Forcing faces in plane bipartite graphs

Zhongyuan Che ${ }^{\text {a }}$, Zhibo Chen ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Penn State University, Beaver Campus, Monaca, PA 15061, USA
${ }^{\mathrm{b}}$ Department of Mathematics, Penn State University, McKeesport Campus, McKeesport, PA 15132, USA

Received 18 November 2006; received in revised form 28 April 2007; accepted 10 May 2007
Available online 12 June 2007

Abstract

Let Ω denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graph $G \in \Omega$ is said to be a forcing face of G if the subgraph of G obtained by deleting all vertices of s together with their incident edges has exactly one perfect matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen [Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649-668]. We prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with $n \geqslant 4$ and $n \geqslant k \geqslant 0$, there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof for a recent result that a connected cubic plane bipartite graph G has at least two disjoint M-resonant faces for any perfect matching M of G, which is a main theorem in the paper [S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane graphs, Discrete Math. 262 (2003) 27-36]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed by Zhang et al. [Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415; Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291-311], we characterize the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by subdivisions.

© 2007 Elsevier B.V. All rights reserved.
Keywords: Perfect matching; Plane bipartite graph; Plane elementary bipartite graph; Forcing edge; Forcing face; Reducible face decomposition; Z-transformation graph

1. Introduction

Stimulated by some chemical and physical problems, Harary et al. [4] introduced the concept of forcing edges in a hexagonal system (which is a special case of a 2 -connected plane bipartite graph where every finite face is a hexagon.) An edge of a hexagonal system H is called a forcing edge if it is contained in exactly one perfect matching of H. Hansen and Zheng [3], and Zhang and Li [10], independently characterized the hexagonal systems that have a forcing edge. Motivated by their work, we introduced in [2] the concept of forcing hexagons for hexagonal systems. A hexagon h of a hexagonal system H is called a forcing hexagon of H if the subgraph of H obtained by deleting all vertices of h

[^0]

Fig. 1. G has a forcing face s but no forcing edges.
together with their incident edges has exactly one perfect matching. We proved that a linear hexagonal chain has all its hexagons forcing, and other hexagonal systems H may have 0,1 or 2 forcing hexagons. We presented structural characterizations for the hexagonal systems with a given number of forcing hexagons. We also proved the co-existence property of forcing hexagons and forcing edges in a hexagonal system (see [2]). In order to extend various studies on hexagonal systems, Zhang and Zhang [12] conducted an extensive study on plane elementary bipartite graphs so that many important known results in hexagonal systems can be treated in a unified way. In particular, they extended the concept of forcing edges from hexagonal systems to forcing edges of connected plane bipartite graphs and got interesting results. Parallel to their work, in the present paper we generalize the concept of forcing hexagons from hexagonal systems to forcing faces of connected plane bipartite graphs. Recall that a perfect matching (or 1-factor) of G is a set of pairwise disjoint edges of G covering all vertices of G. Clearly, all pendant edges must belong to every perfect matching, and so for our purpose we can delete them with no concern. Hence, without loss of generality, we assume that throughout the paper the plane bipartite graph G in consideration has no pendant edges. In other words, we always assume that G is a connected plane bipartite graph with the minimum vertex degree $\delta(G) \geqslant 2$. The class of such graphs is denoted by Ω.

A graph with a perfect matching is said to be elementary if the union of all perfect matchings forms a connected subgraph. Note that plane elementary bipartite graphs with more than two vertices are 2-connected, and so all of them are included in Ω.

Definition 1.1. A finite face s of a graph $G \in \Omega$ is said to be a forcing face of G if $G-s$ has exactly one perfect matching, where $G-s$ is meant to be the subgraph of G obtained by deleting all vertices of s together with their incident edges.

For example, the finite face s of graph G in Fig. 1 is the only forcing face of G.
Note: (1) If $G \in \Omega$ has exactly one finite face s, then s is a forcing face because the empty graph is assumed to have exactly one perfect matching by convention.
(2) If $G \in \Omega$ has a forcing face, then G itself must have at least two perfect matchings. It is because G, as a bipartite graph, contains only cycles of even length.
(3) Let $n(>0)$ be the number of finite faces of G. From [2] we already know that for a hexagonal system the number of forcing faces may be $0,1,2$ and n. In Section 3 we will further show that the number of forcing faces of $G \in \Omega$ can be any integer between 0 and n when $n \geqslant 4$.

In Section 2 we introduce needed terminologies and known results. Our new results are presented in Section 3. We prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with $n \geqslant 4$ and $n \geqslant k \geqslant 0$, there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof for a recent result that any perfect matching of a connected cubic plane bipartite graph has at least two disjoint M-resonant faces, which is a main result in the paper [1]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed by Zhang et al. [9,12] (the reader is referred to [11] for a detailed survey on this topic), we characterize the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between
the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by subdivisions.

2. Preliminaries

A plane graph G is a graph in the plane where any two edges are either disjoint or meet only at a common end vertex. If the vertices and edges of a plane graph G are removed from the plane, the remainder falls into connected components (in the plane topology), called faces. Clearly, each plane graph has exactly one unbounded face that will be called the infinite face. The other faces are all bounded and called finite faces. A finite face may also be simply called a face for brevity, when no confusion could occur. When G is 2 -connected, the boundary of any face of G is a cycle. The boundary of a finite face s of G is denoted by ∂s. The boundary of the infinite face of G is denoted by ∂G, which is referred to as the periphery (or boundary) of G. A finite face s of G is called a peripheral face (or boundary face) of G if ∂s and ∂G have edges in common. Two finite faces s_{1} and s_{2} are said to be adjacent if their boundaries ∂s_{1} and ∂s_{2} have at least one edge in common.

Let M be a perfect matching of G. An edge of G is called an M-double bond if it belongs to M, and an M-single bond otherwise. An M-alternating cycle (resp. M-alternating path) of G is a cycle (resp. path) of G whose edges are alternately in M and $E(G)-M$. A face of G (including the infinite face) is said to be M-resonant if its boundary is an M-alternating cycle for some perfect matching M of G, and we say the face is resonant briefly if there is no need to specify the perfect matching. We say a cycle is an $\left(M_{1}, M_{2}\right)$-alternating cycle if the edges of the cycle appear alternatively in two matchings M_{1} and M_{2}. An edge of G is said to be a fixed single bond (resp. fixed double bond) if it belongs to none (resp. all) of the perfect matchings of G. An edge of G is called a fixed bond if it is either a fixed single bond or a fixed double bond. It is well known that the symmetric difference of two perfect matchings $M_{1} \oplus M_{2}=\left(M_{1} \cup M_{2}\right) \backslash\left(M_{1} \cap M_{2}\right)$ of G is a union of disjoint (M_{1}, M_{2})-alternating cycles of G. In this paper, we assume that all vertices of a plane bipartite graph G are colored white and black such that adjacent vertices received distinct colors.

Lemma 2.1 (Shiu et al. [8]). Let G be a plane bipartite graph with a perfect matching. If all vertices with degree one of G are of the same color and lie on the boundary of G or if $\delta(G) \geqslant 2$, then for any perfect matching M of G, there is an M-resonant finite face in G.

From Lemma 2.1, we can see that if a plane bipartite graph in Ω has a perfect matching, then it has at least two perfect matchings. A finite face s of a plane bipartite graph $G \in \Omega$ is forcing if and only if G has exactly two different perfect matchings $M_{i}, 1 \leqslant i \leqslant 2$, such that s is an M_{i}-resonant face. It is clear that the symmetric difference $M_{1} \oplus M_{2}=\partial s$.

It is well known [7] that an elementary bipartite graph G with more than two vertices is 2 -connected. It is also known [8] that a bipartite graph G is elementary if and only if it is connected and each edge of G belongs to a perfect matching of G; if and only if G is connected and has no fixed single bonds. Let G be a connected bipartite graph with a perfect matching. The connected components of the subgraph of G formed by all non-fixed bonds are elementary and thus called elementary components of G. The following lemma can be derived directly from Corollary 3.4 in [8].

Lemma 2.2. Let G be a connected plane bipartite graph with a perfect matching and $\delta(G) \geqslant 2$. If G is not elementary, then it has at least two elementary components, each of which has more than two vertices.

It was shown [12] that if G is a connected plane bipartite graph with more than two vertices, then G is elementary if and only if each face (including the infinite face) of G is resonant. In particular, if all the interior vertices of G are of the same degree, then G is elementary if and only if the infinite face of G is resonant. The following lemmas provide more properties of a plane elementary bipartite graph in terms of resonant faces.

Lemma 2.3 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with a perfect matching M. If there exist three distinct M-resonant finite faces, then there are two of them whose boundaries are disjoint.

Lemma 2.4 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with a perfect matching M and let C be an M-alternating cycle. Then there exists an M-resonant face in the interior of C.

Fig. 2. A plane elementary bipartite graph G and its Z-transformation graph $Z(G)$.

It is well known [6,7] that an elementary bipartite graph has an "ear decomposition" as described below. Start from an edge e, and join its two end vertices by a path P_{1} of odd length (called the "first ear"). Then proceed inductively to build a sequence of bipartite graphs as follows: if $G_{i}=e+P_{1}+\cdots+P_{i}$ has already been constructed, add the $(i+1)$ th ear P_{i+1} of odd length by joining any two vertices in different colors of G_{i} such that P_{i+1} has no internal vertices in common with the vertices of G_{i}. The decomposition $G=G_{n}=e+P_{1}+P_{2}+\cdots+P_{n}$ is called a bipartite ear decomposition of G. It was shown $[6,7]$ that a bipartite graph is elementary if and only if it has a bipartite ear decomposition.

As defined in [12], a bipartite ear decomposition of a plane elementary bipartite graph G is called a reducible face decomposition (abbreviated RFD) if G_{1} is the boundary of a finite face (s_{1}) of G, and the ($i+1$)th ear P_{i+1} lies in the exterior of G_{i} such that P_{i+1} and a part of the periphery of G_{i} surround a finite face $\left(s_{i+1}\right)$ of G for all $1 \leqslant i<n$. So, the $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ is associated with a unique face sequence $s_{1}, s_{2}, \ldots, s_{n}$. A useful property of the RFD is that $\partial G_{i} \oplus \partial G_{i+1}=\partial s_{i+1}$ for all $1 \leqslant i<n$.

Lemma 2.5 (Zhang and Zhang [12]). Let G be a plane bipartite graph with more than two vertices. Then G is elementary if and only if it has a reducible face decomposition.

For example, the plane elementary bipartite graph G in Fig. 2 has an $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{6}\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{6}$.

Let G be a plane bipartite graph with a perfect matching. The Z-transformation graph of G, denoted by $Z(G)$, is the graph whose vertices are the perfect matchings of G where two vertices M_{1} and M_{2} are adjacent if and only if their symmetric difference $M_{1} \oplus M_{2}$ is the boundary of some finite face of G. For example, in the Z-transformation graph $Z(G)$ of G in Fig. 2, where an edge between two vertices in $Z(G)$ is marked by the finite face whose boundary is the symmetric difference of the two perfect matchings corresponding to the two vertices.

Lemma 2.6 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph. Then
(i) $Z(G)$ is a connected bipartite graph,
(ii) $Z(G)$ has at most two vertices of degree one, and
(iii) if $Z(G)$ has a vertex of degree $\geqslant 3$, then the girth of $Z(G)$ is 4 ; otherwise, $Z(G)$ is a path.

Let M be a perfect matching of G. Then it is easy to see that the degree of M in $Z(G)$ is the number of M-resonant finite faces in G. Therefore, a perfect matching M has degree one in $Z(G)$ if and only if G has exactly one M-resonant finite face.

Lemma 2.7 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph. Then the following statements are equivalent.
(i) $Z(G)$ has a vertex M of degree one.
(ii) G has an RFD $\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ such that each ear P_{i} starts with a black vertex and ends with a white vertex or each ear P_{i} starts with a white vertex and ends with a black vertex with respect to the clockwise orientation of the periphery of $G_{i}, 2 \leqslant i \leqslant n$.
(iii) G has an $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ such that the periphery of each $G_{i}(1 \leqslant i \leqslant n)$ is an M-alternating cycle.

Note that when (i) or (ii) holds, G_{1} is the unique M-resonant finite face.

A perfect matching M of G

Z(G)

Fig. 3. A perfect matching M of G with degree one in $Z(G)$.

Fig. 4. Plane bipartite graphs whose $Z(G)$ is a path.

For example, the plane elementary bipartite graph G in Fig. 3 has a perfect matching M with degree one in $Z(G)$ and it has an RFD $\left(G_{1}, G_{2}, \ldots, G_{7}\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{7}$ and ear sequence $P_{1}, P_{2}, \ldots, P_{7}$ such that each ear P_{i} starts with a white vertex and ends with a black vertex w.r.t. the clockwise orientation of the periphery of G_{i}, for $2 \leqslant i \leqslant 7$. But the plane elementary bipartite graph G in Fig. 2 does not have a perfect matching M with degree one in $Z(G)$.

Lemma 2.8 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with more than two vertices. Then $Z(G)$ is a path if and only if G has an $R F D\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ and the ear sequence $P_{1}, P_{2}, \ldots, P_{n}$ such that
(i) the P_{i} 's start with black (resp. white) vertices and end with white (resp. black) vertices w.r.t. the clockwise orientation of the boundaries of the G_{i} 's;
(ii) s_{i} and s_{i+1} have edges in common for all i; and
(iii) s_{1} is a periphery face of $G_{n}(=G)$ or G_{n-1}.

For example, $Z(G)$ is a path for each plane elementary bipartite graph G in Fig. 4. The graph G in Fig. 4(I) has an $\operatorname{RFD}\left(G_{1}, G_{2}, G_{3}, G_{4}\right)$ associated with the face sequence $s_{1}, s_{2}, s_{3}, s_{4}$ and satisfying the three conditions in Lemma 2.8, where s_{1} is a periphery face of $G_{4}(=G)$ in condition (iii). The graph G in Fig. 4(II) has an RFD $\left(G_{1}, G_{2}, G_{3}, G_{4}, G_{5}, G_{6}\right)$ associated with the face sequence $s_{1}, s_{2}, s_{3}, s_{4}, s_{5}, s_{6}$ and satisfying the three conditions in Lemma 2.8, where s_{1} is a periphery face of G_{5} but not of $G_{6}(=G)$ in condition (iii).

An edge of a plane bipartite graph G is called a forcing edge if it is contained in exactly one perfect matching of G. It was shown [12] that if a plane bipartite graph in Ω has a forcing edge, then it is elementary. The following two lemmas give characterizations of a plane bipartite graph with forcing edges.

Fig. 5. Forcing edges of a plane bipartite graph G. (I) A perfect matching M_{1} of G. (II) A perfect matching M_{2} of G.

Lemma 2.9 (Zhang and Zhang [12]). Let G be a plane bipartite graph with a perfect matching M. Then $e \in M$ is a forcing edge if and only if each M-alternating cycle passes through the edge e.

Lemma 2.10 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with more than two vertices. Then G has a forcing edge if and only if one of the following statements holds:
(i) $Z(G)$ has a vertex M of degree one such that the unique M-resonant finite face sis a periphery face of G. See Fig. 5(I).
(ii) $Z(G)$ has a vertex M of degree two such that the two M-resonant finite faces of G have a path in common and the periphery of G is not an M-alternating cycle. See Fig. 5 (II).

Remarks. (1) When (i) holds, if P is a maximal common path of ∂s and ∂G, then P is an M-alternating path with two end edges in M, and the edges of P belonging to M are the forcing edges of G. Furthermore, the periphery of G is an M-alternating cycle by Lemma 2.7.
(2) When (ii) holds, if P is a maximal common path of ∂s and ∂s^{\prime}, then P is an M-alternating path with two end edges in M, and the edges of P belonging to M are the forcing edges of G.

For example, the plane bipartite graph G in Fig. 5 has forcing edges $e_{1}, e_{2}, e_{3}, e_{4}, e_{5}$. In Fig. 5(I), the perfect matching M_{1} of G has degree one in $Z(G)$ where s_{1} is the unique M_{1}-resonant finite face, and edges e_{1}, e_{2}, e_{3} belonging to M_{1} are on a common path of ∂s_{1} and ∂G. Furthermore, ∂G is an M_{1}-alternating cycle. In Fig. 5(II), the perfect matching M_{2} of G has degree two in $Z(G)$ where s_{4}, s_{5} are the two adjacent M_{2}-resonant finite faces, and edges e_{4}, e_{5} belonging to M_{2} are on a common path of ∂s_{4} and ∂s_{5}. Furthermore, ∂G is not an M_{2}-alternating cycle.

3. Main results

Theorem 3.1. If a plane bipartite graph $G \in \Omega$ has a forcing face, then G is elementary.
Proof. It is trivial when G has exactly one finite face. Assume that G has at least two finite faces. Suppose that G is not elementary. Then it has at least two elementary components each of which has more than two vertices by Lemma 2.2. Let s be a forcing face of G. Then s must be in some elementary component of G. Recall that each elementary component of G with more than two vertices is 2 -connected, and so has at least two perfect matchings by Lemma 2.1. It follows that $G-s$ has at least two perfect matchings, which is a contradiction.

Recall that any plane elementary bipartite graph with more than two vertices is in Ω. By Theorem 3.1, only plane elementary bipartite graphs with more than two vertices can have forcing faces. On the other hand, it needs to be pointed out that not every plane elementary bipartite graph with more than two vertices has a forcing face. In fact, we have proved in [2] the following results on the forcing hexagons in a hexagonal system H.
(i) A hexagon h of H is forcing if and only if h is a periphery hexagon of H and there is perfect matching M of H such that h is an M-alternating hexagon and M has degree one in $Z(H)$.
(ii) A hexagon h in H is forcing if and only if h contains a forcing edge.
(iii) A linear hexagonal chain has all its hexagons forcing, and other hexagonal systems may have 0,1 or 2 forcing hexagons. (See Figs. 6-9.)

Fig. 6. A hexagonal system with no forcing hexagons.

Fig. 7. A hexagonal system with exactly one forcing hexagon.

Fig. 8. A hexagonal system with exactly two forcing hexagons.

Fig. 9. A linear hexagonal chain with all hexagons forcing.

Note that these properties of the forcing hexagons in a hexagonal system cannot be extended to the forcing faces in a general plane bipartite graph.
For example, in Fig. 1, the finite face s is a forcing face of the plane bipartite graph G, but s is not a periphery face of G, and there are no perfect matchings with degree one in $Z(G)$ at all. Also G does not have any forcing edges. In Fig. 5, the plane bipartite graph G has three forcing faces s_{1}, s_{4}, s_{5} out of seven finite faces of G.

However, for general plane bipartite graphs, we have the following theorem on the number of forcing faces.
Theorem 3.2. For any integers n and k with $n \geqslant 4$ and $0 \leqslant k \leqslant n$, there exists a plane elementary bipartite graph G such that exactly k of the n finite faces of G are forcing.

Proof. Let $n \geqslant 4$. First, we can easily see the theorem holds for the cases $k=0,1$ and n. (See Figs. 6, 7 and 9.)
Now we prove the theorem for $n \geqslant 4$ and $2 \leqslant k \leqslant n-1$ by constructing a desired graph G as in Fig. 10, where $j=n-k+1$. Since $2 \leqslant k \leqslant n-1$ and $n \geqslant 4$, then $2 \leqslant j \leqslant n-1$ and hence the graph can be constructed. It is easy to see that G has an $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$. By Lemma 2.5, G is a plane elementary bipartite graph. By direct verification we can see that exactly k of the n finite faces of $G, s_{j}, s_{j+1}, \ldots, s_{n}$, are forcing.

Note: Let k denote the number of forcing faces in a plane elementary bipartite graph G with $n(>0)$ finite faces and a perfect matching. Theorem 3.2 shows that k can take any integer from 0 to n when $n \geqslant 4$. Here we point out that it is

Fig. 10. A plane bipartite graph with n finite faces and k forcing faces.
not the case for $0<n<4$, since then we must have $k>0$. It is not difficult to see that k must be equal to n when $n=1$ or 2 , and k can take any integer from 1 to n when $n=3$.

Concerning cubic plane bipartite graphs, we have the following result, which is a direct corollary of a main theorem in the recent paper [1] by Bau and Henning.

Corollary 3.3. Any connected cubic plane bipartite graph has no forcing faces.

The original proof for the theorem of Bau and Henning is quite long. Here we give a shorter proof below.
Theorem 3.4 (Bau and Henning). If G is a connected cubic plane bipartite graph and M is any perfect matching of G, then G has at least two disjoint M-resonant faces (one of which could be the infinite face).

Proof. By Lemma 2.1, G has an M-resonant finite face s. Then the restriction of M on $G_{1}=G-s$ is a perfect matching of G_{1}. It implies that there are no isolated vertices in G_{1}. Hence each vertex in G_{1} is adjacent to at most two vertices on the boundary of s. We distinguish two cases.

Case 1: There is a vertex u_{1} in G_{1} that is adjacent to two vertices, say v and w, on the boundary of s. Since G is bipartite, v and w are of the same color and cannot be adjacent. Then they divide the boundary of s into two $v-w$ paths of even length. One of the two paths, say P_{1}, together with the path $v u_{1} w$ encloses a plane region R of G outside s. It is easy to see that R is not finite a face of G. The vertices on the boundary of R are vertices from P_{1} and u_{1}. We may further assume that there is no vertex in R that is adjacent to two inner vertices of P_{1}. Let x be the third vertex of G that is adjacent to u_{1}. Then $u_{1} x$ must be an M-double bond.

Subcase 1.1: The vertex x is outside R. Let H denote the part of $G_{1}-u_{1}$ contained inside R. Then $\delta(H) \geqslant 2$. Note that the restriction of M on H is a perfect matching of H. By Lemma 2.1, there is an M-resonant finite face s_{1} of H, which is also a finite face of G and disjoint from s. It is done.

Subcase 1.2: The vertex x is inside R. Let H denote the part of $G_{1}-u_{1}-x$ contained inside R. Then the restriction of M on H is a perfect matching of H. Furthermore, if there is a vertex z in H which is adjacent to both x and an inner vertex of P_{1}, then $\operatorname{deg}(z)=1$ in H and z must be the colored differently from x and lie on the boundary of H; if there are no vertices of H that are adjacent to both x and some inner vertex of P_{1}, then $\delta(H) \geqslant 2$. By Lemma 2.1, there is an M-resonant finite face s_{1} of H, which is also a finite face of G and disjoint from s. It is done.

Case 2: Each vertex in G_{1} is adjacent to at most one vertex on the boundary of s. Then $\delta\left(G_{1}\right) \geqslant 2$. It is easy to see that the restriction of M on G_{1} is a perfect matching of G_{1}. By Lemma 2.1, there is an M-resonant finite face s_{1} of G_{1}, which is disjoint from s.

Subcase 2.1: If s_{1} is also a finite face of G, then it is done.
Subcase 2.2: If the boundary of s_{1} is the boundary of G, then s_{1} is the infinite face of G, and it is done.
Subcase 2.3: If s_{1} is neither a finite face nor the infinite face of G, then ∂s_{1} is an M-alternating cycle in G different from ∂G and s is contained in the interior of s_{1}. Let G_{2} be the subgraph of G obtained by deleting all vertices contained inside s_{1} and on ∂s_{1}, together with all their incident edges. Then the restriction of M on G_{2} is a perfect matching of G_{2}. It implies that there are no isolated vertices in G_{2}. Hence each vertex in G_{2} is adjacent to at most two vertices on the boundary of s_{1}. Again, we can distinguish two cases:
(i) If there is a vertex u_{2} in G_{2} that is adjacent to two vertices, say v_{1} and w_{1} on the boundary of s_{1}, then similar to Case 1, we can get an M-resonant finite face s_{2} of G, which is disjoint from s.
(ii) If each vertex in G_{2} is adjacent to at most one vertex on the boundary of s_{1}, then there is an M-resonant finite face s_{2} of G_{2}. If s_{2} is also an M-resonant face of G (it is possible the infinite face of G) as subcases 2.1 and 2.2,
then it is done. Otherwise, ∂s_{2} is an M-alternating cycle in G which is different from ∂G and s_{1} is contained in the interior of s_{2}. Let G_{3} be the subgraph of G obtained by deleting all vertices contained inside s_{2} and on ∂s_{2}, together with all their incident edges. Then the restriction of M on G_{3} is a perfect matching of G_{3}. Continuing the process, either we get another M-resonant face s_{i} of G (which may be the infinite face of G), or we get a sequence of subgraphs $G_{1}, G_{2}, \ldots, G_{n}$ where $G_{i+1} \subseteq G_{i}$, the restriction of M on G_{i} is a perfect matching of G_{i}, and $\delta\left(G_{i}\right) \geqslant 2$ since each vertex of G_{i} is adjacent to at most one vertex on the boundary of s_{i-1}. Note that G is finite, this sequence must stop at some n and G_{n} a cycle, which is the boundary of G. Recall that the restriction of M on $G_{n}(=\partial G)$ is a perfect matching of $G_{n}(=\partial G)$. Then the infinite face of G is an M-resonant face, which is disjoint from s.

Now we give a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing.
Theorem 3.5. Let G be a plane elementary bipartite graph. Then a finite face s of G is forcing if and only if there is a perfect matching M of G such that s is M-resonant and each M-alternating cycle of G has at least one edge in common with ∂s.

Proof. It is trivial when s is the unique finite face of G. Let G be a plane elementary bipartite graph with at least two finite faces. Necessity is easily seen from the definition of a forcing face. We show the sufficiency by contradiction. If s is not a forcing face, then $G-s$ has at least two different perfect matchings. It implies that there is a perfect matching M^{\prime} different from M such that s is an M^{\prime}-resonant face and $M \oplus M^{\prime}$ is different from ∂s. Recall that $M \oplus M^{\prime}$ consists of mutually disjoint $\left(M, M^{\prime}\right)$-alternating cycles of G. It follows that there exists an M-alternating cycle which is disjoint from ∂s. This contradicts the hypothesis.

Lemma 3.6. Let G be a plane elementary bipartite graph. If $Z(G)$ is a path, then for any perfect matching M with degree two in $Z(G)$, the two M-resonant finite faces are adjacent.

Proof. Let s_{1}, s_{2} be the two M-resonant finite faces. If s_{1} and s_{2} are not adjacent, then ∂s_{1} and ∂s_{2} do not have common edges. Let $M_{1}=M \oplus \partial s_{1}, M_{2}=M_{1} \oplus \partial s_{2}$ and $M_{3}=M_{2} \oplus \partial s_{1}$. Then $M=M_{3} \oplus \partial s_{2}$. Hence, $M M_{1} M_{2} M_{3} M$ is a 4-cycle in $Z(G)$. It contradicts the hypothesis that $Z(G)$ is a path.

For a hexagonal system H, we proved in [2] that if H has a perfect matching M such that M is of degree two in $Z(H)$ and the two M-resonant hexagons are adjacent, then $Z(H)$ is a path. We also showed that every hexagon of a hexagonal system H is forcing if and only if H is a linear hexagonal chain; if and only if $Z(H)$ is a path [2]. We have discovered that these properties cannot be extended to arbitrary plane bipartite graphs. For example, the perfect matching M of G in Fig. 2 has degree two in $Z(G)$ and G has two adjacent M-resonant finite faces s_{1} and s_{2}, but $Z(G)$ is not a path. On the other hand, if G is a plane elementary bipartite graph whose $Z(G)$ is a path, then it is not necessary that each finite face of G is forcing. For example, it is easy to check that the finite face s_{1} is not a forcing face of G in Fig. 4(II), though $Z(G)$ is a path. Below we will first investigate plane elementary bipartite graphs whose finite faces are all forcing.

Lemma 3.7. Let G be a plane elementary bipartite graph. If each finite face of G is forcing, then $Z(G)$ is a path.
Proof. By contradiction. If $Z(G)$ is not a path, then by Lemma 2.6(iii), there is a perfect matching M of G such that M has degree at least three in $Z(G)$. So G has least three distinct M-resonant finite faces, say, s_{1}, s_{2} and s_{3}. By Lemma 2.3 , there are two of them, say s_{2} and s_{3}, whose boundaries are disjoint from each other. It implies that s_{2}, s_{3} cannot be forcing faces of G, which contradicts the hypothesis that each finite face of G is forcing. Therefore, $Z(G)$ is a path.

Lemma 3.8. Let G be a plane elementary bipartite graph with more than two vertices. If $Z(G)$ is a path, then G has an RFD $\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ satisfying the three conditions in Lemma 2.8. Furthermore,
(1) If s_{1} is not a periphery face of G, then s_{1} is not a forcing face.
(2) If s_{1} is a periphery face of G, then each finite face of G is forcing.

Proof. Since $Z(G)$ is a path, then by Lemma 2.8, G has an $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the finite face sequence $s_{1}, s_{2}, \ldots, s_{n}$ and the ear sequence $P_{1}, P_{2}, \ldots, P_{n}$ satisfying the three conditions in Lemma 2.8, namely, (i) the P_{i} 's start with black (resp. white) vertices and end with white (resp. black) vertices w.r.t. the clockwise orientation of the boundaries of the G_{i} 's; (ii) s_{i} and s_{i+1} have edges in common for all i; and (iii) s_{1} is a periphery face of $G_{n}(=G)$ or G_{n-1}.

By Lemma 2.7, there is a perfect matching M_{0} of G that has degree one in $Z(G)$ such that $s_{1}\left(=G_{1}\right)$ is the unique M_{0}-resonant finite face and each ∂G_{i} is an M_{0}-alternating cycle for $1 \leqslant i \leqslant n$.
(1) Assume that s_{1} is not a periphery face of $G_{n}(=G)$. Then s_{1} is not forcing by Theorem 3.5 since the M_{0}-alternating cycle ∂G does not have any edge in common with ∂s_{1}.
(2) Assume that s_{1} is a periphery face of $G_{n}(=G)$. If s_{1} is the unique finite face of G, then trivially s_{1} is forcing. Hence we may assume that G has more than one finite face. Let $L_{i-1, i}$ be the part of ∂G_{i-1} that surrounds the finite face s_{i} with the ear P_{i}, where $2 \leqslant i \leqslant n$. Let $\overline{\partial G_{i-1}}$ be the path obtained from ∂G_{i-1} by removing all the edges and interior vertices of $L_{i-1, i}$. Recall that $s_{1}\left(=G_{1}\right)$ is the unique M_{0}-resonant finite face and each ∂G_{i} is an M_{0}-alternating cycle for $1 \leqslant i \leqslant n$. Then, for each i with $2 \leqslant i \leqslant n, L_{i-1, i}, P_{i}$ and $\overline{\partial G_{i-1}}$ are three M_{0}-alternating paths, where the two end edges of $\overline{\partial G_{i-1}}$ are M_{0}-double bonds and all the two end edges of $L_{i-1, i}$ and P_{i} are M_{0}-single bonds. To show that each finite face of G is forcing, we first prove the following claim.

Claim. Any perfect matching of G is either M_{0} or can be written as $M_{i}=M_{0} \oplus \partial G_{i}=M_{0} \oplus \partial s_{1} \oplus \partial s_{2} \oplus \cdots \oplus \partial s_{i}$ for some $1 \leqslant i \leqslant n$.

The claim can be proved as follows. For $1 \leqslant i \leqslant n$, let $M_{i}=M_{0} \oplus \partial G_{i}$. It is easy to see that $M_{i}=M_{0} \oplus \partial s_{1} \oplus \partial s_{2} \oplus \cdots \oplus \partial s_{i}$. Consider $M_{n}=M_{0} \oplus \partial G_{n}\left(=M_{0} \oplus \partial G\right)$. It is clear that $L_{n-1, n}$ is an M_{n}-alternating path whose two end edges are M_{n}-single bonds since $L_{n-1, n}$ has no edges on ∂G_{n}, and P_{n} is an M_{n}-alternating path whose two end edges are M_{n}-double bonds since P_{n} is on ∂G_{n}. Then, s_{n} is an M_{n}-resonant finite face since ∂s_{n} consists of $L_{n-1, n}$ and P_{n}. We will show that $\operatorname{deg}\left(M_{n}\right)=1$ by contradiction. Suppose the contrary holds. Then since $Z(G)$ is a path, we must have $\operatorname{deg}\left(M_{n}\right)=2$. Let $s_{j}(1 \leqslant j<n)$ be the other M_{n}-resonant finite face. Then s_{j} is a periphery face of G, since M_{0} and M_{n} have no difference on any non-periphery face and all non-periphery faces are not M_{0}-resonant, and so all non-periphery faces are not M_{n}-resonant either. It is easy to see that s_{1} cannot be an M_{n}-resonant facebecause s_{1} is M_{0}-resonant and only a non-empty proper part (not all) of ∂s_{1} is on ∂G since s_{1} is a periphery face of G. Hence s_{j} cannot be s_{1}. Now $2 \leqslant j \leqslant n-1$. Recall that s_{j} is a periphery face of G. Then only a non-empty proper part of P_{j} is on ∂G since ∂s_{j} and ∂s_{j+1} have common edges. Consider each s_{j} for $2 \leqslant j \leqslant n-1$. Recall that P_{j} is an M_{0}-alternating path. Then P_{j} cannot be an M_{n}-alternating path, and so s_{j} cannot be an M_{n}-resonant face either for all $2 \leqslant j \leqslant n-1$. This is a contradiction. Thus, we have proved that $\operatorname{deg}\left(M_{n}\right)=1$ and s_{n} is the unique M_{n}-resonant face.

Now, we have seen that both M_{0} and M_{n} have degree one in the path $Z(G)$. Since $M_{i}=M_{0} \oplus \partial G_{i}$ and $\partial G_{i} \oplus$ $\partial G_{i+1}=\partial s_{i+1}$, we have $M_{i} \oplus M_{i+1}=\partial s_{i+1}$, namely, M_{i} is adjacent with M_{i+1} for each $i=0,1, \ldots, n-1$. It implies that $M_{i}, i=0,1, \ldots, n$ are all the perfect matchings of G. This completes the proof of the claim.

Next, we will show that each s_{i} is forcing for $1 \leqslant i \leqslant n$.
(2a) We first show that s_{i} is forcing when $i=1, n$. Let M be a perfect matching of G such that s_{1} is an M-resonant face. If $\operatorname{deg}(M)=1$ in $Z(G)$, then $M=M_{0}$ and ∂G is an M-alternating cycle. Let P be a common path of ∂s_{1} and ∂G. Then the edges in P belonging to M are forcing edges of G by Remark (1) following Lemma 2.10. It implies that any M-alternating cycle has at least one common edge with ∂s_{1} by Lemma 2.9. If M has degree two in $Z(G)$, then $M=M_{0} \oplus \partial s_{1}$ and the two M-resonant faces are s_{1} and s_{2}. Note that ∂G is an M_{0}-alternating cycle and s_{1} is a periphery face of G. It is easy to see that ∂G is not an M-alternating cycle. Let P^{\prime} be a common path of ∂s_{1} and ∂s_{2}. Then all the edges in P^{\prime} belonging to M are forcing edges of G by Remark (2) following Lemma 2.10. It follows that each M-alternating cycle has at least one common edge with ∂s_{1} by Lemma 2.9. Therefore, s_{1} is forcing by Theorem 3.5. Similarly, we can show that s_{n} is forcing.
(2b) Now we prove that s_{i} is forcing for any given $1<i<n$. Let M be a perfect matching of G such that s_{i} is an M-resonant face. By the proof of the Claim, either $M=M_{i-1}=M_{0} \oplus \partial G_{i-1}$ or $M=M_{i}=M_{0} \oplus \partial G_{i}$. Therefore, $\operatorname{deg}(M)=2$ and ∂G is not an M-alternating cycle. If $M=M_{i-1}$, then s_{i-1} and s_{i} are the two M-resonant finite faces. Let P be a common path of ∂s_{i-1} and ∂s_{i}. If $M=M_{i}$, then s_{i} and s_{i+1} are the two M_{i}-resonant finite faces. Let P be a common path of ∂s_{i} and ∂s_{i+1}. Then all the edges of P that belong to M are forcing edges of G by Remark (2) following Lemma 2.10. It follows that each M-alternating cycle has at least one common edge with ∂s_{i} by Lemma 2.9. Therefore, s_{i} is forcing by Theorem 3.5.

Theorem 3.9. Let G be a plane elementary bipartite graph with more than two vertices. Then each finite face of G is forcing if and only if G has an $\operatorname{RFD}\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ and the ear sequence $P_{1}, P_{2}, \ldots, P_{n}$ satisfying: (i) the P_{i} 's start with black (resp. white) vertices and end with white (resp. black) vertices w.r.t. the clockwise orientation of the boundaries of the G_{i} 's; (ii) s_{i} and s_{i+1} have edges in common for all i; and (iii) s_{1} is a periphery face of $G_{n}(=G)$.

Proof. By Lemmas 3.7, 3.8 and 2.8.
In the next theorem we will characterize the forcing faces in a plane elementary bipartite graph using the tool of Z-transformation graphs, which will enable us to find out whether the co-existence of forcing edges and forcing faces (i.e., forcing hexagons) in hexagonal systems is still valid for general plane bipartite graphs.

Theorem 3.10. Let s be a finite face of a plane elementary bipartite graph G. Then sis a forcing face if and only if one of the following statements holds:
(i) $Z(G)$ has a vertex M of degree one such that s is the unique M-resonant finite face of G and s is a periphery face of G. (Note that the periphery of G must be an M-alternating cycle in this case by Lemma 2.7. For example, see Fig. 5(I) where $\operatorname{deg}\left(M_{1}\right)=1$ in $Z(G)$ and the unique M_{1}-resonant finite face s_{1} is the forcing face.)
(ii) $Z(G)$ has a vertex M of degree two such that sis one of the two M-resonant finite faces, and these two faces are adjacent. Furthermore, if the periphery of G is an M-alternating cycle, then s is periphery face of G. (For example, see Fig. 5(II) where $\operatorname{deg}\left(M_{2}\right)=2$ in $Z(G)$ and the two M_{2}-resonant finite faces s_{4} and s_{5} are the forcing faces.)
(iii) $Z(G)$ has a vertex M of degree $n+1$ where $n \geqslant 2$ and $s, s_{i}(1 \leqslant i \leqslant n)$ are the M-resonant finite faces such that s is adjacent to each s_{i} for $1 \leqslant i \leqslant n ; s_{i}$ and s_{j} have disjoint boundaries whenever $1 \leqslant i \neq j \leqslant n$. Furthermore, if the periphery of G is an M-alternating cycle, then s is a periphery face of G. (For example, see Fig. 1 where $\operatorname{deg}(M)=4$ in $Z(G)$ and exactly one of the M-resonant faces s is the forcing face.)

Proof. Necessity: Let G be a plane elementary bipartite graph and s be a forcing face of G. Then s is an M-resonant finite face for some perfect matching M of G.

If $d(M)=1$, then s is the unique M-resonant finite face. By Lemma 2.7, the periphery of G is an M-alternating cycle. By Theorem 3.5, s must be a periphery face of G.

If $d(M)=2$, then the two M-resonant finite faces s, s^{\prime} are adjacent by Theorem 3.5. If the periphery of G is an M-alternating cycle, then s is a periphery face by Theorem 3.5.

If $d(M)=n+1 \geqslant 3$ and $s, s_{1}, s_{2}, \ldots, s_{n}$ are the M-resonant finite faces, then s is adjacent to each s_{i} for $1 \leqslant i \leqslant n$ by Theorem 3.5. Any two faces $s_{i}, s_{j}(1 \leqslant i \neq j \leqslant n)$ have disjoint boundaries since two of the three M-resonant faces s, s_{i}, s_{j} have disjoint boundaries by Lemma 2.3. If the periphery of G is an M-alternating cycle, then s is a periphery face by Theorem 3.5.
Sufficiency: (i) Assume that $Z(G)$ has a vertex M of degree one where the unique M-resonant finite face s is a periphery face of G. Let P be a common path of ∂s and ∂G. Let C be an arbitrary M-alternating cycle. Then there exists an M-resonant face in the interior of C by Lemma 2.4, which must be s since $d(M)=1$. Hence C must pass through the path P, and so C has common edges with ∂s. Therefore, s is a forcing face by Theorem 3.5.
(ii) Assume that $Z(G)$ has a vertex M of degree two where the two M-resonant finite faces s, s^{\prime} of G are adjacent.

Case 1: The periphery of G is not an M-alternating cycle. Let P be a common path of ∂s and ∂s^{\prime}. By Remark (2) following Lemma 2.10, all the edges in P belonging to M are forcing edges of G. By Lemma 2.9, each M-alternating cycle C must pass through those forcing edges in P. Therefore, both s and s^{\prime} are forcing faces by Theorem 3.5.

Case 2: The periphery of G is an M-alternating cycle. Then s is a periphery face of G by the hypothesis. We claim that each M-alternating cycle C must pass through either a common path of ∂s and ∂G, or a common path of ∂s and ∂s^{\prime}. Otherwise, if there is an M-alternating cycle C that does not pass through any common path of ∂s and ∂G, or any common path of ∂s and ∂s^{\prime}. Then neither s nor s^{\prime} is contained in the interior of C. By Lemma 2.4, there is an M-resonant finite face different from s, s^{\prime} in the interior of C. It is impossible since $\operatorname{deg}(M)=2$. So, each M-alternating cycle C must pass through either a common path of ∂s and ∂G, or a common path of ∂s and ∂s^{\prime}. Therefore, s is a forcing face of G by Theorem 3.5.
(iii) Assume that $Z(G)$ has a vertex M of degree $n+1$ where $n \geqslant 2$ and $s, s_{i}(1 \leqslant i \leqslant n)$ are M-resonant finite faces such that s is adjacent to each s_{i} of G for $1 \leqslant i \leqslant n, s_{i}$ and s_{j} have disjoint boundaries whenever $1 \leqslant i \neq j \leqslant n$.

Case 1: The periphery of G is not an M-alternating cycle. Then each M-alternating cycle C must pass through a common path of ∂s and ∂s_{i} for some $1 \leqslant i \leqslant n$. Otherwise, if there is an M-alternating cycle C does not pass through any common path of ∂s and ∂s_{i} for $1 \leqslant i \leqslant n$, then either both s and $s_{i}(1 \leqslant i \leqslant n)$ are all contained in the interior of C or none of them are contained in the interior of C. If none of them is contained in the interior of C, then there is an M-resonant finite face in the interior of C by Lemma 2.4 , which is different from s and $s_{i}(1 \leqslant i \leqslant n)$. It is impossible since $\operatorname{deg}(M)=n+1$. Hence, s and $s_{i}(1 \leqslant i \leqslant n)$ are all contained in the interior of C. Let $I[C]$ be the subgraph of G formed by C together with its interior. Then $I(C) \neq G$ since the periphery of G is not an M-alternating cycle. It is easy to see that there exists an M-alternating path P_{1} in the exterior of C such that only its two end vertices belong to C. Note that the two end edges of P_{1} must be M-single bonds, and so P_{1} is of odd length. Let C_{1} be the cycle formed by P_{1} and part of C (denoted by P_{C}) and the interior of which lies in the exterior of C. Then P_{C} is also of odd length since C_{1} must be an even cycle. By Lemma 2.4, C_{1} cannot be an M-alternating cycle since s and $s_{i}(1 \leqslant i \leqslant n)$ are the only M-resonant finite faces of G. It implies that the two end edges of P_{C} are M-single bonds too. Hence, $C \oplus C_{1}$ is an M-alternating cycle. Also the interior of C is properly contained in the interior of $C \oplus C_{1}$. Continue this process, we finally have the conclusion that the periphery of G is an M-alternating cycle which contradicts the hypothesis. So, each M-alternating cycle C must pass through a common path of ∂s and ∂s_{i} for some $1 \leqslant i \leqslant n$. Therefore, s is a forcing face of G by Theorem 3.5.

Case 2. The periphery of G is an M-alternating cycle. Then s is a periphery face of G by the hypothesis. Similar to the proof for part (ii), we can show that each M-alternating cycle C must pass through either a common path of ∂s and ∂G or a common path of ∂s and ∂s_{i} for some $1 \leqslant i \leqslant n$. Therefore, s is a forcing face of G by Theorem 3.5.

We have seen (from the example in Fig. 1) that a plane elementary bipartite graph with a forcing face does not necessarily have a forcing edge. By comparing Lemma 2.10 with Theorem 3.10(i) and (ii), we immediately get the following theorem.

Corollary 3.11. Let G be a plane elementary bipartite graph with more than two vertices. If G has a forcing edge e, then each finite face of G containing e is a forcing face of G. On the other hand, G does not have to possess a forcing edge when it has a forcing face.

We will conclude the paper by investigating when we can use subdivisions to transform a plane bipartite graph into a plane elementary bipartite graph such that every finite face is forcing. We will first introduce a concept called a face decomposition of a plane graph which generalizes the concept of reducible face decomposition of a plane bipartite graph: start from an edge e, and join its two end vertices by a path P_{1} to get a finite face $s_{1}\left(=G_{1}\right)$. Proceed inductively to build a sequence of plane graphs as follows: if $G_{i}=e+P_{1}+P_{2}+\cdots+P_{i}$ has already been constructed, add the $(i+1)$ th path P_{i+1} by joining any two vertices on the boundary of G_{i} such that P_{i+1} lies in the exterior of G_{i} and has no internal vertices in common with the vertices of G_{i}. For all $1 \leqslant i<n, P_{i+1}$ and a part of the periphery of G_{i} surround a finite face s_{i+1}. The decomposition $F\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ is called a face decomposition of G, which is associated with the path sequence $P_{1}, P_{2}, \ldots, P_{n}$ and the face sequence $s_{1}, s_{2}, \ldots, s_{n}$. Clearly, an RFD ($G_{1}, G_{2}, \ldots, G_{n}(=G)$) of G is a face decomposition of G, but not vice versa.

Theorem 3.12. A plane bipartite graph G can be transformed by subdivisions to a plane elementary bipartite graph with every finite face forcing if and only if G has a face decomposition $F\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ such that (i) s_{1} is a periphery face of G and (ii) s_{i} and s_{i+1} have edges in common, for $1 \leqslant i \leqslant n-1$.

Proof. The necessity is trivial by Theorem 3.9. So we only need to show the sufficiency. Assume that G has a face decomposition $F\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ such that (i) s_{1} is a periphery face of G and (ii) s_{i}, s_{i+1} have edges in common, for $1 \leqslant i \leqslant n-1$. Let $P_{1}, P_{2}, \ldots, P_{n}$ be the associated path sequence. Then the i th path P_{i} and a part of the periphery of G_{i-1} surround a finite face s_{i} for all $2 \leqslant i \leqslant n$. Let u_{i} (resp. v_{i}) be the starting vertex (resp. the ending vertex) of P_{i} along the clockwise orientation of the periphery of G_{i}.

Claim. There is no vertex x that is both a starting vertex of a path P_{j} and an ending vertex of a path P_{k} for some $2 \leqslant j \neq k \leqslant n$.

The claim can be proved by contradiction. Assume that there exists a vertex x that is both a starting vertex of a path P_{j} and an ending vertex of a path P_{k}. That is, $x=u_{j}=v_{k}$. Note that G_{i} is obtained from G_{i-1} by adding a path P_{i} that goes from u_{i} to v_{i} along the clockwise orientation of the periphery of G_{i}, and the two faces s_{i-1}, s_{i} have edges in common for each integer $2 \leqslant i \leqslant n$. If $2 \leqslant j<k \leqslant n$, then it is easy to see that s_{1} is not a periphery face of G_{k} because part of $P_{j} \cup P_{j+1} \cup \cdots \cup P_{k-1} \cup P_{k}$ forms a cycle enclosing s_{1} along clockwise orientation from P_{j} to P_{k}. So s_{1} is not a periphery face of G. This contradicts the given condition (i). Thus we have $2 \leqslant k<j \leqslant n$. Then it is also easy to check that s_{1} cannot be a periphery face of G_{j} because part of $P_{k} \cup P_{k+1} \cup \cdots \cup P_{j-1} \cup P_{j}$ forms a cycle enclosing s_{1} along counterclockwise orientation from P_{k} to P_{j}. It follows that s_{1} is not a periphery face of G, which is a contradiction. This completes the proof of the claim.

Now we can recolor the starting vertex u_{i} black and the ending vertex v_{i} white for each $P_{i}, 2 \leqslant i \leqslant n$. Then we subdivide some edges of G which are selected as follows. For each $1 \leqslant i \leqslant n$, we take each path P that is a maximal common path of ∂s_{i} and ∂s_{j} where $i<j \leqslant n$. If s_{i} is a periphery face, we also take each path P that is a maximal common path of ∂s_{i} and ∂G. If P is of odd length and its two end vertices have the same color, or if P is of even length and its two end vertices have different colors, then subdivide an arbitrarily chosen edge on the path by adding one new vertex. Thus we get a new plane graph G^{*} whose finite faces s_{i}^{*} are the same as the finite faces s_{i} of G except that some edges on ∂s_{i}^{*} are obtained by subdivisions on some edges on ∂s_{i} satisfying the following: each maximal common path of ∂s_{i}^{*} and ∂s_{j}^{*} can be properly 2 -colored if s_{i}^{*} and s_{j}^{*} have edges in common, and each maximal common path of ∂s_{i}^{*} and ∂G^{*} can be properly 2 -colored if s_{i}^{*} is a periphery face of G^{*}. It follows that G^{*} is 2-colorable, i.e., G^{*} is a plane bipartite graph. Note that G has a face decomposition $F\left(G_{1}, G_{2}, \ldots, G_{n}(=G)\right)$ associated with the face sequence $s_{1}, s_{2}, \ldots, s_{n}$ if and only if G^{*} has a face decomposition $F\left(G_{1}^{*}, G_{2}^{*}, \ldots, G_{n}^{*}\left(=G^{*}\right)\right)$ associated with the face sequence $s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}$; two faces s_{i}, s_{i+1} have edges in common in G if and only if s_{i}^{*}, s_{i+1}^{*} have edges in common in G^{*}; and s_{1} is a periphery face of G if and only if s_{1}^{*} is a periphery face of G^{*}. Hence $F\left(G_{1}^{*}, G_{2}^{*}, \ldots, G_{n}^{*}\left(=G^{*}\right)\right)$ is also a reducible face decomposition of G^{*} associated with the face sequence $s_{1}^{*}, s_{2}^{*}, \ldots, s_{n}^{*}$ and the ear sequence $P_{1}^{*}, P_{2}^{*}, \ldots, P_{n}^{*}$ satisfying the following three conditions: (i) the P_{i}^{*} 's start with black vertices and end with white vertices w.r.t. the clockwise orientation of the boundaries of the G_{i}^{*} 's; (ii) s_{i}^{*} and s_{i+1}^{*} have edges in common for all i; (iii) s_{1}^{*} is a periphery face of $G_{n}^{*}\left(=G^{*}\right)$. Then, by Theorem 3.9, every finite face of G^{*} is forcing.

Acknowledgement

We would like to thank the referees for their helpful comments.

References

[1] S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane graphs, Discrete Math. 262 (2003) 27-36.
[2] Z. Che, Z. Chen, Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649-668.
[3] P. Hansen, M. Zheng, Bonds fixed by fixing bonds, J. Chem. Inform. Comput. Sci. 34 (1994) 297-304.
[4] F. Harary, D.J. Klein, T.P. Zivkovic, Graphical properties of polyhexes: perfect matching vector and forcing, J. Math. Chem. 6(1991) 295-306.
[6] L. Lovasz, M.D. Plummer, On minimal elementary bipartite graphs, J. Combin. Theory Ser. B 23 (1977) 127-138.
[7] L. Lovasz, M.D. Plummer, Matching Theory, North-Holland Mathematics Studies, vol. 121, Annals of Discrete Mathematics, vol. 29, NorthHolland Publishing Co., Amsterdam, 1986.
[8] W.C. Shiu, P.C.B. Lam, F. Zhang, H. Zhang, Normal components, Kekule patterns, and Clar patterns in plane bipartite graphs, J. Math. Chem. 31 (2002) 405-420.
[9] F. Zhang, X. Guo, R. Chen, Z-transformation graphs of perfect matchings of hexagonal systems, Discrete Math. 72 (1988) 405-415.
[10] F. Zhang, X. Li, Hexagonal systems with forcing edges, Discrete Math. 140 (1995) 253-263.
[11] H. Zhang, Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 457-476.
[12] H. Zhang, F. Zhang, Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291-311.

[^0]: * Corresponding author.

 E-mail address: ZXC4@psu.edu (Z. Chen).

