

WWW.MATHEMATICSWEB.ORG

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 279 (2003) 372–379 www.elsevier.com/locate/jmaa

Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups

Kazuhide Nakajo and Wataru Takahashi*

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo, 152-8552, Japan

Received 27 March 2001

Submitted by J.A. Goldstein

Abstract

In this paper, we show strong convergence theorems for nonexpansive mappings and nonexpansive semigroups in Hilbert spaces by the hybrid method in the mathematical programming. © 2003 Elsevier Science (USA). All rights reserved.

Keywords: Nonexpansive; Nonexpansive semigroup; Strong convergence; Metric projection; Resolvent

1. Introduction

Let *C* be a nonempty closed convex subset of a real Hilbert space and let *T* be a nonexpansive mapping from *C* into itself, that is, $||Tx - Ty|| \le ||x - y||$ holds for every $x, y \in C$. We denote by **N** the set of all positive integers. Halpern [3] introduced an iteration procedure as follows:

 $x_0 = x \in C$, $x_{n+1} = \alpha_n x + (1 - \alpha_n)Tx_n$

for each $n \in \mathbf{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, 1]$. Wittmann [12] proved that $\{x_n\}$ converges strongly to $P_{F(T)}(x_0)$ when $\{\alpha_n\}$ satisfies $\lim_{n\to\infty} \alpha_n = 0$, $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, where $F(T) = \{z \in C \mid Tz = z\}$ and $P_{F(T)}(\cdot)$ is the metric projection onto F(T).

^{*} Corresponding author. E-mail addresses: nakajo@is.titech.ac.jp (K. Nakajo), wataru@is.titech.ac.jp (W. Takahashi).

⁰⁰²²⁻²⁴⁷X/03/\$ – see front matter @ 2003 Elsevier Science (USA). All rights reserved. doi:10.1016/S0022-247X(02)00458-4

The purpose of this paper is to make another method of strong convergence. Motivated by Solodov and Svaiter [10], we consider the sequence $\{x_n\}$ generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) T x_n, \\ C_n = \{ z \in C \mid \|y_n - z\| \leqslant \|x_n - z\| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$
(1)

for each $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\} \subset [0, a]$ for some $a \in [0, 1)$. Then, we show that $\{x_n\}$ converges strongly to $P_{F(T)}(x_0)$ by the hybrid method in the mathematical programming. By this method, we also study the proximal point algorithm [4,5,7,12]. Finally, we obtain a strong convergence theorem for a family of nonexpansive mappings in a Hilbert space.

2. Preliminaries

Throughout this paper, let *H* be a real Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. We write $x_n \rightarrow x$ to indicate that the sequence $\{x_n\}$ converges weakly to *x*. Similarly, $x_n \rightarrow x$ will symbolize strong convergence. We know that *H* satisfies Opial's condition [6], that is, for any sequence $\{x_n\} \subset H$ with $x_n \rightarrow x$, the inequality $\liminf_{n \rightarrow \infty} \|x_n - x\| < \liminf_{n \rightarrow \infty} \|x_n - y\|$ holds for every $y \in H$ with $y \neq x$. We also know that for any sequence $\{x_n\} \subset H$ with $x_n \rightarrow x$, $\|x\| \le \liminf_{n \rightarrow \infty} \|x_n\|$ holds. Further, let $\{x_n\}$ be a sequence of *H* with $x_n \rightarrow x$, $\|x\| \le \liminf_{n \rightarrow \infty} \|x_n\|$ holds. Further, let $\{x_n\}$ be a nonempty closed convex subset of *H*. We denote by $P_C(\cdot)$ the metric projection onto *C*. It is known that $z = P_C(x)$ is equivalent to $(z - y, x - z) \ge 0$ for every $y \in C$. Let *T* be a nonexpansive mapping from *C* into itself. It is known that F(T) is closed and convex. A family $S = \{T(s) \mid 0 \le s < \infty\}$ of mappings from *C* into itself is called a nonexpansive semigroup on *C* if it satisfies the following conditions:

(i) T(0)x = x for all x ∈ C;
(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0;
(iii) ||T(s)x - T(s)y|| ≤ ||x - y|| for all x, y ∈ C and s ≥ 0;
(iv) for all x ∈ C, s ↦ T(s)x is continuous.

We denote by F(S) the set of all common fixed points of S, that is, $F(S) = \bigcap_{0 \leq s < \infty} F(T(s))$. It is known that F(S) is closed and convex. An operator $A \subset H \times H$ is said to be monotone if $(x_1 - x_2, y_1 - y_2) \ge 0$ whenever $y_1 \in Ax_1$ and $y_2 \in Ax_2$. A monotone operator A is said to be maximal if the graph of A is not properly contained in the graph of any other monotone operator. Let A be a monotone operator. It is known that A is maximal iff R(I + rA) = H for every r > 0, where $R(I + rA) = \bigcup \{z + rAz \mid z \in H, Az \neq \emptyset\}$. It is also known that A is maximal iff for $(u, v) \in H \times H$, $(x - u, y - v) \ge 0$ for every $(x, y) \in A$ implies $v \in Au$. For a maximal monotone operator A, we know that $A^{-1}0 = \{x \in H \mid 0 \in Ax\}$ is closed and convex. If A is monotone, then we can define, for each r > 0, a nonexpansive mapping $J_r : R(I + rA) \to D(A)$ by $J_r = (I + rA)^{-1}$,

where $D(A) = \{z \in H \mid Az \neq \emptyset\}$. J_r is called a resolvent of A. We also define the Yosida approximation A_r by $A_r = (I - J_r)/r$. We know that $A_r x \in A J_r x$ for all $x \in R(I + rA)$. We also have $F(J_r) = A^{-1}0$ for each r > 0, where $F(J_r) = \{z \in D(A) \mid J_r z = z\}$; see [11] for more details.

The following lemma was proved by Shimizu and Takahashi [8]; see also [1,2,9].

Lemma 2.1. Let *C* be a nonempty bounded closed convex subset of *H* and let $S = \{T(s) \mid 0 \leq s < \infty\}$ be a nonexpansive semigroup on *C*. Then, for any $h \ge 0$,

$$\lim_{t \to \infty} \sup_{x \in C} \left\| \frac{1}{t} \int_0^t T(s) x \, ds - T(h) \left(\frac{1}{t} \int_0^t T(s) x \, ds \right) \right\| = 0.$$

3. Strong convergence theorems for nonexpansive mappings

Let *C* be a nonempty closed convex subset of *H* and let *T* be a nonexpansive mapping from *C* into itself such that F(T) is nonempty. We consider the sequence $\{x_n\}$ generated by (1).

Lemma 3.1. $\{x_n\}$ is well defined and $F(T) \subset C_n \cap Q_n$ for every $n \in \mathbb{N} \cup \{0\}$.

Proof. It is obvious that C_n is closed and Q_n is closed and convex for every $n \in \mathbb{N} \cup \{0\}$. It follows that C_n is convex for every $n \in \mathbb{N} \cup \{0\}$ because $||y_n - z|| \leq ||x_n - z||$ is equivalent to

$$||y_n - x_n||^2 + 2(y_n - x_n, x_n - z) \leq 0.$$

So, $C_n \cap Q_n$ is closed and convex for every $n \in \mathbb{N} \cup \{0\}$. Let $u \in F(T)$. Then from

$$||y_n - u|| = ||\alpha_n x_n + (1 - \alpha_n)Tx_n - u||$$

$$\leq \alpha_n ||x_n - u|| + (1 - \alpha_n)||Tx_n - u|| \leq ||x_n - u||$$

we have $u \in C_n$ for each $n \in \mathbb{N} \cup \{0\}$. So, we have $F(T) \subset C_n$ for all $n \in \mathbb{N} \cup \{0\}$.

Next, we show by mathematical induction that $\{x_n\}$ is well defined and $F(T) \subset C_n \cap Q_n$ for each $n \in \mathbb{N} \cup \{0\}$. For n = 0, we have $x_0 = x \in C$ and $Q_0 = C$, and hence $F(T) \subset C_0 \cap Q_0$. Suppose that x_k is given and $F(T) \subset C_k \cap Q_k$ for some $k \in \mathbb{N} \cup \{0\}$. There exists a unique element $x_{k+1} \in C_k \cap Q_k$ such that $x_{k+1} = P_{C_k \cap Q_k}(x_0)$. From $x_{k+1} = P_{C_k \cap Q_k}(x_0)$, there holds

 $(x_{k+1} - z, x_0 - x_{k+1}) \ge 0$

for each $z \in C_k \cap Q_k$. Since $F(T) \subset C_k \cap Q_k$, we get $F(T) \subset Q_{k+1}$. Therefore we have $F(T) \subset C_{k+1} \cap Q_{k+1}$. This completes the proof. \Box

Lemma 3.2. $\{x_n\}$ is bounded.

374

Proof. Since F(T) is a nonempty closed convex subset of *C*, there exists a unique element $z_0 \in F(T)$ such that $z_0 = P_{F(T)}(x_0)$. From $x_{n+1} = P_{C_n \cap Q_n}(x_0)$, we have

 $||x_{n+1} - x_0|| \le ||z - x_0||$

for every $z \in C_n \cap Q_n$. As $z_0 \in F(T) \subset C_n \cap Q_n$, we get

$$\|x_{n+1} - x_0\| \le \|z_0 - x_0\| \tag{2}$$

for each $n \in \mathbb{N} \cup \{0\}$. This implies that $\{x_n\}$ is bounded. \Box

Lemma 3.3. $||x_{n+1} - x_n|| \to 0.$

Proof. As $x_{n+1} \in C_n \cap Q_n \subset Q_n$ and $x_n = P_{Q_n}(x_0)$, we have

 $||x_{n+1} - x_0|| \ge ||x_n - x_0||$

for every $n \in \mathbb{N} \cup \{0\}$. Therefore, by Lemma 3.2 the sequence $\{||x_n - x_0||\}$ is bounded and nondecreasing. So there exists the limit of $||x_n - x_0||$. On the other hand, from $x_{n+1} \in Q_n$, we have $(x_n - x_{n+1}, x_0 - x_n) \ge 0$ and hence

$$\|x_n - x_{n+1}\|^2 = \|(x_n - x_0) - (x_{n+1} - x_0)\|^2$$

= $\|x_n - x_0\|^2 - 2(x_n - x_0, x_{n+1} - x_0) + \|x_{n+1} - x_0\|^2$
= $\|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 - 2(x_n - x_{n+1}, x_0 - x_n)$
 $\leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2$

for every $n \in \mathbb{N} \cup \{0\}$. This implies that $||x_{n+1} - x_n|| \to 0$. \Box

Theorem 3.4. $x_n \rightarrow z_0$, where $z_0 = P_{F(T)}(x_0)$.

Proof. Since $\{x_n\}$ is bounded, we assume that a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges weakly to w_0 . It follows from $x_{n+1} \in C_n$ that

$$\|Tx_n - x_n\| = \frac{1}{1 - \alpha_n} \|y_n - x_n\| \leq \frac{1}{1 - \alpha_n} (\|y_n - x_{n+1}\| + \|x_{n+1} - x_n\|)$$

$$\leq \frac{2}{1 - \alpha_n} \|x_{n+1} - x_n\|$$

for every $n \in \mathbb{N} \cup \{0\}$. By Lemma 3.3, we get

$$\|Tx_n - x_n\| \to 0.$$

Suppose that $w_0 \neq T w_0$. From Opial's condition and (3), we have

$$\begin{split} \liminf_{i \to \infty} \|x_{n_i} - w_0\| &< \liminf_{i \to \infty} \|x_{n_i} - Tw_0\| \leq \liminf_{i \to \infty} (\|x_{n_i} - Tx_{n_i}\| + \|x_{n_i} - w_0\|) \\ &= \liminf_{i \to \infty} \|x_{n_i} - w_0\|. \end{split}$$

This is a contradiction. Hence, we get

$$w_0 \in F(T). \tag{4}$$

(3)

If $z_0 = P_{F(T)}(x_0)$, it follows from (2), (4) and the lower semicontinuity of the norm that

$$||x_0 - z_0|| \le ||x_0 - w_0|| \le \liminf_{i \to \infty} ||x_0 - x_{n_i}|| \le \limsup_{i \to \infty} ||x_0 - x_{n_i}|| \le ||x_0 - z_0||.$$

Thus, we obtain $\lim_{i\to\infty} ||x_{n_i} - x_0|| = ||x_0 - w_0|| = ||x_0 - z_0||$. This implies

$$x_{n_i} \rightarrow w_0 = z_0.$$

Therefore, we have $x_n \rightarrow z_0$. \Box

We apply this method to the proximal point algorithm [4,5,7,12] and get the following theorem.

Theorem 3.5. Let $A \subset H \times H$ be a maximal monotone operator such that $A^{-1}0 \neq \emptyset$ and let J_r be the resolvent of A, where r > 0. Define a sequence $\{x_n\}$ generated by

$$\begin{cases} x_0 = x \in H, \\ y_n = J_{r_n}(x_n + f_n), \\ C_n = \{z \in H \mid \|y_n - z\| \leqslant \|x_n + f_n - z\|\}, \\ Q_n = \{z \in H \mid (x_n - z, x_0 - x_n) \ge 0\}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$

$$(5)$$

for every $n \in \mathbb{N} \cup \{0\}$, where $\{r_n\} \subset (0, \infty)$, $\liminf_{n \to \infty} r_n > 0$ and $\lim_{n \to \infty} ||f_n|| = 0$. Then, $x_n \to z_0 = P_{A^{-1}0}(x_0)$.

Proof. As in the proof of Lemma 3.1, $\{x_n\}$ is well defined and $A^{-1}0 \subset C_n \cap Q_n$ for every $n \in \mathbb{N} \cup \{0\}$ because J_{r_n} is nonexpansive and $A^{-1}0 = \{z \in H \mid J_{r_n}z = z\}$ for every $n \in \mathbb{N} \cup \{0\}$. Results in Lemmas 3.2 and 3.3 hold because $A^{-1}0$ is nonempty, closed and convex. We also have from $\lim_{n\to\infty} ||f_n|| = 0$ that $\{y_n\}$ is bounded. Next, we suppose that a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges weakly to w_0 . It follows from $x_{n+1} \in C_n$ that

$$||y_n - x_n|| \le ||y_n - x_{n+1}|| + ||x_{n+1} - x_n|| \le ||x_n + f_n - x_{n+1}|| + ||x_{n+1} - x_n||$$

$$\le 2||x_{n+1} - x_n|| + ||f_n||$$

for every $n \in \mathbb{N} \cup \{0\}$. From $\lim_{n\to\infty} ||x_{n+1} - x_n|| = \lim_{n\to\infty} ||f_n|| = 0$, we obtain $||y_n - x_n|| \to 0$. This implies that

$$y_{n_i} \rightharpoonup w_0.$$
 (6)

On the other hand, since A is monotone, we have, for every $i \in \mathbb{N}$ and $(u, v) \in A$,

$$\left(y_{n_i}-u,\frac{1}{r_{n_i}}(x_{n_i}+f_{n_i}-y_{n_i})-v\right) \ge 0$$

and hence

$$(y_{n_i} - u, -v) \ge -\frac{1}{r_{n_i}} \|y_{n_i} - u\| \cdot \|y_{n_i} - (x_{n_i} + f_{n_i})\|.$$

376

By the boundedness of $\{(1/r_{n_i}) || y_{n_i} - u ||\}$, $|| y_{n_i} - (x_{n_i} + f_{n_i}) || \to 0$ and (6), we have $(w_0 - u, -v) \ge 0$ for every $(u, v) \in A$. Therefore, we get $w_0 \in A^{-1}0$ as A is maximal. If $z_0 = P_{A^{-1}0}(x_0)$, as in the proof of Theorem 3.4, we have

$$||z_0 - x_0|| \le ||w_0 - x_0|| \le \liminf_{i \to \infty} ||x_{n_i} - x_0|| \le \limsup_{i \to \infty} ||x_{n_i} - x_0|| \le ||z_0 - x_0||.$$

We obtain $\lim_{i\to\infty} x_{n_i} = w_0 = z_0$. Therefore, we get $\lim_{n\to\infty} x_n = z_0$. \Box

4. Strong convergence theorem for nonexpansive semigroups

Let *C* be a nonempty closed convex subset of *H* and $S = \{T(s) \mid 0 \le s < \infty\}$ be a nonexpansive semigroup on *C* such that $F(S) \ne \emptyset$. Note that F(S) is closed and convex. Consider a sequence $\{x_n\}$ generated by

$$\begin{cases} x_0 = x \in C, \\ y_n = \alpha_n x_n + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} T(s) x_n \, ds, \\ C_n = \{ z \in C \mid \|y_n - z\| \leqslant \|x_n - z\| \}, \\ Q_n = \{ z \in C \mid (x_n - z, x_0 - x_n) \ge 0 \}, \\ x_{n+1} = P_{C_n \cap Q_n}(x_0) \end{cases}$$
(7)

for every $n \in \mathbb{N} \cup \{0\}$, where $\{\alpha_n\}$ is a sequence in [0, a] for some $a \in [0, 1)$ and $\{t_n\}$ is a positive real divergent sequence. Using Lemma 2.1, we get the following theorem.

Theorem 4.1. $x_n \to z_0 = P_{F(S)}(x_0)$.

Proof. Since we have, for every $u \in F(S)$ and $n \in \mathbb{N} \cup \{0\}$,

$$\|y_n - u\| \leq \alpha_n \|x_n - u\| + (1 - \alpha_n) \left\| \frac{1}{t_n} \int_0^{t_n} T(s) x_n \, ds - u \right\|$$

$$\leq \alpha_n \|x_n - u\| + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} \|T(s) x_n - u\| \, ds$$

$$\leq \alpha_n \|x_n - u\| + (1 - \alpha_n) \frac{1}{t_n} \int_0^{t_n} \|x_n - u\| \, ds$$

$$= \alpha_n \|x_n - u\| + (1 - \alpha_n) \|x_n - u\| = \|x_n - u\|,$$

it follows that $F(S) \subset C_n$ for every $n \in \mathbb{N} \cup \{0\}$. As in the proof of Lemma 3.1, we get that $\{x_n\}$ is well defined and $F(S) \subset C_n \cap Q_n$ for each $n \in \mathbb{N} \cup \{0\}$. Since F(S) is nonempty and $z_0 = P_{F(S)}(x_0)$, as in the proofs of Lemmas 3.2 and 3.3, we get that $||x_{n+1} - x_0|| \leq ||z_0 - x_0||$ for each $n \in \mathbb{N} \cup \{0\}$, $\{x_n\}$ is bounded and $||x_{n+1} - x_n|| \to 0$. We assume that a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ converges weakly to w_0 . We have

$$\|T(s)x_{n} - x_{n}\| \leq \|T(s)x_{n} - T(s)\left(\frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds\right)\| + \|T(s)\left(\frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds\right) - \frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds\| + \|\frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds - x_{n}\| \leq 2\left\|\frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds - x_{n}\right\| + \|T(s)\left(\frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds\right) - \frac{1}{t_{n}}\int_{0}^{t_{n}}T(s)x_{n}\,ds\|$$
(8)

for every $0 \leq s < \infty$ and $n \in \mathbb{N} \cup \{0\}$. On the other hand, from $x_{n+1} \in C_n$, we have that

$$\left\| \frac{1}{t_n} \int_{0}^{t_n} T(s) x_n \, ds - x_n \right\| = \frac{1}{1 - \alpha_n} \| y_n - x_n \|$$

$$\leqslant \frac{1}{1 - \alpha_n} \left(\| y_n - x_{n+1} \| + \| x_{n+1} - x_n \| \right) \leqslant \frac{2}{1 - \alpha_n} \| x_{n+1} - x_n \|$$
(9)

for every $n \in \mathbb{N} \cup \{0\}$. Let $X = \{z \in C \mid ||z - z_0|| \le 2||z_0 - x_0||\}$. Then, X is a nonempty bounded closed convex subset of C which is T(s)-invariant for each $s \in [0, \infty)$ and contains $\{x_n\}$. By Lemma 2.1, we get

$$\lim_{n \to \infty} \left\| \frac{1}{t_n} \int_0^{t_n} T(s) x_n \, ds - T(h) \left(\frac{1}{t_n} \int_0^{t_n} T(s) x_n \, ds \right) \right\| = 0 \tag{10}$$

for every $h \in [0, \infty)$. By (8)–(10) and $||x_{n+1} - x_n|| \rightarrow 0$, we obtain

 $\left\|T(s)x_n - x_n\right\| \to 0$

for each $0 \leq s < \infty$. This implies that

$$w_0 \in F(\mathcal{S}) \tag{11}$$

by Opial's condition. As in the proof of Theorem 3.4, we have $x_{n_i} \to w_0 = z_0$. Therefore, we get $x_n \to z_0$. \Box

References

 S. Atsushiba, W. Takahashi, A weak convergence theorem for nonexpansive semigroups by the Mann iteration process in Banach spaces, in: W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Convex Analysis World Scientific, Singapore, pp. 102–109.

- [2] R.E. Bruck, On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981) 304–314.
- [3] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967) 957-961.
- [4] S. Kamimura, W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000) 226–240.
- [5] B. Martinet, Regularisation d'inequations variationnelles par approximations successives, Rev. Franc. Inform. Rech. Opér. 4 (1970) 154–159.
- [6] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967) 591–597.
- [7] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877–898.
- [8] T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997) 71–83.
- [9] N. Shioji, W. Takahashi, Strong convergence theorems for continuous semigroups in Banach spaces, Math. Japon. 50 (1999) 57–66.
- [10] M.V. Solodov, B.F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Programming Ser. A 87 (2000) 189–202.
- [11] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
- [12] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486-491.