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Replication origins are already licensed in G1 arrested unfertilized sea urchin eggs
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Fertilization relieves the oocyte from a cell cycle arrest, inducing progression towards mitotic cycles. While
the signalling pathways involved in oocyte to embryo transition have been widely investigated, how they
specifically trigger DNA replication is still unclear. We used sea urchin eggs whose oocytes are arrested in G1
to investigate in vivo the molecular mechanisms regulating initiation of replication after fertilization.
Unexpectedly, we found that CDC6, Cdt1 and MCM3, components of the pre-replication complexes (pre-RC)
which license origins for replication, were already loaded on female chromatin before fertilization. This is the
first demonstration of a cell cycle arrest in metazoan in which chromatin is already licensed for replication. In
contrast pre-RC assemble on chromatin post-fertilization as in other organisms. These differences in the
timing of pre-RC assembly are accompanied by differences in Cdk2 requirement for DNA replication
initiation between female and male chromatin post-fertilization. Finally, we demonstrated that a
concomitant inhibition of MAP kinase and ATM/ATR pathways releases the block to DNA synthesis. Our
findings provide new insight into the mechanisms contributing to the release of G1 arrest and the control of
S-phase entry at fertilization.
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Introduction

Oocytes and eggs have evolved natural cell cycle pauses from
which they are released by an external signal, maturation-inducing
hormone or fertilization. The cell cycle stage at which the egg is
paused until it is fertilized varies among species; for example, first
meiotic prophase in the clam spisula, metaphase of first meiosis
in insects and tunicates, metaphase of secondmeiotic division (MII) in
Xenopus and almost all vertebrates, and G1 of the first mitosis in
cnidarians and in a number of echinoderms as sea urchin or certain
starfishes, (Stricker, 1999). Whether unfertilized (UF) eggs are
arrested in meiosis II or in G1, maintenance of the arrest requires a
high level of ERK Mitogen Activated Protein Kinase (MAPK) activity
(reviewed in Perry and Verlhac, 2008). The role of this MAPK activity
would be to prevent eggs from entering a program of mitotic
divisions. In Xenopus, on release from MII arrest at fertilization, the
anaphase-promoting complex/cyclosome (APC/C), previously inhib-
ited by the high MAPK activity, is activated causing cyclin B degra-
dation, output of meiosis II and ensuing first mitotic S-phase. When
fertilization occurs after completion of meiosis II in eggs of the starfish
Patiria pectinifera, ERK inactivation has been directly correlated with
DNA synthesis stimulation (Tachibana et al., 1997, 2000). In sea
urchin, in which UF eggs are arrested in G1, discrepancies remain
about the activity of this cascade at fertilization. While reports
described a rapid ERK1 activation after fertilization (Philipova et al.,
2005; Philipova and Whitaker, 1998) other authors mentioned a
decrease in ERK activity (Carroll et al., 2000; Zhang et al., 2006, 2005).
Moreover, whereas Carroll et al. have shown that UF Litechinus
variegatus eggs underwent DNA replication after MEK inhibition,
Zhang et al. (2006) demonstrated that inactivation of this pathway in
mature Paracentrotus lividus arrested eggs, by altering the internal
calcium level, generates M-phase entry and recurrent cyclin B/Cdk1
oscillations without evidence of full DNA synthesis.

DNA replication is a tightly controlled process. One critical step is
the licensing reaction, which assembles pre-replication complexes
(pre-RC) onto origins of replication. A consensus scheme has been
drawn from studies of this cell cycle step in different models, mainly
yeast, mammalian cells and cell-free extracts from Xenopus oocytes
(reviewed in Bell, 2002; Cvetic and Walter, 2005; DePamphilis et al.,
2006; Spradling, 1999) First, ORC (for origin recognition complex)
binds to the origins, recruiting CDC6 and Cdt1. Assembly of pre-RC is
then completed by loading of the hexameric MCM2-7 helicase
complex. Once the MCMs are loaded, Cdks together with a second
kinase Dbf4/Cdc7 (Ddk) promote pre-RC activation and initiation of
DNA replication. Regulation of pre-RC component assembly on
chromatin is a crucial step to limit replication to once per cell cycle,
thus assembly of pre-RC is restricted to late mitosis and G1 phase of
the cell cycle. In metazoan, Cdt1 binding to chromatin is a key target
of this control and geminin its negative regulator, prevents illegiti-
mate re-replication. Recruited on chromatin via Cdt1, geminin forms a
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complex that is unable to recruit MCM to origins (Tada et al., 2001;
Xouri et al., 2007). Geminin inactivation and partial degradation at the
metaphase–anaphase transition mark the reinitiation of the licensing
period (Li and Blow, 2004; Tada et al., 2001).

When the cell cycle is arrested for a long period of time, the
competence to replicate is usually lost. This is the case for vertebrate
oocytes arrested at meiosis I. Upon hormonal stimulation, arrested
oocytes resume meiosis, and re-establish the ability to DNA licensing
through accumulation of CDC6 (Lemaitre et al., 2004), pre-RC
assembly being repressed until fertilization through a sustained
high level of cyclin B/Cdk1 activity. In contrast, in S. pombe, the
synthesis of cdc18 (the S. pombe CDC6 ortholog) is down regulated
during meiosis to prevent DNA replication from occurring in spores.
When yeasts S. cerevisiae are arrested in G1 with the mating phero-
mone α factor prior to conjugation, pre-RC have assembled at
chromatin origins in the absence of Cdk activities (Diffley et al., 1994).

A very limited number of higher eukaryotes present such a G1
natural arrest and until now the status of the origin of replication has
not been investigated in these few animal models. The sea urchin,
representative of this unusual arrest, occupies an important phylo-
genetical position. Echinoderms are with hemichordates and inverte-
brate-chordates, the organisms closest from vertebrates in the
deuterostome subgroup (Delsuc et al., 2006). Therefore, this model is
useful to study themechanisms of regulation ofDNA replication froman
evolutionary perspective. Moreover, as natural arrests are often adapta-
tions of cell cycle checkpoint present in dividing cells, this reinforces the
interest in uncovering the underlying mechanism of this G1 pause.

Mature sea urchin eggs are thus haploid when stored in the
ovarium lumen and the external fertilization directly triggers entry
into mitotic cycles rather than meiosis resumption as in most
vertebrate eggs. A transient calcium signal (Steinhardt et al., 1977;
Whitaker, 2006) and a rise in pHi (Johnson and Epel, 1976) mark
spermentry and the short G1 phase post-fertilization (p.f.) allows time
for male pronucleus formation and migration of male and female
pronuclei, steps which are accompanied by deep remodelling of male
chromatin (Imschenetzky et al., 2003). These events culminate in
pronuclear union, fusion of decondensed chromatins and S-phase
entry, yet karyogamy is not a prerequisite for DNA replication (Sluder
et al., 1995). In fertilized eggs, Cdk1 activity remains low during the
short G1 period, only beginning to increase at the onset of DNA
replication (Geneviere-Garrigues et al., 1995; Meijer et al., 1991).
Chromatin is therefore in a permissive state for licensing during this
period. In contrast, a Cdk2 activity is present in UF eggswhich does not
cycle during cleavage cycles (Moreau et al., 1998; Sumerel et al., 2001).

We aimed to investigate how the licensing of replication origins at
fertilization is regulated in sea urchin eggs. As the first DNA replica-
tion is independent of protein synthesis, we reasoned that pre-RC
components would be proteins from maternal origin, present in
UF eggs, and would assemble on male and female chromatin during
the licensing permissive periods, where Cdk1 activity is low.
Unexpectedly, we uncovered that pre-RC are already present on
female chromatin in mature arrested eggs. We then explored which
mechanisms could prevent the firing of origins and which signalling
pathways are requested to activate DNA replication initiation.

Materials and methods

Materials

Aphidicoline, colchicine, caffeine, U0126, A23187 and roscovitine
were obtained from Sigma.

Animals and handling of gametes

The sea urchins P. lividus were collected in the Mediterranean Sea
(Banyuls-sur-mer, France) and maintained until use in running sea
water. Spawning was induced by intracoelomic injection of 0.2 M
acetylcholine. Eggs were collected in sea water, filtered through a
100 mesh nylon sieve and washed three times with filtered (0.22 µm)
sea water (FSW). Eggs were stored at 19 °C until use while spermwas
collected and kept concentrated at 4 °C. For fertilization, sperm was
diluted 105 fold in a 5% (v/v) egg suspension in FSW under slow
agitation. Only batches with at least 95% fertilized eggs were further
used. S-phase entry is observed 25 min p.f. as previously reported
(Geneviere-Garrigues et al., 1995). Ammonium activation was per-
formed as described (Mazia and Ruby, 1974).

Expression of recombinant proteins

CDC6, Cdt1 and geminin mRNAs were identified in the P. lividus EST
database (http://goblet.molgen.mpg.de/cgi-bin/webapps/paracentro-
tus.cgi). These ESTs were generated from clones of 4 organized libraries
constructed in pSPORT within the European P. lividus Genome Initiative
of the Network of excellence Marine Genomics. These libraries contain
full-length cDNAs from several stages of development (UF eggs, and
pools of cleavage and early blastula stages, mid and swimming blastula
stages and gastrula-pluteus stages) independently cloned in pSPORT.
The coding regions of the cDNAs of interest were retrieved from UF
library and fully sequenced (GENOME express).

The nucleotide sequences encoding the C-terminal domain of Cdt1
(aa 534–691) and the full-length geminin were amplified by PCR from
the corresponding constructs in pSPORT and inserted into pET21b
(Novagen). The fused histidine recombinant proteins were expressed
in E. coli (strain BL21) and purified with TALON Metal Affinity Resins
according to the manufacturer's instructions (Clontech). Purified pro-
teins were concentrated with Microcon (Millipore). To produce the
GFP-tagged Cdt1 and geminin proteins, the corresponding coding
sequences were first inserted into pEGFP-C1 vector (Clontech). Cdt1
and geminin tagged at their N-terminus were further excised and
inserted into pCal-n (Stratagene). The recombinant GFP-tagged pro-
teins fused with calmodulin-binding peptide (CBP) in N-ter were
expressed in BL21 and purified using calmodulin affinity resin
according to the manufacturer's instructions (Stratagene).

Antibody characterization

Polyclonal antibodies against the recombinant His-geminin and the
His-tagged C-terminal domain of Cdt1were raised in rabbit by standard
immunization protocol (Eurogentec). The anti-geminin antibodieswere
affinity purified by Eurogentec using the immobilized geminin recom-
binant protein. The antibodies were kept in aliquots at−80 °C.

A rabbit polyclonal anti-CDC6 was raised against a pool of the two
following peptides designed from N-ter and C-ter CDC6 sequences
respectively: H2N-PVQ TRR GRQ STI PFQ C-COOH and H2N-CEA
GLP TNT EKK GKK L-COOH (Eurogentec). The serum was purified on
AminoLinkColumn following themanufacturer's instructions (Pierce).

The selectivity of these antibodies was checked by immunoblotting
experiments using whole egg extract (Cdt1, geminin) or a purified
chromatin fraction in case of low abundant protein (CDC6) (Fig. 1).
The specificity was verified by comparing signals obtained from
immunoblots using antibodies previously incubated or not with the
corresponding recombinant protein (Cdt1 and geminin) or the syn-
thetic peptides (CDC6). Anti-MCM3 antibody raised against theXenopus
laevis proteinwas a gift fromP. Romanowski (Romanowski et al., 1996).

Immunoprecipitation, immunoblotting and pulldown assay

To prepare whole egg extract, samples of egg suspension contain-
ing 50 µl of cell volume were centrifuged (1000 ×g, 10 s) and the
pellets were homogenized by sonication in 500 µl of an ice-cold RIPA
buffer (9.1 mMNa2HPO4, 1.7 mMNaH2PO4 pH 7.4, 150 mMNaCl (PBS
1×) supplemented with 1% NP-40, 0.5% sodium deoxycholate, 0.1%
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Fig. 1. Characterization of the antibodies. (A) Specificity of the Cdt1 antibody. Proteins (10 µg) fromwhole egg extracts were resolved by SDS-PAGE (12%) and immunoblotted using
anti-Cdt1 antibody previously incubated (lane 1) or not (lane 2) with immobilized recombinant Cdt1 (1 mg). A band of 78 kDa (the predicted molecular weight of Cdt1) is
specifically recognized. (B) Specificity of anti-geminin antibody. The geminin antibody recognizes two bands (lane 2) in proteins from whole egg extracts, both being displaced by
previous incubation of antibody with the recombinant protein (lane 1). The lower band at 35 kDa is relevant for geminin regarding the mobility observed for the recombinant His-
geminin (lane 3). The upper band is not found in chromatin-bound proteins and remains invariant along the cell cycle (data not shown) while the signal corresponding to the 35 kDa
band raises (Fig. 3). We conclude that this last band corresponds to the geminin protein. (C) Specificity of CDC6 antibody. Chromatin samples were immunoblotted using anti-CDC6
antibody (lane 2) or anti-CDC6 antibody pre-incubated with 1 mg of combined peptides (lane 1). The antibody recognizes specifically a major band at 68 kDa (lane 2), the molecular
weight predicted for P. lividus CDC6. (D) The anti-Xenopus laevisMCM3 antibody was previously described (Romanowski et al., 1996), it recognizes in sea urchin whole egg extract a
major band (90 kDa) migrating with the same mobility than in Xenopus and corresponding to the molecular mass predicted for P. lividus MCM3.
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SDS, 10 µg/ml PMSF, 20 µg/ml Aprotinin, 100 mM sodium orthova-
nadate). After centrifugation (10,000 ×g, 1 min) the supernatants
were processed for immunoprecipitation, pulldown experiment, or
immunoblotting.

Immunoprecipitations were performed using 5 µg of antibodies
coated on protein A-agarose beads. After overnight incubation at 4 °C,
the beads were centrifuged and washed three times with RIPA, once
with Tris 20 mM pH 7.5 and eluted with 15 µl of Laemmli 2×.

For immunoblotting, proteins were loaded on SDS-PAGE gels and
transferred to PVDF membranes (Millipore). Membranes were satu-
rated overnight in Tris–HCl 50 mM pH 7.5, NaCl 150 mM (TBS), 0.1%
Tweencontaining5%milk and incubated2 h at room temperature in the
relevant antibodies (CDC6 1:500, Cdt1 1:200, geminin 1:1000, MCM3
1:1000). After washing three times 10 min in TBS–0.1% Tween, mem-
branes were incubated with a secondary antibody (Pierce-goat anti-
rabbit-1:8000) conjugated to peroxydase. The chemiluminescence
signal was visualized using ECL+ kit (GE Healtcare) and captured with
a camera (Vilber Lourmat). Immunoblot for cleavage stage or sperm
histones were used as loading control except for whole extracts where
tubulin was employed.

For pulldown experiments, 1 µg of CBP tagged GFP-geminin was
incubatedwith 20 µl of calmodulin affinity resin in 500 µl of 1× binding
buffer according to the manufacturer's instruction (Stratagene) for 2 h
at 4 °C. The beadswerewashed three timeswith 1×washing buffer and
added to 500 µl of egg extract. After an overnight incubation at 4 °C,
beads were washed three times with RIPA buffer and once with Tris
20 mMpH7.5. Theboundproteinswere elutedwith Laemmli buffer and
analysed by immunoblotting.

Subcellular fractionation and chromatin isolation

Chromatin was prepared as described (Imschenetzky et al., 1990).
UF eggs and embryoswere collected by centrifugation (500 ×g, 5 min)
and washed three times in 3 volumes of 1.5 M dextrose. The eggs or
zygotes were then suspended in 10 volumes of a 20 mM sodium
phosphate pH 6.0, 10 mM EDTA, 150 mM NaCl and 0.5 mM PMSF
buffer (CLB) supplemented with 0.2% Triton X-100 and homogenized
by passing several times through a 25 gauge needle. The suspension
was filtered through a 40 µm-pore nylon sieve and centrifuged 10 min
at 3000 ×g. While the supernatant was frozen in liquid nitrogen, the
chromatin pellet waswashedwith CLB and chromatin-bound proteins
were solubilized in Laemmli buffer. Chromatin-bound proteins
represent 5–7% of total proteins. Salt resistance was also tested by
washing chromatin with CLB containing NaCl 0.4 M or 0.8 M and the
remaining bound proteins were eluted in Laemmli buffer.

To obtain chromatin from purified nuclei, the nuclear fraction
was prepared from a modification of protocols previously described
(Geneviere-Garrigues et al., 1995; Hinegardner, 1962). UF eggs were
washed 4 times in 1.5 M dextrose and lysis was performed by adding 5
volumes of 2 mMMgCl2, 10 mMEGTA. After addition of one volume of



Fig. 2. Structure and expression of Cdt1, CDC6 and geminin. (A) Schematic
representation of the proteins. Pfam analysis of the P. lividus CDC6 sequence predicted
an AAA+ and a winged helix domain. The walkers A and B are represented by hatched
bars. Two NLS, identified using pSORT II are indicated in grey bars. The P. lividus Cdt1
sequence contains domains that were predicted in other species to bind respectively
geminin and MCM2-7. The PIP box is represented by a black bar. The coiled coils
domains were predicted using COILS program and represented by black hatched boxes.
The COILS program predicted a coiled coil domain in the geminin sequence. Two NLS
have been identified with pSORT II. The D-box Finder program found one destruction
box motif (black bar). The scale bar represents 100 aa. (B) CDC6, Cdt1 and geminin
proteins are expressed in sea urchin UF eggs and early embryos. Whole extracts were
prepared from UF eggs and embryos sampled 15 min and 30 min p.f. Protein samples
(10 µg) were resolved on SDS-PAGE and immunoblotted with the indicated antibody.
Tubulin content was assessed as loading control.
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solution A containing 6 mM MgCl2, 10 mM EGTA, 1 mM spermidine,
0.3 mM spermine, 1 mM PMSF supplemented with 0.1% Triton X-100
and 1 M dextrose. The suspension was filtered through a 40 µm pore-
size nylon filter and layered over a 0.4 M sucrose cushion in solution A
and centrifuged 10 min at 1000 ×g. The pellet was suspended in 0.2 M
sucrose in solution A and centrifuged again through a 0.4 M sucrose
cushion. This last step was repeated 3 times and the chromatin was
finally extracted from the isolated nuclei as described above.

Chromatin was isolated from sperm head as described (Collas and
Poccia, 1998). Proteins were extracted from sperm chromatin by
micrococcal nuclease digestion in the presence of 0.8 M NaCl.

Immunofluorescence and monitoring of DNA replication

Eggs were fertilized as described above while in the presence of
1 mM 3-amino-1,2,4-triazole (ATA) to avoid hardening of the
fertilization membrane (Showman and Foerder, 1979). At indicated
times, fertilized or UF eggs were transferred to a pronase solution
(0.2 mg/ml in FSW) in order to remove the fertilization membrane.
The reaction was stopped by transferring eggs to 1% bovine serum
albumin in FSW and subsequently washing them once in FSW. Eggs
were incubated during 2 h in 25 mM 2-(N-morpholino)-ethanesulfo-
nic acid (MES) pH 6.8, 10 mM EGTA, 1 mM MgCl2, 1% NP-40 and 25%
glycerol. Treated eggs were fixed for 1 h in a methanol-glycerol solu-
tion (75:25, v/v), washed twice in TBS–0.05% Tween and transferred
for 1 h to a blocking solution containing 5% goat serum in TBS–Tween.
Eggs were then incubated overnight at 4 °C in the first antibody,
washed twice in TBS–Tween for 1 h and finally incubated in 0.2% FITC-
conjugated anti-rabbit antibody (Sigma) during 2 h in darkness. After
washing three times in TBS-Tween, the eggs were mounted on pre-
washed glass-plates in Moewiol and observed with a fluorescence
microscope Olympus with 60× objective.

DNA replication wasmonitored by incorporation of BrdU. Eggs were
fertilized in the presence of 1 mMATAand 0.1 mg/mlBrdU.At indicated
times fertilized membranes were removed as described above and
embryos were fixed 2 h in 4 M HCl. After 30 min of post-fixation in
methanol 100%, embryos were washed 15 min in TBS–Tween and incu-
batedovernight at4 °C inundilutedanti-BrdUantibody (GEHealthcare).
Eggswerewashed twice during 1 h in TBS–Tween, incubated 2 h in FITC
or TRITC (when indicated)-conjugated anti-mouse antibody and then
washed, mounted and observed as described above.

Microinjection procedure

Injection were conducted as already described (Zhang et al., 2006)
using an Eppendorf-Femtojet microinjector.

Results

Expression of pre-RC components in SU eggs

In a previous publication (Fernandez-Guerra et al., 2006)we showed
that thewhole repertoireof genes regulatingDNAsynthesiswaspresent
in the genome of the sea urchin Strongylocentrotus purpuratus, the first
echinoderm genome to be sequenced. Furthermore, a tilling array
analysis suggested thatmost of these geneswere expressedduring early
embryogenesis (Samanta et al., 2006). A blast analysis of an extensive
EST database constructed from mRNA of P. lividus (a European sea
urchin) embryos from one-cell to late gastrulae stages confirms this
conclusion (data not shown).

With the aim to describe the stepwise assembly of the pre-RC
proteins in fertilized eggs we isolated in P. lividus two components
required for licensing, CDC6 and Cdt1 aswell as the licensing regulator
geminin. The cDNAs encoding these three proteins were retrieved
from an organized cDNA library constructed from UF eggs, confirming
the expression of those genes among maternal mRNAs.
Analysis of sequences demonstrated conservation of most of the
protein motifs present in the vertebrate proteins (Fig. 2A). CDC6,
encodes a protein of 592 amino acids (aa) which displays an AAA+
domain (ATPase associatedwith cellular activities), also identified as a
clamp loader domain (Neuwald et al., 1999). This AAA+ domain is
limited by the highly conserved walker A and B motifs (Walker et al.,
1982) , required for the loading ofMcm2–7 onto chromatin (Cook et al.,
2002). Following this segment, a winged helix domain known to be a
DNA localisation factor (Gajiwala and Burley, 2000) was predicted in
the C-terminal part. The AAA+ and winged helix domains are present
in all CDC6 orthologs (Liu et al., 2000). Two Nuclear Localisation Signal
(NLS) were also predicted in the P. lividus CDC6 sequence. Cdt1
encodes a protein of 691 aa. The N-terminal sequence contains a
conserved motif of interaction with the proliferating cell nuclear
antigen (PCNA), a PIP box (Maga and Hubscher, 2003), which was
shown inXenopus to be involved in PCNA-dependent Cdt1 degradation
(Arias and Walter, 2006). Two coiled coils domains, required for
protein–protein interaction, were predicted (aa 151–190 and 507–
589). The first coiled coil domain, conserved in Xenopus, human, and
mouse is included in a region of Cdt1 involved in geminin binding,
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while the second domain is part of theminimumdomain necessary for
MCM binding in Xenopus (Ferenbach et al., 2005). P. lividus geminin
sequence encodes a 255 amino acids protein containing a conserved
coiled coil domain known to be involved in geminin dimerisation
in other metazoan. A conserved D-box, a target motif of the APC
(McGarry and Kirschner, 1998) and two putative NLS were also
identified in the geminin N-terminus.

To monitor expression of these proteins, we raised polyclonal anti-
bodies (see Materials and methods) and demonstrated the presence of
CDC6, Cdt1 and also geminin in sea urchin UF eggs using immunoblot
from whole extracts (Fig. 2B). These results confirm that pre-RC
Fig. 3. Pre-RC components are tightly associated to female chromatin in unfertilized sea urch
from UF eggs and early embryos and chromatin-bound proteins were obtained as described
SDS-PAGE and immunoblotted with the indicated antibodies. Immunolabeling with antibodi
UF sea urchin eggs and chromatin prepared from these nuclei was analysed by immunoblot
Immunostaining was performed with anti-Cdt1 antibodies previously incubated (d, f) or no
eggs pronuclei. The GFP-tagged recombinant protein wasmicroinjected in UF eggs and imme
Scale bar: 30 µm. (E) The tight association of pre-RC components to chromatin was tested
chromatin fraction. NeChF=NaCl eluted chromatin fraction).
components critical for DNA licensing are proteins of maternal origin.
While CDC6 and Cdt1 concentrationswere constant until S-phase entry,
the amount of geminin progressively increased suggesting that the
geminin regulator is actively synthesized post-fertilization.

Pre-RC components are already loaded on female chromatin in
unfertilized eggs

In order to survey the assembly of pre-RC onto replication origins,
we first compared the association of CDC6 and Cdt1 to chromatin in
UF eggs, G1 (15 min p.f.) and S-phase (30 min p.f.) embryos (Fig. 3A).
in eggs. (A) Detection of the pre-RC components on chromatin. Chromatin was isolated
in Materials and methods. Chromatin-bound and soluble proteins were resolved with
es to cleavage stage histones was used as loading control. (B) Nuclei were isolated from
using anti-Cdt1 antibody. (C) Immunostaining shows the presence of Cdt1 in UF eggs.
t (a, c) with recombinant Cdt1 C-terminal domain. (D) Accumulation of Cdt1-GFP in UF
diately observed undermicroscopewith phase contrast (left) or epifluorescence (right).
through resistance to salt wash (see Materials and methods). (NwChF=NaCl washed
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As expected, both proteins were found in the chromatin fraction
prepared from embryos at the onset of S-phase. However, more
surprisingly, we found that the two pre-RC components were already
present in female chromatin fraction before fertilization. While CDC6
is mainly found in chromatin-bound proteins, Cdt1 is also found
abundant in the soluble fraction. To exclude a putative association of
Cdt1 from the soluble pool to chromatin during purification, we
prepared female chromatin from previously isolated oocyte nuclei.
Under these conditions Cdt1 still co-purified with chromatin (Fig. 3B).
Moreover, immunofluorescence analysis of UF eggs shows that Cdt1 is
abundant in the cytoplasm but localizes as well on the maternal
chromatin (Fig. 3C). In addition, recombinant GFP-Cdt1 microinjected
in arrested eggs rapidly accumulates in female pronuclei, spreading in
that case in the entire nucleoplasm (Fig. 3D).

To confirm the tight loading of pre-RC components on female
chromatin, we tested the resistance of this binding to salt wash
(Fig. 3E). CDC6 and Cdt1 were retained in the chromatin pellet after a
NaCl 0.8 Mwash, demonstrating their strong association to chromatin
in UF eggs. Accordingly, washing chromatin with another chaotropic
salt, KCl 150 mM, neither removed CDC6 nor Cdt1 (data not shown).

Data obtained in Xenopus show that licensing of male chromatin
only occurs post-fertilization (Blow and Laskey, 1986; Lohka and
Masui, 1983). We thus examine the status of male chromatin before
Fig. 4. The pre-RC components are assembled on male chromatin after fertilization. (A) Abs
Materials and methods and 20 µg of proteins was analysed by immunoblot (lanes 2 and
Immunoblot using anti-spermatic histones (lane 2) was used to confirm the efficiency of pro
used as loading control. (B) CDC6 and Cdt1 colocalize with male and female chromatin po
described in Materials and methods with anti-CDC6 (a) or anti-Cdt1 (d) antibodies and a sec
images were displayed (c, f). Scale bar: 30 µm.
fertilization in sea urchin. Neither CDC6 nor Cdt1 could be observed by
western blot analysis in sperm nuclei (Fig. 4A). In contrast, after egg
fertilization, an immunofluorescence analysis showed that Cdt1 is
rapidly detected in male pronuclei during their migration toward the
centre of the egg (Fig. 4B and S1).

These data suggested that while fertilization triggers stepwise
assembly of pre-RC onmale chromatin, the licensing process of female
chromatin already began before fertilization.

In metazoan, geminin through interaction with Cdt1, has been
shown to inhibit the loading of MCM2–7 to chromatin thereby
preventing completion of licensing, (Tada et al., 2001; Wohlschlegel
et al., 2000). More recently, it was reported that geminin is able to
bind to Cdt1 on chromatin (Maiorano et al., 2004; Xouri et al., 2007).
To investigate whether geminin could preclude MCM2–7 loading on
chromatin in UF eggs or whether pre-RC are already fully assembled,
we tested by immunoblot the association of geminin and MCM3 on
female chromatin. Both geminin andMCM3were bound to chromatin
in G1 arrested eggs (Figs. 5A, B). Moreover, MCM3 association to
female chromatin is resistant to high salt wash (NaCl 0.8 M) while
geminin is already displaced by a medium (NaCl 0.4 M) salt wash
(Fig. 5C). The tight association of MCM3 to chromatin supports the
view that pre-RC assembly is already completed on female chromatin
in UF eggs.
ence of pre-RC proteins in sperm nuclei. Sperm chromatin was isolated as described in
4). Proteins extracted from egg chromatin were loaded as control (lanes 1 and 3).

tein extraction from sperm nuclei and a non specific band stained with amido black was
st-fertilization. Embryos were fixed 10 min after insemination and immunostained as
ondary antibody linked to FITC. The DNA was visualized with DAPI (b, e) and the merge



Fig. 5. MCM3 and geminin are present on unfertilized sea urchin egg chromatin. (A) Detection of MCM3 and geminin on female chromatin. The chromatin-bound and soluble
proteins were prepared as described in Materials and methods and 10 µg of proteins was analysed as in Fig. 3. Immunoblots were detected using the indicated antibodies.
Immunolabeling with antibodies to cleavage stage histones was used as loading control. (B) Chromatin was purified from nuclei isolated from UF sea urchin eggs and analysed by
immunoblot. (C)MCM3 ismore tightly associated to chromatin than geminin. The pellet of chromatin isolated fromUF eggs was treated with salt buffer as described inMaterials and
methods and Fig. 3 and immunoblotted with anti-MCM3 or anti-geminin antibodies. 20 µg of proteins was loaded in lane 1 and the corresponding amount of washed or eluted
chromatin fraction in lanes 2 to 5.
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Geminin is present on chromatin in vivo during licensing

The simultaneous detection of Cdt1 and geminin on the female
licensed chromatin of sea urchin eggs suggests that the loading factor
responsible for binding of MCM2–7 helicase to chromatin in vivo is the
complex Cdt1 associated to geminin, as previously indicated from in
vitro experiments in Xenopus extracts (Lutzmann et al., 2006). Based
on this it was proposed that Cdt1–geminin complexes only become
inactivated upon origin firing by recruiting additional geminin
monomers. In agreement, the geminin concentration on female
chromatin in UF eggs and embryos just after fertilization is low and
further recruitment on zygotic chromatin only begins at S-phase onset
(Fig. 5A). We also observed by immunofluorescent experiments that
geminin is translocated to the male pronucleus early after sperm
penetration as already illustrated for Cdt1 (Fig. 6A). This strongly
suggests that licensing of male chromatin also involves a Cdt1–
geminin complex.

To investigate the effect of increased geminin concentration on the
firing of already licensed female origin, we injected recombinant GFP-
geminin in UF eggs andmonitored BrdU incorporation after activating
eggs by an ammonium treatment. Ammonia which induces increase
in intracellular pHi has been shown to activate UF eggs and to trigger
DNA replication (Dube and Epel, 1986; Epel, 1967; Mazia and Ruby,
1974). A similar incorporation of BrdU was observed in control and
activated eggs (Fig. 6B), implying that the increased concentration of
geminin does not impede maternal DNA replication. We verified that
the GFP-geminin microinjected in the cytoplasm penetrates the
nucleus after ammonia treatment (Fig. 6B-e). To further examine the
effect of additional geminin during the male licensing period, we
measured BrdU incorporation in fertilized eggsmicroinjectedwith the
recombinant protein before fertilization. As evidenced in (Fig. 6C),
DNA replication is not affected by an increased concentration of
geminin. The capacity of GFP-geminin to interact with endogenous
Cdt1 was confirmed by geminin pulldown and co-immunoprecipita-
tion assay with Cdt1 antibodies (Fig. 7). Moreover, we verify that the
recombinant GFP-geminin was able to inhibit DNA replication using
Xenopus extracts (Supplementary data S2).
The above findings suggest that in vivo in sea urchin eggs, Cdt1–
geminin complexes serve as positive molecular switch to trigger pre-
RC assembly on female andmale chromatin, as already proposed from
data obtained in vitro from Xenopus extracts (Lutzmann et al., 2006).
In addition, the inability of additional recombinant geminin brought
during licensing period to impede DNA replication in vivo suggests
that active Cdt1–geminin complexes become inactivated by binding
additional geminin only upon origin firing.

A time differential Cdk activity requirement for pre-RC to pre-IC
conversion in male and female chromatin

Upon entry into S-phase, DNA replication is initiated by the
conversion of pre-RCs into pre-initiation complex (pre-IC) by further
addition of proteins, including CDC45 and GINS, necessary for
activation of replication forks and for recruitment of the DNA-
polymerase (Labib and Gambus, 2007). This transformation requires
the activity of two families of protein kinases, the Cdks and the Cdc7/
Dbf4 kinases which cooperate to recruit Cdc45 to origins of DNA
replication (Jares and Blow, 2000; Takisawa et al., 2000;Walter, 2000;
Zou and Stillman, 2000). In order to investigate the timing of pre-RC to
pre-IC transition on female and male chromatin of sea urchin eggs we
first examined the Cdk-dependence of replication initiation. In sea
urchin Cdk2 activity is already present in the G1 arrested eggs and is
kept on after fertilization. In contrast, the low residual cycline B/Cdk1
kinase activity present in UF eggs still decreases immediately p.f.
(Supplementary data S3 and Zhang et al., 2006). While cyclin E-Cdk2
activity is required for male pronuclear maturation after sperm
penetration, we and others have shown that inhibition of Cdk
activities from a few minutes p.f. to S-phase does not prevent BrdU
incorporation into zygotic nucleus (Moreau et al., 1998; Schnacken-
berg et al., 2007). These results lead to the conclusion that replication
origins can fire whereas Cdk activity has been inhibited from a few
minutes p.f. onwards. Since pre-RC are already assembled on female
chromatin while they are not formed on male chromatin this
prompted us to re-investigate if the Cdk requirement for the firing
of origin could differ between male and female chromatin. We thus
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examined the effect of roscovitine, a selective inhibitor of Cdks
(Meijer et al., 1997), on DNA replication in fertilized eggs in which
fusion of pronuclei was prevented by addition of colchicine. It has
been previously demonstrated that the absence of syngamy does
not affect DNA replication (Zimmerman and Zimmerman, 1967).
Roscovitine (20 µM) was added to egg culture at different times from



Fig. 7. Geminin-GFP is able to interact with endogenous Cdt1. GFP-geminin tagged with CBP was added to whole extracts of UF eggs. The mixture was then pulled down with
calmodulin beads (lanes 2 and 5) or immunoprecipitated with the anti-Cdt1 antibody (lanes 3 and 6) as described in Materials and methods. Samples were resolved by SDS-PAGE
and immunoblotted using anti-Cdt1 and anti-GFP antibodies after striping. Proteins from whole extracts (lane 1) or purified GFP-geminin (line 4) were loaded as control.

565A. Aze et al. / Developmental Biology 340 (2010) 557–570
20 min before fertilization (b.f.) to 25 min p.f. and cultures were
supplemented with BrdU and colchicine at fertilization. Control
experiment without colchicine was run in parallel. At the concentra-
tion used, roscovitine is known to inhibit Cdk2 activity in vitro
(Schnackenberg et al., 2007) and in the present experiment we
verified it prevents M-phase entry in fertilized eggs (data not shown).
This treatment of eggs with roscovitine before fertilization completely
blocked paternal chromatin decondensation, either in the presence or
absence of colchicine (Fig. 8B and Supplementary data S4), reinforcing
the previous observation done when roscovitine alone was added to
fertilized eggs 1.5 min p.f. (Schnackenberg et al., 2007). In this
condition DNA replication of male chromatin is suppressed (Fig. 8B).
However, we also observed a simultaneous inhibition of maternal
chromatin replication. In contrast, when roscovitine was applied from
5 min p.f. onward, significant BrdU staining was observed in non-
fused male and female pronuclei even if paternal chromatin is not
fully decondensed. In eggs treated with colchicine alone, maturing
male pronuclei had undergone a morphological transformation and
are observed as a sphere by 10 min p.f. From that time, inhibition of
Cdk activity ceases to decrease BrdU incorporation in paternal
chromatin. In contrast, BrdU staining in female pronuclei remained
affected, a level of BrdU incorporation identical to control being only
recovered in samples treated with roscovitine 25 min p.f.

These results confirm that Cdk2 activity is essential for male
chromatin maturation. However, as soon as male chromatin is fully
decondensed, replication does not necessitate Cdk activity anymore
suggesting that the Cdk-dependent phosphorylations required for
activation of male DNA replication are fulfilled early p.f., during DNA
decondensation and well before BrdU incorporation can be observed
in chromatin. In addition, replication of female chromatin is only
prevented when the Cdk activities are inhibited in UF eggs and
maintained hampered after fertilization. From fertilization onward
inhibition of Cdk activities does not preclude BrdU incorporation in
maternal chromatin however it reduces its efficiency.

Simultaneous inhibition of MAP kinases and checkpoint kinases triggers
initiation of DNA replication in unfertilized eggs

The above data prompted us to determine which mechanism
inhibits the firing of the licensed origins in sea urchin UF eggs. As
mentioned in introduction, cell cycle arrest after meiotic maturation is
Fig. 6. Geminin is present on chromatin during licensing. (A) Geminin is recruited to ma
immunostaining as described in Materials and methods, using anti-geminin antibodies previ
were coupled to FITC. The DNA was visualized with DAPI (b, e). Merge pictures are also rep
eggs didn't impede DNA replication. UF eggs were microinjected either with buffer as contr
treatment in FSW or fertilized, in the presence of BrdU (0.1 mg/ml) and fixed 50 min later. R
antibodies as described in Materials and methods (a, d, g, j), and GFP-geminin was visualize
Scale bar: 30 µm.
associated with a high level of MAP kinase activity which is relieved at
fertilization and in oocytes of the starfish P. pectinifera, ERK inactiva-
tion directly induces DNA synthesis (Tachibana et al., 1997, 2000). In
contrast, in the sea urchin P. lividus, a treatment of G1-arrested eggs
with U0126, a potent inhibitor of MEK (Favata et al., 1998), while
inducing different mitotic-like events (microtubule polymerization,
nuclear envelope breakdown, oscillations in the phosphorylation
of Cdk1 on tyrosine), did not produce full DNA replication (Zhang
et al., 2006). Indeed, U0126 treatment of UF eggs only generated a
slight incorporation of BrdU into DNA, not sensitive to aphidicoline.
Alteration of an additional signalling pathway would thus be
necessary to trigger complete S-phase from sea urchin G1 arrested
eggs. Recent experiments in Xenopus cell-free extracts and in
mammalian cells have demonstrated that the DNA damage check-
point kinases ATM/ATR and Chk1 regulate replication origin firing in
normal S-phase (Sorensen et al., 2003; Zhao et al., 2002). We thus
hypothesized that such a mechanism could be involved in arresting
eggs in G1 with pre-RC assembled on chromatin. To address this
question, we simultaneously treated UF eggs with U0126 (1 µM) and
caffeine (10 mM), an inhibitor of the ATM/ATR checkpoint kinases
(Blasina et al., 1999; Hall-Jackson et al., 1999), and compared the level
of BrdU incorporation to the one obtained in eggs activated with
ammonium or calcium ionophore (A23187). As shown in Fig. 9(e, f),
low levels of BrdU incorporation are observed in the presence of
U0126 or caffeine alone. However, simultaneous treatment with both
drugs (Fig. 9g) triggered a BrdU incorporation similar to the one
observed in ammonium or A23187 treated eggs (Fig. 9b and c). Even
though caffeine is also known to raise intracellular level of calcium in
certain cells, elevation of the fertilization envelope was never
observed in caffeine- or U0126 plus caffeine-treated sea urchin eggs
(compare Fig. 9d and h). Moreover, Patel et al. reported that caffeine
addition which rescued aphidicolin-arrested Lytechinus pictus sea
urchin embryos did not induce intracellular calcium change (Patel
et al., 1997). Finally, caffeine treatment only was unable to promote
DNA replication as did calcium ionophore (Fig. 9f and c). These data
suggest that replication of female DNA is repressed simultaneously by
MAP kinase and checkpoint kinase pathways. On the other hand, as
ammonia treatment triggers DNA synthesis in UF eggs without
altering Phospho-MAPK level (Zhang et al., 2006), we can hypothesize
that ammonia directly act on a downstream target in the MAPK
signalling pathway to trigger DNA replication.
le pronucleus soon after fertilization. Embryos were fixed 10 min p.f. and treated for
ously incubated (d–f) or not (a–c) with immobilized His-geminin. Secondary antibodies
resented (c, f). Scale bar: 30 µm. (B) Increasing geminin concentration in UF sea urchin
ol (a–c, g–i) or with GFP-geminin (d–e, j–l). Eggs were either activated by ammonium
eplication was monitored through BrdU incorporation detected with TRITC-conjugated
d by epifluorescence (b, e, h, k). Superposition of the two signals is displayed (c, f, i, l).



Fig. 8. Inhibition of Cdk activity at the time of fertilization alters DNA replication. DNA replication was monitored by BrdU incorporation as described in Materials and methods.
(A) Colchicine did not prevent DNA replication. Eggs were fertilized in the presence of BrdU and indicated drugs (colchicine 0.5 µg/ml, aphidicolin 20 µg/ml) and were fixed 50 min
p.f. It was verified that in the presence of aphidicolin BrdU is not incorporated (c). (B) A differential BrdU incorporation is observed according to the moment when roscovitine is
supplied. Roscovitine (20 µM) was added to eggs cultured in the presence of BrdU and colchicine at different times from 20 min before fertilization to 25′ after fertilization as
indicated.
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Discussion

Our present data show that sea urchin oocytes arrested in G1 have
already assembled pre-RC on replication origins. To our knowledge,
this is the first demonstration of a cell cycle arrest in metazoan in
which chromatin is already licensed for replication. As natural cell
cycle arrests are often reminiscent of checkpoint occurring in dividing
cells, this suggests that a mechanism should control the completion of
pre-RC assembly in cells. Our data further show that signalling path-
ways involving both MAP kinases and checkpoint kinases participate
in preventing activation of DNA replication in G1-arrested sea urchin
eggs.

Initiation of embryonic mitotic cell cycles after fertilization is a key
event for the harmonious development of an embryo and the first
DNA replication a critical step for accurate duplication of parental
genome. In proliferating somatic cells, DNA origins can be licensed
fromM-phase output to the beginning of S-phase when Cdk activities
are low. When embryos are fertilized in metaphase of meiosis II, as in
Xenopus, progression towards S-phase follows the release from
meiosis arrest and licensing of origins occurred on chromatin when
Cdk activities have decreased. Until now, it remained unclear how and
when takes place the licensing when fertilization occurs in G1-
arrested eggs as in several echinoderms and cnidarian. Experiments
were sought in sea urchin to investigate if licensing of female and
male chromatin occurs concomitantly post-fertilization or if female
chromatin is already licensed before fertilization. We first identified
mRNAs of the pre-RC components CDC6, Cdt1 and MCM3 as well as
the regulator of their assembly, geminin, and confirmed that the
different proteins are expressed in UF eggs and early embryos. While
CDC6, Cdt1 and MCM3 associate to male chromatin post-fertilization
they were found already loaded on female chromatin before fertili-
zation. Thus, male chromatin is licensed post-fertilization as observed
in Xenopus (Blow and Laskey, 1986; Lohka and Masui, 1983). In
contrast, pre-RC assembled on female chromatin before eggs paused
in G1 presumably when Cdk activities decrease at meiosis II output.
This leads to an unexpected situation in metazoan in which cells are
arrested with already licensed chromatin and suggests that a specific
mechanism should be activated to prevent initiation of DNA replica-
tion. Our data demonstrate that this mechanism does not rely on the
inhibitory function of geminin, which in contrast seems to participate
in loading Cdt1 on female and male origins. Indeed, a low concen-
tration of geminin is present with pre-RC components on chromatin
of UF eggs arguing that in vivo, as already proposed from data
obtained in vitro in Xenopus extracts, a Cdt1–geminin complex could
facilitate pre-RC assembly. Moreover, we observed that an excess of
geminin produced by cytoplasmic microinjection of a recombinant
GFP-geminin able to interact with Cdt1, does not prevent initiation of
DNA replication even if the protein is translocated to the nucleus.
As the same recombinant protein inhibits sperm DNA replication in
Xenopus extract, this suggests that in vivo in sea urchin, some molec-
ular event should take place upon firing of origin to allow further
association of geminin to Cdt1 to form an inactive complex inhibiting
new pre-RC assembly. MCM9 was proposed in Xenopus to transiently
protect Cdt1 fromgeminin additional binding (Lutzmann andMechali,
2008). As we previously reported, MCM9 mRNAs are expressed in sea
urchin embryo (Fernandez-Guerra et al., 2006), suggesting that the
protein, which is not vertebrate-specific as initially believed, could
play the same role.



Fig. 9. Synergistic effect of caffeine and U0126 in promoting DNA synthesis in unfertilized sea urchin eggs. (A) DNA replication was monitored by BrdU incorporation as described in
Materials andmethods. UF eggs parthenogenetically activated by ammoniumor calcium ionophore (A23187) and analysed 1 h after incubation showamajor BrdU incorporation (b, c)
whichwas not observed in untreated eggs (a). UF eggs treatedwith 1 µMU0126 (e) or 5 mMcaffeine (f) during 1 h showweak BrdU incorporationwhile a simultaneous treatment (g)
promotes a BrdU incorporation similar to the one observed in the presence of ammonium. Light microscopy images of eggs treated with A23187 (d) or caffeine and U0126 (h). Scale
bar=30 µm. (B) Statistical analysis of fluorescence. The amount of fluorescence in individual nuclei was quantified with Bio 1D software (Vilbert Lourmat). For each treatment
condition, the mean value from 20 representative eggs coming from two independent experiments was reported.
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After chromatin became competent, conversion of pre-RC to pre-ICs
depends on Cdk2 and CDC7 activities which will allow recruitment of
CDC45 at the G1/S transition (Lei and Tye, 2001; Nougarede et al., 2000;
Walter, 2000). However, in S. granularis and S. purpuratus sea urchin
embryos, we and others have shown that Cdk2 activity can be inhibited
from a few minutes p.f. onwards without precluding initiation of the
first DNA replication (Moreau et al., 1998; Schnackenberg et al., 2007).
In this report, we further observed that addition of roscovitine to
P. lividus eggs 5 min p.f. does not prevent DNA replication neither of
female nor of male chromatin in fertilized eggs treated with colchicine
to prevent syngamy. In contrast, when roscovitine is applied 20 min
before fertilization DNA replication is completely blocked. Thus, as
in other metazoan, a Cdk2-dependent phosphorylation is necessary
for pre-RC activation. However, the Cdk2-dependent phosphorylation
required for pre-IC formation is already fulfilled, at least on a set of
origins, in a time window close to fertilization, well before S-phase
entrance. While we were writing this manuscript, Kisielewska et al.
reported in L. variegatus a transient Cdk2 activity peaking 4 min p.f.
(Kisielewska et al., 2009). They also show that a treatment of roscovitine
applied 30 min b.f. inhibits male chromatin decondensation and
replication of fused zygotic chromatin. Our findings confirm and extend
their results showing that the timingof Cdk2 requirement is different for
male and female chromatin. Our observations could also be consistent
with the potential presence of pre-IC on chromatin of UF eggs. Further
experiments are thus needed to determine if the stepwise assembly of
the replication complexes in sea urchin oocytes culminateswith loading
of theMCM2–7 helicase or if some components of the pre-IC complexes
are already associated to chromatin. Even if replication can be observed
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in the presence of Cdk inhibitors during S-phase, previous experiments
(Moreau et al., 1998) and present data show that inhibition of Cdk
activity alters S-phase progression, preferentially affecting female
chromatin replication (Fig. 8). This can be explained either by an inhi-
bition of the firing of origins that would have been progressively
recruited in unperturbed embryos or by a requirement of Cdk activity at
a step following DNA synthesis initiation. In most metazoan somatic
cells, origin firing follows a defined spatiotemporal program (Zink,
2006), i.e. transcriptionally active domain replicating generally before
transcriptionally silent domains. Unexpectedly, recent data shown that,
replication timing is also deterministic in Xenopus egg extracts at the
level of large chromosomic domain, which suggests that a replication
timing program is already established before MBT in early vertebrate
embryos, even if transcription does not occur (Labit et al., 2008). It is
possible that a similar staggered programof replication activation exists
in echinoderm, in particular in sea urchinwhere transcription is already
active in fertilized eggs even if it does not concern genes essential during
early cleavages. In that case origins could be found at different stages in
G1 arrested eggs, in preparation for a sequentialfiring post-fertilization,
whatwould explain thepattern of BrdU incorporationweobservedafter
Cdk2 inhibition. On the other hand, it has been recently reported that
Cdk2 is recruited to replication foci in a CDC45-dependent way to
phosphorylate histone H1 and promote a DNA remodelling that facili-
tates fork progression (Alexandrow and Hamlin, 2005). This late Cdk2
requirement can also explain a slowdown of replication in the presence
of roscovitine.

The signalling pathways that control release of cell cycle arrests
have been investigated mainly in Xenopus and mouse, two examples
of eggs arrested in meiosis MII and in the starfish eggs of P. pectinifera
paused in G1 (for reviews see Kishimoto, 2003; Perry and Verlhac,
2008). In the three models, the Mos-MAPK cascade is responsible
for the cell cycle arrest and its activity is inhibited at fertilization,
however, the downstream effectors of Mos vary significantly from one
model to the other. While Rsk is an essential component of the MII
cytostatic factor in frog and of the G1 arresting mechanism in starfish,
it is not required in mouse. Whatever is the downstream substrate of
MAPK, inhibition of MAPK signalling pathway in MII arrested eggs
ends up in MPF inhibition through activation of the cyclin B proteol-
ysis. In contrast, in G1-paused starfish eggs MAPK-pathway deactiva-
tion relieves two independent blocks, one sensitive to the Rsk
transducer which controls S-phase entry and promote destruction
of cyclin A and B, the other-one involving an independent pathway
negatively regulating cyclin B synthesis and consequently activation
of MPF for M-phase entry (Hara et al., 2009). In the sea urchin
P. lividus, inhibition of the MAPK signalling pathway also triggers
mitotic-like events with oscillations of phosphorylation of the Tyr15
residue of Cdk1 and the correlated H1-kinase activity, although it does
not induce the completion of DNA replication (Zhang et al., 2006).

In this report we show that the simultaneous inhibition of theMAPK
and ATM/ATR signalling pathways in UF eggs trigger the same extent of
DNA replication than the one generated by ammonium or calcium
ionophore treatment. The ATM/ATR signalling pathway plays a promi-
nent role inmediating cellular response toDNAdamage (for reviews see
Bartek and Lukas, 2007; Clemenson and Marsolier-Kergoat, 2009).
However, either in mammalian cells or in Xenopus extract it is also
implicated in regulating different aspects of unperturbed S-phase in
particular the timing and spacing of DNA replication origins (Marhei-
neke and Hyrien, 2004; Maya-Mendoza et al., 2007; Petermann and
Caldecott, 2006; Shechter et al., 2004; Sorensen et al., 2004). Indeed, the
nuclear ATM/ATR kinases are part of a sensor mechanism that detect
DNA damage or stalled replication forks. While ATM preferentially
recognizes DNA double strand breaks, ATR is activated in response to
formation of single-stranded DNA (ssDNA). SsDNA is recognized and
become coated with the ssDNA binding protein replication protein A
(RPA), which subsequently recruits and activates the ATR complex
(Byun et al., 2005;MacDougall et al., 2007;Michael et al., 2000; Zou and
Elledge, 2003). In sea urchin one-cell embryo, caffeine, an ATM/ATR
inhibitor (Blasina et al., 1999; Hall-Jackson et al., 1999), has been shown
to reverse the nuclear breakdown inhibition imposed by aphidicolin
(Patel et al., 1997), suggesting that these kinases are expressed in eggs.
Consistently, two homologues of ATM and ATR genes have been
identified in the sea urchin genome, however, according to the results of
a tilling array only ATR would be expressed in early embryos
(Fernandez-Guerra et al., 2006). While the mechanism of activation of
the checkpoint kinase pathway in UF eggs is currently difficult to
predict, different hypotheses can be proposed. Our data show thatMCM
are physically associated to maternal chromatin in UF eggs. We thus
cannot exclude that a helicase activity could be associated to certain
origins that would have also loaded CDC45, leading to an RPA coating
sufficient to trigger checkpoint activation. We should mention that two
subunits of RPA (34 and 70 kDa) have been found associated to
chromatin in UF eggs (data not shown). On the other hand, a direct
interaction has been demonstrated between MCM7 and ATRIP, a factor
essential for ATR-dependent signalling and there is evidences thatMCM
are direct targets of the ATM/ATR kinases in human cell lines where an
excess of MCM loading could be important for checkpoint function
(Cortez et al., 2004). It is thus possible that loading of MCM2–7 on sea
urchin female chromatin can somehow trigger a checkpoint activation
leading to cell cycle arrest.

On the other hand, ERK activity has been shown to regulate ATR
function by promoting cytoplasm to nucleus ATR transport therefore
facilitating activation of the S-phase DNA damage checkpoint in
human cell lines (Wu et al., 2006). Part of the cytostatic effect of MAPK
cascade in G1-arrested sea urchin eggs could rely on this mechanism.

In G1, S or G2/M DNA damage checkpoints ATM/ATR kinases act
primarily by activating a pair of effector kinases Chk1 or Chk2 which
then control the activation of the checkpoint responses. Imme-
diate cell cycle arrest is mediated by the inactivation of CDC25 Tyr-
phosphatases which in turn impede activation of Cdks. Both Chk1 and
Chk2 as well as one CDC25 genes have been identified in the sea
urchin genome, all being expressed in embryos (Fernandez-Guerra
et al., 2006). While cyclin E has been located in the female pronuleus
(Schnackenberg and Marzluff, 2002) as well as Cdk2 (personal data),
this does not imply that the complex cyclin E/Cdk2 is active inside the
nucleus of the arrested eggs. It is possible that the recruitment of ATR
to competent chromatin by turning on Chk1/2 locally inactivates
CDC25 hampering Cdk2 activity in order to prevent origin firing.
Fertilization by reversing ATR stimulation of Chk1/2 could lead to
Cdk2 activation in the female pronucleus allowing DNA replication to
be initiated. Other effectors independent of Cdk2 activity that have
been implicated in transducing the Chk1/2 signal could also be
involved. Ddk activity which is required with Cdk for CDC45 loading
on chromatin (Jares and Blow, 2000;Walter, 2000) has been proposed
as a potential target of the checkpoint in response to replication stress
(Costanzo et al., 2003). More recent data have shown that CDC7/Dbf4
would not be a target but an upstream regulator of Chk1 the activity of
which would be critical for checkpoint release (Tsuji et al., 2008).

Our results demonstrate that a cell can be arrested for a long
period with pre-RC already assembled on chromatin, pointing out the
existence of a long-term established mechanism that prevent the
firing of replication origins. New insight is also provided into the
mechanisms contributing to the G1 arrest and the control of S-phase
entry at fertilization. Further experiments are needed to understand
the relationship between the kinases participating in the oocyte arrest
and those involved in pre-RC to pre-IC transition.
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