
Journal of Computational and Applied Mathematics 220 (2008) 364–372
www.elsevier.com/locate/cam

Remarks on the existence and uniqueness of the solutions to
stochastic functional differential equations with infinite delay

Yong Rena,∗, Shiping Lua, Ningmao Xiab

aDepartment of Mathematics, Anhui Normal University, Wuhu 241000, PR China
bDepartment of Mathematics, East China University of Science and Technology, Shanghai 200237, PR China

Received 21 July 2007; received in revised form 22 August 2007

Abstract

In this paper, we obtain some results on the existence and uniqueness of solutions to stochastic functional differential equations
with infinite delay at phase space BC((−∞, 0]; Rd) which denotes the family of bounded continuous Rd -value functions � defined
on (−∞, 0] with norm ‖�‖ = sup−∞<��0 |�(�)| under non-Lipschitz condition with Lipschitz condition being considered as a
special case and a weakened linear growth condition. The solution is constructed by the successive approximation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Stochastic differential equations (SDEs in short) are well known to model problems from many areas of science and
engineering, wherein quite often the future state of such systems depends not only on the present state but also on its
past history (delay) leading to stochastic functional differential equations with delay rather than SDEs. In the recent
years, there is an increasing interest in stochastic evolution equations with finite delay under less restrictive conditions
than Lipschitz condition; on this topic, one can see Liu [4], Govindan [3], Boukfaoui and Erraoui [2], Taniguchi [6]
and references therein for details. Mao [5] discussed stochastic functional differential equations with finite delay under
uniform Lipschitz condition and linear growth condition. Following this way, Wei and Wang [7] considered one such
class of the so-called stochastic functional differential equations with infinite delay (ISFDEs in short) at phase space
BC((−∞, 0]; Rd) to be described below. And they obtained the existence and uniqueness of solutions to ISFDEs under
uniform Lipschitz condition and a weakened linear growth condition.

Motivated by the above works, in this paper we will generalize the existence and uniqueness of the solutions to
ISFDEs under non-Lipschitz condition with Lipschitz condition being considered as a special case. The solution is
constructed by the successive approximation.

The paper is organized as follows. In Section 2, we formulate the problem and introduce some notations. Section 3
is devoted to the proof of existence and uniqueness of solutions.
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2. Preliminaries and statements of the main result

Let | · | denote the Euclidean norm in Rn. If A is a vector or a matrix, its transpose is denoted by AT; if A is a matrix,
its Frobenius norm is represented by |A| =√

trace(ATA). Let t0 be a positive constant and (�,F, P ) be a complete
probability space with a filtration {Ft }t � t0

satisfying the usual conditions. Assume that B(t) is an m-dimensional
Brownian motion defined on (�,F, P ), that is, B(t) = (B1(t), B2(t), . . . , Bm(t))T. Let BC((−∞, 0]; Rd) denote the
family of bounded continuous Rd -value functions � defined on (−∞, 0] with norm ‖�‖ = sup−∞<��0 |�(�)|. We
denote by M2((−∞, 0]; Rd) the family of all Ft0 -measurable, Rd -valued process �(t) = �(t, �), t ∈ (−∞, 0], such

that E
∫ 0
−∞ |�(t)|2 dt < ∞.

With all the above preparation, consider the following d-dimensional stochastic functional differential equations:

dX(t) = f (t, Xt ) dt + g(t, Xt ) dB(t), t0 � t �T , (1)

where Xt = {X(t + �) : −∞ < ��0} can be regarded as a BC((−∞, 0]; Rd)-value stochastic process, where f :
[t0, T ] × BC((−∞, 0]; Rd) → Rd and g : [t0, T ] × BC((−∞, 0]; Rd) → Rd×m are Borel measurable.

Next, we give the initial data of (1) as follows:

Xt0 = � = {�(�) : −∞ < ��0} is Ft0 -measurable, BC((−∞, 0]; Rd)-value random variable

such that � ∈ M2((−∞, 0]; Rd). (2)

Definition 1. Rd -value stochastic process X(t) defined on −∞ < t �T is called the solution of (1) with initial
data (2), if

(i) X(t) is continuous and for all t0 � t �T , X(t) is Ft -adapted;
(ii) {f (t, Xt )} ∈ L1([t0, T ]; Rd) and {g(t, Xt )} ∈ L2([t0, T ]; Rd×m);

(iii) Xt0 = �, for each t0 � t �T , X(t) = �(0) + ∫ t

t0
f (s, Xs) ds + ∫ t

t0
g(s, Xs) dB(s) a.s.

X(t) is called as a unique solution, if any other solution X̄(t) is not distinguishable with X(t), that is,

P(X(t) = X̄(t), for all − ∞ < t �T ) = 1.

In order to attain the solution of (1) with initial data (2), we propose the following condition:

(H1) For all �, � ∈ BC((−∞, 0]; Rd) and t ∈ [t0, T ], it follows that

|f (t, �) − f (t, �)|2 ∨ |g(t, �) − g(t, �)|2 ��(‖� − �‖2), (3)

where �(·) is a concave nondecreasing function from R+ to R+ such that �(0) = 0, �(u) > 0 for u > 0 and∫
0+ du/�(u) = ∞.

(H2) f (t, 0), g(t, 0) ∈ L2([t0, T ]) and for all t ∈ [t0, T ], it follows that

|f (t, 0)|2 ∨ |g(t, 0)|2 �K , (4)

where K > 0 is a constant.

Remark 2. To demonstrate the generality of our results, let us illustrate it using a concrete function �(·). Let K > 0
and let 	 ∈ (0, 1) be sufficiently small. Define

�1(u) = Ku, u�0.

�2(u) =
{

u log (u−1), 0�u�	,

	 log (	−1) + �′
2(	−)(u − 	), u > 	,

�3(u) =
{

u log(u−1) log log (u−1), 0�u�	,

	 log(	−1) log log (	−1) + �′
3(	−)(u − 	), u > 	.



366 Y. Ren et al. / Journal of Computational and Applied Mathematics 220 (2008) 364–372

They are all concave nondecreasing functions satisfying
∫

0+ du/�i (u)=+∞ (i =1, 2, 3). In particular, we see that the
Lipschitz condition is a special case of our proposed condition. In other words, in this paper we obtain a more general
result than that of Wei and Wang [7].

Now we give the existence and uniqueness theorem to (1) with initial data (2) under the above non-Lipschitz condition
and the weakened linear growth condition.

Theorem 3. Assume that (H1) and (H2) hold. Then, there exists a unique solution to (1) with initial data (2).

In order to obtain the uniqueness of solutions, we give Bihari inequality which appeared in [1].

Lemma 4 (Bihari inequality). Let T > 0 and u0 �0, u(t), v(t) be continuous functions on [0, T ]. Let � : R+ → R+
be a concave continuous and nondecreasing function such that �(r) > 0 for r > 0. If

u(t)�u0 +
∫ t

0
v(s)�(u(s)) ds

for all 0� t �T , then

u(t)�G−1
(

G(u0) +
∫ t

0
v(s) ds

)
for all such t ∈ [0, T ] that

G(u0) +
∫ t

0
v(s) ds ∈ Dom(G−1),

where G(r) = ∫ r

0 ds/�(s), r > 0, and G−1 is the inverse function of G. In particular, if, moreover, u0 = 0 and∫
0+ ds/�(s) = ∞, then u(t) = 0, for all t ∈ [0, T ].

3. Existence and uniqueness of solutions

In order to obtain the existence of solutions to (1) with initial data (2), we define X0
t0

= � and X0(t) = �(0), for
t0 � t �T . Let Xn

t0
= �, n = 1, 2, . . . and define the Picard sequence:

Xn(t) = �(0) +
∫ t

t0

f (s, Xn−1
s ) ds +

∫ t

t0

g(s, Xn−1
s ) dB(s), t0 � t �T . (5)

Lemma 5. Under condition (H1) and (H2), for all t ∈ (−∞, T ], n�1,

E|Xn(t)|2 �C1, (6)

where C1 is a positive constant.

Proof. Obviously, X0(t) ∈ M2((−∞, T ]; Rd). By induction, Xn(t) ∈ M2((−∞, T ]; Rd), in fact,

|Xn(t)|2 �3|�(0)|2 + 3

∣∣∣∣
∫ t

t0

f (s, Xn−1
s ) ds

∣∣∣∣
2

+ 3|
∫ t

t0

g(s, Xn−1
s ) dB(s)|2.

From Hölder inequality, we have

E|Xn(t)|2 �3E|�(0)|2 + 3E

∣∣∣∣
∫ t

t0

f (s, Xn−1
s ) ds

∣∣∣∣
2

+ 3E

∣∣∣∣
∫ t

t0

g(s, Xn−1
s ) dB(s)

∣∣∣∣
2

�3E‖�‖2 + 3(t − t0)E

∫ t

t0

|f (s, Xn−1
s ) − f (s, 0) + f (s, 0)|2) ds

+ 3E

∫ t

t0

|g(s, Xn−1
s ) − g(s, 0) + g(s, 0)|2) ds. (7)
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Using the elementary inequality (u + v)2 �u2 + v2, (H1) and (H2), we have

E|Xn(t)|2 �3E‖�‖2 + 3(t − t0)E

∫ t

t0

[2|f (s, Xn−1
s ) − f (s, 0)|2 + 2|f (s, 0)|2]) ds

+ 3E

∫ t

t0

[2|g(s, Xn−1
s ) − g(s, 0)|2 + 2|g(s, 0)|2]) ds

�3E‖�‖2 + 3(t − t0 + 1)E

∫ t

t0

[2�(‖Xn−1
s ‖2) + 2K]) ds

�3E‖�‖2 + 6(T − t0 + 1)(T − t0)K

+ 6(T − t0 + 1)E

∫ t

t0

�(‖Xn−1
s ‖2) ds. (8)

Given that �(·) is concave and �(0) = 0, we can find a pair of positive constants a and b such that

�(u)�a + bu for all u�0.

So, we have

E|Xn(t)|2 �c1 + 6b(T − t0 + 1)E

∫ t

t0

‖Xn−1
s ‖2) ds,

where c1 = 3E‖�‖2 + 6(T − t0 + 1)(T − t0)(K + a). Furthermore,

E|Xn(t)|2 �c1 + 6b(T − t0 + 1)

∫ t

t0

E( sup
t0 � r � s

|Xn−1(r)|2) ds

�c1 + 6b(T − t0 + 1)

∫ t

t0

E|Xn−1(s)|2) ds. (9)

Hence, for any k�1, we can derive that

max
1�n�k

E|Xn(t)|2 �c1 + 6b(T − t0 + 1)

∫ t

t0

max
1�n�k

E|Xn−1(s)|2) ds.

Note that

max
1�n�k

E|Xn−1(s)|2) ds

= max{E|�(0)|2, E|X1(s)|2, . . . , E|Xk−1(s)|2}
� max{E|�(0)|2, E|X1(s)|2, . . . , E|Xk−1(s)|2, E|Xk(s)|2}
=
{
E‖�‖2, max

1�n�k
E|Xn(s)|2

}
�E‖�‖2 + max

1�n�k
E|Xn(s)|2. (10)

So, we have

max
1�n�k

E|Xn(t)|2 �c1 + 6b(T − t0 + 1)

∫ t

t0

(
max

1�n�k
E|Xn(s)|2

)
ds

�c2 + 6b(T − t0 + 1)

∫ t

t0

(
max

1�n�k
E|Xn(s)|2

)
ds, (11)

where c2 = c1 + 6b(T − t0 + 1)(T − t0)E‖�‖2.

From Gronwall inequality, we derive that

max
1�n�k

E|Xn(t)|2 �c2e6b(T −t0+1)(T −t0).
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Since k is arbitrary, we have that

E|Xn(t)|2 �c2e6b(T −t0+1)(T −t0), t0 � t �T , n�1.

So, the desired result holds with C1 = c2e6b(T −t0+1)(T −t0). �

Lemma 6. Under condition (H1) and (H2), there exists a positive constant C2 such that

E

[
sup

t0 � s � t

|Xn+m(s) − Xn(s)|2
]

�C2

∫ t

t0

�

(
E sup

t0 � r � s

|Xn+m−1(r) − Xn−1(r)|2
)

ds (12)

for allt0 � t �T , n, m�1.

Proof. From (5), we can derive that

Xn+m(t) − Xn(t)

=
∫ t

t0

[f (s, Xn+m−1
s ) − f (s, Xn−1

s )]) ds

+
∫ t

t0

[g(s, Xn+m−1
s ) − g(s, Xn−1

s )] dB(s). (13)

So,

E|Xn+m(t) − Xn(t)|2

�2E

∣∣∣∣
∫ t

t0

[f (s, Xn+m−1
s ) − f (s, Xn−1

s )]) ds

∣∣∣∣
2

+ 2E

∣∣∣∣
∫ t

t0

[g(s, Xn+m−1
s ) − g(s, Xn−1

s )] dB(s)

∣∣∣∣
2

�2(t − t0)E

∫ t

t0

|f (s, Xn+m−1
s ) − f (s, Xn−1

s )|2) ds

+ 2E

∫ t

t0

|g(s, Xn+m−1
s ) − g(s, Xn−1

s )|2) ds. (14)

Thus, we derive that

E

[
sup

t0 � s � t

|Xn+m(s) − Xn(s)|2
]

�2(T − t0 + 1)E

∫ t

t0

�(‖Xn+m−1
s − Xn−1

s ‖2) ds.

From Jensen inequality, we have that

E

[
sup

t0 � s � t

|Xn+m(s) − Xn(s)|2
]

�2(T − t0 + 1)

∫ t

t0

�(E‖Xn+m−1
s − Xn−1

s ‖2) ds

�2(T − t0 + 1)

∫ t

t0

�

(
E sup

t0 � r � s

|Xn+m−1(r) − Xn−1(r)|2
)

ds. (15)

If we choose C2 = 2(T − t0 + 1), we can derive that the lemma holds. �
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Lemma 7. Under condition (H1) and (H2), there exists a positive constant C3 such that

E

[
sup

t0 � s � t

|Xn+m(s) − Xn(s)|2
]

�C3(t − t0) (16)

for all t0 � t �T , n, m�1.

Proof. From Lemmas 5 and 6, we have that

E

[
sup

t0 � s � t

|Xn+m(s) − Xn(s)|2
]

�C2

∫ t

t0

�(E sup
t0 � r � s

|Xn+m−1(r) − Xn−1(r)|2) ds

�C2

∫ t

t0

�(2C1) ds

�C2�(2C2)(T − t0) = C3(t − t0). (17)

The proof is complete. �

Define

�1(t) = C3(t − t0),

�n+1(t) = C2

∫ t

t0

�(�n(s)) ds, n�1,

�n,m(t) = E[ sup
t0 � r � t

|Xn+m(r) − Xn(r)|2], n, m�1,

Choose T1 ∈ [t0, T ) such that

C2�(C3(t − t0))�C3 for all t0 � t �T1.

Lemma 8. There exists a positive t0 �T1 < T such that for all n, m�1,

0��n,m(t)��n(t)��n−1(t)� · · · ��1(t) (18)

for all t0 � t �T1.

Proof. We prove this lemma by induction on n. By Lemma 7, we have that

�1,m(t) = E

[
sup

t0 � r � t

|X1+m(r) − X1(r)|2
]

�C3(t − t0) = �1(t).

By Lemma 6,

�2,m(t) = E

[
sup

t0 � r � t

|X2+m(r) − X2(r)|2
]

�C2

∫ t

t0

�

(
E sup

t0 � r � s

|X1+m(r) − X1(r)|2
)

ds

�C2

∫ t

t0

�(�1,m(s)) ds

�C2

∫ t

t0

�(�1(s)) ds = �1(t). (19)
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So, we also have that

�2(t) = C2

∫ t

t0

�(�1(s)) ds

�C2

∫ t

t0

�(C3s) ds

�C2

∫ t

t0

C3 ds = �1(t). (20)

We have already shown that

�2,m(t)��2(t)��1(t) for all t0 � t �T1.

Now, we assume that (18) holds for some n�1. Then, using the same inequalities as above yields

�n+1,m(t) = C2

∫ t

t0

�

(
E sup

t0 � r � s

|Xn+m(r) − Xn(r)|2
)

ds

�C2

∫ t

t0

�(�n,m(s)) ds

�C2

∫ t

t0

�(�n(s)) ds = �n+1(t) (21)

for all t0 � t �T1. On the other hand, we have that

�n+1(t) = C2

∫ t

t0

�(�n(s)) ds�C2

∫ t

t0

�(�n−1(s)) ds = �n(t)

for all t0 � t �T1. This completes the proof. �

Proof of Theorem 3. Uniqueness: Let X(t) and X̄(t) be two solutions of (1). Note that

X(t) − X̄(t)

=
∫ t

t0

[f (s, Xs) − f (s, X̄s)]) ds

+
∫ t

t0

[g(s, Xs) − g(s, X̄s)] dB(s), (22)

So,

E|X(t) − X̄(t)|2

�2E|
∫ t

t0

[f (s, Xs) − f (s, X̄s)]) ds|2

+ 2E|
∫ t

t0

[g(s, Xs) − g(s, X̄s)] dB(s)|2

�2(t − t0)E

∫ t

t0

|f (s, Xs) − f (s, X̄s)|2) ds

+ 2E

∫ t

t0

|g(s, Xs) − g(s, X̄s)|2) ds. (23)

Thus, we derive that

E

[
sup

t0 � s � t

|X(s) − X̄(s)|2
]

�2(T − t0 + 1)E

∫ t

t0

�(‖Xs − X̄s‖2) ds.
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From Jensen inequality, we have that

E

[
sup

t0 � s � t

|X(s) − X̄(s)|2
]

�2(T − t0 + 1)

∫ t

t0

�(E‖Xs − X̄s‖2) ds

�2(T − t0 + 1)

∫ t

t0

�

(
E sup

t0 � r � s

|X(r) − X̄(r)|2
)

ds. (24)

Bihari inequality yields

E[ sup
t0 � s � t

|X(s) − X̄(s)|2] = 0, t0 � t �T . (25)

The above expression means that X(t) = X̄(t) for all t0 � t �T . Therefore, for all −∞ < t �T , X(t) = X̄(t) a.s. This
establishes the uniqueness.

Existence: We claim that

E sup
t0 � s � t

|Xn+m − Xn(s)|2 → 0 (26)

for all t0 � t �T1, as n, m → ∞. Note that �n is continuous on [t0, T1]. Note also that for each n�1, �n(·) is decreasing
on [t0, T1], and, for each t, �n(t) is a decreasing sequence. Therefore, we can define the function �(t) as

�(t) = lim
n→∞ �n(t) = lim

n→∞ C2

∫ t

t0

�(�n−1(s)) ds = C2

∫ t

t0

�(�(s)) ds (27)

for all t0 � t �T1. Bihari inequality implies that �(t) = 0 for all t0 � t �T1. Now, from Lemma 8, we have that

�n,n(t)� sup
t0 � t �T1

�n(t)��n(T1) → 0 (28)

as n → ∞. That is, Xn(t) is a Cauchy sequence in L2 on (−∞, T1]. From Lemma 5, we can easily derive that

E|X(t)|2 �C,

where C is a positive constant.
Using condition (H1) and the property of the function �(·), we can obtain that, for all t0 � t �T1,

E

∣∣∣∣
∫ t

t0

[f (s, Xn
s ) − f (s, Xs)]) ds

∣∣∣∣
2

→ 0 as n → ∞,

E

∣∣∣∣
∫ t

t0

[g(s, Xn
s ) − g(s, Xs)] dB(s)

∣∣∣∣
2

→ 0 as n → ∞.

For all t0 � t �T1, taking limits on both the sides of (5), we obtain that

lim
n→∞ Xn(t) = �(0) + lim

n→∞

∫ t

t0

f (s, Xn−1
s ) ds + lim

n→∞

∫ t

t0

g(s, Xn−1
s ) dB(s). (29)

That is,

X(t) = �(0) +
∫ t

t0

f (s, Xs) ds +
∫ t

t0

g(s, Xs) dB(s). (30)

The above expression demonstrates that X(t) is one solution of (1) with initial data (2) on [t0, T1]. By iteration, the
existence of solutions to (1) on [t0, T ] can be obtained. �
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