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1. Introduction 

In this note all groups are abelian, written additively. We refer to 
KuROSH [6] for definitions and theorems used without reference. 

~ 

A group is p.d. indecomposable, if it is not the direct sum of two proper 
subgroups. Indecomposable groups that are periodic (all elements of finite 
orde.r) are cyclic or quasi-cyclic primary groups. Since every mixed group 
(i.e. a group having both elements ~ 0 of finite and infinite .. order) is 
decomposable, the more complicated indecomposable groups can only be 
found among the torsion-free groups (all elements ~ 0 have infinite order). 
Indeed, LEVI [3], PoNTRJAGIN [7])nd KuROSH [4, 5] constructed torsion­
free groups of finite rank (the rank denotes the number of linearly inde­
pendent elements), and BAER [l] proved that the additive group of p-adic 
integers P is indecomposable and that every serving subgroup of Pis 
indecomposable as well. So we are furnished with examples of indecom­
posable groups up to continuous rank. Recently ERDOS [9] gave a simple 
example of an indecomposable group of rank 2, which is essentially the 
same as our first example in section 2. 

We present here in section 2 and 3 another simple method for con­
structing indecomposable groups up to continuous potency. Our groups are 
directly embedded in the additive group of real numbers and this "represen­
tation" is used to obtain simple proofs. Since, however, every torsion-free 
group of at most continuous potency is isomorphic to an additive group 
of real numbers, it may be observed that the possibility of this embedding 
is not significant in itself. 

It is easy to see that our construction gives 2K (that is the cardinal 
of the family of all sets of real numbers) mutually non-isomorphic inde­
composable groups. However, taking some care in the construction of 
our groups we shall even prove in section 4 the following theorem. 

Theorem I. There exists a family: of 2N additive groups of real numbers 
such that no element of the family can be mapped homomorphically (and 
non-degenerately) 1) in (or on) any other element of the family. 

1) A homomorphic map on the null-element is called degenerate. 
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We note that it is easy to determine families of potency t{ satisfying 
the propositions of our theorem. Indeed, take a family of continuously 
many subgroups of rational numbers with incomparable types. 

It is an unsolved problem whether there exist indecomposable abelian 
groups of a cardinal greater than that of the continuum (KuROSH [6] I, 
p. 218). As far as the author knows, no answer has as yet been found 
to the following question either: Does there exist for every infinite cardinal 
m a family of 2m mutually non-isomorphic torsion-free abelian groups? 
For arbitrary groups both questions (omitting the word "abelian") have 
been answered in the affirmative. 

One could say that the groups of the family in our theorem are "com­
pletely different" from each other. Two groups are more alike if they are 
equivalent (cf. [2]), that is each is isomorphic to a subgroup of the other. 
We shall see in section 5 that it is easy to prove the following corollary. 

Corollary. There exists a family of 2M additive groups of real numbers 
such that any two different elements of the family are equivalent but not 
isomorphic. 

The number of automorphisms of a periodic group tends to infinity, 
if the order of the group tends to infinity (this is also true in non-abelian 
groups; for detailed information see LEDERMANN and NEUMANN [10]). 

How is the situation if we consider abelian groups of infinite order 
(in the non-abelian case one has to take into account the inner auto­
morphisms)? If the periodic part of such a group is infinite we can always 
split off an indecomposable periodic direct summand D, whether the group 
is mixed or not. If Dis quasi-cyclic, D and therefore the group itself has 
already continuously many automorphisms. If, however, D is finite we 
can split off another direct summand, and so on. Thus in any case the 
group has an infinite number of automorphisms, if the periodic part is 
infinite 2), and the number of automorphisms tends to infinity if the order 
of the periodic part tends to infinity (in a given sequence of groups). 

Hence, there remains only the torsion-free case. The infinite cyclic 
group {a} has only two trivial automorphisms a ->- a and a ->- -a. But 
this is a group of rank one. However, it appears that this is not essential, 
since we shall prove in section 6: 

Theorem II . There exist 2M (mutually non-isomorphic) additive 
groups of real numbers of continuous ranlc such that the automorphism 
gToup of each of them is trivial. 

A similar theorem holds for the endomorphisms, where the trivial 
endomorphisms are the maps g-+ kg with a fixed arbitrary integer k. 

The example of Baer, previously mentioned, has the property that each 

2 ) BoYER [II] proved the theorem that a countable periodic group has continu­
ously many automorphisms. 
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of its serving subgroups is indecomposable. Let us call such groups 
absolutely indecomposable. This shows already that our examples are 
essentially new. Indeed, they are, with a single trivial exception-not 
absolutely indecomposable, as the reader himself may easily show. 
Therefore, they cannot be embedded isomorphically in the example of 
Baer since the property of being a serving subgroup is transitive. This 
proves 

Theorem III. There exist absolutely indecomposable abelian groups 
up to continuous rank ( Baer) and there exist indecomposable but not 
absolutely indecomposable groups for all ranks r satisfying 3 ~ r ~ ~. 

In section 7 we construct new types of absolutely indecomposable groups 
up to at most countable rank. 

It would be interesting to develop constructions for indecomposable 
groups by means of the theory of limit-groups (cf. FREUDENTHAI, [8]). 
There are, however, a number of difficulties to overcome. E.g. the author 
thinks it is possible to construct a decomposable limit-group, the members 
of which are all indecomposable. 

In section 8, at last, we construct absolutely indecomposable groups 
similar to those of section 7. However, the groups constructed here, 
have the following additional property. 

Theorem IV. There exist (absolutely indecomposable) abelian groups 
of countable rank in which the automorphisms of every serving subgroup 
are trivial. 

It may be noted that a serving subgroup of rank l of a group defined 
in section 7 has apparently non-trivial automorphisms. 

In this paper we have only given more or less general examples and 
sets of examples of indecomposable groups. Let us realize first that there 
exist indecomposable groups of a completely different structure ( cf. 
PoNTRJAGIN [7] and KuROSH [4]), and secondly that we are far from 
any coherent theory concerning the indecomposable groups in general. 
Indeed, remarks like "a torsion-free group with only two automorphisms 
is necessarily indecomposable" and "a torsion-free group in which every 
two linearly independent elements have incomparable types is absolutely 
indecomposable" are of some use, but trivial in themselves. 

2. Indecomposable groups of finite rank 
Our construction is based upon the following indecomposable group of 

rank 2, previously introduced by the author [2] 3 ). 

If T is a transcendental number, put 

3 ) We repeat the proof since the method of proof is also used implicitly in other 
sections of this paper. 
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and define G as the additive group of real numbers, generated by the 
elements 

where p, q and rare distinct prime numbers and then are variable integers. 
G is clearly a countable, torsion-free group of rank 2. To prove the 

indecomposability we can proceed e.g. in the following way. Using the 
transcendency of r we see that G only contains elements~of four different 
types, i.e. the type 0 (of the infinite cyclic group) and th(types ex, f3 and y 
of the elements a,_, b1 and a1 + b1 respectively. Moreover, we see in the 
same way that only the elements of the serving subgroup A= {a1fpn} 
generated by the elements a1jpn have type ex, while the corresponding 
statements are true for the serving subgroups 

B = { ~) and 0 = { a 1 ~b1 } • 

Suppose now that G is decomposable into a direct sum 

Then one of the direct summands must contain 0, since otherwise, as 
the reader may easily verify, both P and Q should contain elements of 
type y in contradiction with the fact that only the serving subgroup 0 
of rank l contains such elements. Therefore, say 

0 C P, so a1 + b1 E P. 

From this and the fact that also A and B must belong to either one 
of the direct summands, follows that A and B can neither belong both 
to Q, nor belong to different direct summands. This means that A, B 
and 0 and therefore G are contained in P, which shows Q=O, q.e.d. 

2.1. Following the same principle we can construct indecomposable 
groups G of arbitrary finite rank m by taking m+ l distinct prime numbers 
Pv p2, ••• , Pm, Pm+I and defining G as the group generated by 

T r2 , rm r+r2 + ... +rm 
pf pf ... . ' p;:, ' p;:, +1 

where n is again a variable integer. 

3. Indecomposable groups of infinite rank 

To every subgroup of the group of rational numbers, that is a group 
of rank l, is attached a certain type, as is well-known (cf. KuROSH [6], 
p. 207), while two such groups have the same type if and only if they 
are isomorphic. We shall only use types which have corresponding 
characteristics with argument values 0 or = (though this is not at all 
necessary). E.g. 

(l) t= (0, 0, =, 0, =, =, 0, ... ) 
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means briefly that we have a group of rank I with a "fixed" element 
given, where this element is divisible by all powers of the third, fifth, 
sixth, ... prime number (in the sequence of all prime numbers), but not 
divisible by any other prime number. Since this "fixed" element is not 
uniquely determined, the reader may observe that one can always find 
another one for which in the corresponding characteristic a finite number 
of argument values zero is replaced by arbitrary finite numbers. As usual, 
however, we shall mean, by the type of an element, the type of the serving 
subgroup (of rank 1) generated by that element. 

We shall i.a. use the following types (I). First, A will be a fixed type 

A= (oo, 0, 0, ... ). 

Types denoted by -r and -r* will be of the form 

and 
-r* = (0, 0, t3, 0, t5, ... ) 

respectively. 
Now starting with the construction of our group, let {a~'}' {b~'} for 

continuously many fl = !lv be two sets of symbols. To each a!' anf bl' we 
attach (except for the null-element) disjoint groups AI' and Bl' of rank I 
and types -rl' and -r; respectively, where 

a!' E AI', bl' E Bw 

Consider the group !lenerated byfall AI' and Bl' while the following 
continuously many defining relations are added. 

(2) a ... +b1, =a ... +b .. = ... ='a, +b .. =· .... 
r-.. 1 ..-~ ,-2 " r-v rv 

We require that the set of the types T = {-rl'} satisfies the following 
additional condition. For any pair of types of this set the first will contain 
a certain argument value 0, whereas the second has an oo in the corre­
sponding place in (I), and conversely. This can obviously be done, since 
there are continuously many distinct types -r. We require analogous 
properties for T* = {-r:}. 

Observe that all these types -rl', -r; and A are incomparable elements 
in the lattice of types. 

Now we define a (minimal)Jgroup G which contains the group just 
mentioned and in which moreover the element 

has type A (the existence of such a group G follows e.g. from the em­
bedding below). 

G is an indecomposable group of continuous rank, and we can construct 
in the same way indecomposable groups of any rank with a cardinal 
smaller than that of the continuum. 
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To prove this, we define G effectively as an additive group of real numbers 
as follows. Choose a system of algebraically independent irrational real 
numbers {a1J ofpotency of the continuum (that this can be done effectively 
has been proved by J. VON NEUMANN). Put 

b.tt=1-aw 

The set of elements {a.tt; b~'} satisfies therefore (2), but is otherwise 
linearly independent. Now we divide each of the real numbers a.tt, b.tt 
and 1 =a~'+ b.tt by powers of suitable prime numbers such that the a~', 

b.tt and 1 become of types T~", -c: and ). respectively. Consider the group G 
generated by the totality of these real numbers. To prove the indecompos­
ability of G observe that it follows from the linear independency and the 
choice of the types -cl" -c: and )., that 1 is also in G of type ). and the a~< 
and b.tt are also in G of type Tl' and -c: respectively. Further observe that 
there occur elements of numerous other types (e.g. an element a.tt. -a~",), 
but such a type is (the type of the null-element excepted) always smaller 
than or incomparable with any of the types Tl', -c:,). (in the lattice of types). 
From this follows that we can use exactly the same method of proof 
as in section 2, which shows the indecomposability of G. 

4. Proof of Theorem I 

There are N incomparable types Tw As is well-known from set theory, 
one can determine in this set T = {-c.tt} a system {S} of 2K subsets S ofT 
(each of potency N) such that for every pair of distinct S and S' each 
contains an element not belonging to the other set. Form the corresponding 
T* and {S*} (if the 2i-th coordinate in (1) is 0 or =for -c.tt, the same will 
hold for the (2i+ 1)th coordinate of a certain -c:; soT is mapped one to 
one on T*). To each corresponding pairS, S* one can determine an inde­
composable group of continuous rank as described in the preceding 
sections, S and S* replacing T and T*. Thus we have a family F of 2K 
indecomposable additive groups of real numbers, each element f E F 
corresponding to a pairS, S*. Let there be given a homomorphic map q; 
of I in f' E F, the latter corresponding to S', S'*. A homomorphic map of 
a group of rank 1 in a torsion-free group is clearly either isomorphic or 
degenerate. There is a T.tt with 

Tl' EB, Tl' tf;S'. 

There IS an element a.tt in the group I of type Tw We shall prove 

q;a.tt = 0. 

Indeed, otherwise, q;a~" would have type ~ -c.tt, which is impossible, 
since S' does not contain such types and therefore f' does not contain 
subgroups of rank 1 of such a type. Since the corresponding statements 
hold for S* and S'* we have 
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But then q;c = 0 and therefore 

q; al'v = - q; bl'v for all flv· 

Hence the type of q;al'v is at least r ~'• + r:. in f'. Such elements do not occur 
in f', the null-element excepted. So 

q; al'v = 0 for all p., 

this means q;f = 0, so q; IS degenerate, which proves the theorem. 

5. Proof of the corollary 

Starting from the family {!} = F in our theorem we construct a new 
family F*, in which each element is the direct sum of an f with R, the 
additive group of real numbers 

{f+R}=F*. 

Two groups f+R and f' +R' are equivalent since each torsion-free group 
with continuously many elements can be embedded isomorphically in R. 
However, f+R and f' +R' are not isomorphic, since an isomorphic map 
1p of f+R on f' +R' would carry the uniquely determined and (with 
respect to automorphisms) invariantly defined maximal complete sub­
group R onto R'. Hence 

1p(f+R) = "Pf+R' = /' +R', 
so 

"PI:::::::!' +R'jR'::::::: /', 

which is impossible, since f is not isomorphic to f'. 
We remark that also a simple proof of this corollary can be given 

without making use of our theorem. Indeed, form the (restricted) direct 
sum D of continuously many subgroups of the additive group of rational 
numbers with incomparable types {t} =T. There are 2N subsets S, S', ... , 
ofT such that for every pair of different sets S, S' each contains a type 
not contained in the other. To each S a subgroup G CD corresponds 
uniquely. The system of 2N groups {G+R} satisfies the conditions required. 

6. Proof of Theorem II 

The family F of section 4 satisfying theorem I, also satisfies the 
requirements of theorem II. Indeed, since the element c of a group f E F 
and the elements linearly dependent of c are the only ones in f of type A., 
a non-trivial automorphism of f must necessarily map 

c--+ ± 2nc, 

where n is some integer # 0. 
From the linear independence of the a~' and b~', relation (2) excepted, 

and the fact that a group AI' or B~' necessarily maps on itself it follows 

a!' --+ ± 2n a!', bl' --+ ± 2n bw 
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But such a map is not automorphic on A~' or B w Thus the automorphisms 
of f are trivial. 

7. Construction of countable, absolutely indecomposable groups 

We take a countable number of linearly independent real numbers 
av a2, ••• , and enumerate all those (finite) linear forms in the ai with 
integer coefficients 

n 1 ai, +n2 ai, + ... +nk a;k (i1 < i 2 < ... < ik) 

for which 

and 
n1 >0. 

Let bv b2, ••• be an enumeration of these linear forms. We define a 
minimal group of real numbers in which b;(i = 1, 2, ... ) becomes of type 
A; where A.i has argument values 0 in (1), the ith argument value excepted, 
which equals oo. Observe that this construction is possible indeed, and 
that each non-null-element of the group has a certain type A;, and any 
two elements which are linearly independent, have different, even incompa­
rable, types. This group is absolutely indecomposable. Indeed, a serving 
subgroup has the same properties concerning its types as mentioned. 
Hence a proper decomposition is impossible as the reader may easily 
verify. 

This construction method yields ~ different absolutely indecomposable 
groups of finite or countable rank. 

8. Proof of Theorem IV 

We decompose the set of prime numbers {Pk} into a countable number 
of infinite disjoint subsets Pv P2, •••• 

Type 1-li(i= I, 2, ... )is defined by means of a characteristic (1}, in which 
the k:~ argument tk will have the following value 

~ tk = I if Pk E P;, 
( tk = 0 otherwise. 

Now we consider the construction of section 7, in which the types A., 
are replaced by the 1-li· 

This group is also absolutely indecomposable and one proves easily 
that every serving subgroup has only trivial automorphisms. 
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