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The function t: (0<:<1) is operator monotone on 0�t<�. This is known as
the Lo� wner�Heinz inequality. However, not too many examples of concrete operator
monotone functions are known so far. We will systematically seek operator monotone
functions which are defined implicitly. This investigation is new, and our method seems
to be powerful. We will actually find a family of operator monotone functions which
includes t: (0<:<1). Moreover, by constructing one-parameter families of operator
monotone functions, we will get many operator inequalities; especially, we will extend
the Furuta inequality and the exponential inequality of Ando. � 2000 Academic Press
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1. INTRODUCTION

Throughout this paper, A and B stand for bounded selfadjoint operators on
a Hilbert space and sp(X) for the spectrum of an operator X. A real valued
function f (t) is called an operator monotone function on an interval I in R1 if,
for A, B with sp(A), sp(B)/I,

A�B implies f (A)� f (B).

Clearly a composite function of operator monotone functions is operator
monotone too, provided it is well defined. A holomorphic function which
maps the open upper half plane 6+ into itself is called a Pick function. By
Lo� wner's theorem [13], f (t) is an operator monotone function on an open
interval (a, b) if and only if f (t) has an analytic continuation f (z) to
6+ _ (a, b) so that f (z) is a Pick function; therefore f (t) is analytically
extended to the open lower half plane by reflection. Thus if f (t)�0 and
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g(t)�0 are operator monotone, then so is f (t)+ g(t)* for 0�+, *�1,
++*�1. If f (t) is operator monotone on (a, b) and if f (t) is continuous on
[a, b), then f (t) is operator monotone on [a, b). It is known that t:

(0<:�1), log(1+t), and t
t+* (*>0) are operator monotone on [0, �).

Thus,

A�B�0 implies A:�B: for 0<:<1, (1)

which is called the Lo� wner�Heinz inequality [12, 13]. But A�B�0 does
not generally imply A2�B2. We have shown that if A, B�0 and (A+tBn)2�
A2 for every t>0 and n=1, 2, ..., then AB=BA [16]. See [1, 3, 5, 9, 11, 14]
for details about operator monotone functions.

Chan-Kwong [4] posed the following question:

Does A�B�0 imply (BA2B)1�2�B2 ?

Furuta [7, 8] answered it affirmatively as follows:

A�B�0 implies {(Br�2A pBr�2)1�q�(Br�2B pBr�2)1�q,
(Ar�2A pAr�2)1�q�(Ar�2B pAr�2)1�q,

(2)

where r, p�0 and q�1 with (1+r) q�p+r. This is called the Furuta
inequality. In this inequality, the case p�1 is a deformation of the Lo� wner�
Heinz inequality; further, the case (1+r) q>p+r follows from the case
(1+r) q= p+r by the Lo� wner�Heinz inequality again. So the essentially
important part of (2) is the case p>1 and (1+r) q= p+r. One obtains the
second inequality of (2) from the first one by taking inverses. Tanahashi
[15] showed that the exponential condition (1+r) q�p+r is the best
possible condition for (2). Ando [2] obtained the related inequality: for t>0,

A�B implies {(e(t�2)BetAe(t�2)B)1�2�etB,
etA�(e(t�2)AetBe(t�2)A)1�2.

This was improved by use of the inequality itself and (2), by Fujii and
Kamei [6] as follows: for p�0, r�s�0,

A�B implies {(e(r�2)Be pAe(r�2)B)s�(r+ p)�esB,
esA�(e(r�2)Ae pBe(r�2)A)s�(r+ p).

(3)

It is evident that the essentially important part of this inequality is the case
s=r. Recently, by making use of only (2), we [18] got a simple proof of (3).

Now we give a simple example that motivated us to investigate operator
monotone functions which are defined implicitly,

A, B�0 and A2�B2 imply (A+1)2�(B+1)2,
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because A�B follows from A2�B2. But we can easily construct 2_2
matrices A, B such that (A+1)2�(B+1)2, but A2�3 B2 ; for example,

A=\2
1

1
3+ , B=\1

0
0

1.94+ .

The above results mean that ,(t)=(t1�2+1)2 is operator monotone on
[0, �), but �(t)=(t1�2&1)2 is not on [1, �). We may say that , and �
are implicitly defined by ,(t2)=(t+1)2 (t�0) and �((t+1)2)=t2 (t�0).

One aim of this paper is to seek operator monotone functions which are
defined implicitly; this investigation is new, and we will actually find a
family of operator monotone functions which includes t: (0<:<1). This
means that we can get not merely an extension of (1) but also another
proof of (1). The other aim is to extend simultaneously (2) and (3), by
making use of a one-parameter family of operator monotone functions.

2. THE CONSTRUCTION OF NEW OPERATOR
MONOTONE FUNCTIONS

Let us define a non-negative increasing function u(t) on [&a1 , �) by

u(t)= `
k

i=1

(t+a i)
#i (a1<a2< } } } <ak , 1�#1 , 0<#i). (4)

Theorem 2.1. Let the function s=u(t) be defined by (4). Then the
inverse function u&1(s) is operator monotone on [0, �).

Proof. Since u&1(s) is continuous on [0, �), we have to show that
u&1(s) is operator monotone on (0, �). We may assume that a1=0; for,
setting v(t)=u(t&a1) we have u&1(s)=v&1(s)&a1 ; hence the operator
monotonicity of u&1(s) follows from that of v&1(s). Set D=C"(&�, 0],
and restrict the argument by &?<arg z<? for z # D. For #>0 define the
single valued holomorphic function z# on D by

z#=exp #(log |z|+i arg z),

which is the principal branch of the analytic function exp(# log z). Using
this we define a holomorphic function u(z) on D by

u(z)= `
k

i=1

(z+ai)
#i, 0=a1<a2< } } } <ak
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which is an extension of u(t). Since

u$(z)={ `
k

i=1

(z+ai)
#i=\ :

k

j=1

#j

z+aj+ ,

it is necessary and sufficient for u$(z)=0 in D that �k
j=1 #j �(z+a j)=0.

Since #j>0 and aj�0, the roots of �k
j=1 #j �(z+a j)=0 are all in (&�, 0).

Therefore, u$(z) does not vanish in D. Let us consider the function w=u(z)
as a mapping from the z-plane to the w-plane. We denote D in the z-plane
by Dz and D in the w-plane by Dw . Take a t0>0 and set s0=u(t0). Since
u$(t0){0, by the inverse mapping theorem, there is a univalent holo-
morphic function g0(w) from a disk 2(s0) with center s0 onto an open set
including t0 such that u(g0(w))=w for w # 2(s0). We show that for an
arbitrary point w0 in Dw and for an arbitrary path C in Dw from s0 to w0 , the
function element (g0 , 2(s0)) admits an analytic continuation (gi , 2(`i))0�i�n

with `0=s0 along C, which satisfies the condition

(C) { gi (w) is univalent from 2(` i) into Dz ,
u(gi (w))=w for w # 2(`i).

For ` # C let us denote the subpath of C from s0 to ` by C` , and let E be
the set of points ` in C such that (g0 , 2(s0)) admits an analytic continua-
tion satisfying (C) along C` . Since E includes s0 and is a relatively open
subset of C, if E is closed in C, then w0 # E. Thus we need to show the
closedness of E; actually we show that if C`"[`] is included in E, so is `.
Take a sequence [`n] in C`"[`] which converges to `, and construct a
family [(gn , 2(`n))] so that [(gi , 2(`i))]1�i�n is the analytic continuation
of (g0 , 2(s0)) along C`n

satisfying (C); C`"[`] may be covered by finite
numbers of 2(`i), but even in this case we can construct an infinite number
of 2(`i) as above. If an infinite number of the radii of disks 2(`n) are larger
than a positive constant, then ` is in some 2(`n) and hence in E. Therefore,
we assume that the sequence of radii of 2(`n) converges to 0. The sequence
of zn :=gn(`n) is bounded in Dz , which is obvious from the form of the
function u(z) and the boundedness of the sequence of `n=u(gn(`n)). Hence
it contains a convergent subsequence [zni

], whose limit we denote by z0 .
We prove, by contradiction, that z0 is in Dz . Assume that z0=0; then from
the definition of u(z), `ni

=u(zni
) � 0; this implies `=0, which contradicts

C` /Dw . Assume that arg zni
A ?; then, because #1�1 and a1=0, lim arg `ni

=lim arg u(zni
)�? or lim u(zni

)=0; this implies that C` intersects (&�, 0],
which contradicts C` /Dw . Similarly assume that arg zni

a &?; then C` inter-
sects (&�, 0], which contradicts C` /Dw . Therefore, z0 is in Dz . Thus u(z)
is continuous at z0 . Hence u(z0)=lim u(zni

)=lim `ni
=`. Since u$(z0){0,

by the inverse mapping theorem, there is a disk 2(`) and a holomorphic
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inverse function g` from 2(`) into Dz such that g` (`)=z0 and w=u(g` (w))
for w # 2(`). Since `n � ` and since the radii of the disks 2(`n) tend to 0,
2(`)$2(`n) for n>N. Therefore, by (C), we have g` (w)= gn(w) for n>N
and for w # 2(`n). This implies zn � z0 ; in fact, for n>N zn= gn(`n)=
g` (`n) which converges to g` (`)=z0 .

Let us join (g` , 2(`)) to [(gi , 2(`i))]1�i�N . Then this new family is an
analytic continuation of (g0 , s0) satisfying (C). Hence ` # E. Thus we have
shown that an analytic element (g0 , s0) has an analytic continuation
satisfying (C) along every path in Dw . By the monodromy theorem, this
analytic continuation is a single valued holomorphic function. We denote
it by g(w). Then g(w) is a holomorphic function from Dw into Dz such that

u(g(w))=w (w # Dw) and g(s)=u&1(s) (0<s<�).

We finally show that g(w) is a Pick function. We denote the open lower
half plane by 6& . Set 1=�n

i=1 #i . Since g(w) is continuous, there is a
neighbourhood W of s0 such that

g(W)�V :=[z: &?�1<arg z<?�1].

Here we note that

u(V & 6+)/6+ , u(V & 6&)/6& , and u((0, �))=(0, �).

In fact, to see the first inclusion, take z # V & 6+ ; since 0=a1<a i for i>1,
z+ai # V & 6+ , and hence 0<arg(>k

i=1 (z+ai)
#i )<?, which means that

u(V & 6+)/6+ ; similarly we can see the second inclusion, and the last
equality is clear. From these inclusions, it follows that

g(W & 6+)�6+ .

In fact, take an arbitrary w # W& 6+ ; then g(w) # V. Assume g(w) � 6+ ; then,
by the above argument, we have w=u(g(w)) � 6+ ; this is a contradiction.

Because u((0, �))=(0, �) and u(g(w))=w for w # Dw it follows that
g(6+) & (0, �)=<. This and the connectedness of g(6+) in Dz , together
with the inclusion <{ g(W & 6+)/6+ , show that g(6+)�6+ . Hence
g is a Pick function. K

For 0<:<1, a function u(t)=t1�: satisfies (4). Hence the above theorem
says u&1(s)=s: is operator monotone on [0, �): which is (1).

In the above proof we used the condition #1�1. To see that we cannot
weaken this condition to �i ri�1, we give a
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Counterexample. Set u(t)=t1�2(t+1). Then u$(t)= 1
2 t&1�2(3t+1) and

u"(t)= 1
4 t&3�2(3t&1). Therefore u"(t)<0 (0<t<1�3) hence (u&1)" (s)>0

(0<s< 4
3 - 3

).
Since an operator monotone function on [0, �) is concave, this implies

that u&1(s) is not operator monotone on [0, �).

Theorem 2.2. Define a function v(t) by

v(t)= `
l

j=1

(t+b j)
*j (t�&b1), b1<b2< } } } <bl , 0<*j . (5)

Then, for u(t) represented by (4), if the conditions

{a1�b1 ,
�bj<t *j��ai<t #i for every t # R

(6)

are satisfied, the function , defined on [0, �) by

,(u(t))=v(t) (&a1�t), that is, ,(s)=v(u&1(s)) (0�s)

is an operator monotone function on [0, �).

Proof. The notation of the preceding proof is retained. Set

1i=#1+ } } } +#i , 4i= :
bj<ai+1

*j , where ak+1=�.

Then the second condition of (6) is equivalent to

4i�1i (1�i�k).

We have seen that u&1(s) admits an analytic continuation g(w) which is a
Pick function. Let us define a holomorphic function v(z) on Dz by

v(z)= `
l

j=1

(z+b j)
*j

in the same way that we defined u(z) in the preceding proof. Then v(g(w))
on Dw is an analytic continuation of v(u&1(s)). We need to show that
v(g(w)) is a Pick function.

Take w such that 0<arg w<?. Since, for ai�bj<ai+1 ,

0<arg(g(w)+bj)�arg(g(w)+ai ),
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we have

0<arg v(g(w))

=:
j

*j arg(g(w)+bj)

=:
i

:
ai�bj<ai+1

*j arg(g(w)+bj)

�:
i

:
ai�bj<ai+1

*j arg(g(w)+ai)

=:
i

(4i&4i&1) arg(g(w)+ai) (40=0)

= :
k&1

i=1

4i [arg(g(w)+ai)&arg(g(w)+a i+1)]+4k arg(g(w)+ak)

� :
k&1

i=1

1i [arg(g(w)+ai)&arg(g(w)+a i+1)]+1k arg(g(w)+ak)

= :
k

i=1

(1i&1i&1) arg(g(w)+ai )

= :
k

i=1

#i arg(g(w)+ai )=arg u(g(w))=arg w<?.

This completes the proof. K

3. THE FURTHER CONSTRUCTION OF OPERATOR
MONOTONE FUNCTIONS

This section is a continuation of the preceding section. We start with a
simple lemma.

Lemma 3.1. Let fn (n=1, 2, ...) be strictly increasing continuous func-
tions on [a, �) (a # R) with fn(a)=0, fn(�)=�, and let fn(t)� fn+1(t) for
t # [a, �). If fn(t) converges pointwise to a strictly increasing continuous
function f (t), then f &1

n (s) converges uniformly to f &1(s) on every bounded
closed interval [0, b] (0<b<�). Furthermore, if a sequence [hn] of
continuous functions on [0, �) satisfies hn(t)�hn+1(t) and converges to a
continuous function h(t), then hn( f &1

n (s)) converges uniformly to h( f &1(s))
on [0, b] as well.
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Proof. Since f &1(s)� f &1
n+1(s)� f &1

n (s), it is easy to see that f &1
n (s)

converges pointwise to f &1(s). Therefore, by Dini's theorem the sequence
converges uniformly on [0, b]. By making use of Dini's theorem again,
[hn(t)] converges uniformly to h(t) on [a, f &1

1 (b)], and it is equicon-
tinuous there. Since a� f &1

n (s)� f &1
1 (b) for 0�s�b, in virtue of

hn( f &1
n (s))&h( f &1(s))

=hn( f &1
n (s))&hn( f &1(s))+hn( f &1(s))&h( f &1(s)),

we obtain the uniform convergence of hn( f &1
n (s)) on [0, b]. K

Theorem 3.2. Let u(t), v(t) be the functions defined by (4), (5). Suppose
that condition (6) is satisfied. Then, if 0�;�:, the function , on [0, �)
defined by

,(u(t) e:t)=v(t) e;t (&a1�t<�)

is operator monotone on [0, �).

Proof. We assume ;>0; the proof below is modified when ;=0. The
two functions

u~ n(t)=u(t) \t+
n
:+

n

and v~ n(t)=v(t) \t+
n
;+

n

satisfy (6) of Theorem 2.2 for sufficiently large n. Thus the function ,� n

defined on [0, �) by ,� n(u~ n(t))=v~ n(t) (t�&a1) is operator monotone. In
general, if �(t) is operator monotone on [0, �), so is c1�(c2 t) (c1 , c2>0).
The function ,n defined by

,n(un(t))=vn(t), where un(t)=u(t) \1+
:
n

t+
n

, vn(t)=v(t) \1+
;
n

t+
n

satisfies

,n(s)=\;
n+

n

,� n \\:
n+

&n

s+ ,

so that it is operator monotone on [0, �). By Lemma 3.1, ,n(s)=vn(u&1
n (s))

converges uniformly to ,(s) on every finite closed interval as n � �. Hence
the limit function , is operator monotone on [0, �). K

Using the above theorem we construct a one-parameter family of
operator monotone functions.
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Corollary 3.3. Let u(t), v(t) be the functions given by (4), (5). Suppose
that condition (6) is satisfied and that 0�;�:, 0�c�1. Then, for each
r>0 the function ,r(s) on [0, �) defined by

,r(u(t) e:t(v(t) e;t)r)=(v(t) e;t)c+r (&a1�t<�)

is operator monotone.

Proof. Let us represent u(t) v(t)r and v(t)c+r as (4) and (5), respectively.
Then it is easy to see that their exponents satisfy (6). Since (c+r) ;�:+;r,
all conditions in the theorem are satisfied. Hence operator monotonicity of ,r

follows from it. K

It is not difficult to derive the next corollary from Lemma 3.1 and
Theorem 3.2.

Corollary 3.4. Suppose that two infinite products

u~ (t) := `
�

i=1

(t+ai)
#i (ai<a i+1 , 1�#1 , 0<#i )

and

v~ (t) := `
�

j=1

(t+b j)
*j, (bj<bj+1 , 0<*j )

are both convergent on &a1�t<�. If condition (6) is satisfied and if
0�;�:, then the function , defined by

,(u~ (t) e:t)=v~ (t) e;t (&a1�t<�)

is operator monotone on [0, �). Moreover, if 0�c�1 and r>0, then the
function ,r(s) on [0, �) defined by

,r(u~ (t) e:t(v~ (t) e;t)r)=(v~ (t) e;t)c+r (&a1�t<�)

is operator monotone.

We remark that each family [,r] of operator montone functions
constructed above satisfies the following relation,

,r(h(t) f (t)r)= f (t)c+r (r>0),

where h(t) and f (t) are appropriate increasing functions.
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4. AN ESSENTIAL INEQUALITY AND AN EXTENSION OF
THE FURUTA INEQUALITY

The aim of this section is to give an essential inequality which leads us
to extensions of (2) and (3). We need some tools from the theory of
operator inequalities. We adopt the notion of a connection (or mean) that
was introduced by Kubo and Ando [10]: the connection _ corresponding
to an operator monotone function ,(t)�0 on [0, �) is defined by

A_B=A1�2,(A&1�2BA&1�2) A1�2

if A is invertible, and A_B=limt � +0(A+t) _B if A is not invertible. In
this paper we need the following property:

A�C and B�D imply A_B�C_D.

From now on, we assume that a function means a continuous function,
I, J represent intervals (maybe unbounded) in the real line, and J i the
interior of J. To simplify future proofs, we make a preliminary remark.

Remark. Suppose that sp(A)�[a, b]�J, and that f is a function on
the interval J. Then for each =>0 there is an affine function p=(t)=ct+d
such that c>0, p=(a)=a+=, p=(b)=b&= and p=(t) converges uniformly to
t on [a, b] as = � 0. We have

& f ( p=(A))& f (A)& � 0 (= � 0), and sp( p=(A))�[a+=, b&=].

Therefore, to show something about f (A) under a condition sp(A)�J we
will often assume that sp(A) is in the interior of J.

Lemma 4.1. Let ,(t)�0 be an operator monotone function on [0, �).
Let k(t) be a non-negative and strictly increasing function on an interval
I�[0, �). Suppose

,(k(t) t)=t2 (t # I ).

Then

sp(A), sp(B)�I, A�B O {,(B1�2k(A) B1�2)�B2,
A2�,(A1�2k(B) A1�2).
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Proof. Let us assume that sp(A), sp(B) are in the interior of I, so A and
B are invertible. By making use of the connection _ corresponding to ,, we
have

B&1�2,(B1�2k(A) B1�2) B&1�2=B&1_k(A)�A&1_k(A)

=A&1,(Ak(A))=A�B.

Here we used B&1�A&1 and the property of the connection mentioned
above. Thus we obtain the first inequality ,(B1�2k(A) B1�2)�B2. For general
A, B, since p=(A)�p=(B) for p=(t) as in the Remark, we can apply the result
that we have just shown to p=(A) and p=(B). By letting = � 0, we obtain the
first inequality. We can similarly obtain the second inequality. K

Lemma 4.2. Let [,r : r>0] be a one-parameter family of non-negative
functions on [0, �), and J an arbitrary interval. Let f (t), h(t) be non-negative
strictly increasing functions on J. If, for a fixed real number c : 0�c�1, the
condition

,r(h(t) f (t)r)= f (t)c+r (t # J, r>0) (7)

is satisfied, then

,c+2r(s,&1
r (s))=s2 (s= f (t)c+r).

Proof. Since h(t) f (t)r=,&1
r (s), by (7) with 2r+c in place of r,

,c+2r(s,&1
r (s))=,c+2r( f (t)c+r h(t) f (t)r)

=,c+2r(h(t) f (t)c+2r)= f (t)2c+2r=s2.

This completes the proof. K

We call the following inequality the essential inequality.

Theorem 4.3. Let [,r : r>0] be a one-parameter family of non-negative
operator monotone functions on [0, �), and J an arbitrary interval. Let
f (t), h(t) be non-negative strictly increasing functions on J. If condition (7) is
satisfied for a fixed c: 0�c�1, then

sp(A), sp(B)�J i,
f (A)� f (B)=O {,r( f (B)r�2 h(A) f (B)r�2)� f (B)c+r,

f (A)c+r�,r( f (A)r�2 h(B) f (A)r�2).
(8)

Proof. We will only prove the first inequality of (8). Since sp(A), sp(B)
are in the interior of J, f (A) and f (B) are invertible, because f (t) is strictly
increasing. We first obtain (8) in the case 0<r�1. By making use of the
connection _ corresponding to ,r , we have
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f (B)&r�2 ,r( f (B)r�2 h(A) f (B)r�2) f (B)&r�2

= f (B)&r _h(A)� f (A)&r _h(A)= f (A)&r f (A)c+r

= f (A)c� f (B)c.

Thus (8) follows. We next assume (8) holds for all r such that 0<r�n.
Take any fixed r such that n<r�n+1. Because (r&c)�2�n, we have

,(r&c)�2( f (B) (r&c)�4 h(A) f (B) (r&c)�4)� f (B) (r+c)�2.

Here we simply denote the left hand side by H and the right hand side
by K; clearly H�K. Set I :=[ f (t)(r+c)�2 : t # J]. Then I�[0, �) and
sp(K)�I. To see sp(H)�I, take a, b in J such that a�A, B�b. Since
h(a)�h(A)�h(b),

h(a) f (a)(r&c)�2� f (B) (r&c)�4 h(A) f (B) (r&c)�4�h(b) f (b) (r&c)�2.

In conjunction with (7), this shows sp(H)�I. It follows from Lemma 4.2
that

,r(s,&1
(r&c)�2(s))=s2 for s # I.

Thus we can apply Lemma 4.1 to get

,r(K1�2,&1
(r&c)�2(H) K1�2)�K 2,

which means

,r( f (B)r�2 h(A) f (B)r�2)� f (B)c+r. K

In the above proof, the strict condition sp(A), sp(B)�J i was necessary
just to say that f (A) and f (B) are invertible. Even if we replace A and B
by p=(A) and p=(B), respectively, f ( p=(A))� f ( p=(B)) does not necessarily
hold, so that we cannot weaken the condition to sp(A), sp(B)�J.

In addition to the conditions of the above theorem, let us assume that
f (t) is operator monotone. Then we get

Theorem 4.4. Let [,r : r>0] be a one-parameter family of non-negative
operator monotone functions on [0, �), and J an arbitrary interval. Let f (t),
h(t) be non-negative strictly increasing functions on J. If f (t) is operator
monotone, and if condition (7) is satisfied for a fixed c : 0�c�1, then

sp(A), sp(B)�J,
A�B=O {,r( f (B)r�2 h(A) f (B)r�2)� f (B)c+r,

f (A)c+r�,r( f (A)r�2 h(B) f (A)r�2).
(9)
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Proof. Since p=(A)�p=(B), and since sp( p=(A)), sp( p=(B))�J i, we may
assume that sp(A), sp(B)�J i. The operator monotonicity of f (t) ensures
that f (A)� f (B). Hence (9) follows from (8). K

We explain why the above theorem includes the Furuta Inequality. Let
p�1, and put

f (t)=t, h(t)=t p (0�t<�).

Define a one-parameter family of operator monotone functions [,r : r>0]
by

,r(t)=t (1+r)�( p+r) (0�t<�).

Then

,r(h(t) f (t)r)=t1+r= f (t)1+r.

Thus (7) with c=1 is satisfied. Therefore, from Theorem 4.4 it follows that

A�B�0 O (Br�2A pBr�2)(1+r)�( p+r)�B1+r.

If q(1+r)�p+r, take * such that

1
q

=*
1+r
p+r

.

Then 0<*�1, hence by the Lo� wner�Heinz inequality (1) we have

(Br�2A pBr�2)1�q�B( p+r)�q.

This is just the Furuta inequality.

Remark. In the above theorems, we assumed that condition (7) is satis-
fied for all r>0. However, it is evident from the above proof that if we
assume that (7) is satisfied for r in an interval (0, :), then (8) and (9) hold
for r # (0, :).

Equations (8) and (9) are abstract inequalities; however we can get
concrete inequalities by using one-parameter families of non-negative
operator monotone functions on [0, �) in Corollary 3.3.

Corollary 4.5. Under the conditions of Corollary 3.3, suppose A, B�&a1 .
Then

v(A) e;A�v(B) e;B O ,r((v(B) e;B)r�2 u(A) eaA(v(B) e;B)r�2)�(v(B) e;B)c+r.

342 MITSURU UCHIYAMA



Proof. Set J=[&a1 , �), h(t)=u(t) e:t and f (t)=v(t) e;t. Then the
operator monotone function ,r in Corollary 3.3 satisfies (7). Thus, if
sp(A), sp(B)�J i, we can apply (8). For general A, B, take an arbitrary
=>0. Since A is bounded and f (t) is strictly increasing, there is $>0 so
that

$� f (A+=)& f (A).

Moreover, for this $ there is =$>0 so that

0� f (B+=$)& f (B)�$.

Thus we obtain f (A+=)� f (B+=$). Since sp(A+=), sp(B+=$)�J i, we can
apply (8), then let = � 0. K

Corollary 4.6. Let u(t), v(t) be the functions given by (4), (5). Let us
assume that a1�b1 and � *j<1. For fixed :, c such that 0�:, 0�c�1,
define the function ,r(s) on [0, �) by

,r(u(t) e:tv(t)r)=v(t)c+r (r>0).

Then

A�B�&a1 O ,r(v(B)r�2 u(A) eaAv(B)r�2)�v(B)c+r.

Proof. The operator monotonicity of v(t) on [&a1 , �) is clear, and
that of ,r(s) on [0, �) follows from Corollary 3.3 with ;=0. Thus this
corollary follows from Theorem 4.4. K

5. EXTENSIONS OF THE EXPONENTIAL TYPE OPERATOR
INEQUALITY OF ANDO

In this section, we treat only an infinite interval with the right end
point �, so we denote it by J� .

Recall the inequality (3): for p�0, r�s>0

A�B O (e(r�2) Be pAe(r�2) B)s�(r+ p)�esB.

In this section we will obtain an extension. We consider (7) under the
condition c=0, and denote the function by .r instead of ,r . In addition to
the conditions of Theorem 4.3 we assume that log f (t) is operator monotone.
Then we have
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Theorem 5.1. Let f (t) and h(t) be non-negative strictly increasing func-
tions on an infinite interval J� , and let [.r : r>0] be the one-parameter
family of non-negative operator monotone functions on [0, �) satisfying

.r(h(t) f (t)r)= f (t)r (t # J� ; r>0). (10)

If log f (t) is an operator monotone function in the interior of J� , then

sp(A), sp(B)�J� ,
A�B=O {.r( f (B)r�2 h(A) f (B)r�2)� f (B)r

f (A)r�.r( f (A)r�2 h(B) f (A)r�2).
(11)

Proof. We remark that f (t)>0 on the interior of J� , so that log f (t)
is well-defined there. We may assume that sp(A), sp(B)�(J�) i. Suppose
A�B. Then, by assumption, log f (A)�log f (B). Take ' # (J�) i so that
B�', and note that for every =>0, sp(A+=)�(J�) i. We claim that there
is a>0 such that

f (A+=)a� f (B)a. (12)

Since an operator monotone function on J� is concave, for

$ :==
d
dt }&A&+=

log f (t)>0,

we have log f (t+=)�log f (t)+$ ('�t�&A&) and hence

log f (A+=)�log f (A)+$�log f (B)+$.

Now, we note that for every bounded selfadjoint operator X such that
X�' we have 0< f (')� f (X )� f (&X&), and hence

" f (X )*&I
*

&log f (X )"� 0 (* � +0).

Therefore, from the above it follows that

f (A+=)*&I
*

�
f (B)*&I

*

for sufficiently small *>0. Thus we have derived (12). Since

.ar(h(t) f (t)ar)= f (t)ar (t # J� , 0<r),

by setting .~ r=.ar , f� (t)= f (t)a we have

.~ r(h(t) f� (t)r)= f� (t)r (t # J� , 0<r).
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Therefore, condition (7) with c=0 is satisfied. Since f� (A+=)= f (A+=)a�
f (B)a= f� (B), and since sp(A+=), sp(B)�(J�) i, by Theorem 4.3 we have

.~ r(( f� (B)r�2 h(A+=) f� (B)r�2)� f� (B)r.

This implies

.ar( f (B)ar�2 h(A+=) f (B)ar�2)� f (B)ar.

Since r is arbitrary, for every r

.r( f (B)r�2 h(A+=) f (B)r�2)� f (B)r,

and hence, by letting = � 0, we get (11). K

Now we explain why this theorem is an extension of (3). For p, r>0, put
.r(s)=sr�( p+r) for s�0, f (t)=et and h(t)=e pt for t # J� :=(&�, �).
Then (10) and all the other conditions of Theorem 5.1 are satisfied. Thus
A�B implies

(e(r�2)Be pAe(r�2)B)r�(r+p)�erB.

By the Lo� wner�Heinz theorem, we get (3).
Since .r(s)=sr�( p+r) ( p, r>0) is operator monotone on [0, �) and

satisfies .r( f (t) p f (t)r)= f (t)r for every function f (t), we can obtain

Corollary 5.2. Let 0� f (t) be a strictly increasing function on an
infinite interval J� , and let sp(A), sp(B)�J� . If log f (t) is an operator
monotone function in the interior of J� , then for r>0, p>0

A�B O {( f (B)r�2 f (A) p f (B)r�2)r�( p+r)� f (B)r

f (A)r�( f (A)r�2 f (B) p f (A)r�2)r�( p+r).

By using this we can get a concrete inequality: let us recall the function
u(t) defined by (4) in Section 2; since log(u(t) e:t) is operator monotone on
the interior of J� :=[&a1 , �), we obtain

Corollary 5.3. If :, p, r>0, then

A�B�&a1

O {[(u(B) e:B)r�2 (u(A) e:A) p (u(B) e:B)r�2]r�( p+r)�(u(B) e:B)r,
(u(A) e:A)r�[(u(A) e:A)r�2 (u(B) e:B) p (u(A) e:A)r�2]r�( p+r).

By applying this inequality to u(t)=1, we get (3) again. We end this
paper with a slightly complicated inequality:
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Corollary 5.4. Let u(t), v(t) be the functions defined by (4), (5), and
let a1�b1 . For fixed :, ;�0, define .r(s) (r>0) on [0, �) by

.r(u(t) v(t)r e(:+;r) t)=v(t)r e ;rt (t�&a1).

Then, for each r>0, .r(s) is operator monotone and

A�B�&a1

O {.r((v(B) e;B)r�2 (u(A) e:A)(v(B) e;B)r�2)�(v(B) e;B)r,
(v(A) e;A)r�.r((v(A) e;A)r�2 (u(B) e:B)(v(A) e;A)r�2).
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