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Abstract

A graph is normal if there exists a cross-intersecting pair of set families one of which consists
of cliques while the other one consists of stable sets, and furthermore every vertex is obtained
as one of these intersections. It is known that perfect graphs are normal while Cs, C7, and C5
are not. We conjecture that these three graphs are the only minimally not normal graphs. We
give sufficient conditions for a graph to be normal and we characterize those normal graphs that
are triangle-free. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

We assume familiarity with basic notions of graph theory (cf., for instance, [2]).
Our graphs will be undirected and simple (no loops and no multiple edges). A simple
undirected graph G is defined in terms of a finite set V(G), its set of vertices, and
a subset E(G) of unordered couples of clements of V(G), called the set of edges.
A cligue in the graph G is a set of pairwise adjacent vertices; a stable set in G is a
set of pairwise non-adjacent vertices; a coloring of the vertices of G is a partition of
V{(G) in stable sets (colors). As usual, (G ) denotes the largest size of a clique in G.
and is called the cligue number of G; y(G) denotes the minimum number of colors
in a coloring of V(G) and is called the chromatic number of G. An odd hole is a
chordless cycle whose length is odd and at least five; a cycle with & vertices will be
denoted by . Finally, our subgraphs will always be induced.

Normal graphs form a class that can, in many ways, be considered a closure of that
of perfect graphs. Perfect graphs were introduced by Claude Berge in 1962 [1] with
a clear reference to Shannon’s information-theoretic problem of finding the so-called
zero-error capacity of a discrctc memoryless channel [7]. Shannon’s problem has a

= Corresponding author. Tel.: +39 06 771 6412; fax: +39 06 771 6461:
E-muail address: desimone@iasi.rm.cnr.it. (C. De Simone) korner(@dsi.uniromal .it. (J. Kdrner)

0166-218X/99/$ - see front matter © 1999 Published by Elsevier Science B.V. All nights reserved.
PII: S0166-218X(99)00018-9


https://core.ac.uk/display/82304813?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

162 C.D. Simone, J. Korner! Discrete Applied Mathematics 94 (1999) 161-169

purely graph-theoretic formulation, regarding the asymptotic growth of the largest clique
in certain product graphs. The co-normal product of the graphs F and G, denoted by
F x G is defined, following Berge [2], by the vertex set

V(F x G)=V(F)x V(G)
and the edge set
E(F x G)={[(a1a2),(b1b2)];[a1,b1] € E(F) and/or [a2,b5] € E(G)}.
The (logarithmic) Shannon capacity of a graph G is the always existing
.1 "
nll)rro)c ;log2 w(G").

Obviously, for every graph G, w(G)< y(G). Shannon [7] observed that equality in the
last inequality implies that, for every natural #,

o(G") = [a(G)]"

(where G" denotes the co-normal product of G by itself, » times), which makes the
otherwise difficult problem of determining the capacity of G trivial in this case.

Berge [1] calls a graph perfect if for all its induced subgraphs the chromatic number
and the clique number are the same. In this context it is natural to ask whether the
co-normal product of perfect graphs is perfect. The answer is trivially no [4], and it is
here that normal graphs come to play.

Normal graphs can be defined in terms of cross-intersecting set families. A graph G
is normal if there exist two coverings % and % of its vertex set ¥ (G) such that every
member of € is a clique in G, every member of ¥ is a stable set in G, and CNS # ()
for every C € € and S € &.

From the definition

Observation 1. The complement of a normal graph is normal.

(The reader will recall that the analogous property for perfect graphs is the subject
of the famous weak perfect graph conjecture which was proved by Lovasz [6] more
than a decade after it was stated by Claude Berge.)

Observation 2. A4 graph is normal if and only if all of its components are normal.

Komer [4] has shown the following three simple properties of normal graphs.

(P1) Every perfect graph is normal.

(P2) The co-normal product of normal graphs is normal.

(P3) An odd hole is normal iff it has at least nine vertices.

These properties are interesting for they show that normal graphs represent a non-
trivial extension of the class of perfect graphs: every perfect graph is normal but not
every graph is. Normal graphs come up in a natural way in an information-theoretic
context, cf. [5,3]. The last paper contains a detailed analysis of the connection between
normal and perfect graphs in terms of graph entropy.
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Fig. |. The graphs Cs.Cy, and C7.

Property (P3) shows that the two odd holes Cs and C7 are not normal, and so neither
is C7. These three graphs, shown in Fig. 1. will play a central role in this paper.

One of the most exciting open problems in graph theory is the so-called strong
perfect graph conjecture (SPGC) of Berge, saying that a graph G is perfect iff neither
G nor its complement contain odd holes (as induced subgraphs). The SPGC is usually
known in the following form: the only minimally imperfect graphs are precisely the odd
holes and their complements (a minimally imperfect graph is nothing but an imperfect
graph such that all of its proper induced subgraphs are perfect).

Since normal graphs are similar to perfect graphs in several ways, it is natural to ask
whether a similar “characterization” of normal graphs in terms of forbidden subgraphs
exists.

For this purpose, we introduce the concept of minimally not normal graphs:

Definition 1. A graph is called minimally not normal if it is not normal, but every
proper induced subgraph of it is normal.

We conjecture that:
Conjecture 1. A graph with no Cs, Cy. and Cq, as induced subgraph, is normal.

The validity of this conjecture would imply that the only minimally not normal
graphs are precisely Cs, C7, and C;. The aim of this paper is to discuss this conjecture.
Note that if Conjecture 1 were true, it would immediately give a sufficient condition
for a graph to be normal. However, the non-existence of Cs, C;. and C; in a graph
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Fig. 2. A normal graph.

is not necessary for the graph to be normal. For example, consider the normal graph
in Fig. 2. (To see that is normal, choose % = {{1,2},{1,5},{3,6},{4,7}} and &¥ =
{{2.5,6,7},{1,3,7},{1,4,6}} as clique and stable set coverings.) Note that such a
graph contains the graph Cs that is not normal.

Hence, an induced subgraph of a normal graph is not necessarily normal. Since this
is not the case of perfect graphs, in order to get a better analogy with them, we want
to introduce a hereditary property.

Definition 2. A graph is called strongly normal if each of its induced subgraphs is
normal.

The graph in Fig. 2 is an example of a normal graph that is not strongly normal.
Note that strongly normal graphs are not necessarily perfect as shown, e.g., by Cg. On
the other hand, every perfect graph is obviously strongly normal. In terms of strongly
normal graphs, Conjecture 1 is equivalent to the following:

Conjecture 2. A graph G is strongly normal iff neither G nor its complement contain
a Cs or a C; as an induced subgraph.

The interest of this conjecture lies in the fact that it would automatically lead to a
polynomial time algorithm for the recognition of strongly normal graphs. Furthermore,
if this conjecture were proved it would yield a new property of minimally imperfect
graphs, namely that all these graphs are strongly normal, with the only three exceptions
of Cs, C;, and C.

2. When is a graph normal?

In the previous section we remarked that if Conjecture 1 is true then every graph
not containing Cs, C; and C; as an induced subgraph is normal (strongly normal). In
this section we describe a sufficient condition for a graph to be normal, in the hope
that it might help in establishing the conjecture.
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Fig. 3. w € b(v) and r € d(r).

Consider an arbitrary graph G and let .# be a minimal (with respect to set inclusion)
subset of £{G) such that every vertex of G is an endpoint of some edge in .#. A
set # with this property is usually called a minimal edge cover of G. Notice that a
minimal edge cover is a union of vertex disjoint induced stars.

Now consider an arbitrary odd cycle O in G; remark that O may have chords. We
are interested in the distribution of the edges of .# alongside the cycle Q. We shall
say that a vertex of Q is even (with respect to %) if it is the endpoint of an even
number of edges of Q that are in #. (Note that this even number is either zero or
two.) Since the cycle Q is odd, it is easy to verify that O must have an odd number
of even vertices.

Definition 3. A minimal edge cover of a graph G is a nice cover if every odd cycle
in G has at least three even vertices.

Now we are ready to prove the main result of this section.
Theorem 1. Every graph that has a nice cover is normul.

Proof. Let G be a graph and let # be a nice cover of G. We want to show that G
is normal. (Note that Observation 2 allows us to assume that G is connected.) Now,
let v be an arbitrary vertex of G. We shall denote by A(r) the set of all vertices w for
which there exists a vertex u such that uv € # and uw € .F. and by d(v) the set of
all vertices r for which there exists a vertex ¢ such that »r € .7 and vt € (E(G) — #)
(cf. Fig. 3).

To show that G is normal, we must find a clique cover % and a stable set cover
< such that every clique in % intersects every stable set in .. For this purpose. set
% =.7. Since .# is a clique cover of V((), we only need find stable sets each of which
intersects all cliques (edges) in .# and whose union covers V(G). For this purpose,
we shall show that for an arbitrary vertex v there exists a stable set S containing
that intersects all edges of #.
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To do so, we shall apply the following rule:

if a vertex a is inserted into S, then all vertices
in b(a) U d(a) are also included in S.

(1)

At the beginning, we insert vertex v into S and we apply rule (1), until S cannot
be enlarged anymore. We are going to show that the set S so obtained is a stable set.

First note that, by construction, for every vertex # in S — {v} there exists in G a
path P =w,w,,...,w, joining v =w, to u =w, with the following two properties:

(a) the two edges waws and w,_,w, are in F,

(b) no two consecutive edges of P are either both in # or in E(G) — %, with the
only possible exception of the two edges wiw, and wyws.

We shall call such a path a v — u generating path. Let I{v,u) be the smallest length
of any such path (number of edges). Note that /(v,u) is even.

Notice that, for every v — u generating path P,

no two vertices wy, wy in S M P are adjacent (2)

for otherwise the edge w,w, along with the sub-path of P joining w; and wy would in-
duce in G an odd cycle with only one even vertex (namely w; or one of its neighbours,
with i =1 or 2), contradicting the assumption that # were a nice cover.

Hence, if S is not a stable set, then S — {v} includes a pair of adjacent vertices. Let
A denote the set of all pairs of adjacent vertices in S, and let («/,4"") be a pair in 4
such that

1, u') + 1o,y = min{ (v, 1) + (v, j): (i, /) € 4}. 3

Let P’ and P” denote a v — ' generating path of length /(v,u’) and a v — "
generating path of length /(v,u”), respectively. Let v* be the common vertex of P’
and P” closest to «' along P’ (and thus, closest to " along P” as well). Note that,
vertex v* is different from u' (for otherwise, both u’ and «” would belong to SN P,
contradicting property (2)); similarly v* is different from u".

Now, call 2 and P’ the subpaths of P’ and P” joining v* to «' and joining v*
to u”, respectively. Let ¢’ and ¢” be the edges of P and P incident to vertex v*
(cf. Fig. 4).

If both or none of ¢ and &’ are in & or if v* = v, then, by properties (a) and
(b), the cycle formed by ﬁ’, A along with the edge u'v” is odd and has exactly one
even vertex (namely, v* or one of its neighbours), contradicting again the assumption
that # were a nice cover. Hence, we can assume that precisely one of ¢ and e’ is
in #, say €', and that v* # v. Note that the path P has an odd length (because v*
is different from v). Let f’ be the edge of P’ — {P/} incident to v*; write f' = v*w.
Since properties (a) and (b) imply that every vertex of P’ (P”) which is at an even
distance (along P’ (P"")) from u’ (u”) belongs to S, it follows that both v* and w are
in S: v* is in S, since it is at even distance from u”along P”; w is in S, since it is at
even distance from ' along P’. Note that, by (2), w is different from v». But then the
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Fig. 4. The paths 7 and P

pair (w,v*) belongs to 4 and {(v.w) + I(¢,v*) < l(r,u') + I(v,u”), contradicting (3).
Hence, S is a stable set.

Clearly, if S intersects all the edges in .7, we are done. Otherwise, let .7’ be the
set of all edges in # that do not intersect S. Obviously, no endpoint of an edge in 7'
is adjacent to any vertex in S: if st € .#’ and s is adjacent to some vertex u in S, then
t € b(u) (in case su € 7 ) or t € d(u) (in case su ¢ .7 ). But then, by rule {1). vertex
[ is in S. Hence, we can arbitrarily choose any edge in .#’ and add precisely one
endpoint of it to S and apply again rule (1). Notice that in the application of rule (1).
we may include in S vertices that were already in it. Clearly, for the same reasoning
as before, the final set § will be again a stable set. Thus the theorem follows. '

Based on the proof of Theorem 1, it is easy to check whether a given minimal edge
cover # of a graph is a nice cover. Theorem 1 asserts that the existence of a nice
cover in a graph is sufficient for its normality. The following result shows that the
only minimal edge covers of a graph that can be chosen as parts of cross-intersecting
pairs are precisely the nice ones.

Theorem 2. Given a graph and a minimal edge cover .7 of its vertex set, then the
graph is normal with F chosen as the clique cover € only if 7 is a nice cover.

Proof. Let G be a normal graph and let .# be a minimal edge cover. Since G is
normal, there exist a clique cover 4 and a stable set cover .¥ such that every clique
in % intersects every stable set in .. We only need to show that if 4 = .# then .7
must be a nice cover. For this purpose, assume the contrary: .# is not a nice cover,
and so there exists in G an odd cycle O such that O has only one even vertex.

Let {uy,u2.....uz511 + denote the set of vertices of Q, and let E(Q)= {iu u2,1p13... ..
uas oy g 1, Uy 1 ¢ denote its edge set. By assumption. Q has precisely one even vertex:
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without loss of generality, we can assume that this vertex is u;. It follows that we can
have only two cases:

Case 1. # NE(Q) = {uguziy1,=1,...,k}.

Case 2: F ﬂE(Q) = {u2k+1u1,u1u2} U {u2[+1u2i+2, I= 1,...,k — 1}

First, let us examine Case 1. Let S’ denote the stable set in % that contains vertex
u;. Since S’ must intersect all edges in & N E(Q), it is easy to see that § must also
contain the vertices us,us,...,uz 1, which is impossible (because u; and wy;., are
joined by an edge). Next, let us examine Case 2. Let §” denote the stable set in &
that contains vertex u,. Since S” must intersect all edges in F N E(Q), it is easy to
see that " must also contain the vertices w4, us, . .., Uy, u;, which is again impossible
(because u; and u; are joined by an edge). Hence in both cases, we get a contradiction
with the assumption that % were not a nice cover. Thus the theorem follows. [

Clearly, not every graph has a nice cover, in particular not every normal graph
has it. In fact, every complete graph with at least three vertices is normal (because
it is perfect) and no edge cover of it is nice. Hence, the property of having a nice
cover 1s only a sufficient condition for a graph to be normal. However, Theorems
1 and 2 imply that in the case of a triangle-free graph this condition becomes also
necessary.

Corollary 1. 4 connected triangle-free graph is normal if and only if it has a nice
cover.

Finally, we mention that, in the context of triangle-free graphs, the conjecture stated
in the introduction becomes:

Conjecture 3. A4 triangle-free graph with no Cs and C; is normal.

Hence, from Corollary 1, it follows that to prove Conjecture 3, it is sufficient to
show that every triangle-free graph with no Cs and C;, admits a nice cover.
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