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SUMMARY

Neural stem cells (NSCs) in the subventricular zone
(SVZ) rely on environmental signals provided by the
neurogenic niche for their proper function. However,
little is known about the initial steps of niche estab-
lishment, as embryonic radial glia transition to post-
natal NSCs. Here, we identify Gli3 repressor (Gli3R), a
component of the Sonic hedgehog (Shh) pathway, as
a critical factor controlling both cell-type specifica-
tion and structural organization of the developing
SVZ. We demonstrate that Gli3R expressed in radial
glia temporally regulates gp130/STAT3 signaling at
the transcriptional level to suppress glial characteris-
tics in differentiating ependymal cells. In addition,
Gli3R maintains the proper level of Numb in ependy-
mal cells to allow localization of cell adhesion mole-
cules such as vascular cell adhesion molecule
(VCAM) and E-cadherin. Thus, our findings reveal a
role for Gli3R as a mediator of niche establishment
and provide insights into the conditions required for
proper SVZ neurogenic niche formation.
INTRODUCTION

Neurogenesis persists in the subventricular zone (SVZ) of the

lateral ventricle in the postnatal rodent forebrain (Kriegstein

and Alvarez-Buylla, 2009). In the SVZ, neural stem cells (NSCs)

are in close contact with ependymal cells, transit-amplifying

cells, neuroblasts, and endothelial cells (Doetsch et al., 1997).

Collectively, these cells constitute the neurogenic niche. The

ventricular surface of the SVZ is covered with ependymal cells

that surround NSCs in pinwheel-like arrangements (Mirzadeh

et al., 2008). These stereotypical arrangements of distinct cell

types in the SVZ appear important for providing NSCs with the

necessary environmental signals for proper production of inter-

neurons of the olfactory bulb (Ihrie and Alvarez-Buylla, 2011;

Tavazoie et al., 2008; Shen et al., 2008).
Cel
The neurogenic SVZ in postnatal animals is derived from the

embryonic ventricular zone (VZ) of the lateral ganglionic

eminence (LGE) (Young et al., 2007). Around birth, radial glial

cells (RGCs) in the VZ of the LGE transform into postnatal

NSCs and ependymal cells (Kriegstein and Alvarez-Buylla,

2009). Very little is known about how adult NSCs form from em-

bryonic radial glia, and understanding the differential signaling

events directing NSC and ependymal cell formation would give

us an idea of how adult NSCs are initially established and

regulated.

One critical environmental signal, Sonic hedgehog (Shh), has

been known to control the maintenance and proliferation of

NSCs (Machold et al., 2003; Ahn and Joyner, 2005) and other

neural progenitors (Corrales et al., 2006) in adults. Interestingly,

Shh-responding NSCs do not emerge until late embryonic

stages in the SVZ and are not fully directing neurogenesis until

after birth (Ahn and Joyner, 2005). However, prior to Shh

signaling activation, the RGCs in the VZ do express downstream

components of the pathway, including Gli2 (Allen Brain Atlas;

http://developingmouse.brain-map.org) and Gli3 (Wang et al.,

2011). It is well known that Gli3, in particular, plays a critical

role as a repressor (Gli3 repressor [Gli3R]) in brain patterning in

embryonic development in the absence of Shh signaling (Theil

et al., 1999). The presence of Shh effectors in the absence of

active Shh signaling raises the question as to whether Gli3 in

the VZ (the future SVZ) plays any role prior to Shh signaling acti-

vation in the neurogenic niche development.

Shh signaling is not the only signaling pathway critical for for-

mation of the neurogenic niche. Postnatal SVZ NSCs inherit glial

cell features from RGCs and turn on GFAP expression around

birth as well (Kriegstein and Alvarez-Buylla, 2009). gp130/JAK-

STAT signaling promotes glial fate and activates the GFAP pro-

moter during normal gliogenesis (Bonni et al., 1997; Nakashima

et al., 1999a, 1999b; Takizawa et al., 2001). gp130/JAK-STAT

signaling is shared by the interleukin-6 (IL-6) family cytokines,

including CNTF, OSM, IL-6, LIF, and CT-1 (Nakashima and

Taga, 2002). Although CNTF is themajor in vivo glial fate promot-

ing cytokine during development, all five signals have the ability

to induce GFAP+ glial cells in vitro due to the common down-

stream signal pathway involving activation of the STAT family

transcription factors (Nakashima and Taga, 2002). However,
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how STAT signaling is specifically activated in postnatal NSCs

and how it interacts with Shh signaling remain unclear.

Not all RGCs become postnatal NSCs, however. They also

form ependymal cells (Spassky et al., 2005), another important

cell population in homeostasis of postnatal neurogenesis in the

SVZ. Instead of taking on glial characteristics, these cells differ-

entiate into cuboid, multiciliated cells that are required for circu-

lating cerebrospinal fluid (CSF) (Spassky et al., 2005). Very little is

understood about the nature of the signals that instruct ependy-

mal development, but it has been shown that Numb and

Numblike are required for the formation and maintenance of

ependymal cells in the SVZ (Kuo et al., 2006). Numb is a well-

known negative regulator of the Notch signaling pathway that

degrades Notch intracellular domain (Di Marcotullio et al.,

2011). In addition, Numb also plays a role in maintaining RGC

polarity and apical adhesion during development in the SVZ as

an endocytic adaptor (Rasin et al., 2007; Zhou et al., 2011).

These apical adhesions between NSCs and ependymal cells

are required for proper NSC function (Karpowicz et al., 2009;

Paez-Gonzalez et al., 2011). For example, disruption of several

cell adhesion molecules including Ankyrin-3, vascular cell adhe-

sion molecule-1 (VCAM1), and E-cadherin has been shown to

impair the SVZ structure and NSC function (Paez-Gonzalez

et al., 2011; Kokovay et al., 2012; Karpowicz et al., 2009).

Furthermore, E-cadherin localization is also regulated through

Numb (Rasin et al., 2007), emphasizing the importance of

Numb in the neurogenic SVZ.

Although the Shh, Notch, and gp130/STAT signaling pathways

all have been implicated in the maintenance of the adult neuro-

genic niche, less is known about the way in which the niche is

originally formed. Because previous work in our lab identified

the importance of Gli3R, the repressor of the Shh pathway, in

specifying neural progenitor fates (Wang et al., 2011), we asked

whether Gli3R plays a role in fate specification of NSCs in the

SVZ. We also probed whether Gli3R interacts with other path-

ways to establish as well as maintain the neurogenic niche. We

found that Gli3 acts as a repressor in the developing neurogenic

niche to promote fate specification of both NSCs and ependymal

cells and in establishment of the SVZ niche structure.

RESULTS

The Establishment of Postnatal NSC Niche Is Disrupted
in the Absence of Gli3

Gli3, which serves as a context-dependent regulator of the Shh

pathway, is expressed in the VZ/SVZ of the brain, including the

developing LGE (Schimmang et al., 1992; Fotaki et al., 2006;

Wang et al., 2011). Gli3 expression was also detected in both

NSCs and ependymal cells of the SVZ in the adult brain (Fig-

ure S1C) (Lee et al., 2012). In contrast, Shh-positive signaling

as measured by Gli1 expression (Bai et al., 2002) is only ex-

pressed in a very limited fashion embryonically and is not

required for olfactory bulb neurogenesis until embryonic day

18.5 (E18.5) (Ahn and Joyner, 2005). In adults, Shh signaling

activation was only detected in cells capable of proliferation

(NSCs and transit-amplifying cells) in the postnatal SVZ (Ahn

and Joyner, 2005; Figure S1B). Together, the expression data

suggest that Gli3 protein likely functions as a repressor (Gli3R)
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in RGCs during development and in postnatal ependymal cells

(Figure S1A).

We investigated the earlier role of Gli3 (as Gli3R) by condition-

ally removing it in RGCs with Nestin-Cre (NC) mice (Tronche

et al., 1999) before active Shh signaling emerges in the ventral

SVZ (Ahn and Joyner, 2005), but after the embryonic patterning

is established (Wang et al., 2011). We first analyzed the structure

of the developing neurogenic niche on the lateral wall of the

lateral ventricles (Figure 1A). Whole-mount analysis of the SVZ

showed a pinwheel-like arrangement of NSCs (GFAP+) and

ependymal cells (b-catenin+ for cellular morphology and

g-tubulin+ for basal bodies of cilia) (Mirzadeh et al., 2008) in

the control brain by postnatal day 7 (P7) (Figure 1B). NSCs

were located in the center of intercellular spaces between epen-

dymal cells (Figures 1B and 1D). In contrast, the NC;Gli3cko

mutants did not show any apparent pinwheel-like structure (Fig-

ures 1C and 1E). Expression of the NSC marker, GFAP, was

generally upregulated in RGC-like cells as identified by a single

prominent basal body in NC;Gli3cko mutants (Figure 1C, arrows).

These RGC-like cells are only found in the mutant samples, sug-

gesting a delay in niche maturation in NC;Gli3cko mutants

(Figure S1D). At P21, GFAP expression persisted in mutant cells

exhibiting numerous g-tubulin+ ciliary basal bodies, a hallmark

of mature ependymal cells (Figure 1E). This ectopic GFAP

expression indicates that a clear distinction between NSCs

and ependymal cells fails to develop when Gli3 is absent.

In order to confirm the lack of proper cell fate specification in

our NC;Gli3cko mutants, we performed immunohistochemical

staining for FoxJ1, amarker for mature ependymal cells (Jacquet

et al., 2009). We found that fewer FoxJ1+ cells were present in

the NC;Gli3cko mutant SVZ at P4 (Figure S1F), compared to con-

trol (Figure S1E; quantified in Figure S1G). By P7, the NC;Gli3cko

mutant SVZ expressed FoxJ1 at equivalent levels to the control,

but the majority of FoxJ1+ cells coexpressed GFAP (Figure 1I),

whereas the control showed rarely any FoxJ1+ GFAP+ cells (Fig-

ure 1H). Quantification revealed a 6-fold increase in the amount

of FoxJ1+ GFAP+ cells in the NC;Gli3cko mutant SVZ (Figure 1J).

Together, these results indicate that there is a delay in ependy-

mal maturation followed by confusion of cell fate specification

that leads to the malformation of the neurogenic niche observed

at P21 (Figure 1E).

Because the ability to respond to Shh signaling is one major

distinction between NSCs (Ahn and Joyner, 2005) and ependy-

mal cells in the SVZ (Figure S1B), we examined Shh responsive-

ness in the NC;Gli3cko mutant SVZ. The Gli1nLZ allele allowed us

to visualize the cells responding to Shh signaling based on X-gal

precipitates identified by transmission electron microscopy

(TEM) analysis. In controls, there was a clear distinction between

cells that respond to Shh signaling with strong X-gal precipitates

(NSCs) and cells that do not respond (ependymal cells) (Fig-

ure S1H). In contrast, it was hard to distinguish the cells with a

clear strong presence of X-gal precipitates in the NC;Gli3cko

mutant SVZ (Figure S1H). Blind scoring for the strength of Shh

responsiveness showed that instead of clear separation be-

tween NSCs and ependymal cells, most of the cells in the

NC;Gli3cko mutant SVZ exhibited intermediate Shh responsive-

ness (Figure S1I). The lack of differential Shh activation between

NSCs and ependymal cells is another indication that these
s



Figure 1. Gli3 Is Required for Proper Establishment of the Neurogenic Niche in the SVZ

(A) Schematics of mouse brain cut along the sagittal (blue) and coronal (red) orientation show the arrangement of cell types found in the neurogenic SVZ, including

NSCs, transit-amplifying (TA) cells, ependymal cells, and neuroblasts. LV, lateral ventricle; OB, olfactory bulb; RMS, rostral migratory stream.

(B–E) En face view of the lateral wall of the ventricle shows that the pinwheel-like arrangements of ependymal cells (b-catenin+, green cell border; g-tubulin+,

green dots) and NSCs (GFAP+, red) are established by P7 in the controls (B and D). NC;Gli3cko mutants that lack Gli3 function in embryonic RGCs show

persistence of RGCs with a single basal body (white arrows) and no clear pinwheel arrangements and ectopic expression of GFAP within b-catenin+ g-tubulin+

cells (C and E, white asterisks). Scale bar, 5 mm.

(F and G) TEM analysis of the control (F) and NC;Gli3cko mutants (G). Disrupted cytoarchitecture of the SVZ is shown in the mutants. The SVZ cell types are

indicated in colors: blue (NSC), green (TA cell), orange (neuroblast), gray (ependymal cell), teal (atypical cells), and light brown (striatal neurons). Brackets indicate

the thickness of the SVZ. Scale bar, 5 mm.

(H–J) Immunohistochemistry of FoxJ1 (green) and GFAP (red) staining in control (H) andNC;Gli3cko (I) SVZ at P7. FoxJ1 expression is similar between control and

NC;Gli3cko SVZ, but many more cells coexpress GFAP and FoxJ1 in the NC;Gli3cko mutant (I) as compared to the control (H, quantified in J). Insets reveal

colocalization of FoxJ1 and GFAP, with white dashed lines encircling FoxJ1+ cells. Scale bar, 10 mm. Error bars represent SEM. *p < 0.05.

See also Figure S1.
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mutant cells are not establishing proper cell identities during

niche maturation.

We further confirmed an abnormal SVZ cytoarchitecture in

NC;Gli3cko mutants at the ultrastructural level using TEM. Based

on the identification criteria of the SVZ cell types described in

Doetsch et al. (1997), we were able to assign cell identities in

the control SVZ (Figure 1F). However, in the NC;Gli3cko mutants,

there were numerous cells without clear characteristic features

of NSCs, transit-amplifying cells, or neuroblasts (Figure 1G).

The outermost layer of the SVZ containing ependymal cells

was morphologically atypical and did not intercalate extensively

inNC;Gli3ckomutants (Figure 1G). In addition, theNC;Gli3ckoSVZ

was much thinner than the control SVZ (brackets in Figures 1F

and 1G), indicating severe structural defects caused by a loss

of Gli3 during development.

As a result of this improper fate specification, these Gli3

mutant cells with dual cellular characteristics do not function

properly as NSCs or ependymal cells. They are not proliferative

(Figure S3D) and, thus, do not function as NSCs. They also do

not circulate CSF, as evidenced by the severe hydrocephalus

in NC;Gli3cko mutant mice (unpublished data).

Although we thought it likely thatGli3 itself was responsible for

niche maturation, we wanted to ensure that the derepression of

the Shh pathway induced by loss of Gli3 was not responsible for

our observed findings. In order to assess ectopic Shh activation,

we crossed our NC;Gli3cko mice with Gli1nLZ, a reporter that ex-

presses LacZ in any cell responsive to Shh signaling. X-gal stain-

ing for LacZ revealed no overall increase inGli1 expression in the

NC;Gli3cko SVZ as compared to the control (Figure S1J), sug-

gesting that activation of Shh signaling is not increased in the

absence of Gli3.

In order to confirm that Shh activation was not playing a role in

maturation of the adult neurogenic niche, we ablated Shh-pos-

itive signaling directly. First, we ablated Smoothened (Smo), one

of the main transducers of Shh activation, via NC. We found that

loss of Smo did not result in mixed identity cells or disorganiza-

tion of niche structure in the SVZ (Figure S1K). We also used NC

to ablate Gli2, the major transcriptional activator of the Shh

pathway. In the absence of Gli2, there was no difference in

the cytoarchitecture and cell identity between the control and

NC;Gli2cko mutant SVZ (Figure S1L). Together, these experi-

ments indicate that niche structure and cell fate are not gov-

erned by activation of Shh signaling but, rather, the presence

of Gli3R.

Loss of Gli3R Leads to Overexpression of gp130
In order to find the downstream events leading to the ectopic

expression of GFAP in Gli3 mutant SVZ, we carried out a quan-

titative real-time PCR-based gene expression analysis for genes

that are involved in Shh and/or Notch pathways (QIAGEN RT2

Profiler PCR Array) and were previously identified to contain

Gli3 binding sites (Vokes et al., 2008). We compared E16.5 fore-

brain tissue from wild-type (WT) embryos with that from Gli3Xt/Xt

null mutant animals to observe the maximum difference in gene

expression caused by the absence of Gli3. Because active Shh

signaling is absent in E16.5 forebrain (data not shown), any phe-

notypes observed in Gli3Xt/Xt null mutants could be attributed to

the loss of Gli3R. Surprisingly, one of the dramatically changed
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genes was il6st, which encodes a protein named gp130.

gp130 is a coreceptor subunit shared by the IL-6 family of cyto-

kines including CNTF, OSM, IL-6, LIF, and CT-1 (Nakashima and

Taga, 2002). gp130 and the cytokine-specific receptors trans-

duce cytokine signals and activate downstream effectors,

including JAK-STAT molecules. In E16.5 forebrain, the mRNA

of il6st was increased by 5.75 ± 0.24-fold inGli3Xt/Xt null mutants

compared to WT controls (Figure 2A). However, the expression

levels of all the cytokine-specific coreceptors were unchanged

(Figure 2A). Consistent with the mRNA expression level, gp130

protein level was increased by 3.64 ± 0.07-fold in E16.5 mutant

forebrain compared to the WT (Figures 2B and 2C). Based on

the Gli3 null mutant embryo results, we next asked whether

similar molecular changes occurred in NC;Gli3cko mutants.

RNA in situ hybridization revealed that il6st expression was

clearly increased in the postnatal SVZ in the NC;Gli3cko mutants

(Figure 2D).

We then tested whether the ectopic upregulation of il6st was

due to the loss of Gli3R, which normally acts as a transcriptional

repressor.We identified two putative Gli binding sites sharing the

same consensus core sequence between �215 and �200 bp

upstream of the il6st transcription initiation site in the mouse

genome (Evolutionary Conserved Regions Browser [Ovcharenko

et al., 2004] and rVISTA [Loots and Ovcharenko, 2004]). Electro-

phoretic mobility shift assay (EMSA) confirmed the direct and

specific binding of Gli3R to the identified Gli sites taken from

the il6st gene (Figure 2E).

Previous studies indicated that all IL-6 family cytokines have

the ability to induce GFAP+ glial cell fate in vitro due to common

downstream activation of JAK-STAT3 signaling (Nakashima and

Taga, 2002). Thus, we examined the changes in cytokine levels in

the Gli3 null mutants using quantitative real-time PCR. Interest-

ingly, at E16.5, OSM and IL-6 were both expressed at signifi-

cantly higher levels in Gli3Xt/Xt mutants compared to controls

(4.03 ± 0.24-fold and 2.77 ± 0.24-fold, respectively) (Figure S2A).

We found that OSM mRNA expression was also upregulated in

the postnatal SVZ of NC;Gli3cko mutants as expected (Fig-

ure S2B). Together, our results indicate that the absence of

Gli3R causes overexpression of both ligands and a shared re-

ceptor subunit of the IL-6 cytokine family.

Loss of Gli3R Induces the Sustained Activation of STAT3
and Overexpression of GFAP in Gli3 Mutant SVZ
gp130 promotes GFAP expression and glial cell fate through the

phosphorylation of the STAT3 (pSTAT3) transcription factor

(Nakashima et al., 1999a, 1999b; Bonni et al., 1997). In control

animals, there was a transient activation of STAT3 in a small

population of SVZ cells at P4 (Figure S3A), but pSTAT3 was

barely detectible by P7 (Figure 3A) (Herrmann et al., 2008). In

contrast, NC;Gli3cko mutants showed widespread presence of

pSTAT3 in the SVZ at both P4 and P7 (Figures S3B and 3B).

In addition, most of the pSTAT3+ cells also expressed GFAP,

indicating that the increased gp130 level induced ectopic acti-

vation of STAT3 to induce GFAP overexpression in NC;Gli3cko

mutants.

To further confirm that the sustained activation of STAT3 and

overexpression of GFAP in NC;Gli3cko mutants were solely

dependent on the loss of Gli3, we acutely induced Gli3 mutant
s



Figure 2. Il6st Transcription Is Repressed

by Gli3R

(A) Quantitative real-time PCR shows that Il6st

(gp130) mRNA is increased in E16.5 forebrain of

Gli3Xt/Xt compared to WT. mRNA level of the IL-6

cytokine family ligand-specific receptors is not

different between WT and Gli3Xt/Xt at E16.5. Error

bars represent SEM. *p = 0.016.

(B and C) Western blot shows that gp130 protein is

increased in E16.5 forebrain of Gli3Xt/Xt compared

to WT. Error bars indicate SEM. **p < 0.001.

(D) In situ hybridization on control and NC;Gli3cko

shows that Il6st mRNA is increased in the mutant

SVZ at P4. Scale bar, 500 mm.

(E) EMSA shows that Gli3R binds to two over-

lapping putative Gli binding sites located between

�215 and �200 bp 50 of mouse il6st gene. +1 in-

dicates the transcription initiation site of the il6st

gene. The arrow indicates the complex of Gli3R

and DIG-labeled WT probe. MUT, mutant.

See also Figure S2.
cells in a WT environment by electroporating Cre-expressing

plasmids into Gli3F/F embryos at E13.5 (Figure 3G). We found

that by P7, Cre-expressing Gli3 mutant cells in the SVZ showed

ectopic activation of STAT3 (Figure 3I) and overexpression of

GFAP (Figure 3K), whereas control electroporated cells never

showed such phenotypes (Figures 3H and 3J). We also noticed

that the ectopic GFAP+Gli3mutant cells in the SVZ formed elon-

gated processes similar to the radial processes of NSCs rather

than short processes of typical astrocytes (Figure 3I).

Previous studies showed that pSTAT3 directly activates

GFAP gene transcription by binding to its promoter sequence

(Takizawa et al., 2001). Thus, we tested whether the GFAP

overexpression seen in NC;Gli3cko mutants was due to the

overactivation of STAT3. We treated NC;Gli3cko embryos with

a STAT3 inhibitor (WP1066) between E16.5 and birth via

pregnant dams and found that GFAP expression at P7 was

largely restored to control levels by the STAT3 inhibitor (Figures

3C–3F).

Together, our results indicate that the loss of Gli3R resulted in

an increased level of gp130 and its ligands to ectopically induce

STAT3-mediated GFAP expression in the NC;Gli3cko mutant

SVZ. This eventually made the mutant SVZ cells maintain both

NSC and ependymal cell characteristics and fail to develop

into two distinct, functional cell types.
Cell Reports 8, 1093–1104
Loss of Gli3 Results in Alterations
in Cell Adhesion and Loss of Numb
via LNX2
Although the STAT3 inhibitor did rescue

the ectopic expression of GFAP, it did

not rescue the disruption of the pinwheel

arrangement of NSCs and ependymal

cells in NC;Gli3cko mutants (Figures 1E

and 3F). Thus, we assessed an alternative

role for Gli3 in establishing the neurogenic

niche structure. We found that in the

absence of Gli3, the pinwheel organiza-

tion was not maintained and the ventricu-
lar wall integrity was compromised, leading to hydrocephalus.

The weakness of the ventricular wall integrity led us to the idea

that Gli3 might regulate cell adhesion between ependymal cells

and NSCs. Interestingly, our NC;Gli3cko mutant phenotype is

very similar to the reported phenotype of Numb;Numblike dou-

ble-conditional mutants, including reduced cortical thickness

and hydrocephaly (Kuo et al., 2006; Wang et al., 2011). Thus,

we asked whether Numb levels might have been altered in Gli3

mutants. We found that levels of Numb protein were greatly

reduced in E18.5 Gli3Xt/Xt null mutants (Figure 4A). The SVZ of

NC;Gli3ckomutants also showed a reduction in Numb expression

at E14.5 and almost complete loss by E18.5, particularly in the

outermost cell layer lining the lateral ventricle (Figure 4B).

To explore the mechanism responsible for this loss of Numb,

we next examined the expression level of LNX2, an E3 ubiquitin

ligase that is known to target Numb for degradation (Nie et al.,

2004). We found that the LNX2 protein level was greatly

increased in the forebrain extracts of E18.5Gli3Xt/Xt null embryos

compared to the littermate controls (Figure 4C). NC;Gli3cko mu-

tants also showed elevated LNX2 protein levels as assessed

by immunohistochemical staining, particularly in the SVZ (Fig-

ure 4D). Our findings suggest that the loss of Gli3 led to an

abnormal increase in LNX2 expression that ultimately targeted

Numb for degradation in NC;Gli3cko mutants.
, August 21, 2014 ª2014 The Authors 1097



Figure 3. Loss of Gli3 Leads to the Overactivation of STAT3 and Ectopic GFAP Expression in NC;Gli3cko Mutant SVZ

(A and B) Immunohistochemistry of pSTAT3 and GFAP in control and NC;Gli3cko SVZ at P7. Both pSTAT3 (green) and GFAP (red) are increased in NC;Gli3cko (B)

compared to control (A). Higher-magnification images of boxed areas are shown in right panels. GFAP+ cell (outlined by dashed circle) does not express pSTAT3

in the control. Arrows indicate that the GFAP+ cell expresses a high level of nuclear pSTAT3 in the mutant. Scale bar, 50 mm.

(C and D) NC;Gli3cko embryos received either STAT3 inhibitor (WP1066) or vehicle control DMSO from E16.5 till birth. The animals were analyzed at P7. The

nuclear pSTAT3 (green) in GFAP+ (red) cells shown in mutants receiving DMSO (C) is rescued by WP1066 (D). Arrows indicate that the GFAP+ cell expresses a

high level of nuclear pSTAT3 in the DMSO-treated mutant. Scale bar, 50 mm.

(E and F) En face view of P7 NC;Gli3cko SVZ that was treated with either STAT3 inhibitor (WP1066) or vehicle control DMSO prenatally. The ectopic GFAP

expression (red) in ependymal-like cells (b-catenin+ g-tubulin+, green) in NC;Gli3cko treated with DMSO (E) is rescued by WP1066 (F). Scale bar, 50 mm.

(G–K) In utero electroporation of either RFP alone or RFP +Cre intoGli3F/F embryos. Electroporationwas done at E13.5, and themanipulated pupswere sacrificed

at P7. The Gli3mutant cells induced by Cre are labeled by RFP in (I). The electroporated cells that received RFP alone (red) do not have nuclear pSTAT3 (green)

expression (indicated by dashed circles in H). However, the Gli3 mutant cells (red) express nuclear pSTAT3 (green) (indicated by dashed circles in I). Scale bar,

25 mm. En face view shows thatGli3mutant cells (white in k) exhibit ectopic GFAP expression (red in K) in ependymal-like cells (b-catenin+ g-tubulin+, green). The

ectopic GFAP expression is absent in cells that received RFP alone (white in j). Scale bar, 50 mm.

See also Figure S3.
Loss of Numb Results in Loss of Proper Cell Adhesion
Because the loss of Numb is associated with defects in cell

adhesion (Rasin et al., 2007), we next examined changes in

cell adhesion molecules in our NC;Gli3cko mutants. In particular,

Numb is known to regulate cell adhesion molecules such as
1098 Cell Reports 8, 1093–1104, August 21, 2014 ª2014 The Author
E-cadherin, which is critical for proper NSC function and NSC

polarity by maintaining adherens junctions (Rasin et al., 2007;

Karpowicz et al., 2009; Chenn et al., 1998; Perez-Moreno

et al., 2003). When we analyzed changes in E-cadherin expres-

sion, we found that the enriched E-cadherin expression seen in
s



Figure 4. Loss of Gli3 Results in Decreased

Level of Numb Protein

(A) Western blot of Numb in E18.5 Gli3Xt/Xt fore-

brain shows a dose-dependent reduction in Numb

protein level compared to the WT.

(B) Immunohistochemistry of Numb shows that

Numb (green) is localized to the ventricular surface

of RGCs at both E14.5 and E18.5 in the control (left

panels). In NC;Gli3cko mice, Numb is significantly

reduced at both E14.5 and E18.5 (right panels).

Scale bar, 10 mm.

(C)Western blot of E18.5 forebrain samples shows

that LNX2 protein level is increased in Gli3Xt/Xt

compared to WT.

(D) Immunohistochemistry of LNX2 at P4 shows

that LNX2 (green) protein level is increased at the

ventricular surface and in the basal SVZ in

NC;Gli3cko mutant (right panels) as compared to

the control (left panels). Higher-magnification

images of boxed areas are shown below. Scale

bars, 10 mm.
the first cell layer of control SVZ was dramatically reduced on the

apical surface of the lateral ventricle in NC;Gli3cko mutants at

E18.5 (Figures 5A and 5B).

The reduction in E-cadherin expression was also found in the

P7 NC;Gli3cko mutant as in the E18.5 analysis. Although there

was a clean contiguous E-cadherin expression on the apical sur-

face of the SVZ in controls, there was almost no E-cadherin

expression found along the surface of themutant lateral ventricle

(Figures 5C and 5D). Instead, we observed strong E-cadherin

expression two to three cell layers below the ventricular surface

in theNC;Gli3ckomutants as compared to the controls (Figure 5D,

white arrows). Thus, E-cadherin is mislocalized and downregu-

lated during early establishment of the postnatal neurogenic

niche.

At P7, we also saw that the well-organized ependymal layer

observed in control sections (Figure 5C) was not present in the

NC;Gli3cko mutants (Figure 5D). Instead, the first layer of cells

failed to form a smooth continuous ventricular surface, and the

majority of them expressed GFAP, directly exposing GFAP+

cells to the apical surface of the lateral ventricle (Figure 5D).

Interestingly, we found that the cells with the highest E-cadherin
Cell Reports 8, 1093–1104,
expression (black arrow in Figure 5D

schematic) in the NC;Gli3cko mutants

were also the cells with very low GFAP

expression. Our finding that gross disor-

ganization of the ventricular surface ob-

served in the NC;Gli3cko mutants does

not occur until postnatal stages (Figures

5B and 5D) further supports the idea

that Gli3R is critical during the transition

from RGCs to ependymal cells and

NSCs, and that cell adhesion is critical

for proper neurogenic niche maturation.

To further assess changes in cell adhe-

sion induced by the loss of Gli3R, we

examined VCAM1 expression in the SVZ

neurogenic niche. VCAM is an adhesion
molecule expressed in both NSCs and ependymal cells,

although its expression was found to be 8.87 times higher in

NSCs than ependymal cells as assessed by quantitative PCR

(Figure S4A). VCAM localizes specifically to NSC-ependymal

cell junctions (Kokovay et al., 2012), providing a tool for the

assessment of cell adhesion and organization of the SVZ. We

found that in P21 NC;Gli3cko mutants, VCAM was diffusely ex-

pressed throughout the cytoplasm (asterisk in Figure 5f0; Fig-
ure S4B), with a pixel intensity five times greater than that of

the control (Figures 5e0 and 5H). Furthermore, there was also a

significant upregulation of VCAM staining found in the mem-

brane of the mutant cells (open arrowheads in Figures 5F

and f0), as opposed to specifically clustering at NSC-ependymal

cell junctions (white arrowheads in Figures 5E and 5F). When

the number of VCAM+ spots was counted, more than double

the amount of membrane-enriched spots was present in the

NC;Gli3cko mutants as compared to the controls (Figure 5G).

Thus, there is more VCAM present in the cytoplasm and at non-

ependymal cell-NSC junctions in the mutants as compared to

the control. This ectopic expression suggests that VCAM may

not be properly localized within the cell in the absence of Gli3,
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Figure 5. Distribution of Adhesion Molecules Is Disrupted in NC;Gli3cko

(A and B) E-Cadherin protein (green) is highly expressed at the apical surface of RGCs in the control mice at E18.5 (A) but is reduced at the apical surface in

NC;Gli3cko mutants (B). Scale bar, 10 mm.

(C and D) E-Cadherin protein (green) is expressed just at the ventricular surface by ependymal cells at P7 in control mice (C). NC;Gli3cko mice show reduced

E-Cadherin expression and increased GFAP (red) compared to the control (D). Schematics of immunohistochemical results are shown to the right of each image.

Dark-gray cells represent ependymal cells. Blue cells represent atypical mutant cells. Green lines represent E-Cadherin lining. Scale bars, 10 mm. White arrows

indicate E-Cadherin expression in the basal SVZ. The black arrow indicates E-Cadherin staining at the apical surface of the SVZ. The star indicates a blood vessel.

Scale bars, 10 mm.

(E and F) Whole-mount immunohistochemical staining of the ventricular surface at P21 reveals VCAM1 (green) protein localization in NC;Gli3cko (F and f0) versus
controls (E and e0). Higher magnification of inset is shown below low-magnification images (e0 and f0). GFAP (red) marks NSC. Open arrowheads showmembrane

localization of VCAM that is not associated with NSC clusters. White arrowheads show VCAM staining clustered at pinwheel centers. The asterisk (f0) shows the

upregulation of VCAM in the cytoplasm of mutant cells. Scale bar, 10 mm (E and F).

(G) Quantification of VCAM spots. A total of 10–15 images for each genotype were counted. Areas of staining above background were considered a VCAM+ spot.

If the cluster was at the center of a pinwheel, it was deemed a ‘‘cluster’’ spot, and if at themembrane between two cells a ‘‘membrane’’ spot. All were normalized to

spots/image. There were significantly more spots at the membrane of mutant animals as compared to controls. Error bars represent SEM. *p < 0.05.

(H) Quantification of cytoplasmic VCAM staining. ImageJ was used to quantify VCAM pixel intensity for each image using a filter based on b-catenin staining to

remove VCAM staining localized to the membrane. The mutant images had significantly increased cytoplasmic VCAM as compared to the controls. Error bars

represent SEM. *p < 0.05.

See also Figure S4.
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Figure 6. Summary Schematic of Gli3R

(A) In WT animals, embryonic radial glia express

Gli3R and suppress il6st. Thus, gp130-mediated

STAT3 signaling is only transiently activated in

future NSCs around birth. Due to Gli3R-mediated

suppression of LNX2, the Numb level is maintained

to regulate E-cadherin at the apical surface of the

VZ. In the postnatal brain, Shh-responding NSCs

contain Gli activators to induce GFAP and Gli1

expression, whereas nonresponsive ependymal

cells contain Gli3 as Gli3R. Sustained expression

of Numb enables ependymal cells to localize

E-cadherin and VCAM on the apical surface to

maintain the integrity of the neurogenic niche.

(B) In NC;Gli3cko, il6st is overexpressed due to the

loss of Gli3R, resulting in sustained activation of

STAT3 to induce GFAP overexpression. Without

Gli3R, LNX2 is overexpressed to target Numb for

degradation, leading to a loss of E-cadherin on the

apical surface of the VZ. In the postnatal brain,

cellular characteristics of ependymal cells and

NSCs are less distinct, andGFAP is overexpressed

across the cell types in the SVZ due to the

persistent activation of STAT3. In addition, due to

the lack of Numb, E-cadherin is missing from the

apical lining of the ventricle, and VCAM is found

also in the cytoplasm. Together, these molecular

changes lead to the compromised integrity of the

neurogenic SVZ structure.
suggesting that there are long-term cell adhesion changes when

Gli3 is lost during development of the SVZ.

DISCUSSION

NSCs and ependymal cells share a common developmental

origin (RGCs) in the embryonic LGE and form highly structured

arrangements on the ventricular surface of the postnatal SVZ

(Kriegstein and Alvarez-Buylla, 2009; Ihrie and Alvarez-Buylla,

2011). Little is known about the manner by which embryonic

RGCs transform into NSCs and ependymal cells because most

studies have focused on the stages after cell fates are already

specified. However, it is clear that there are many changes in

signaling between embryonic RGCs and postnatal NSCs.

Here, we propose to define three stages of postnatal neurogenic

niche development and maturation: first, embryonic RGCs in the

LGE; second, transition from embryonic RGCs to postnatal

NSCs (�E18.5 to P7); and third, maturation of postnatal NSCs.

Our results demonstrate an interesting biphasic requirement of

Shh pathway components in these stages for niche maturation.
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In RGCs, Gli3R is highly expressed, and

RGCs are refractory to Shh activation.

During the transition between E18.5 and

P7, Gli3R plays a critical role in cell fate

specification and niche organization,

establishing a framework of support cells

and stem cells. Finally, once the niche has

established (at around P7), Shh-respon-

sive NSCs begin active postnatal neuro-

genesis. Thus, we have found that Gli3
plays a critical role in setting the stage on which Shh can act in

the mature niche.

During the establishment phase of the neurogenic SVZ,

several molecular changes take place whenGli3 is lost (Figure 6).

Among several signaling pathways known to influence postnatal

neurogenesis in rodent brains, we found that the coordinated

activation and duration of Shh and JAK/STAT3 signaling are crit-

ical in determination of NSC and ependymal cell fates. Before

birth, RGCs do not actively respond to Shh or cytokine signaling.

Just around birth, RGCs that gain responsiveness to both Shh

and activated STAT3 become NSCs, whereas RGCs remaining

unresponsive to these signals become ependymal cells. In addi-

tion, unlike Shh signaling that remains active in postnatal NSCs,

STAT3 signaling is active only transiently for proper development

of the SVZ structure. When STAT3 activation is sustained due to

the overexpression of il6st (gp130) in NC;Gli3cko mutants,

ectopic GFAP expression is widespread across the cell types,

resulting in compromised cell fates in the SVZ niche. Thus,

whereas transient STAT3 signaling is necessary for NSC specifi-

cation, sustained STAT3 signaling is detrimental to the proper
, August 21, 2014 ª2014 The Authors 1101



specification of cell types generated from RGCs during the

establishment period of the neurogenic niche. A recent study re-

ported that adult NSCs in the SVZ express CNTF receptors and

respond to exogenous CNTF in vivo (Lee et al., 2013). Because

CNTF signaling promotes self-renewal of the SVZ NSCs in vitro

(Shimazaki et al., 2001;Müller et al., 2009), the fact that NSCs still

retain CNTF receptor expression may indicate their potential to

respond to exogenously supplied cytokines. Interestingly, the

cytokines of IL-6 family are commonly induced by inflammation,

suggesting that diseases or injuries in the SVZ might induce

changes in NSC behavior through activated STAT3 signaling.

In addition to its role in the regulation of Shh and STAT3

signaling, our current findings demonstrate a key role for Gli3R

in the establishment of the neurogenic niche structure through

the maintenance of Numb (Figure 6). Interestingly, we found

that in WT animals, Numb mRNA is expressed at a higher level

in ependymal cells than in their neighboring NSCs (Figure S1C).

Because Numb is a negative regulator of Notch signaling, our

result supports the previously reported phenomenon that posi-

tive Notch activity is only observed in NSCs, not in ependymal

cells (Imayoshi et al., 2010). However, the absence of Numb

did not affect Notch activity in NC;Gli3cko mutants as evidenced

by lack of significant change in Hes5 expression, a readout of

activated Notch signaling (data not shown). Thus, Numb is not

affecting the SVZ structure through alteration of Notch activity

as expected. Because Numb is also known to suppress Shh

signaling via targeted degradation of Gli1 (Pierfelice et al.,

2011; Di Marcotullio et al., 2006), the absence of Numb in

NC;Gli3cko mutants could be responsible for a slight induction

of Shh response observed in mutant ependymal cells (Figures

S1H and S1I), which may contribute to the less-distinct cell

identities.

Although loss of Numb does appear to affect Shh signaling,

the primary consequence of its loss in our NC;Gli3cko mutants

was the disorganization of the niche structure due to defects in

cell adhesion (Kuo et al., 2006). We showed that a loss of

Numb in ourNC;Gli3ckomutants resulted in changes in adherens

junctions between niche cells as evidenced by altered VCAM

and E-cadherin expression and localization. Because Numb-

mediated loss of E-cadherin is known to change gap junctions

between cells (Govindarajan et al., 2010), similar defects in

NC;Gli3cko mutants could disrupt the communication between

NSCs and ependymal cells for extracellular signaling molecules.

One consistent and interesting phenotype we observed from

acute deletion of Gli3 using in utero electroporation was that

the cellular boundaries of Gli3 mutant cells expressing the re-

porter protein RFP (red fluorescent protein) always appeared

to be less clear, raising the possibility that electroporated DNA

constructs could bemore leaky betweenmutant cells (Figure 3k).

In addition, entanglement of the GFAP+ processes on the apical

surface of the SVZ suggests possible defects in polarity, a role in

which Numb was implicated previously in RGCs (Rasin et al.,

2007). For example, apical processes of NSCs that are critical

for sensing signaling molecules in the CSF of the lateral ventricle

(Kokovay et al., 2010; Lehtinen et al., 2011) require proper cell-

cell adhesion for their maintenance (Loulier et al., 2009). Thus,

structural defects in the SVZ can lead to neurogenic defects

when polarity or cell adhesion alterations prevent NSCs from
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effectively communicating with neighboring cells and factors

present in the ventricular lumen/CSF.

Interestingly, we found that there were a few cells in the

NC;Gli3cko mutants that still expressed normal levels of E-cad-

herin at P7, when the stereotypical adult neurogenic niche struc-

ture emerges (Figure 5D). These cells did not overexpress GFAP

and exhibited normal characteristics of true differentiated epen-

dymal cells, suggesting that they were most likely the ones that

escaped NC-mediated recombination of the Gli3F conditional

allele and were able to maintain normal Gli3R levels. Thus, the

expression of E-cadherin appears to be a fundamental feature

of proper ependymal cells, and Gli3R is required for its expres-

sion via maintenance of Numb.

In summary, we have identified a role for Gli3R as a critical

mediator of cell fate specification and cytoarchitectural organi-

zation in the neurogenic niche during the niche establishment

phase. We found that Gli3R suppresses glial fates through tran-

scriptional regulation of gp130 and promotes the stable expres-

sion and localization of cell adhesion molecules for proper

formation of the neurogenic niche cytoarchitecture. Together,

our findings provide an interesting biphasic requirement of Shh

signaling components in the SVZ neurogenesis: Gli3R shapes

the neurogenic niche structure prior to Shh activation, which in

turn promotes the neurogenesis. Thus, we have found a crucial

role for Gli3R in establishment of the adult neurogenic niche.

EXPERIMENTAL PROCEDURES

Mice and DNA

All procedures in mice followed the guidelines of the Institutional Animal Care

and Use Committee of the NIH. Gli3 conditional (Gli3F/+) and null (Gli3Xt/+)

alleles as well as NC mouse line were previously described by Blaess et al.

(2008), Hui and Joyner (1993), and Tronche et al. (1999). In utero electropora-

tion was performed on E13.5 embryos following the procedures described in

Wang et al. (2011). More detailed information is listed in Supplemental Exper-

imental Procedures.

Histology, Immunohistochemistry, RNA In Situ Hybridization,

and TEM

Brains were dissected from perfused animals, and either frozen sections or

vibratome sections were used. Whole-mount analysis of the SVZ structure fol-

lowed the procedure described in Mirzadeh et al. (2008, 2010). Antibodies

used are listed in Supplemental Experimental Procedures. RNA in situ hybrid-

ization followed the procedure described in Ahn and Joyner (2004). Tissue pro-

cessing for TEM and X-gal/TEM was done as described by Wichterle et al.

(1999), and cell types were identified according to Doetsch et al. (1997).

Western Analysis and Quantitative Real-Time PCR

Western analysis was performed as described (Ahn and Joyner, 2004). Quan-

titative real-time PCR was performed on total RNA obtained from embryonic

forebrain tissue or fluorescence-activated cell sorting (FACS)-isolated NSCs

and ependymal cells from adult mice as detailed in Supplemental Experi-

mental Procedures.

EMSA

Oligonucleotide probes were designed based on the Gli binding site located

from �215 to �200 bp 50 of the mouse il6st gene identified by the Evolu-

tionary Conservation of Genomes browser (Ovcharenko et al., 2004). WT

probe sequence is 50-TCCGTTCCGGCCACCCACCCAAGTGCGGCGG-30.
Mutant probe sequence is 50-TCCGTTCCGGCCATTTATTTAAGTGCGG

CGG-30. Double-stranded oligonucleotides were labeled with digoxigenin-

20,30-dideoxyuridine-50-triphosphate using DIG Gel Shift Kit (Roche). Gli3R

containing nuclear extract was isolated from pGli3R-IRES-nGFP transfected
s



293T cells and was used for oligonucleotide binding directly. The binding

reaction was set up following previous studies by Vortkamp et al. (1995). A

4%–20% gradient precast Tris-borate-EDTA (TBE) gel (Bio-Rad) was

prerun for 30 min, and the electrophoresis was carried out for 90 min at 80 V

in 0.53 TBE. Samples were then electrotransferred onto positively charged

nylon membrane and subjected to antibody reaction and chemiluminescent

detection following the DIG Gel Shift Kit protocol.

STAT3 Inhibitor Treatment

Timed pregnant females carrying NC;Gli3cko mutant embryos were given

600 mg/day of either a STAT3 inhibitor, WP1066 (dissolved in DMSO), or

DMSO of the same volume starting from E16.5 until birth. Pups were sacrificed

at P7 and subjected to section or whole-mount immunohistochemistry.

Quantification and Statistics

Statistical analysis of quantitative real-time PCR andwestern blotting was per-

formed by Student’s t test. The quantification results are presented as

average ± SEM for error bars. n indicates the number of animals analyzed.

Quantification of cytoplasmic pixel intensity for VCAM expression was per-

formed using ImageJ. A filter was laid over each image using the threshold

tool based on membrane staining by b-catenin. Erode and Dilate were used

to fill the cytoplasmic area so that the filter was as accurate as possible,

then pixel intensity wasmeasured using Analyze Particles. Pixel intensity mea-

surements were collected in Excel, and ANOVA was used to quantify differ-

ences between groups. Significance was set at p < 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.07.006.
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