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Abstract

Let � denote the class of connected plane bipartite graphs with no pendant edges. A finite face s of a graph G ∈ � is said to be a
forcing face of G if the subgraph of G obtained by deleting all vertices of s together with their incident edges has exactly one perfect
matching. This is a natural generalization of the concept of forcing hexagons in a hexagonal system introduced in Che and Chen
[Forcing hexagons in hexagonal systems, MATCH Commun. Math. Comput. Chem. 56 (3) (2006) 649–668]. We prove that any
connected plane bipartite graph with a forcing face is elementary. We also show that for any integers n and k with n�4 and n�k�0,
there exists a plane elementary bipartite graph such that exactly k of the n finite faces of G are forcing. We then give a shorter proof
for a recent result that a connected cubic plane bipartite graph G has at least two disjoint M-resonant faces for any perfect matching
M of G, which is a main theorem in the paper [S. Bau, M.A. Henning, Matching transformation graphs of cubic bipartite plane
graphs, Discrete Math. 262 (2003) 27–36]. As a corollary, any connected cubic plane bipartite graph has no forcing faces. Using
the tool of Z-transformation graphs developed by Zhang et al. [Z-transformation graphs of perfect matchings of hexagonal systems,
Discrete Math. 72 (1988) 405–415; Plane elementary bipartite graphs, Discrete Appl. Math. 105 (2000) 291–311], we characterize
the plane elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a
finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between the existence
of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out that the former implies the
latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be turned to have all finite faces forcing by
subdivisions.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Stimulated by some chemical and physical problems, Harary et al. [4] introduced the concept of forcing edges in a
hexagonal system (which is a special case of a 2-connected plane bipartite graph where every finite face is a hexagon.)
An edge of a hexagonal system H is called a forcing edge if it is contained in exactly one perfect matching of H. Hansen
and Zheng [3], and Zhang and Li [10], independently characterized the hexagonal systems that have a forcing edge.
Motivated by their work, we introduced in [2] the concept of forcing hexagons for hexagonal systems. A hexagon h
of a hexagonal system H is called a forcing hexagon of H if the subgraph of H obtained by deleting all vertices of h
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Fig. 1. G has a forcing face s but no forcing edges.

together with their incident edges has exactly one perfect matching. We proved that a linear hexagonal chain has all
its hexagons forcing, and other hexagonal systems H may have 0, 1 or 2 forcing hexagons. We presented structural
characterizations for the hexagonal systems with a given number of forcing hexagons. We also proved the co-existence
property of forcing hexagons and forcing edges in a hexagonal system (see [2]). In order to extend various studies
on hexagonal systems, Zhang and Zhang [12] conducted an extensive study on plane elementary bipartite graphs so
that many important known results in hexagonal systems can be treated in a unified way. In particular, they extended
the concept of forcing edges from hexagonal systems to forcing edges of connected plane bipartite graphs and got
interesting results. Parallel to their work, in the present paper we generalize the concept of forcing hexagons from
hexagonal systems to forcing faces of connected plane bipartite graphs. Recall that a perfect matching (or 1-factor) of
G is a set of pairwise disjoint edges of G covering all vertices of G. Clearly, all pendant edges must belong to every
perfect matching, and so for our purpose we can delete them with no concern. Hence, without loss of generality, we
assume that throughout the paper the plane bipartite graph G in consideration has no pendant edges. In other words,
we always assume that G is a connected plane bipartite graph with the minimum vertex degree �(G)�2. The class of
such graphs is denoted by �.

A graph with a perfect matching is said to be elementary if the union of all perfect matchings forms a connected
subgraph. Note that plane elementary bipartite graphs with more than two vertices are 2-connected, and so all of them
are included in �.

Definition 1.1. A finite face s of a graph G ∈ � is said to be a forcing face of G if G − s has exactly one perfect
matching, where G − s is meant to be the subgraph of G obtained by deleting all vertices of s together with their
incident edges.

For example, the finite face s of graph G in Fig. 1 is the only forcing face of G.
Note: (1) If G ∈ � has exactly one finite face s, then s is a forcing face because the empty graph is assumed to have

exactly one perfect matching by convention.
(2) If G ∈ � has a forcing face, then G itself must have at least two perfect matchings. It is because G, as a bipartite

graph, contains only cycles of even length.
(3) Let n(> 0) be the number of finite faces of G. From [2] we already know that for a hexagonal system the number

of forcing faces may be 0, 1, 2 and n. In Section 3 we will further show that the number of forcing faces of G ∈ � can
be any integer between 0 and n when n�4.

In Section 2 we introduce needed terminologies and known results. Our new results are presented in Section 3. We
prove that any connected plane bipartite graph with a forcing face is elementary. We also show that for any integers
n and k with n�4 and n�k�0, there exists a plane elementary bipartite graph such that exactly k of the n finite
faces of G are forcing. We then give a shorter proof for a recent result that any perfect matching of a connected cubic
plane bipartite graph has at least two disjoint M-resonant faces, which is a main result in the paper [1]. As a corollary,
any connected cubic plane bipartite graph has no forcing faces. Using the tool of Z-transformation graphs developed
by Zhang et al. [9,12] (the reader is referred to [11] for a detailed survey on this topic), we characterize the plane
elementary bipartite graphs whose finite faces are all forcing. We also obtain a necessary and sufficient condition for a
finite face in a plane elementary bipartite graph to be forcing, which enables us to investigate the relationship between
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the existence of a forcing edge and the existence of a forcing face in a plane elementary bipartite graph, and find out
that the former implies the latter but not vice versa. Moreover, we characterize the plane bipartite graphs that can be
turned to have all finite faces forcing by subdivisions.

2. Preliminaries

A plane graph G is a graph in the plane where any two edges are either disjoint or meet only at a common end
vertex. If the vertices and edges of a plane graph G are removed from the plane, the remainder falls into connected
components (in the plane topology), called faces. Clearly, each plane graph has exactly one unbounded face that will
be called the infinite face. The other faces are all bounded and called finite faces. A finite face may also be simply
called a face for brevity, when no confusion could occur. When G is 2-connected, the boundary of any face of G is a
cycle. The boundary of a finite face s of G is denoted by �s. The boundary of the infinite face of G is denoted by �G,
which is referred to as the periphery (or boundary) of G. A finite face s of G is called a peripheral face (or boundary
face) of G if �s and �G have edges in common. Two finite faces s1 and s2 are said to be adjacent if their boundaries
�s1 and �s2 have at least one edge in common.

Let M be a perfect matching of G. An edge of G is called an M-double bond if it belongs to M, and an M-single
bond otherwise. An M-alternating cycle (resp. M-alternating path) of G is a cycle (resp. path) of G whose edges are
alternately in M and E(G) − M . A face of G (including the infinite face) is said to be M-resonant if its boundary
is an M-alternating cycle for some perfect matching M of G, and we say the face is resonant briefly if there is no
need to specify the perfect matching. We say a cycle is an (M1, M2)-alternating cycle if the edges of the cycle appear
alternatively in two matchings M1 and M2. An edge of G is said to be a fixed single bond (resp. fixed double bond)
if it belongs to none (resp. all) of the perfect matchings of G. An edge of G is called a fixed bond if it is either a
fixed single bond or a fixed double bond. It is well known that the symmetric difference of two perfect matchings
M1 ⊕ M2 = (M1 ∪ M2)\(M1 ∩ M2) of G is a union of disjoint (M1, M2)-alternating cycles of G. In this paper, we
assume that all vertices of a plane bipartite graph G are colored white and black such that adjacent vertices received
distinct colors.

Lemma 2.1 (Shiu et al. [8]). Let G be a plane bipartite graph with a perfect matching. If all vertices with degree one
of G are of the same color and lie on the boundary of G or if �(G)�2, then for any perfect matching M of G, there is
an M-resonant finite face in G.

From Lemma 2.1, we can see that if a plane bipartite graph in � has a perfect matching, then it has at least two perfect
matchings. A finite face s of a plane bipartite graph G ∈ � is forcing if and only if G has exactly two different perfect
matchings Mi , 1� i�2, such that s is an Mi-resonant face. It is clear that the symmetric difference M1 ⊕ M2 = �s.

It is well known [7] that an elementary bipartite graph G with more than two vertices is 2-connected. It is also known
[8] that a bipartite graph G is elementary if and only if it is connected and each edge of G belongs to a perfect matching
of G; if and only if G is connected and has no fixed single bonds. Let G be a connected bipartite graph with a perfect
matching. The connected components of the subgraph of G formed by all non-fixed bonds are elementary and thus
called elementary components of G. The following lemma can be derived directly from Corollary 3.4 in [8].

Lemma 2.2. Let G be a connected plane bipartite graph with a perfect matching and �(G)�2. If G is not elementary,
then it has at least two elementary components, each of which has more than two vertices.

It was shown [12] that if G is a connected plane bipartite graph with more than two vertices, then G is elementary if
and only if each face (including the infinite face) of G is resonant. In particular, if all the interior vertices of G are of
the same degree, then G is elementary if and only if the infinite face of G is resonant. The following lemmas provide
more properties of a plane elementary bipartite graph in terms of resonant faces.

Lemma 2.3 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with a perfect matching M. If there
exist three distinct M-resonant finite faces, then there are two of them whose boundaries are disjoint.

Lemma 2.4 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with a perfect matching M and let
C be an M-alternating cycle. Then there exists an M-resonant face in the interior of C.
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Fig. 2. A plane elementary bipartite graph G and its Z-transformation graph Z(G).

It is well known [6,7] that an elementary bipartite graph has an “ear decomposition” as described below. Start from
an edge e, and join its two end vertices by a path P1 of odd length (called the “first ear”). Then proceed inductively
to build a sequence of bipartite graphs as follows: if Gi = e + P1 + · · · + Pi has already been constructed, add the
(i + 1)th ear Pi+1 of odd length by joining any two vertices in different colors of Gi such that Pi+1 has no internal
vertices in common with the vertices of Gi . The decomposition G = Gn = e + P1 + P2 + · · · + Pn is called a bipartite
ear decomposition of G. It was shown [6,7] that a bipartite graph is elementary if and only if it has a bipartite ear
decomposition.

As defined in [12], a bipartite ear decomposition of a plane elementary bipartite graph G is called a reducible face
decomposition (abbreviated RFD) if G1 is the boundary of a finite face (s1) of G, and the (i + 1)th ear Pi+1 lies in
the exterior of Gi such that Pi+1 and a part of the periphery of Gi surround a finite face (si+1) of G for all 1� i < n.
So, the RFD (G1, G2, . . . , Gn(=G)) is associated with a unique face sequence s1, s2, . . . , sn. A useful property of the
RFD is that �Gi ⊕ �Gi+1 = �si+1 for all 1� i < n.

Lemma 2.5 (Zhang and Zhang [12]). Let G be a plane bipartite graph with more than two vertices. Then G is
elementary if and only if it has a reducible face decomposition.

For example, the plane elementary bipartite graph G in Fig. 2 has an RFD (G1, G2, . . . , G6) associated with the
face sequence s1, s2, . . . , s6.

Let G be a plane bipartite graph with a perfect matching. The Z-transformation graph of G, denoted by Z(G), is the
graph whose vertices are the perfect matchings of G where two vertices M1 and M2 are adjacent if and only if their
symmetric difference M1 ⊕ M2 is the boundary of some finite face of G. For example, in the Z-transformation graph
Z(G) of G in Fig. 2, where an edge between two vertices in Z(G) is marked by the finite face whose boundary is the
symmetric difference of the two perfect matchings corresponding to the two vertices.

Lemma 2.6 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph. Then
(i) Z(G) is a connected bipartite graph,
(ii) Z(G) has at most two vertices of degree one, and
(iii) if Z(G) has a vertex of degree �3, then the girth of Z(G) is 4; otherwise, Z(G) is a path.

Let M be a perfect matching of G. Then it is easy to see that the degree of M in Z(G) is the number of M-resonant
finite faces in G. Therefore, a perfect matching M has degree one in Z(G) if and only if G has exactly one M-resonant
finite face.

Lemma 2.7 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph. Then the following statements are
equivalent.

(i) Z(G) has a vertex M of degree one.
(ii) G has an RFD (G1, G2, . . . , Gn(=G)) such that each ear Pi starts with a black vertex and ends with a white

vertex or each ear Pi starts with a white vertex and ends with a black vertex with respect to the clockwise orientation
of the periphery of Gi, 2� i�n.

(iii) G has an RFD (G1, G2, . . . , Gn(=G)) such that the periphery of each Gi (1� i�n) is an M-alternating cycle.

Note that when (i) or (ii) holds, G1 is the unique M-resonant finite face.
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Fig. 3. A perfect matching M of G with degree one in Z(G).
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Fig. 4. Plane bipartite graphs whose Z(G) is a path.

For example, the plane elementary bipartite graph G in Fig. 3 has a perfect matching M with degree one in Z(G)

and it has an RFD (G1, G2, . . . , G7) associated with the face sequence s1, s2, . . . , s7 and ear sequence P1, P2, . . . , P7
such that each ear Pi starts with a white vertex and ends with a black vertex w.r.t. the clockwise orientation of the
periphery of Gi , for 2� i�7. But the plane elementary bipartite graph G in Fig. 2 does not have a perfect matching M
with degree one in Z(G).

Lemma 2.8 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with more than two vertices. Then
Z(G) is a path if and only if G has an RFD (G1, G2, . . . , Gn(=G)) associated with the face sequence s1, s2, . . . , sn
and the ear sequence P1, P2, . . . , Pn such that

(i) the Pi’s start with black (resp. white) vertices and end with white (resp. black) vertices w.r.t. the clockwise
orientation of the boundaries of the Gi’s;

(ii) si and si+1 have edges in common for all i; and
(iii) s1 is a periphery face of Gn(=G) or Gn−1.

For example, Z(G) is a path for each plane elementary bipartite graph G in Fig. 4. The graph G in Fig. 4(I)
has an RFD (G1, G2, G3, G4) associated with the face sequence s1, s2, s3, s4 and satisfying the three conditions
in Lemma 2.8, where s1 is a periphery face of G4(=G) in condition (iii). The graph G in Fig. 4(II) has an RFD
(G1, G2, G3, G4, G5, G6) associated with the face sequence s1, s2, s3, s4, s5, s6 and satisfying the three conditions in
Lemma 2.8, where s1 is a periphery face of G5 but not of G6(=G) in condition (iii).

An edge of a plane bipartite graph G is called a forcing edge if it is contained in exactly one perfect matching of
G. It was shown [12] that if a plane bipartite graph in � has a forcing edge, then it is elementary. The following two
lemmas give characterizations of a plane bipartite graph with forcing edges.
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Fig. 5. Forcing edges of a plane bipartite graph G. (I) A perfect matching M1 of G. (II) A perfect matching M2 of G.

Lemma 2.9 (Zhang and Zhang [12]). Let G be a plane bipartite graph with a perfect matching M. Then e ∈ M is a
forcing edge if and only if each M-alternating cycle passes through the edge e.

Lemma 2.10 (Zhang and Zhang [12]). Let G be a plane elementary bipartite graph with more than two vertices. Then
G has a forcing edge if and only if one of the following statements holds:

(i) Z(G) has a vertex M of degree one such that the unique M-resonant finite face s is a periphery face of G. See
Fig. 5(I).

(ii) Z(G) has a vertex M of degree two such that the two M-resonant finite faces of G have a path in common and
the periphery of G is not an M-alternating cycle. See Fig. 5 (II).

Remarks. (1) When (i) holds, if P is a maximal common path of �s and �G, then P is an M-alternating path with two
end edges in M, and the edges of P belonging to M are the forcing edges of G. Furthermore, the periphery of G is an
M-alternating cycle by Lemma 2.7.

(2) When (ii) holds, if P is a maximal common path of �s and �s′, then P is an M-alternating path with two end
edges in M, and the edges of P belonging to M are the forcing edges of G.

For example, the plane bipartite graph G in Fig. 5 has forcing edges e1, e2, e3, e4, e5. In Fig. 5(I), the perfect matching
M1 of G has degree one in Z(G) where s1 is the unique M1-resonant finite face, and edges e1, e2, e3 belonging to M1
are on a common path of �s1 and �G. Furthermore, �G is an M1-alternating cycle. In Fig. 5(II), the perfect matching
M2 of G has degree two in Z(G) where s4, s5 are the two adjacent M2-resonant finite faces, and edges e4, e5 belonging
to M2 are on a common path of �s4 and �s5. Furthermore, �G is not an M2-alternating cycle.

3. Main results

Theorem 3.1. If a plane bipartite graph G ∈ � has a forcing face, then G is elementary.

Proof. It is trivial when G has exactly one finite face. Assume that G has at least two finite faces. Suppose that G is
not elementary. Then it has at least two elementary components each of which has more than two vertices by Lemma
2.2. Let s be a forcing face of G. Then s must be in some elementary component of G. Recall that each elementary
component of G with more than two vertices is 2-connected, and so has at least two perfect matchings by Lemma 2.1.
It follows that G − s has at least two perfect matchings, which is a contradiction. �

Recall that any plane elementary bipartite graph with more than two vertices is in �. By Theorem 3.1, only plane
elementary bipartite graphs with more than two vertices can have forcing faces. On the other hand, it needs to be pointed
out that not every plane elementary bipartite graph with more than two vertices has a forcing face. In fact, we have
proved in [2] the following results on the forcing hexagons in a hexagonal system H.

(i) A hexagon h of H is forcing if and only if h is a periphery hexagon of H and there is perfect matching M of H
such that h is an M-alternating hexagon and M has degree one in Z(H).

(ii) A hexagon h in H is forcing if and only if h contains a forcing edge.
(iii) A linear hexagonal chain has all its hexagons forcing, and other hexagonal systems may have 0, 1 or 2 forcing

hexagons. (See Figs. 6–9.)
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Fig. 6. A hexagonal system with no forcing hexagons.
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Fig. 7. A hexagonal system with exactly one forcing hexagon.

Fig. 8. A hexagonal system with exactly two forcing hexagons.

Fig. 9. A linear hexagonal chain with all hexagons forcing.

Note that these properties of the forcing hexagons in a hexagonal system cannot be extended to the forcing faces in
a general plane bipartite graph.

For example, in Fig. 1, the finite face s is a forcing face of the plane bipartite graph G, but s is not a periphery face
of G, and there are no perfect matchings with degree one in Z(G) at all. Also G does not have any forcing edges. In
Fig. 5, the plane bipartite graph G has three forcing faces s1, s4, s5 out of seven finite faces of G.

However, for general plane bipartite graphs, we have the following theorem on the number of forcing faces.

Theorem 3.2. For any integers n and k with n�4 and 0�k�n, there exists a plane elementary bipartite graph G
such that exactly k of the n finite faces of G are forcing.

Proof. Let n�4. First, we can easily see the theorem holds for the cases k = 0, 1 and n. (See Figs. 6, 7 and 9.)
Now we prove the theorem for n�4 and 2�k�n − 1 by constructing a desired graph G as in Fig. 10, where

j =n− k + 1. Since 2�k�n− 1 and n�4, then 2�j �n− 1 and hence the graph can be constructed. It is easy to see
that G has an RFD(G1, G2, . . . , Gn(=G)) associated with the face sequence s1, s2, . . . , sn. By Lemma 2.5, G is a plane
elementary bipartite graph. By direct verification we can see that exactly k of the n finite faces of G, sj , sj+1, . . . , sn,
are forcing. �

Note: Let k denote the number of forcing faces in a plane elementary bipartite graph G with n(> 0) finite faces and
a perfect matching. Theorem 3.2 shows that k can take any integer from 0 to n when n�4. Here we point out that it is
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j=n-k+1Sn

Sj-1S1 S2 Sj Sn-1

Fig. 10. A plane bipartite graph with n finite faces and k forcing faces.

not the case for 0 < n < 4, since then we must have k > 0. It is not difficult to see that k must be equal to n when n = 1
or 2, and k can take any integer from 1 to n when n = 3.

Concerning cubic plane bipartite graphs, we have the following result, which is a direct corollary of a main theorem
in the recent paper [1] by Bau and Henning.

Corollary 3.3. Any connected cubic plane bipartite graph has no forcing faces.

The original proof for the theorem of Bau and Henning is quite long. Here we give a shorter proof below.

Theorem 3.4 (Bau and Henning). If G is a connected cubic plane bipartite graph and M is any perfect matching of
G, then G has at least two disjoint M-resonant faces (one of which could be the infinite face).

Proof. By Lemma 2.1, G has an M-resonant finite face s. Then the restriction of M on G1 =G− s is a perfect matching
of G1. It implies that there are no isolated vertices in G1. Hence each vertex in G1 is adjacent to at most two vertices
on the boundary of s. We distinguish two cases.

Case 1: There is a vertex u1 in G1 that is adjacent to two vertices, say v and w, on the boundary of s. Since G is
bipartite, v and w are of the same color and cannot be adjacent. Then they divide the boundary of s into two v–w paths
of even length. One of the two paths, say P1, together with the path vu1w encloses a plane region R of G outside s. It
is easy to see that R is not finite a face of G. The vertices on the boundary of R are vertices from P1 and u1. We may
further assume that there is no vertex in R that is adjacent to two inner vertices of P1. Let x be the third vertex of G that
is adjacent to u1. Then u1x must be an M-double bond.

Subcase 1.1: The vertex x is outside R. Let H denote the part of G1 − u1 contained inside R. Then �(H)�2. Note
that the restriction of M on H is a perfect matching of H. By Lemma 2.1, there is an M-resonant finite face s1 of H,
which is also a finite face of G and disjoint from s. It is done.

Subcase 1.2: The vertex x is inside R. Let H denote the part of G1 − u1 − x contained inside R. Then the restriction
of M on H is a perfect matching of H. Furthermore, if there is a vertex z in H which is adjacent to both x and an inner
vertex of P1, then deg(z) = 1 in H and z must be the colored differently from x and lie on the boundary of H; if there
are no vertices of H that are adjacent to both x and some inner vertex of P1, then �(H)�2. By Lemma 2.1, there is an
M-resonant finite face s1 of H, which is also a finite face of G and disjoint from s. It is done.

Case 2: Each vertex in G1 is adjacent to at most one vertex on the boundary of s. Then �(G1)�2. It is easy to see
that the restriction of M on G1 is a perfect matching of G1. By Lemma 2.1, there is an M-resonant finite face s1 of G1,
which is disjoint from s.

Subcase 2.1: If s1 is also a finite face of G, then it is done.
Subcase 2.2: If the boundary of s1 is the boundary of G, then s1 is the infinite face of G, and it is done.
Subcase 2.3: If s1 is neither a finite face nor the infinite face of G, then �s1 is an M-alternating cycle in G different

from �G and s is contained in the interior of s1. Let G2 be the subgraph of G obtained by deleting all vertices contained
inside s1 and on �s1, together with all their incident edges. Then the restriction of M on G2 is a perfect matching of
G2. It implies that there are no isolated vertices in G2. Hence each vertex in G2 is adjacent to at most two vertices on
the boundary of s1. Again, we can distinguish two cases:

(i) If there is a vertex u2 in G2 that is adjacent to two vertices, say v1 and w1 on the boundary of s1, then similar to
Case 1, we can get an M-resonant finite face s2 of G, which is disjoint from s.

(ii) If each vertex in G2 is adjacent to at most one vertex on the boundary of s1, then there is an M-resonant finite
face s2 of G2. If s2 is also an M-resonant face of G (it is possible the infinite face of G) as subcases 2.1 and 2.2,
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then it is done. Otherwise, �s2 is an M-alternating cycle in G which is different from �G and s1 is contained in the
interior of s2. Let G3 be the subgraph of G obtained by deleting all vertices contained inside s2 and on �s2, together
with all their incident edges. Then the restriction of M on G3 is a perfect matching of G3. Continuing the process,
either we get another M-resonant face si of G (which may be the infinite face of G), or we get a sequence of subgraphs
G1, G2, . . . , Gn where Gi+1 ⊆ Gi , the restriction of M on Gi is a perfect matching of Gi , and �(Gi)�2 since each
vertex of Gi is adjacent to at most one vertex on the boundary of si−1. Note that G is finite, this sequence must stop at
some n and Gn a cycle, which is the boundary of G. Recall that the restriction of M on Gn(=�G) is a perfect matching
of Gn(=�G). Then the infinite face of G is an M-resonant face, which is disjoint from s. �

Now we give a necessary and sufficient condition for a finite face in a plane elementary bipartite graph to be forcing.

Theorem 3.5. Let G be a plane elementary bipartite graph. Then a finite face s of G is forcing if and only if there is a
perfect matching M of G such that s is M-resonant and each M-alternating cycle of G has at least one edge in common
with �s.

Proof. It is trivial when s is the unique finite face of G. Let G be a plane elementary bipartite graph with at least two
finite faces. Necessity is easily seen from the definition of a forcing face. We show the sufficiency by contradiction. If s
is not a forcing face, then G − s has at least two different perfect matchings. It implies that there is a perfect matching
M ′ different from M such that s is an M ′-resonant face and M ⊕M ′ is different from �s. Recall that M ⊕M ′ consists of
mutually disjoint (M, M ′)-alternating cycles of G. It follows that there exists an M-alternating cycle which is disjoint
from �s. This contradicts the hypothesis. �

Lemma 3.6. Let G be a plane elementary bipartite graph. If Z(G) is a path, then for any perfect matching M with
degree two in Z(G), the two M-resonant finite faces are adjacent.

Proof. Let s1, s2 be the two M-resonant finite faces. If s1 and s2 are not adjacent, then �s1 and �s2 do not have common
edges. Let M1 = M ⊕ �s1, M2 = M1 ⊕ �s2 and M3 = M2 ⊕ �s1. Then M = M3 ⊕ �s2. Hence, MM1M2M3M is a
4-cycle in Z(G). It contradicts the hypothesis that Z(G) is a path. �

For a hexagonal system H, we proved in [2] that if H has a perfect matching M such that M is of degree two in Z(H)

and the two M-resonant hexagons are adjacent, then Z(H) is a path. We also showed that every hexagon of a hexagonal
system H is forcing if and only if H is a linear hexagonal chain; if and only if Z(H) is a path [2]. We have discovered
that these properties cannot be extended to arbitrary plane bipartite graphs. For example, the perfect matching M of G
in Fig. 2 has degree two in Z(G) and G has two adjacent M-resonant finite faces s1 and s2, but Z(G) is not a path. On
the other hand, if G is a plane elementary bipartite graph whose Z(G) is a path, then it is not necessary that each finite
face of G is forcing. For example, it is easy to check that the finite face s1 is not a forcing face of G in Fig. 4(II), though
Z(G) is a path. Below we will first investigate plane elementary bipartite graphs whose finite faces are all forcing.

Lemma 3.7. Let G be a plane elementary bipartite graph. If each finite face of G is forcing, then Z(G) is a path.

Proof. By contradiction. If Z(G) is not a path, then by Lemma 2.6(iii), there is a perfect matching M of G such that
M has degree at least three in Z(G). So G has least three distinct M-resonant finite faces, say, s1, s2 and s3. By Lemma
2.3, there are two of them, say s2 and s3, whose boundaries are disjoint from each other. It implies that s2, s3 cannot
be forcing faces of G, which contradicts the hypothesis that each finite face of G is forcing. Therefore, Z(G) is a
path. �

Lemma 3.8. Let G be a plane elementary bipartite graph with more than two vertices. If Z(G) is a path, then G
has an RFD (G1, G2, . . . , Gn(=G)) associated with the face sequence s1, s2, . . . , sn satisfying the three conditions in
Lemma 2.8. Furthermore,

(1) If s1 is not a periphery face of G, then s1 is not a forcing face.
(2) If s1 is a periphery face of G, then each finite face of G is forcing.
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Proof. Since Z(G) is a path, then by Lemma 2.8, G has an RFD (G1, G2, . . . , Gn(=G)) associated with the finite face
sequence s1, s2, . . . , sn and the ear sequence P1, P2, . . . , Pn satisfying the three conditions in Lemma 2.8, namely, (i) the
Pi’s start with black (resp. white) vertices and end with white (resp. black) vertices w.r.t. the clockwise orientation of the
boundaries of the Gi’s; (ii) si and si+1 have edges in common for all i; and (iii) s1 is a periphery face of Gn(=G) or Gn−1.

By Lemma 2.7, there is a perfect matching M0 of G that has degree one in Z(G) such that s1(=G1) is the unique
M0-resonant finite face and each �Gi is an M0-alternating cycle for 1� i�n.

(1) Assume that s1 is not a periphery face of Gn(=G). Then s1 is not forcing by Theorem 3.5 since the M0-alternating
cycle �G does not have any edge in common with �s1.

(2) Assume that s1 is a periphery face of Gn(=G). If s1 is the unique finite face of G, then trivially s1 is forcing.
Hence we may assume that G has more than one finite face. Let Li−1,i be the part of �Gi−1 that surrounds the finite
face si with the ear Pi , where 2� i�n. Let �Gi−1 be the path obtained from �Gi−1 by removing all the edges and
interior vertices of Li−1,i . Recall that s1(=G1) is the unique M0-resonant finite face and each �Gi is an M0-alternating
cycle for 1� i�n. Then, for each i with 2� i�n, Li−1,i , Pi and �Gi−1 are three M0-alternating paths, where the two
end edges of �Gi−1 are M0-double bonds and all the two end edges of Li−1,i and Pi are M0-single bonds. To show
that each finite face of G is forcing, we first prove the following claim.

Claim. Any perfect matching of G is either M0 or can be written as Mi = M0 ⊕ �Gi = M0 ⊕ �s1 ⊕ �s2 ⊕ · · · ⊕ �si for
some 1� i�n.

The claim can be proved as follows. For 1� i�n, letMi=M0⊕�Gi . It is easy to see thatMi=M0⊕�s1⊕�s2⊕· · ·⊕�si .
Consider Mn = M0 ⊕ �Gn(=M0 ⊕ �G). It is clear that Ln−1,n is an Mn-alternating path whose two end edges are
Mn-single bonds since Ln−1,n has no edges on �Gn, and Pn is an Mn-alternating path whose two end edges are
Mn-double bonds since Pn is on �Gn. Then, sn is an Mn-resonant finite face since �sn consists of Ln−1,n and Pn.
We will show that deg(Mn) = 1 by contradiction. Suppose the contrary holds. Then since Z(G) is a path, we must
have deg(Mn) = 2. Let sj (1�j < n) be the other Mn-resonant finite face. Then sj is a periphery face of G, since
M0 and Mn have no difference on any non-periphery face and all non-periphery faces are not M0-resonant, and so all
non-periphery faces are not Mn-resonant either. It is easy to see that s1 cannot be an Mn-resonant facebecause s1 is
M0-resonant and only a non-empty proper part (not all) of �s1 is on �G since s1 is a periphery face of G. Hence sj
cannot be s1. Now 2�j �n − 1. Recall that sj is a periphery face of G. Then only a non-empty proper part of Pj is on
�G since �sj and �sj+1 have common edges. Consider each sj for 2�j �n − 1. Recall that Pj is an M0-alternating
path. Then Pj cannot be an Mn-alternating path, and so sj cannot be an Mn-resonant face either for all 2�j �n − 1.
This is a contradiction. Thus, we have proved that deg(Mn) = 1 and sn is the unique Mn-resonant face.

Now, we have seen that both M0 and Mn have degree one in the path Z(G). Since Mi = M0 ⊕ �Gi and �Gi ⊕
�Gi+1 = �si+1, we have Mi ⊕Mi+1 = �si+1, namely, Mi is adjacent with Mi+1 for each i = 0, 1, . . . , n− 1. It implies
that Mi, i = 0, 1, . . . , n are all the perfect matchings of G. This completes the proof of the claim.

Next, we will show that each si is forcing for 1� i�n.
(2a) We first show that si is forcing when i = 1, n. Let M be a perfect matching of G such that s1 is an M-resonant

face. If deg(M) = 1 in Z(G), then M = M0 and �G is an M-alternating cycle. Let P be a common path of �s1 and
�G. Then the edges in P belonging to M are forcing edges of G by Remark (1) following Lemma 2.10. It implies that
any M-alternating cycle has at least one common edge with �s1 by Lemma 2.9. If M has degree two in Z(G), then
M =M0 ⊕�s1 and the two M-resonant faces are s1 and s2. Note that �G is an M0-alternating cycle and s1 is a periphery
face of G. It is easy to see that �G is not an M-alternating cycle. Let P ′ be a common path of �s1 and �s2. Then all
the edges in P ′ belonging to M are forcing edges of G by Remark (2) following Lemma 2.10. It follows that each
M-alternating cycle has at least one common edge with �s1 by Lemma 2.9. Therefore, s1 is forcing by Theorem 3.5.
Similarly, we can show that sn is forcing.

(2b) Now we prove that si is forcing for any given 1 < i < n. Let M be a perfect matching of G such that si is an
M-resonant face. By the proof of the Claim, either M = Mi−1 = M0 ⊕ �Gi−1 or M = Mi = M0 ⊕ �Gi . Therefore,
deg(M) = 2 and �G is not an M-alternating cycle. If M = Mi−1, then si−1 and si are the two M-resonant finite faces.
Let P be a common path of �si−1 and �si . If M = Mi , then si and si+1 are the two Mi-resonant finite faces. Let P
be a common path of �si and �si+1. Then all the edges of P that belong to M are forcing edges of G by Remark (2)
following Lemma 2.10. It follows that each M-alternating cycle has at least one common edge with �si by Lemma 2.9.
Therefore, si is forcing by Theorem 3.5. �
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Theorem 3.9. Let G be a plane elementary bipartite graph with more than two vertices. Then each finite face of G is
forcing if and only if G has an RFD (G1, G2, . . . , Gn(=G)) associated with the face sequence s1, s2, . . . , sn and the
ear sequence P1, P2, . . . , Pn satisfying: (i) the Pi’s start with black (resp. white) vertices and end with white (resp.
black) vertices w.r.t. the clockwise orientation of the boundaries of the Gi’s; (ii) si and si+1 have edges in common for
all i; and (iii) s1 is a periphery face of Gn(=G).

Proof. By Lemmas 3.7, 3.8 and 2.8. �

In the next theorem we will characterize the forcing faces in a plane elementary bipartite graph using the tool of
Z-transformation graphs, which will enable us to find out whether the co-existence of forcing edges and forcing faces
(i.e., forcing hexagons) in hexagonal systems is still valid for general plane bipartite graphs.

Theorem 3.10. Let s be a finite face of a plane elementary bipartite graph G. Then s is a forcing face if and only if
one of the following statements holds:

(i) Z(G) has a vertex M of degree one such that s is the unique M-resonant finite face of G and s is a periphery
face of G. (Note that the periphery of G must be an M-alternating cycle in this case by Lemma 2.7. For example,
see Fig. 5(I) where deg(M1) = 1 in Z(G) and the unique M1-resonant finite face s1 is the forcing face.)

(ii) Z(G) has a vertex M of degree two such that s is one of the two M-resonant finite faces, and these two faces are
adjacent. Furthermore, if the periphery of G is an M-alternating cycle, then s is periphery face of G. (For example, see
Fig. 5(II) where deg(M2) = 2 in Z(G) and the two M2-resonant finite faces s4 and s5 are the forcing faces.)

(iii) Z(G) has a vertex M of degree n + 1 where n�2 and s, si (1� i�n) are the M-resonant finite faces such that
s is adjacent to each si for 1� i�n; si and sj have disjoint boundaries whenever 1� i 	= j �n. Furthermore, if the
periphery of G is an M-alternating cycle, then s is a periphery face of G. (For example, see Fig. 1 where deg(M) = 4
in Z(G) and exactly one of the M-resonant faces s is the forcing face.)

Proof. Necessity: Let G be a plane elementary bipartite graph and s be a forcing face of G. Then s is an M-resonant
finite face for some perfect matching M of G.

If d(M)=1, then s is the unique M-resonant finite face. By Lemma 2.7, the periphery of G is an M-alternating cycle.
By Theorem 3.5, s must be a periphery face of G.

If d(M) = 2, then the two M-resonant finite faces s, s′ are adjacent by Theorem 3.5. If the periphery of G is an
M-alternating cycle, then s is a periphery face by Theorem 3.5.

If d(M) = n + 1�3 and s, s1, s2, . . . , sn are the M-resonant finite faces, then s is adjacent to each si for 1� i�n

by Theorem 3.5. Any two faces si, sj (1� i 	= j �n) have disjoint boundaries since two of the three M-resonant faces
s, si , sj have disjoint boundaries by Lemma 2.3. If the periphery of G is an M-alternating cycle, then s is a periphery
face by Theorem 3.5.

Sufficiency: (i) Assume that Z(G) has a vertex M of degree one where the unique M-resonant finite face s is a
periphery face of G. Let P be a common path of �s and �G. Let C be an arbitrary M-alternating cycle. Then there exists
an M-resonant face in the interior of C by Lemma 2.4, which must be s since d(M) = 1. Hence C must pass through
the path P, and so C has common edges with �s. Therefore, s is a forcing face by Theorem 3.5.

(ii) Assume that Z(G) has a vertex M of degree two where the two M-resonant finite faces s, s′ of G are adjacent.
Case 1: The periphery of G is not an M-alternating cycle. Let P be a common path of �s and �s′. By Remark (2)

following Lemma 2.10, all the edges in P belonging to M are forcing edges of G. By Lemma 2.9, each M-alternating
cycle C must pass through those forcing edges in P. Therefore, both s and s′ are forcing faces by Theorem 3.5.

Case 2: The periphery of G is an M-alternating cycle. Then s is a periphery face of G by the hypothesis. We claim
that each M-alternating cycle C must pass through either a common path of �s and �G, or a common path of �s and
�s′. Otherwise, if there is an M-alternating cycle C that does not pass through any common path of �s and �G, or any
common path of �s and �s′. Then neither s nor s′ is contained in the interior of C. By Lemma 2.4, there is an M-resonant
finite face different from s, s′ in the interior of C. It is impossible since deg(M) = 2. So, each M-alternating cycle C
must pass through either a common path of �s and �G, or a common path of �s and �s′. Therefore, s is a forcing face
of G by Theorem 3.5.

(iii) Assume that Z(G) has a vertex M of degree n + 1 where n�2 and s, si (1� i�n) are M-resonant finite faces
such that s is adjacent to each si of G for 1� i�n, si and sj have disjoint boundaries whenever 1� i 	= j �n.



2438 Z. Che, Z. Chen / Discrete Mathematics 308 (2008) 2427–2439

Case 1: The periphery of G is not an M-alternating cycle. Then each M-alternating cycle C must pass through a
common path of �s and �si for some 1� i�n. Otherwise, if there is an M-alternating cycle C does not pass through
any common path of �s and �si for 1� i�n, then either both s and si (1� i�n) are all contained in the interior of C
or none of them are contained in the interior of C. If none of them is contained in the interior of C, then there is an
M-resonant finite face in the interior of C by Lemma 2.4, which is different from s and si (1� i�n). It is impossible
since deg(M) = n + 1. Hence, s and si (1� i�n) are all contained in the interior of C. Let I [C] be the subgraph of
G formed by C together with its interior. Then I (C) 	= G since the periphery of G is not an M-alternating cycle. It is
easy to see that there exists an M-alternating path P1 in the exterior of C such that only its two end vertices belong to
C. Note that the two end edges of P1 must be M-single bonds, and so P1 is of odd length. Let C1 be the cycle formed
by P1 and part of C (denoted by PC) and the interior of which lies in the exterior of C. Then PC is also of odd length
since C1 must be an even cycle. By Lemma 2.4, C1 cannot be an M-alternating cycle since s and si (1� i�n) are the
only M-resonant finite faces of G. It implies that the two end edges of PC are M-single bonds too. Hence, C ⊕ C1 is an
M-alternating cycle. Also the interior of C is properly contained in the interior of C ⊕ C1. Continue this process, we
finally have the conclusion that the periphery of G is an M-alternating cycle which contradicts the hypothesis. So, each
M-alternating cycle C must pass through a common path of �s and �si for some 1� i�n. Therefore, s is a forcing face
of G by Theorem 3.5.

Case 2. The periphery of G is an M-alternating cycle. Then s is a periphery face of G by the hypothesis. Similar to
the proof for part (ii), we can show that each M-alternating cycle C must pass through either a common path of �s and
�G or a common path of �s and �si for some 1� i�n. Therefore, s is a forcing face of G by Theorem 3.5. �

We have seen (from the example in Fig. 1) that a plane elementary bipartite graph with a forcing face does not
necessarily have a forcing edge. By comparing Lemma 2.10 with Theorem 3.10(i) and (ii), we immediately get the
following theorem.

Corollary 3.11. Let G be a plane elementary bipartite graph with more than two vertices. If G has a forcing edge e,
then each finite face of G containing e is a forcing face of G. On the other hand, G does not have to possess a forcing
edge when it has a forcing face.

We will conclude the paper by investigating when we can use subdivisions to transform a plane bipartite graph into
a plane elementary bipartite graph such that every finite face is forcing. We will first introduce a concept called a face
decomposition of a plane graph which generalizes the concept of reducible face decomposition of a plane bipartite
graph: start from an edge e, and join its two end vertices by a path P1 to get a finite face s1(=G1). Proceed inductively
to build a sequence of plane graphs as follows: if Gi = e + P1 + P2 + · · · + Pi has already been constructed, add the
(i+1)th path Pi+1 by joining any two vertices on the boundary of Gi such that Pi+1 lies in the exterior of Gi and has no
internal vertices in common with the vertices of Gi . For all 1� i < n, Pi+1 and a part of the periphery of Gi surround a
finite face si+1. The decomposition F(G1, G2, . . . , Gn(=G)) is called a face decomposition of G, which is associated
with the path sequence P1, P2, . . . , Pn and the face sequence s1, s2, . . . , sn. Clearly, an RFD (G1, G2, . . . , Gn(=G))

of G is a face decomposition of G, but not vice versa.

Theorem 3.12. A plane bipartite graph G can be transformed by subdivisions to a plane elementary bipartite graph
with every finite face forcing if and only if G has a face decomposition F(G1, G2, . . . , Gn(=G)) associated with the
face sequence s1, s2, . . . , sn such that (i) s1 is a periphery face of G and (ii) si and si+1 have edges in common, for
1� i�n − 1.

Proof. The necessity is trivial by Theorem 3.9. So we only need to show the sufficiency. Assume that G has a face
decomposition F(G1, G2, . . . , Gn(=G)) associated with the face sequence s1, s2, . . . , sn such that (i) s1 is a periphery
face of G and (ii) si, si+1 have edges in common, for 1� i�n− 1. Let P1, P2, . . . , Pn be the associated path sequence.
Then the ith path Pi and a part of the periphery of Gi−1 surround a finite face si for all 2� i�n. Let ui (resp. vi) be
the starting vertex (resp. the ending vertex) of Pi along the clockwise orientation of the periphery of Gi .

Claim. There is no vertex x that is both a starting vertex of a path Pj and an ending vertex of a path Pk for some
2�j 	= k�n.
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The claim can be proved by contradiction. Assume that there exists a vertex x that is both a starting vertex of a path
Pj and an ending vertex of a path Pk . That is, x = uj = vk . Note that Gi is obtained from Gi−1 by adding a path Pi

that goes from ui to vi along the clockwise orientation of the periphery of Gi , and the two faces si−1, si have edges in
common for each integer 2� i�n. If 2�j < k�n, then it is easy to see that s1 is not a periphery face of Gk because
part of Pj ∪ Pj+1 ∪ · · · ∪ Pk−1 ∪ Pk forms a cycle enclosing s1 along clockwise orientation from Pj to Pk . So s1 is not
a periphery face of G. This contradicts the given condition (i). Thus we have 2�k < j �n. Then it is also easy to check
that s1 cannot be a periphery face of Gj because part of Pk ∪ Pk+1 ∪ · · · ∪ Pj−1 ∪ Pj forms a cycle enclosing s1 along
counterclockwise orientation from Pk to Pj . It follows that s1 is not a periphery face of G, which is a contradiction.
This completes the proof of the claim.

Now we can recolor the starting vertex ui black and the ending vertex vi white for each Pi , 2� i�n. Then we
subdivide some edges of G which are selected as follows. For each 1� i�n, we take each path P that is a maximal
common path of �si and �sj where i < j �n. If si is a periphery face, we also take each path P that is a maximal
common path of �si and �G. If P is of odd length and its two end vertices have the same color, or if P is of even length
and its two end vertices have different colors, then subdivide an arbitrarily chosen edge on the path by adding one new
vertex. Thus we get a new plane graph G∗ whose finite faces s∗

i are the same as the finite faces si of G except that
some edges on �s∗

i are obtained by subdivisions on some edges on �si satisfying the following: each maximal common
path of �s∗

i and �s∗
j can be properly 2-colored if s∗

i and s∗
j have edges in common, and each maximal common path

of �s∗
i and �G∗ can be properly 2-colored if s∗

i is a periphery face of G∗. It follows that G∗ is 2-colorable, i.e., G∗
is a plane bipartite graph. Note that G has a face decomposition F(G1, G2, . . . , Gn(=G)) associated with the face
sequence s1, s2, . . . , sn if and only if G∗ has a face decomposition F(G∗

1, G
∗
2, . . . , G

∗
n(=G∗)) associated with the face

sequence s∗
1 , s∗

2 , . . . , s∗
n ; two faces si, si+1 have edges in common in G if and only if s∗

i , s∗
i+1 have edges in common

in G∗; and s1 is a periphery face of G if and only if s∗
1 is a periphery face of G∗. Hence F(G∗

1, G
∗
2, . . . , G

∗
n(=G∗))

is also a reducible face decomposition of G∗ associated with the face sequence s∗
1 , s∗

2 , . . . , s∗
n and the ear sequence

P ∗
1 , P ∗

2 , . . . , P ∗
n satisfying the following three conditions: (i) the P ∗

i ’s start with black vertices and end with white
vertices w.r.t. the clockwise orientation of the boundaries of the G∗

i ’s; (ii) s∗
i and s∗

i+1 have edges in common for all i;
(iii) s∗

1 is a periphery face of G∗
n(=G∗). Then, by Theorem 3.9, every finite face of G∗ is forcing. �
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