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Abstract

In this paper, we show strong convergence theorems for nonexpansive mappings and none
semigroups in Hilbert spaces by the hybrid method in the mathematical programming.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let C be a nonempty closed convex subset of a real Hilbert space and letT be a
nonexpansive mapping fromC into itself, that is,‖T x − T y‖ � ‖x − y‖ holds for every
x, y ∈ C. We denote byN the set of all positive integers. Halpern [3] introduced an itera
procedure as follows:

x0 = x ∈ C, xn+1 = αnx + (1− αn)T xn

for each n ∈ N ∪ {0}, where {αn} ⊂ [0, 1]. Wittmann [12] proved that{xn} con-
verges strongly toPF (T )(x0) when {αn} satisfies limn→∞ αn = 0,

∑∞
n=0 αn = ∞ and∑∞

n=0 |αn+1 − αn| < ∞, whereF (T ) = {z ∈ C | T z = z} andPF (T )(·) is the metric pro-
jection ontoF (T ).
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The purpose of this paper is to make another method of strong convergence. Mo
by Solodov and Svaiter [10], we consider the sequence{xn} generated by



x0 = x ∈ C,

yn = αnxn + (1− αn)T xn,

Cn = {z ∈ C | ‖yn − z‖ � ‖xn − z‖},
Qn = {z ∈ C | (xn − z, x0 − xn) � 0},
xn+1 = PCn∩Qn(x0)

(1)

for eachn ∈ N ∪ {0}, where{αn} ⊂ [0, a] for somea ∈ [0, 1). Then, we show that{xn}
converges strongly toPF (T )(x0) by the hybrid method in the mathematical programmi
By this method, we also study the proximal point algorithm [4,5,7,12]. Finally, we ob
a strong convergence theorem for a family of nonexpansive mappings in a Hilbert sp

2. Preliminaries

Throughout this paper, letH be a real Hilbert space with inner product(· , ·) and norm
‖ · ‖. We writexn ⇀ x to indicate that the sequence{xn} converges weakly tox. Similarly,
xn → x will symbolize strong convergence. We know thatH satisfies Opial’s condition
[6], that is, for any sequence{xn} ⊂ H with xn ⇀ x, the inequality lim infn→∞ ‖xn −x‖ <

lim infn→∞ ‖xn − y‖ holds for everyy ∈ H with y �= x. We also know that for an
sequence{xn} ⊂ H with xn ⇀ x, ‖x‖ � lim infn→∞ ‖xn‖ holds. Further, let{xn} be a
sequence ofH with xn ⇀ x and ‖xn‖ → ‖x‖. Then, there holdsxn → x. Let C be a
nonempty closed convex subset ofH . We denote byPC(·) the metric projection ontoC.
It is known thatz = PC(x) is equivalent to(z − y, x − z) � 0 for everyy ∈ C. Let T be
a nonexpansive mapping fromC into itself. It is known thatF (T ) is closed and convex
A family S = {T (s) | 0 � s < ∞} of mappings fromC into itself is called a nonexpansiv
semigroup onC if it satisfies the following conditions:

(i) T (0)x = x for all x ∈ C;
(ii) T (s + t) = T (s)T (t) for all s, t � 0;
(iii) ‖T (s)x − T (s)y‖ � ‖x − y‖ for all x, y ∈ C ands � 0;
(iv) for all x ∈ C, s �→ T (s)x is continuous.

We denote byF (S) the set of all common fixed points ofS, that is, F (S) =⋂
0�s<∞ F (T (s)). It is known thatF (S) is closed and convex. An operatorA ⊂ H × H

is said to be monotone if(x1 − x2, y1 − y2) � 0 whenevery1 ∈ Ax1 and y2 ∈ Ax2.
A monotone operatorA is said to be maximal if the graph ofA is not properly contained in
the graph of any other monotone operator. LetA be a monotone operator. It is known th
A is maximal iffR(I + rA) = H for everyr > 0, whereR(I + rA) =⋃{z + rAz | z ∈ H ,
Az �= ∅}. It is also known thatA is maximal iff for (u, v) ∈ H × H , (x − u, y − v) � 0
for every(x, y) ∈ A impliesv ∈ Au. For a maximal monotone operatorA, we know that
A−10 = {x ∈ H | 0 ∈ Ax} is closed and convex. IfA is monotone, then we can defin
for eachr > 0, a nonexpansive mappingJr : R(I + rA) → D(A) by Jr = (I + rA)−1,
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whereD(A) = {z ∈ H | Az �= ∅}. Jr is called a resolvent ofA. We also define the Yosid
approximationAr by Ar = (I − Jr)/r. We know thatArx ∈ AJrx for all x ∈ R(I + rA).
We also haveF (Jr) = A−10 for eachr > 0, whereF (Jr) = {z ∈ D(A) | Jrz = z}; see [11]
for more details.

The following lemma was proved by Shimizu and Takahashi [8]; see also [1,2,9].

Lemma 2.1. Let C be a nonempty bounded closed convex subset ofH and letS = {T (s) |
0 � s < ∞} be a nonexpansive semigroup onC. Then, for anyh � 0,

lim
t→∞ sup

x∈C

∥∥∥∥∥1

t

t∫
0

T (s)x ds − T (h)

(
1

t

t∫
0

T (s)x ds

)∥∥∥∥∥= 0.

3. Strong convergence theorems for nonexpansive mappings

Let C be a nonempty closed convex subset ofH and letT be a nonexpansive mappin
from C into itself such thatF (T ) is nonempty. We consider the sequence{xn} generated
by (1).

Lemma 3.1. {xn} is well defined andF (T ) ⊂ Cn ∩ Qn for everyn ∈ N ∪ {0}.

Proof. It is obvious thatCn is closed andQn is closed and convex for everyn ∈ N∪{0}. It
follows thatCn is convex for everyn ∈ N ∪ {0} because‖yn − z‖ � ‖xn − z‖ is equivalent
to

‖yn − xn‖2 + 2(yn − xn, xn − z) � 0.

So,Cn ∩ Qn is closed and convex for everyn ∈ N ∪ {0}. Let u ∈ F (T ). Then from

‖yn − u‖ = ∥∥αnxn + (1− αn)T xn − u
∥∥

� αn‖xn − u‖ + (1− αn)‖T xn − u‖ � ‖xn − u‖
we haveu ∈ Cn for eachn ∈ N ∪ {0}. So, we haveF (T ) ⊂ Cn for all n ∈ N ∪ {0}.

Next, we show by mathematical induction that{xn} is well defined andF (T ) ⊂ Cn ∩Qn

for eachn ∈ N ∪ {0}. For n = 0, we havex0 = x ∈ C andQ0 = C, and henceF (T ) ⊂
C0 ∩Q0. Suppose thatxk is given andF (T ) ⊂ Ck ∩Qk for somek ∈ N ∪{0}. There exists
a unique elementxk+1 ∈ Ck ∩Qk such thatxk+1 = PCk∩Qk (x0). Fromxk+1 = PCk∩Qk (x0),
there holds

(xk+1 − z, x0 − xk+1) � 0

for eachz ∈ Ck ∩ Qk . SinceF (T ) ⊂ Ck ∩ Qk , we getF (T ) ⊂ Qk+1. Therefore we have
F (T ) ⊂ Ck+1 ∩ Qk+1. This completes the proof.✷
Lemma 3.2. {xn} is bounded.
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Proof. SinceF (T ) is a nonempty closed convex subset ofC, there exists a unique eleme
z0 ∈ F (T ) such thatz0 = PF (T )(x0). Fromxn+1 = PCn∩Qn(x0), we have

‖xn+1 − x0‖ � ‖z − x0‖
for everyz ∈ Cn ∩ Qn. As z0 ∈ F (T ) ⊂ Cn ∩ Qn, we get

‖xn+1 − x0‖ � ‖z0 − x0‖ (2)

for eachn ∈ N ∪ {0}. This implies that{xn} is bounded. ✷
Lemma 3.3. ‖xn+1 − xn‖ → 0.

Proof. As xn+1 ∈ Cn ∩ Qn ⊂ Qn andxn = PQn(x0), we have

‖xn+1 − x0‖ � ‖xn − x0‖
for everyn ∈ N ∪ {0}. Therefore, by Lemma 3.2 the sequence{‖xn − x0‖} is bounded and
nondecreasing. So there exists the limit of‖xn − x0‖. On the other hand, fromxn+1 ∈ Qn,
we have(xn − xn+1, x0 − xn) � 0 and hence

‖xn − xn+1‖2 = ∥∥(xn − x0) − (xn+1 − x0)
∥∥2

= ‖xn − x0‖2 − 2(xn − x0, xn+1 − x0) + ‖xn+1 − x0‖2

= ‖xn+1 − x0‖2 − ‖xn − x0‖2 − 2(xn − xn+1, x0 − xn)

� ‖xn+1 − x0‖2 − ‖xn − x0‖2

for everyn ∈ N ∪ {0}. This implies that‖xn+1 − xn‖ → 0. ✷
Theorem 3.4. xn → z0, wherez0 = PF (T )(x0).

Proof. Since {xn} is bounded, we assume that a subsequence{xni } of {xn} converges
weakly tow0. It follows from xn+1 ∈ Cn that

‖T xn − xn‖ = 1

1− αn

‖yn − xn‖ � 1

1− αn

(‖yn − xn+1‖ + ‖xn+1 − xn‖
)

� 2

1− αn

‖xn+1 − xn‖
for everyn ∈ N ∪ {0}. By Lemma 3.3, we get

‖T xn − xn‖ → 0. (3)

Suppose thatw0 �= T w0. From Opial’s condition and (3), we have

lim inf
i→∞ ‖xni − w0‖ < lim inf

i→∞ ‖xni − T w0‖ � lim inf
i→∞

(‖xni − T xni ‖ + ‖xni − w0‖
)

= lim inf
i→∞ ‖xni − w0‖.

This is a contradiction. Hence, we get

w0 ∈ F (T ). (4)
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If z0 = PF (T )(x0), it follows from (2), (4) and the lower semicontinuity of the norm tha

‖x0 − z0‖ � ‖x0 − w0‖ � lim inf
i→∞ ‖x0 − xni ‖ � lim sup

i→∞
‖x0 − xni ‖ � ‖x0 − z0‖.

Thus, we obtain limi→∞ ‖xni − x0‖ = ‖x0 − w0‖ = ‖x0 − z0‖. This implies

xni → w0 = z0.

Therefore, we havexn → z0. ✷
We apply this method to the proximal point algorithm [4,5,7,12] and get the follow

theorem.

Theorem 3.5. Let A ⊂ H × H be a maximal monotone operator such thatA−10 �= ∅ and
let Jr be the resolvent ofA, wherer > 0. Define a sequence{xn} generated by



x0 = x ∈ H,

yn = Jrn(xn + fn),

Cn = {z ∈ H | ‖yn − z‖ � ‖xn + fn − z‖},
Qn = {z ∈ H | (xn − z, x0 − xn) � 0},
xn+1 = PCn∩Qn(x0)

(5)

for everyn ∈ N ∪ {0}, where{rn} ⊂ (0,∞), lim infn→∞ rn > 0 and limn→∞ ‖fn‖ = 0.
Then,xn → z0 = PA−10(x0).

Proof. As in the proof of Lemma 3.1,{xn} is well defined andA−10 ⊂ Cn ∩ Qn for
everyn ∈ N ∪ {0} becauseJrn is nonexpansive andA−10 = {z ∈ H | Jrnz = z} for every
n ∈ N ∪ {0}. Results in Lemmas 3.2 and 3.3 hold becauseA−10 is nonempty, closed an
convex. We also have from limn→∞ ‖fn‖ = 0 that{yn} is bounded. Next, we suppose th
a subsequence{xni } of {xn} converges weakly tow0. It follows from xn+1 ∈ Cn that

‖yn − xn‖ � ‖yn − xn+1‖ + ‖xn+1 − xn‖ � ‖xn + fn − xn+1‖ + ‖xn+1 − xn‖
� 2‖xn+1 − xn‖ + ‖fn‖

for every n ∈ N ∪ {0}. From limn→∞ ‖xn+1 − xn‖ = limn→∞ ‖fn‖ = 0, we obtain
‖yn − xn‖ → 0. This implies that

yni ⇀ w0. (6)

On the other hand, sinceA is monotone, we have, for everyi ∈ N and(u, v) ∈ A,(
yni − u,

1

rni

(xni + fni − yni ) − v

)
� 0

and hence

(yni − u,−v) � − 1 ‖yni − u‖ · ∥∥yni − (xni + fni )
∥∥.
rni
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By the boundedness of{(1/rni )‖yni − u‖}, ‖yni − (xni + fni )‖ → 0 and (6), we have
(w0 − u,−v) � 0 for every(u, v) ∈ A. Therefore, we getw0 ∈ A−10 asA is maximal. If
z0 = PA−10(x0), as in the proof of Theorem 3.4, we have

‖z0 − x0‖ � ‖w0 − x0‖ � lim inf
i→∞ ‖xni − x0‖ � lim sup

i→∞
‖xni − x0‖ � ‖z0 − x0‖.

We obtain limi→∞ xni = w0 = z0. Therefore, we get limn→∞ xn = z0. ✷

4. Strong convergence theorem for nonexpansive semigroups

Let C be a nonempty closed convex subset ofH andS = {T (s) | 0 � s < ∞} be a
nonexpansive semigroup onC such thatF (S) �= ∅. Note thatF (S) is closed and convex
Consider a sequence{xn} generated by



x0 = x ∈ C,

yn = αnxn + (1− αn) 1
tn

∫ tn
0 T (s)xn ds,

Cn = {z ∈ C | ‖yn − z‖ � ‖xn − z‖},
Qn = {z ∈ C | (xn − z, x0 − xn) � 0},
xn+1 = PCn∩Qn(x0)

(7)

for everyn ∈ N ∪ {0}, where{αn} is a sequence in[0, a] for somea ∈ [0, 1) and{tn} is a
positive real divergent sequence. Using Lemma 2.1, we get the following theorem.

Theorem 4.1. xn → z0 = PF (S)(x0).

Proof. Since we have, for everyu ∈ F (S) andn ∈ N ∪ {0},

‖yn − u‖ � αn‖xn − u‖ + (1− αn)

∥∥∥∥∥ 1

tn

tn∫
0

T (s)xn ds − u

∥∥∥∥∥
� αn‖xn − u‖ + (1− αn)

1

tn

tn∫
0

∥∥T (s)xn − u
∥∥ds

� αn‖xn − u‖ + (1− αn)
1

tn

tn∫
0

‖xn − u‖ds

= αn‖xn − u‖ + (1− αn)‖xn − u‖ = ‖xn − u‖,

it follows that F (S) ⊂ Cn for every n ∈ N ∪ {0}. As in the proof of Lemma 3.1, w
get that{xn} is well defined andF (S) ⊂ Cn ∩ Qn for eachn ∈ N ∪ {0}. SinceF (S)

is nonempty andz0 = PF (S)(x0), as in the proofs of Lemmas 3.2 and 3.3, we get
‖xn+1 − x0‖ � ‖z0 − x0‖ for eachn ∈ N ∪ {0}, {xn} is bounded and‖xn+1 − xn‖ → 0. We
assume that a subsequence{xni } of {xn} converges weakly tow0. We have
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∥∥T (s)xn − xn

∥∥�
∥∥∥∥∥T (s)xn − T (s)

(
1

tn

tn∫
0

T (s)xn ds

)∥∥∥∥∥
+
∥∥∥∥∥T (s)

(
1

tn

tn∫
0

T (s)xn ds

)
− 1

tn

tn∫
0

T (s)xn ds

∥∥∥∥∥
+
∥∥∥∥∥ 1

tn

tn∫
0

T (s)xn ds − xn

∥∥∥∥∥
� 2

∥∥∥∥∥ 1

tn

tn∫
0

T (s)xn ds − xn

∥∥∥∥∥
+
∥∥∥∥∥T (s)

(
1

tn

tn∫
0

T (s)xn ds

)
− 1

tn

tn∫
0

T (s)xn ds

∥∥∥∥∥ (8)

for every 0� s < ∞ andn ∈ N ∪ {0}. On the other hand, fromxn+1 ∈ Cn, we have that∥∥∥∥∥ 1

tn

tn∫
0

T (s)xn ds − xn

∥∥∥∥∥= 1

1− αn

‖yn − xn‖

� 1

1− αn

(‖yn − xn+1‖ + ‖xn+1 − xn‖
)
� 2

1− αn

‖xn+1 − xn‖ (9)

for everyn ∈ N ∪ {0}. Let X = {z ∈ C | ‖z − z0‖ � 2‖z0 − x0‖}. Then,X is a nonempty
bounded closed convex subset ofC which is T (s)-invariant for eachs ∈ [0,∞) and
contains{xn}. By Lemma 2.1, we get

lim
n→∞

∥∥∥∥∥ 1

tn

tn∫
0

T (s)xn ds − T (h)

(
1

tn

tn∫
0

T (s)xn ds

)∥∥∥∥∥= 0 (10)

for everyh ∈ [0,∞). By (8)–(10) and‖xn+1 − xn‖ → 0, we obtain∥∥T (s)xn − xn

∥∥→ 0

for each 0� s < ∞. This implies that

w0 ∈ F (S) (11)

by Opial’s condition. As in the proof of Theorem 3.4, we havexni → w0 = z0. Therefore,
we getxn → z0. ✷
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