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INTRODUCTION 

In a celebrated theorem, A. W. Goldie determined necessary and sufficient 
conditions that a ring have a left quotient ring which is semisimple with 
minimum condition [4]. Our first main result (Theorem 2.2) gives the 
following module-theoretic extension of Goldie’s theorem. 

Let M be a left module over a semiprime ring R and suppose that 

(i) M is torsionless (i.e., M is contained in a direct product of copies of R), 
(ii) M is $nite-dimensional (i.e., contains no infinite direct sums of 

submodules), 
(iii) M is nonsingular (i.e., no element of M is annihilated by an essential 

left ideal of R). 

Then the ring E of endomorphisms of M has a semisimple left quotient 
ring (endomorphisms being written on the right). Furthermore, this quotient 
ring can be obtained as the ring of endomorphisms of the injective hull of M. 

The case where R itself has a semisimple (simple) left quotient ring, 
Q is of particular interest. (By semisimple we always mean semisimple 
with minimum condition.) Here Condition (iii) becomes redundant. Our 
result (Theorem 2.3) states that if M is any finite-dimensional torsionless 
R-module, then E = Hom,(M, M) h as a semisimple (simple) left quotient 
ring isomorphic to the ring E of Q-endomorphisms of the “quotient module” 
Q OR M. The situation is described by the diagram below: 

Q H’JmQ (a) 
Q@RM~ e 

+ 
quotient quotient 

ring 
i I 

module 
1 quotient 
I ring 

R M HomR (9) l k 
* This paper is extracted from the author’s doctoral dissertation at the University 

of Wisconsin, and it was completed during his tenure as a National Science Foundation 
Fellow. 
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If, additionally, Q is a right quotient ring of R, then I? is also a right quotient 
ring of E (Theorem 3.3). 

The special case where Q is simple and M is a uniform left ideal of R 
(hence E is a domain and I?! a division ring) formed an important part of 

Goldie’s proof of his structure theorem for R [3; p. 5961. When Q is a 
two-sided quotient ring of R, Corollary 3.4 provides a generalization of a 
theorem of Feller and Swokowski [2], who treated the case where Q is a 
division ring and M is a finitely generated torsion-free R-module. 

In Section 4 we produce a series of examples which illustrate the sensitivity 

of the hypothesis that M be contained in a direct product of copies of R 
(and also show several possible one-sided generalizations of Feller and 
Swokowski’s theorem to be false). Taking M to be a properly selected 
two-generator left R-submodule of Q (Q the left quotient division ring of a 
domain R), we construct examples where (1) E is a domain with a two-sided 

quotient division ring strictly smaller than l?, and (2) E is a domain which 
has no left or right quotient ring. 

1. PRELIMINARIES 

Throughout this paper, unless otherwise indicated, all modules will be 
left modules and all homomorphisms will be written on the right. We begin 
with some elementary definitions. 

Recall that a ring R is semiprime if it contains no nonzero nilpotent left 
ideals (equivalently, if aRa # 0 for every nonzero element a of R). R is 
said to be prime if aRb # 0 whenever a and b are nonzero elements of R. 
A prime ring is certainly semiprime. 

A module M’ is an essential extension of a submodule M in case every 
nonzero submodule of M’ intersects M nontrivially. One then says that M 
is essential in M’. 

LEMMA 1.1. Let M’ be an essential extension of a torsionless module M 
over a semiprime ring R. Then for every homomorphism f  : M’ -+ M’ and every 
m E M satisfying mf # 0, there is a homomorphism 01 : M -+ Rm and an 
element b of R such that (bm) faf is defined and nonzero, and (M)af C M. 

Proof. We may write elements of M as (rA}Ae,, for some fixed index set /1, 
with each rl E R. If  0 # mf E M’, then since M’ is an essential extension 
of M, there exists b E R with 0 # b(mf) E M; write bmf = {b,}, where each 
bA E R and, say, 6, # 0. Since R is semiprime, there exists a E R such that 
b,ab, # 0. Now define OL : M -+ Rm by {Y,,} CL = r&n. Then (bm) faf = 
{b,} af = (b,abm) f = b,a{b,} # 0 b ecause b,ab, # 0, and Maf C (Rabm) f C M. 
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PROPOSITION 1.2. Let M be a torsionless module over a semiprime ring R. 
Then 

(i) E = Hom,(M, M) is semiprime. If R is prime, so is E. 

(ii) For each nonzero submodule N of M, Hom,(M, N) # 0. 

(iii) For each essential submodule N of M, Hom,(M, N) is an essential 
left ideal of E. 

(iv) For each essential left ideal A of E, MA is an essential submodule of M. 

Proof. (ii) and the fact that E is semiprime are immediate consequences 
of the preceeding lemma. Next, suppose that R is prime and let /3 and y 
be any nonzero endomorphisms of M. Pick m, n E M with m/3 # 0, ny # 0; 
and write rnfl = {b,},,, , ny = {c~}~,, , where b, , C~ E R with, say, b, # 0, 
C~ # 0 for some 7, p E (I. Choose a E R such that b,ac, # 0 (this can be 
done because R is prime), and define cy E E by {rA} (y. = r,an. Then m(@y) = 
{b,} ay = (b,an) y = b,a{c,} # 0. Hence E is prime. 

Now suppose that N is an essential submodule of M, and let ,5 be an 
arbitrary nonzero element of E. Then M/3 n N f 0, so we can choose 
m E M such that 0 # m/3 EN. By the lemma, we can define 01 : M + Rm 
such that (m) p$? # 0. Thus 0 # ~6 E Hom,(M, N). This proves (iii). 

For (iv), let A be any essential left ideal of E and m any nonzero element 
of M. By (ii), Hom,(M, Rm) is a nonzero left ideal of E, and hence 
0 f B = A n Hom,(M, Rm). Since E is semiprime, B2 # 0, which 
implies that 0 # MB2. But MB2 C RmB, so mB # 0; i.e., there exists ,B E B 
andrERsuchthatO#m/3=rm. SinceBCAwehaveOfrmEMA, 
which proves that MA is essential in M. 

Let M be a submodule of an R-module M’. For any x EM’, set 
(M : X) = {r E R : rx E M}. It is an easy matter to prove that if M is essential 
in M’ then (M : x) is an essential left ideal of R for every x E M’. The 
singular submodule Z,(M) of M is defined to be {m E M : (0 : m) is an 
essential left ideal of RR). It can be seen that Z,(M) is indeed a submodule 
and that Z,(M) = Z,(M’) n M for any R-module M’ containing M. Thus 
if M’ is an essential extension of M, Z,(M) = 0 if and only if Z,(M) = 0. 
Recall that we have defined a module to be nonsingular if its singular 
submodule equals zero. A ring will be called nonsingular if its left regular 
representation is nonsingular. We remark that if a ring S is an essential 
extension of a ring R, then S is a nonsingular ring if and only if R is. The 
following lemma will be used frequently. 

LEMMA 1.3. In a nonsingular module, the only endomorphism whose kernel 
is an essential submodule is the zero endomorphism. 

Proof. Suppose that NIL = 0 where 01 is an endomorphism of M and 
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N is an essential submodule of M. Then for any x E M, (N : X) is an essential 
left ideal and (N : X) xa! = 0. Since M is nonsingular, xor = 0; and since 
x was arbitrary, 01 = 0. 

We conclude this section with one more lemma needed in the sequel. 
It is known that if M is a finite dimensional R-module then there exists 

an integer n such that every direct sum of submodules of M has <n nonzero 
summands [4; p. 2021. When this is the case we will let d,(M) equal the 
least such integer n; otherwise d,(M) = co. We will follow the practice of 
calling a ring finite dimensional if its left regular representation is finite 
dimensional. 

LEMMA 1 A. Suppose that R is a nonsingular ring, and S is a ring containing 
R as an essential R-submodule. Then d,(S) = d,(R). 

Proof. Intersecting any direct sum of nonzero left ideals of S term by 
term with R, we get a direct sum of nonzero left ideals of R. To complete 
the proof, it suffices to show that if I n J = 0 where I and J are left ideals 
of R, then SI n S J = 0. 

So suppose that 

i aixi = ,$ b$Yi 

where ai , bj E S, xi E I, yj E J. Set 

K = fj (R : ui) n fi (R : bj). 
i-1 j=l 

Then K is an essential left ideal of R; and for any u E K, u(Ci uixi) = 
xi (uai) xi = Cj (ubj) yj E I n J = 0. Since Z,(S) = 0, & aixi = 0. 

2. LEFT QUOTIENT RINGS 

Recall that a ring Q with identity containing a ring R is the (classical) 
left quotient ring of R if every non-zero-divisor of R is invertible in Q and 
every element of Q is of the form a-lb with a, b E R. Q is a two-sided quotient 
ring of R if, additionally, every element of Q is of the form cd-l with c, d E R. 
Goldie’s theorem states that a necessary and sufficient condition that R 
have a left quotient ring which is semisimple (simple) is that R be a finite- 
dimensional nonsingular semiprime (prime) ring (see Theorems (4.1) and 
(4.4) of [4] as well as the discussion at the top of p. 206). 

It is known that if R is a nonsingular ring, its injective hull a can be 
made uniquely into a ring in a manner which extends the module action of R 
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([a; see also [I; p. 771). Th e uniqueness of this multiplication also follows 
from the proof of the next lemma. 

LEMMA 2.1. Suppose S is a left self-injective ring which is an essential 
extension of a nonsingular ring R. Then S is the injective hull of R. 

Proof. Since S is an essential extension of R we may assume that S C I?, 
the injective hull of R. Let x denote the multiplication of S and # denote 
the multiplication of 8. We claim that s x t = s # t for all s, t E S. Set 
I= (R:s) ={r~R:rs~R),andnotethatforanyx~I,x(s x t-s#t) = 
xs x t - xs # t = (xs) t - (xs) t = 0. Since R is a nonsingular R-module 
and I is an essential left ideal of R we have that s x t = s # t. Hence R 
may be considered as an S-module; and, in fact, R (as an S-module) is an 
essential extension of S. Since S is left self-injective, S = 8. 

THEOREM 2.2. Let M be a nonsingular torsionless module over a semiprime 
ring R. 

(i) E = Homz(M, M) is semiprime and Z,(E) = 0. If R is prime, so is E. 

(ii) 8, the injective hull of E, is a left selfinjective and regular ring; and 
it can be obtained as the ring of endomorphisms of the injective hull i@ of M. 

(iii) d,(M) = d&E). 
(iv) If M is finite-dimensional, then I? ks the left quotient ring of E and is 

semisimple with minimum condition. 

(v) 8 is a division ring sf and only if d,(M) = 1, 

Proof. Let 01 be any element of E with A = (0 : a) an essential left ideal 
of E. From Proposition 1.2 we know that MA is an essential submodule of M. 
Since (MA) 01 = 0, we conclude from Lemma 1.3 that OL = 0. Thus 
Zn(E) = 0. 

Let i@ be the injective hull of M, and set n = Homz(M, M). We claim 
that every element of E extends to a unique element of fl. For, given ar E E, 
OL certainly has an extension (pi E Hom,(M, M) since M is injective. If 
o~z E Hom,(M, M) is another extension of 01, then M(or, - CX~) = 0. Then 
by Lemma 1.3, we know that 0~~ = 01~ . Henceforth we will assume E C A. 
From Lemma 1.1 we know that E is in fact an essential E-submodule of (1. 

Now n is the endomorphism ring of an injective module. For any such 
ring (1, Utumi [9; p. 191 has computed the Jacobson radical of (1 to be 
equal to {X E /1 : kernel h is an essential submodule}; and in [7] it is proved 
that if the Jacobson radical of d is zero, then A is left self-injective and 
regular. (For a simple proof of both of these facts, see [I; p. 521.) Applying 
these results to our situation, we have that /I is a left self-injective essential 
extension of E, and hence A = l? by the previous lemma. 
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Note that by Proposition 1.2, every direct sum CiE, @ Ni of nonzero sub- 
modules of M induces a corresponding direct sum Cisl @ Homa(M, NJ of 
nonzero left ideals of E. Hence d,(M) < d,(E). Now d,(E) = dE(,??) by 
Lemma 1.4, and so we will have proved the reverse inequality provided 
we can show that every direct sum of left ideals of i?! induces a direct sum 
of R-submodules of M. 

Every direct sum of t nonzero left ideals of .?? contains a direct sum of t 
nonzero principal left ideals of i?. Since &? is a regular ring, such a direct 
sum of 2 principal left ideals induces a collection of orthogonal idempotents 
e, ,..., e, . It follows that the sum C:=i i@ei is direct. This completes the 
proof of (iii). 

If M is finite-dimensional, then E is a finite-dimensional nonsingular 
semiprime ring, and hence by Goldie’s theorem has a left quotient ring Q 
which is semisimple with minimum condition. Q is then certainly a left 
self-injective essential extension of E. Thus Q = i?. 

(v) is a triviality; for d,(M) = &(E) = &(E), and &(e) = 1 if and 
only if i? is a division ring. 

Note that if R is a ring with a left quotient ring Q, then every regular 
element (i.e., non-zero-divisor) of R generates an essential left ideal. (Let 
d be regular in R and set I = Rd. Then 1 = d-ld, so QI = Q. Thus every 
nonzero element Y  of R can be written in the form (a-lb) x with a, b E R, 
XEI. Hence0 # a~ = hEIn R.) 

If R has a semisimple left quotient ring Q, then every essential left ideal I 
of R contains a regular element. (For then QI = Q, so 1 = d=,t qixi for some 
qi E Q, xi E I. Write qi = d-lri with d, yi E R. Then d = xi-, yixi E I.) 

THEOREM 2.3. Let M be a finite-dimensional torsionless module over a ring R 
which has a semisimple left quotient ring Q. Then E = HomR(M, M) has a 
semisimple left quotient ring isomorphic to Homo(Q @R M, Q @R M). 

Proof. M is nonsingular because it is a torsionless module over a 
nonsingular ring. Thus E has a semisimple left quotient ring; and it remains 
for us to prove that Q OR M is the injective hull of M and that 

Homo(Q @R M, Q @R M) = HomR@ @R M, Q @R Ml- 

It is not a difficult matter to show that for a nonsingular module M, the 
homomorphism: M -+ Q @R M, defined by m -+ 1 @ m, is a monomor- 
phism. (See Proposition 1.5 of [8], and note that, by the remarks preceeding 
this theorem, M is nonsingular if and only if it is torsion-free as defined 
in [8].) Thus we may assume that MC Q @R M, indeed, Q @R M is an 
essential extension of M. 

Choose an injective hull I@ of M such that M c Q @R MC M. Repeating 
the argument in the previous paragraph, we know that Q @R M is an essential 
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extension of I@, and hence A? = Q OR M (under the identification 
m t) 1 @ m, m E ii?). Since Q is semisimple, Q OR M is certainly an injective 
Q-module, and hence is a Q-direct summand of i@ = Q OR ii?. It follows 
thatQ@sM = M. 

To see that Homo(Q @R M, Q @R M) = HomR(Q OR M, Q OR M), we 
will prove the more general result that if N is any nonsingular Q-module, then 
Homo(N, N) = Horn&V, N). Certainly Homo(N, N) C Horn&V, N). For 
the reverse inclusion let f E HomR(N, N) and let p be any element of Q and tl 
any element of N. We have to show that qf(n) = f(qn). Write q = d-4 with 
d, Y  E R, and note that d(qf(n) -f(qn)) = of -f(m) = 0. Multiplying 
by d-l we have qf(n) -f(qn) = 0. 

3. TWO-SIDED QUOTIENT RINGS 

Our object now is to show that if, in Theorem 2.3, R has a two-sided 
quotient ring, then so has E (Theorem 3.3). 

LEMMA 3.1. Let R be a ring with a semisimple left quotintt ring Q, and 
let I be any essential left ideal of R. Then Q is a left quotient ring of the ring I. 

Proof. No regular element a of Z is a right zero divisor in R. [Suppose 
ra = 0 for some Y E R. (I : Y) is an essential left ideal and so contains a 
regular element b. Then br ~1 and (br) a = 0. Since a is regular in 1, 
br = 0, and then Y = 0.1 Hence every regular element of I is invertible in Q 
[8; Lemma 3.71. 

Now suppose 0 # q E Q. As above, (1: q) contains a regular element b of R. 
Rb is then an essential left ideal and so is I r\ Rb. Choose Y E R such that 
rb is a regular element contained in In Rb. Then (rb) q E I, so q can be 
written as a left quotient of elements of I. This proves that Q is a left quotient 
ring of I. 

It is a simple exercise to show that if R is a ring with a left quotient ring Q, 
and R has a right quotient ring, then Q is also a right quotient ring of R 
[I ; p. 1051. We will use this fact implicitly in the sequel. 

The next proposition gives us a criterion for deciding when the endomor- 
phism ring of a module has a two-sided quotient ring. 

PROPOSITION 3.2. Suppose that M is a nonsingular torsionless module over 
a semiprime ring R such that E(M) = HomR(M, M) has a semisimple left 
quotient ring e(M). If th ere exists an essential submodule N of M such that 
E(N) = HomR(N, N) has a semisimple right quotient ring e(N), then e(M) 
is also a right quotient ring of E(M), and l?(M) = 8(N). 

481/s/3-5 
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Proof. Let N be an essential submodule of M satisfying the above 
hypothesis. Set I = HomE(M, N); I is an essential left ideal of E(M) by 
Proposition 1.2. 

Consider the restriction homomorphism: HomR(M, N) + HomR(N, N). 
Since N is essential and Z,(M) = 0, this mapping is a monomorphism 
(Lemma 1.3), and so we may consider I as a right ideal of E(N). We claim 

that I is in fact an essential right ideal of E(N) because 1, being an essential 
left ideal of E(M), contains a regular element y  of E(M). y  is then invertible 
in E(M); and E(M) = E(B). [T o see this, note that M is finite-dimensional 
by Theorem 2.2(iii), and then I?(M) = E(a) by (iv) of the same theorem.] 

It follows that y  (restricted to N) must be a regular element of E(N). Hence 
YE(N) is an essential right ideal of E(N), and, a fortiori, so is I. By two 
applications of the previous lemma, E(N) is a right quotient ring of I, and 
J!?(M) is a left quotient ring of I. Therefore e(M) = E(N), and it follows 

that e(M) is also a right quotient ring of E(M). 

THEOREM 3.3. Let R be a ring with a semisimple two-sided quotient ring Q, 
and let M be any jinite-dimensional torsionless R-module. Then HomR(M, M) 
has a semisimple two-sided quotient ring. 

Proof. E = HomR(M, M) has a semisimple left quotient ring 
i? = Homo(Q OR M, Q OR M) by Theorem 2.3. It remains for us to 
show that e is also a right quotient ring of E. We claim that it suffices to 
prove that I? is a right essential extension of E. For then E would be a right 
nonsingular ring since I? is; and this together with Lemma 1.4 and Goldie’s 

theorem would imply that e is a right quotient ring of E. 
We first suppose that M is finitely generated. M is torsionless: say 

M c I-La Rta) for some index set A with each R(a) g R. Then 
Q OR MC naeA Q(a) (making an obvious identification). Now let 0 # f E ,!? 
be given. Then mf # 0 for some m E M; write mf = (qN} where each q= E Q, 
with say pa # 0. Let r denote the projection homomorphism of Q OR M 
into Q(p). Then Mfrr is a finitely generated R-submodule of Q. Hence there 
exists a E R such that (Mfv) a CR. (Write Mfr = Cdl Rpi where each 
pi E Q. Then choose a, r1 ,..., Y, E R such that pi = ria-1.). Thus qsa E R, and 
since R is semiprime we may choose b E R so that (qaa) b(q,a) f  0. Finally, 
defineor:QBRM+Qmby(x)ol =(xr)abm,x~Q@~M.ThenMrCR, 
so Mar C M, Mfa = (Mf) rabm C Rm, and (m) faf = ((mf) rabm) f = 
qsab(mf) = qaab{q,) # 0. Hence 01 E E and 0 f  fu E E, which proves that 
e is a right essential extension of E. Thus we have the theorem for finitely 
generated modules. 

Next suppose that M is any finite dimensional torsionless R-module. 
M certainly contains a finitely generated essential submodule N; for example, 
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take any longest direct sum Rm, @ *** @ Rmt . By the last paragraph, 
Horn&V, N) has a semisimple two-sided quotient ring. Hence by the 
previous proposition, so does E. 

COROLLARY 3.4. Let M be a finitely generated nonsingular module over a 
ring R which has a semisimple two-sided quotient ring. Then HomR(M, M) 
has a semisimple two-sided quotient ring. 

Proof. Note that the two-sided quotient ring Q of R has the property 
that every finitely generated module is contained in a free module (since 
it is semisimple). In Theorem 5.2 of [8] it is proved that under these conditions 
every finitely generated nonsingular R-module can be embedded in a free 
module. The corollary is now immediate. 

In Theorem 3.3, we may consider M as a right module over 

E = Hom,(M, M), 

and ask how the endomorphism ring of M over E is related to R. We 
conclude this section with a discussion of this relationship. 

Let R, Q and M satisfy the hypotheses of Theorem 3.3, where M is now 
assumed to be a faithful R-module. Recall that i? = Homo(Q @R M, Q @R M) 
is the two-sided quotient ring of E = HomR(M, M). Note that 

(1) M is a nonsingular E-module (since every essential right ideal of E 
contains a regular element), and 

(2) QORM~(QORM)OEe~Q~R(MOE8)~MOEeasR-E 
bimodules. (The verification of these natural isomorphisms can be safely 
left to the reader.) Since M is a nonsingular E-module, the computation 
performed in the proof of Theorem 2.3 shows that M &- B is the E-injective 
hull of M. This, together with (2) and the fact that 

Q = Homs(Q OR M Q @R M) = HomdQ @R M Q @R M), 

implies that R C Hom,(M, M) CQ. Thus Horn&M, M) has the same 
quotient ring as R. 

This reciprocity between R and the second centralizer of M seems to 
depend strongly on the hypothesis that Q be a two-sided quotient ring of R. 
The author has not been able to determine how much of this reciprocity 
remains valid when Q is only a left quotient ring of R. 

4. EXAMPLES AND COUNTEREXAMPLES 

In this section, among other things, we produce examples which show 
that the results of Section 2 for torsionless modules cannot be extended to 
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include all finitely generated nonsingular modules unless R has a two-sided 
quotient ring as in Corollary 3.4. 

Let D be an integral domain with identity element (D may be noncom- 
mutative), and let A be a division ring containing D together with a monomor- 
phism u : A + A such that Do C D. 

Then let Q be the “twisted” Laurent series ring whose elements are 
CL-n 6iti (6, E A), and whose multiplication is given by t8 = Pt; and let R 
be the subring of Q whose elements are d,, + CTz1 8,ti with d, ED, all other 
ai E A. The diagram below may help the reader to keep track of the defini- 
tions. 

A / Q = 1 f ‘%t’l (6 = 87) 

I 
L-n 

I 
D /R = ido + 2 Sitj (4 E D) 

i=l 

Finally, let a be an element of D. Our examples will deal with the ring of 
endomorphisms of the two-generator R-submodule M = Rt-la + Rt-l of Q, 
and the relation of this ring to the ring of endomorphisms of the Q-module 

QChM(=Q)- 

PROPOSITION 4.1. Q is the left quotient division ring for the domain R; 
and furthermore, Q is the right quotient ring of R if and only ;f Aa = A. 

In order to exhibit our examples promptly we will temporarily delay the 
proof of this and the succeeding propositions. 

Suppose that S and T are rings with S c T, and let x be an element of T. 
We say that x is not quadratic over S if and only if sg2 + slx + s,, = 0 with 
si E S implies that s, = s1 = s2 = 0. 

PROPOSITION 4.2. Suppose that there exists an element a in the center of D 
such that 

(i) a $ Au, and 

(ii) a is not quadratic over P. 

Then M = Rt-Ia + Rt-1 is a left R-submodule of Q containing R, and 
HomR(M, M) = Do (i.e., the endomorphisms of M aregiven by right multiplica- 
tions by elements of D). 

Example 4.3. Take D = A = F a field with a monomorphism a mapping 
F properly into itself, and an element a E F satisfying (i) and (ii). By the above 
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proposition we have a two-generator nonsingular R-module M such that 
HomR(M, M) = p, which certainly is not an order in 

HomdQ @R M Q @R W = 8. 

(Such situations abound; for example, take F = C(X), the rational functions 
in one variable X over the complex numbers, with 0 defined by X0 = X3 
and a = X.) 

Note however that HomR(M, M) is its own quotient ring in this case. 
We want an example of a finitely generated nonsingular module M over an 
integral domain R which has a left quotient ring such that Hom,(ik?, M) 
satisfies neither left nor right quotient conditions. It suffices to produce an 
integral domain D which has neither a left nor a right quotient ring, and 
such that D _C a division ring A with a monomorphism u : A -+ A satisfying 
Da C D, and with an element a E D satisfying the hypotheses of Proposi- 
tion 4.2. 

Let S be any ring. S[X, , X, ,..., X,] will denote the polynomial ring over 
S on n noncommuting indeterminates Xi , X, ,..., X, which commute with 
the elements of S. Note that for n > 1, S[X, , X, ,..., X,] satisfies neither 
the right nor the left common multiple property (e.g., X, and Xs do not 
have a common multiple on either side), and hence has neither a left nor 
a right quotient ring. 

If T is a ring containing S, and R is a subring of T, we say that R 
satisfies a polynomial identity over S if, for some integer n, there exists 
0 #f[X, ,..., X,] E S[X, ,..., X,,] such that f[~i ,..., r,] = 0 for all choices 
of rl ,..., Y,, E R. 

PROPOSITION 4.4. Let F be a division ring with a monomorphism r : F --+ F, 
and let F’ be any division ring containing F such that 

(i) T extends to a monomorphism 7’ of F’, and 

(ii) J2 = (xEF’ : x7’ = x} satisfies no polynomial identities wer F. 

Then D = F[X, Y] can be embedded in a division ring A together with a 
monomorphism u : A + A such that Do C D. Morewer, if there exists an 
element a in the center of F such that 

(iii) a is not quadratic over F, and 

(iv) a $ (R)T’, 

then a 1 E D satG$es the hypotheses of Proposition 4.2. 

Example 4.5. We thus have the desired example provided we can satisfy 
the hypotheses of this last proposition. Fortunately this is possible, although 
somewhat tedious. 
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For an example, define ring monomorphisms 7 and p on C(X) as follows: 

7 is the identity on C, and X7 = X3. 

p is any monomorphism of C properly into itself, and Xp = X. 

Note that TP = ~7 on C(X). Next, set F = Q(X) (Q = rationals) and 
F’ = {CT-f$ : fi E C(X)}; with the multiplication of F’ given by tf = f pt, 
f E C(X). 7 is certainly a monomorphism of F, and we can extend it to a 
monomorphism of F’ by defining (xi f$)7’ = xi f#. (T’ is multiplicative 
because 7 and TV commute.) 

Now D = {w EF’ : w7’ = OJ} 2 Qo where JJO = {xTS”p, piti : pi E C}. Let 
us suppose that Sz satisfies a polynomial identity over F = Q(X). Then so 
does GO , and it follows that Sz, satisfies a polynomial identity over Q. By a 
well-known theorem [6; p. 2261, G!, must then be finite-dimensional over its 
center. But by direct computation, the center of J2s equals {p E C : p” = p}, 
over which Q2, is patently infinite-dimensional. We thus conclude that Sz 
does not satisfy a polynomial identity over F. 

Finally, choose a = X, and note that X is not quadratic over Fr = Q(X3), 
and also X $ (F’)7’ = {C fiti : fi E C(X3)). 

Example 4.6. The author has not been able to determine whether 
Corollary 3.4 can be extended to include all finite-dimensional nonsingular 
modules. It is however a comparative triviality to give an example of such 
a module whose endomorphism ring is not an order in the endomorphism 
ring of its injective hull M. 

For example, take M = Z @Q where Z = integers and Q = rational 
numbers. Then M = Q @ Q, and 

Hom&W M) = [“, $1, 

which is easily seen not to be a right or left order in 

Hom,(M, M) = [z z]. 

The rub, of course, is that Hom,(M, M) has a two-sided quotient ring 
equal to 

QQ [ 1 0 Q’ 
Proof of Proposition 4. I. Recall that an integral domain has a left quotient 

division ring if and only if it satisfies the left common multiple property 
(i.e., for every pair of elements x and y there exist elements w and z such 
that wx = zy) [6; p. 2621. 
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First note the following facts: 

(1) Every element of R of the form 1 + 6,t + S2t2 + *es is invertible; 
in fact its inverse is 1 + CL1 (--6,t - S,P - e-e)“. 

(2) If  9) = s*tn + sn+ltn+l + *a* E R with 8, # 0, then tn+l E Ry. For, 

((S;)-1 t) ql = t*+l + (SQy s;+lt”+2 + *-* 

= (1 + (8$)-l S;+lt + *.a) tn+l E Rv, 

and from (1) we know that (1 + (8,0)-l Sn+lt + *.a) is a unit. 
The fact that R satisfies the left common multiple property is now an 

immediate consequence of (2). W e will next verify by a direct computation 
that R satisfies the right common multiple property if and only if AU = A. 

If  Au = A, then u is actually an automorphism of A. The right symmetric 

version of (2) then implies that R satisfies the right common multiple property. 
Conversely, suppose R satisfies the right common multiple property, and 

let 01 be an arbitrary nonzero element of A. There exist nonzero elements 
v  = CEa fliti and # = CL0 yiti of R such that (at) IJI = tz,b. Then equating 
coefficients, for some i > 0 we must have 01 = riU(&u)-l = (y&l)” E Aa. 

Finally, note that every element of Q can be written in the form t%p 
with i > 0 and q~ E R; e.g., 

f s,ti = t-“-l (f sf;:l+i ti), 
L--n i=l 

and also in the form t-+,4 with i > 0, y  E A, and $ invertible in R; e.g., 

f  s,ti = t-%fn (1 + (@J-1 i 60_“n+i to, 
L--n 

when &..,, # 0. The latter remark implies that Q is a division ring, and 
this together with the former remark proves that Q is indeed the left quotient 

ring of R. 

Proof of Proposition 4.2. For convenience, set 

R’=Al+Rt=(~Siti:S,~A). 
i=O 

We first show that M = t-l(D” + Pa) + R’. 
Suppose m E M; say, m = (%zo yiti) t--la + ( jfo ‘4 t-1’ 
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with ys , 8, E D, the other yi ,a, E A. Then 

m = t-‘(youa + 600) + f (yc++ui + ai+l) ti E t-l(D + Da) + R’. 
i=O 

Conversely, given 
m 

m = t-‘y + c Yrti 
Lo 

withy=cr”+paEDO+DOaandy,EA,then 

m = (a + f ya_lti) t-l + /It% E M. 
i-1 

Since M is a left R-submodule of Q containing R, each element f of 
Homs(M, M) can be effected by right multiplication by a unique element 
4, of Q, and in fact the correspondence f + (right multiplication by n,) 
is a ring monomorphism. Hence we can make the identification 

HomR(M, M) = (q E Q : Mq C Ml. 

Let q E Homs(M, M). Since 1 E R C M, q is an element of M; write 

4 = t-‘Y + 9h y E Da + Pa, cp E R’. Now t-lq E 1M, and writing out what 
this means in detail and equating coefficients we find that y = 0 and 
q=ve(DQ+DOa)+tR’. Write q=S+t8 where 8EP+D”a and 
13 E R’. Now also t-laq E M, and this together with the fact that a $ Au implies, 
in turn, that 6 = 0 and q = 6 where 8 E Do + Pa and a8 E Do + DOa. 
Thus q E (Do + Pa) n a-l(P + Da). Since q was arbitrary, 

Homs(M, M) C (P + Doa) n a-l(P + DQZ), 

and the reverse inclusion is evident. 
Finally, let ti + /Pa = a-l(v + 6%~) E (Do + DOa) IT a-l(Do + Da), 

where OL, 8, y, 6 E D. Since a E center of D, we have 

@z2 + (& - au) a - v = 0. 

But a is not quadratic over L3. Hence $ = 0, and it follows that 

Hom,(M, M) = (Do + D%) A a-l(D + Pa) = Do. Q.E.D. 

Before one can begin the proof of Proposition 4.4, it is necessary to review 
some basic facts about ultraproducts of rings. 
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A filter 9 of subsets of a set A is a family of subsets of A satisfying the 
following properties: 

(i) $3, the empty set, is not in 9. 

(ii) S, , S, E 9 implies S, n S, E 5. 

(iii) S E 9, S C T C A, implies T E 9. 

Suppose 9 is a family of subsets of a set A such that any finite intersection 
of elements of 9’ is nonempty. Then there exists a filter 9 containing 9; 
e.g., take 9 to be the family of all subsets of A which contain a finite 
intersection fit, Si , S, E 9’. It should be evident what it means for one 
filter to be contained in another, and so we may define an ultrajilter to be 
a maximal filter. By Zorn’s lemma, every filter is contained in an ultrafilter. 
One can give the following internal characterization of ultrafilters. 

PROPOSITION. A j&r S on a set A is an ultrafiltw ;f and only if for all 
TCA, either TE% or A - TEE. 

The proof of this, as well as the following remarks can be found in [5l. 
Suppose (RU : 01 E A} is a collection of rings, and consider nIoreA Rm = 

(f : f(a) E R,}. Let 9 be any filter on A, and define f = g(mod 9) if and 
only if {a : f(a) = g(a)} E $. Set & = {f : f = O(mod %)}; and note that 
I9 is a two-sided ideal in ntisa R, . 

In view of the preceeding remark we may study the ring nRl,/I, , which 
we will usually denote by nRJ9 . If 9 is an ultrafilter, nR,/S is called 
an ultraproduct of the rings Rti . 

It is known that ultraproducts preserve “elementary properties” of the 
rings R, . For our purpose, however, the following result will suffice. 

PROPOSITION. An ultraproduct of division rings is a division ring. 

Proof of Proposition 4.4. Let A = 52 x 52, and consider nAF’ with 
elements written as {b,) = {b, : CL, v E Q}. We can define an “evaluation” 
homomorphism e : D -+ n,, F’ byf [X, Y]” = {f[cL, v]}. e is a monomorphism 
because f [X, Y]” = 0 would mean that f [X, Y] is a polynomial identity for 
s2 with coefficients in F. 

Now consider 9’ = {S, : f = f [X, Y] # 0 E D} where 

S, = {(P, 4 E A :fb, 4 f 01. 

Sf, n Sf2 n '.. n Sf, = SfifP...f, E Y. Hence we may choose an ultrafilter 
9 containing 9’. Set A = nAF’/S; A is a division ring by our previous 
remarks. Let v denote the natural projection mapping from nA F’ onto A. 
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Suppose that f =f[X, Y] E D with f[X, Y]e, = 0. Then f[X, Y]@ = 

Lfb, 4 = 0 (mod 91, so A - S, = {(p, V) :f[p, V] = 0} belongs to 9. 
On the other hand, by our choice of 9 2 Y, S, E 9 whenever f  # 0. 

Hence, if f # 0, $3 = (A - S,) n S, E 9, which is a contradiction. There- 
fore we must have f[X, Y] = 0. We have thus proved that the composed 
mapping err is a monomorphism of D into the division ring d. 

Let us now turn to the monomorphism 7 of F. We may extend 7 to a 
monomorphism of D by defining XT = X, Y7 = Y. Also we can extend 7’ 
to a monomorphism of l&F’ by {b,}*’ = {b:l}. It follows that 

f[X, Y],,’ = f[X, Y],” 

for allf[X, Y] E D; for, 

f&K VT = mi% w = m-h $‘> = wp> 4 =f[X, ylTe 
(since p, v  E a). A fortiori, (De)7’ _C De. 

In order to show that T’ induces a monomorphism CJ : A + A, it suffices 
to prove that ker 7’~ = ker n. Now {b,} E ker n if and only if 

{(p, v) E A : b,, = 0} E 9, 

and since T’ is a monomorphism, {(CL, v) : b, = 0} = {(p, v) : bii = O}. 
Therefore {b,} E ker 7~ if and only if {bwy)7’ = {b:) E ker 7; i.e., 

ker 7’~ = ker r. 

Note that CT is given by ({b,pp = {bi:)n. Henceforth we will identity D 
with its isomorphic image in A. 

Finally, suppose that there exists an element a E center of F such that 
a I$ (3°F’ and a is not quadratic over FT. Then a = a 1 E (center of F) 1 = 
center of D, and a is not quadratic over Da because it is not quadratic over FT. 
Suppose that a E Au; say a = {bPty)7i0 = {bzi}V. By definition of r, this means 
that ((cc, V) : bi: = u} E 9. But a $ (F’)7’, so this would imply that 53 E 9, 
which is impossible. Thus we must have a $ Au. 
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