wave function [24,26]:Ψ λD,λ1,λ2 = (2π)3/2Ψ

JD,λ1,λ2
NR

√
m,

whereΨ
λD,λ1,λ2
NR = [u(k) + w(k)

√
1/8S12]ξλD,λ1,λ2

1 , with u(k) and w(k) corresponding to thes- andd-waves

normalized as
∫ |u(k)|2(|w(k)|2) d3k = 1 andξ

λD,λ1,λ2
1 represents the spin component of the wave function.

3. Predictions for polarization observables

3.1. Definition of observables

We will discuss several polarization observables of reaction (1) for which there are ongoing exper
investigations [6,16]. These are:

– Recoil-proton polarizationPy which corresponds to the measurement of asymmetry in the spin compon
the protons parallel/antiparallel to the direction ofy = q̂ × p̂p for the reaction with unpolarized photon a
deuteron.

– Transfered polarizationsCx ′ and Cz′ , which correspond to the measurement of asymmetry in the
component of the protons parallel/antiparallel to the directions ofx̂ ′ = p̂p × ŷ and p̂p, respectively, for the
reaction with circularly polarized photons and unpolarized deuteron.

– Cross section asymmetryΣ for the reaction with linearly polarized photons.

These observables are expressed through the helicity amplitudes〈λpλn|A|λγ ,λd 〉 as follows [22,27]:

f (θ)Py = 2 Im
3∑

i=1

[
F

†
i+F[i+3]− + Fi−F

†
[i+3]+

]
, f (θ)Cx ′ = 2 Re

3∑
i=1

[
F

†
i+F[i+3]− + Fi−F

†
[i+3]+

]
,
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f (θ)Cz′ =
6∑

i=1

[|Fi+|2 − |Fi−|2], f (θ)Σ = −2 Re

[∑
±

(
F

†
1±F3∓ − F

†
4±F6∓

) − F
†
2+F2− + F

†
5+F5−

]
,

(12)f (θ) =
6∑

i=1

∑
±

|Fi±|2,

whereFi± = 〈±,±|A|1,2− i〉, for i = 1,2,3 andFi± = 〈±,∓|A|1,5− i〉, for i = 4,5,6.

3.2. HRM predictions

Based on Eq. (11) one calculates the observables defined in Eq. (12) expressing them through the
amplitudes ofpn scattering. Derivations are simplified further by using the fact that the momenta relevant
deuteron wave function are� 300 MeV/c. As a result one can restrict bys wave contribution in the deuteron wav
function only. In this case the radial part of the deuteron wave function in Eq. (12) will cancel out and one o

Py = − 2 Im{φ†
5[2(φ1 + φ2) + φ3 − φ4]}

2|φ1|2 + 2|φ2|2 + |φ3|2 + |φ4|2 + 6|φ5|2 , Cx ′ = 2 Re{φ†
5[2(φ1 − φ2) + φ3 + φ4]}

2|φ1|2 + 2|φ2|2 + |φ3|2 + |φ4|2 + 6|φ5|2 ,

(13)Cz′ = 2|φ1|2 − 2|φ2|2 + |φ3|2 − |φ4|2
2|φ1|2 + 2|φ2|2 + |φ3|2 + |φ4|2 + 6|φ5|2 , Σ = 2 Re[|φ5|2 − φ

†
3φ4]

2|φ1|2 + 2|φ2|2 + |φ3|2 + |φ4|2 + 6|φ5|2 ,

where off-shell helicity amplitudes ofpn scattering are:

φ1(s, tn, un) = 〈+,+|Apn→pn + Apn→np |+,+〉,
φ2(s, tn, un) = 〈+,+|Apn→pn + Apn→np |−,−〉,
φ3(s, tn, un) = 〈+,−|Apn→pn + Apn→np |+,−〉,
φ4(s, tn, un) = 〈+,−|Apn→pn + Apn→np |−,+〉,

(14)φ5(s, tn, un) = 〈+,+|Apn→pn + Apn→np |+,−〉.
Due to the relation:Apn→pn/np = AI=1

2 (+/−)AI=0

2 , in which I is the isospin of thepn system one observe
that in the on-shell limit HRM predicts adominance of the isovector channel inpn rescattering atθcm = 90◦.
In this case one has the following features of on-shellφ-amplitudes atθcm = 90◦: (i) φ5 = 0 and (ii)φ3 = −φ4.
Furthermore, for any given isospin state andθcm there is a hierarchy in helicity amplitudes in the hard regime
the scattering (see, e.g., [20,21]):4

(15)|φ1| � |φ3|, |φ4| > |φ5| > |φ2|.
Based on the above features one can do following rather general observations for polarization obser

Eq. (13):

– Py andCx ′ should be small at largeθcm, due to the fact that on-shellφ5 approaches zero atθcm → 90◦. Thus
the smallness ofPy andCx ′ at 90◦ will not necessarily indicate an onset of helicity-conserving regime in
scattering amplitude. This observation can be checked by looking atθcm dependence ofPy andCx ′ . Their
increase withθcm going away from 90◦ will confirm the present conjecture.5

4 This hierarchy is well founded phenomenologically, even with observed finite effects of helicity nonconservation (see, e.g., [20])
5 Inclusion of thed wave in the deuteron wave function will not change the result, since the additional terms associated with thed wave are

proportional toφ5, too.
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– Using relations of Eq. (15), from Eq. (13) one can conclude that the relative sign ofPy andCx ′ is related
predominantly to the relative phase ofφ5 andφ1. For example, if real and imaginary parts of bothφ5 andφ1
have same signs thenPy andCx ′ will have an opposite signs.

– Based on Eq. (15) on expectsCz′ to have a positive values≈ 0.5–1.
– The relative sign ofφ3 andφ4 defines the sign ofΣ . If isovector channel is dominant in the hardpn rescattering

then one expectsΣ > 0 atθcm = 90◦.

3.3. Numerical estimates

We discuss the numerical estimates for illustration purposes only. Since there are practically no availa
on helicitypn amplitudes for hard scattering kinematics, we model them based on quark-interchange framew
of the scattering and the fact that HRM predicts the dominance of isovector stateNN rescattering atθcm = 90◦.
These two features are reflectedin the following parameterization (see, e.g., [17,18,21]):

φ1 = φ1(0)

[
17

62

(
F(zt ) + F(zu)

) + 14

62

(
F(−zt ) + F(−zu)

)]
,

φ3 = φ3(0)

[
25

94

(
F(zt ) + F(zu)

) + 22

94

(
F(−zt ) + F(−zu)

)]
,

(16)φ4 = φ4(0)

[
1

4

(
F(zt ) + F(zu)

) + 1

4

(
F(−zt ) + F(−zu)

)]
,

whereφi(0) ≡ φI=1
i (0) ≈ φ

pp
i (θcm = 90◦) (i = 1,2,3,4) and the angular function is defined according to R

[21]: F(z) = 1/[(1+ z)(1− z)3], with zt = 1+ 2tn
s−4m2 , andzu = −1− 2un

s−4m2 . We defineφ2 as:

(17)φ2 = φ2(0)

φ1(0)
φ1.

Because of (15) the observables of Eq. (13)depend weakly on the particular choice ofφ2. To asses the value
of φ1,2,3,4(0) we use the phenomenological parameterizations of [20], which successfully describe the a
polarization and cross section data on hardpp scattering:

φ1(0) = φ+ + φ−√
2

, φ2(0) = φ+ − φ−√
2

, φ4(0) = −φ3(0),

(18)φ±,3(0) = N

(s/Gev2)4

(
B±,3 + C±,3e

i[Ψ±,3(s)+δ±,3]),
whereφ±,3 = a ln(s/Λ2)/ ln(s/Λ2

i ) with Λ ≡ ΛQCD = 0.2 and all remaining parameters:Bi , Ci , a, Λi are defined
in Ref. [20] (see Table 1 of [20]).

Forφ5 we use relation that ensures a vanishing value atθcm = 90 in the on-shell limit [21]

(19)φ5 = R5−φ1 + R5+(φ3 + φ4),

whereR5± is an angular factor defined similar to [21]:

(20)R5±(t̂, û) = ε

[
1√
−t̂

± 1√−û

]
.

We consider two values forε: ε = √
(s − 4m2)/2 corresponding to the assumption that the smallness ofφ5 at large

angles is related only to the condition:φ5(θcm = 90◦) = 0, andε ≈ 0.1—characteristic value obtained from t
analysis ofφ5 for pp scattering which takes into account an additional suppression due to helicity conse
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Fig. 2. The photon energy dependence ofPy , Cx′ Cz′ andΣ at θcm = 90◦ photodisintegration of the deuteron.The curves are described in th
text. ThePy , Cx′ andCz′ data are from Ref. [5]. TheΣ data are from Ref. [6].

[21]. Note that because of the overall smallness ofφ5 at largeθcm the unpolarized cross section is practica
insensitive to the particular choice ofε.

In the hard regime when helicities are conservedφ5 vanishes and its nonzero value is related mainly to
soft component ofNN scattering (see, e.g., Ref. [19]). Therefore, the fact that one can identify the kernel o
rescattering in Eq. (5) with the hard kernel ofNN scattering does not justify the replacement oft̂ andû in R5± by
tn andun. Furthermore, we will refer such a replacement as an “on shell” approximation forφ5. Additionally, we
consider an “off-shell” approximations in which in the first case (“off-shell I”) we identify

t̂ = − s − 4m2

2
(1− zt ) and û = − s − 4m2

2
(1+ zt )

and in the second case (“off-shell II”)

t̂ = − s − 4m2

2
(1+ zu) and û = − s − 4m2

2
(1− zu).

Note that these are only choices which satisfies the condition,|t̂ | < |û| at θcm < 90 (forward angles). The abov
ambiguity naturally disappears in the on-shell limit.

Fig. 2 demonstrates the HRM predictions for energy dependences ofPy , Cx ′ Cz′ andΣ at θcm = 90◦. Thick

and thin curves represent the calculations with parameterε in Eq. (20) chosen
√

(s − 4m2)/2 and 0.1, respectively.
Solid and dashed curves correspond to the “on-shell” and “off-shell” approximation forφ5. Note that atθcm = 90◦
both off-shell approximations give an identical results. According to Eq. (13) the “on-shell” approximation predic
Py andCx ′ to be exactly zero atθcm = 90◦. Thus vanishingPy andCx ′ do not indicate unambiguously the ons
of helicity conservation regime. The existing data do not rule out the large values for helicity flip amplitudes
curves). It is interesting to note that within HRM the small value ofCz′ favors a nonvanishing contribution fro
φ2 andφ5. Thus the accurate measurement ofCz′ will have an utmost importance.

The “on-shell” and “off-shell” approximations can be discriminated unambiguously through the study of angu
dependences of the observables of Fig. 2. Fig. 3 demonstrates such a dependence for the reaction withEγ = 4 GeV.
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Fig. 3. The prediction ofθcm dependence ofPy , Cx′ Cz′ andΣ at Eγ = 4 GeV photodisintegration of the deuteron. The definition of
curves are the same as in Fig. 2.

The definition of the curves are the same as for Fig. 1, with dashed and doted curves representing “off
and “off-shell II” approximations. HRM predicts a qualitatively different dependences forPy , Cx ′ andCz′ for “on-
shell” and “off-shell” approximations ofφ5, when no additional suppression due to helicity conservation is ass
(ε = (s − 4m2)/2) (thick curves). If the regime of helicity conservation is established then the difference be
“on-shell” and “off-shell” approximations become unimportant (thin curves) and in both cases HRM pre
vanishing values forPy andCx ′ . The dominance of the isovector channel in hardNN rescattering is reflected i
the positive asymmetry ofΣ .

4. Summary

Polarization observables inγD → pn have been studied within the hard rescattering mechanism of deutero
photodisintegration. Within this modelPy , Cx ′ Cz′ and Σ asymmetries are expressed through the heli
amplitudes of hardpn scattering. Atθcm = 90◦ HRM predicts a dominance of the isovector channel in the hardpn

reinteraction.
Based on the general constraints onNN helicity amplitudes we predict several qualitative features ofPy , Cx ′

Cz′ andΣ . These are the vanishing values ofPy , Cx ′ at θcm = 90◦ due toφI=1
5 (θ = 90◦), positive large value fo

Cz′ if helicity-conserving regime is established, as well as a positive sign forΣ .
Within the quark-interchange framework we model thepn helicity amplitudes expressing unknown parame

through the existing parameterization ofpp amplitudes. Our numerical predictions are in reasonable agree
with the existing data, indicating that the available data are not sufficient to relate unambiguously the o
smallness ofPy , Cx ′ to the onset of the helicity-conserving regime. Within HRM this smallness can be exp
rather by the vanishingφ5 amplitude forNN scattering at 90◦ in isovector channel. On the other hand, the vanish
helicity-nonconserving amplitudes withinHRM predict a sizable asymmetry forCz′ . Thus it is very important to
have an accurate measurement ofCz′ . In addition, the study of the angular dependences ofPy , Cx ′ andCz′ will
clarify unambiguously the question whether the smallness ofPy , Cx ′ is related to the vanishingφ5 at θcm = 90◦
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or the onset of helicity-conserving regime of high energy scattering. The experimental verification of the
Σ will check HRM observation thatθcm = 90◦ scattering is dominated by hardpn rescattering in the isovecto
channel.
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