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Characterizations are obtained of the maximal (k + s)-cliques that contain a given maximal 
k-clique as a substructure: (1) when s = 1; (2) for arbitrary s when no line of the clique contains 
exactly one point of the subclique. These characterizations are used to obtain maximal cliques 
which have fewer lines (for given k) than previously known examples. 

1. Introduction 

An incidence structure Z = (S, C) is a set S (whose elements are called points) 
together with a collection C of distinguished subsets (called lines). An incidence 
structure with constant line size k is called a k-clique if every point lies on at least 
one line and if every pair of lines has at least one common point. One calls a 
k-clique maximal if it cannot be extended to another k-clique by adjoining 
another line and, possibly, additional points. Recall that a blocking set of Z is a 
subset of S that intersects every member  of C but that contains no member  of C. 
If Z is a k-clique, one sees that Z is maximal if and only if 27 has no blocking set 
of cardinality k or less. 

Meyer  [10] introduced the problem of obtaining bounds on the function m(k) 
which denotes the minimum number  of lines in a maximal k-clique. Erd6s and 
Lov~isz proved [7] that m ( k ) ~ ( 8 / 3 ) k - 3  by demonstrating that all smaller 
k-cliques have blocking sets of size k - 1 or less. In [4] Dow et al. improved the 
lower bound to m(k)  >I 3k for all k 1> 4. A construction of Erd6s and Lov~isz [7] 
yields the inequality 

re(k) <~ k .  m(k  - 1) + 1, for all k. 

Since projective planes are maximal cliques, 

(1.1) 

repeated use of (1.1) yields 
m(k) < k k-n+1 if n < k is the order of a projective plane. It has been proved (for 
certain values of 0) that there is at least one prime between k and k - k o for all 
sufficiently large integers k: the smallest value yet announced for 0 is 17/31 (see 
Pintz [11, p. 395]). One obtains 

re(k) < k ck~, 0 = 17/31, for all k. (1.2) 
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For particular values of k, much better upper bounds for re(k) are known. As 
indicated, all projective planes (more generally, all n-uniform projective Hjelm- 
slev planes) are maximal cliques [6], a fact which yields the following theorem. 

Theorem 1.1 (D.A. Drake and S.S. Sane). If q is the order of a projective plane, 
then for every positive integer n, 

m(q" + q~-l) <~ q2n + q2n-1 + q2n-2. 

A second class of values of k for which m(k) has a small upper bound is given 
by the following result. 

Theorem 1.2 (Z. Fiiredi [8, Theorem 1]). If q is the order of a projective plane, 
then m(2q) ~< 3q 2. 

The Erdrs-Lov~isz proof of (1.1) is a matter of embedding an arbitrary 
maximal ( k -  1)-clique in an appropriate maximal k-clique. In this paper we 
investigate the problem of embedding a maximal k-clique 2" in a maximal 
(k + s)-clique X'. In Section 2 we characterize all such embeddings with s = 1 and 
thus obtain minor improvements in the inequality (1.1). 

In Section 3 we characterize embeddings for arbitrary s subject to the condition 
that no line of X' contain exactly one point of X. Every such 2" is obtained by 
joining 27 to an 'extender' 2"* (defined in Section 3): Z* is an incidence structure 
with 'vertical' lines of size s and 'horizontal' lines of size k + s. 

In Section 4 we consider special extenders called 'trains'; we prove that trains 
and 'boxcars' can be 'stretched' and that boxcars can be 'coupled' to trains to 
produce larger trains. The removal of a single point from a projective plane of 
order q yields a train with lines of sizes q and q + 1. By coupling boxcars to 
stretched versions of these projective-plane trains, one can assemble a useful 
collection of trains (Proposition 4.5). 

In Section 5 we prove that Desarguesian affine planes of odd order are boxcars 
(if the lines of certain parallel classes of the plane are distinguished as vertical 
lines). To obtain this conclusion, we apply a theorem of Blokhuis which yields the 
non-existence of extraneous transversals in certain nets. 

In an appendix, the trains constructed in Sections 4 and 5 are used to obtain 
upper bounds for m(k) for values of k < 100. For given values of k, these bounds 
are far superior to those obtained by the repeated application of (1.1); 
unfortunately, however, the methods of this paper yield no significant improve- 
ment in the asymptotic bound (1.2). 

2. Embedding maximal k-cliques in ~ a l  (k + 1)-cliques 

A k-clique ,~= (S, C) is said to be a subclique of an incidence structure 
,~' = (S', C') provided that: (1) S ~ S', and (2) C is just the collection of all sets 
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L O S of cardinality two or more such that L is in C'. A point of 27' is called 
internal if it is in S and external otherwise. A line L of 27' is called an external line, 
a piercing line or a structural line if the number of internal points in L is 0, 1 or k, 
respectively. 

The goal of Section 2 is to characterize all maximal (k + 1)-cliques that 
contain a given maximal k-clique as a subclique. In Section 3 we characterize, for 
arbitrary s, all maximal (k + s)-cliques that contain a given maximal k-clique 
without piercing lines. 

Lemma 2.1. Let 27 be a maximal k-clique on v points, k >14. Suppose that Z is a 
subclique of  27', a maximal (k + 1)-clique on v'  points. Then v'  = v + k + 1; all 
piercing lines (if any exist) are incident with the same set K of  k external points; 
and there is a (unique)external line L. 

Proof. Let S and S' denote the point sets of 27 and 27', L denote S ' \S .  One sees 
that v '  >/v + k + 1, since otherwise L would be a blocking set of S' with fewer 
than k + 1 points. 

Assume that G and H are distinct piercing lines with G n S = g and H n S = h. 
Write B to denote {g, h} U (G A H). If I is any non-structural line, then 
S n (G u H U I) contains at most three points. Since 27 has no blocking sets of 
size three or less, there is a line M of 27 which is disjoint from G U H U I. Thus, if 
M U {x } is any extension of M to a structural line, x must lie in G n H n I. We 
have proved that all non-structural lines I contain points of B. It is clear therefore 
that all lines of 27' meet B. Since I B A S [ = 2 ,  B is not a line of 27. Thus 
IB[/> k + 2. It follows that g:~ h and that G n H = : K  consists of the k points of 
G \ { g } = H \ { h } .  

Assume, by way of contradiction, that there is no external line. In this case, 
since v ' - v  >k ,  there is a point x in S ' \ S  which does not lie on any 
non-structural line. Then x is incident with a structural line G, and G \ {x} is a 
blocking set of 27' of size k. This contradiction of the maximality of 27' yields the 
existence of at least one external line L. Assume that there are two external lines 
L and L'. It is routine to prove that L n L'  is a blocking set of 27' of size less than 
k + 1. This contradiction proves that L is the unique external line. 

Suppose v ' >  v + k + 1. Then there exists a point x in S ' \ ( S  O L). Every 
structural line contains only one point outside of S; since this point must belong 
to L, x lies only on piercing lines. Then, if P is any (piercing) line through x, 
P \ {x } is a blocking set of size k. The contradiction implies that v '  <~ v + k + 1 
and, thus, completes the proof of the lemma. [] 

In order to state the main theorem of Section 2, we need to define the notion of 
a closed set in an incidence structure. Let R denote a subset either of the point set 
or of the set of lines of an incidence structure 27. We then write [R] = [R] 1 to 
denote the set of all lines, respectively, all points, that are incident with all 
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members of R. We also write [R] i÷1 to denote [JR]']. Then [R] ;÷2= [R] g for all 
i i> 1. In particular, [R] 4 = [R]2; and hence, since R c_ [R] 2 for every R, [.]2 is a 
closure operator on the collection of subsets of the point set (also on the line set) 
of 27. Accordingly, we call [R] 2 the closure of R; and we say that R is a closed set 
if it is equal to its closure. The set [R] is closed for arbitrary R. 

If 27 is finite, we define the closure number c(R) of a point or line set R to be 
I[R]I + I[R]21 • For given 2", let C1, C2, C 3, C a denote the set of closure numbers, 
respectively, for all point sets, all closed point sets, all line sets, and all closed line 
sets. Clearly c( [R])= c(R) for any R. It follows that C1_ C4_ C3 ~_ C2_ Cx and, 
hence, that all four C~'s are equal. We write c(2") to denote the smallest integer in 
C2 and call c(2") the closure number of 27. 

Construction 1. Let ~ be a maximal k-clique, and let R be a closed subset of the 
point set S of 27. Let L = {Po, . . . .  , Pk } be a set of points disjoint from S. Define 
K to be (pl, • • •, Pk }, S '  t o  be S U L. Define 2" to be the incidence structure with 
point set S' and the following four kinds of lines: 

(i) all sets G U pi with G a line of 27, 1 <~ i ~< k; 
(ii) all sets G Upo with G in JR]; 

(iii) all sets K U q with q in R; 
(iv) L. 

Theorem 2.2. Let 2" be a maximal k-clique, k >14. The maximal (k + 1)-cliques 
which contain 27 as a subclique are precisely the structures 27' described in 
Construction 1. 

Proof. Let 27' be obtained from 27 relative to some closed point set R by the 
method of Construction 1. It is easy to see that 2" is a subclique of 27' and that 2"' 
is a (k + 1)-clique. Assume, by way of contradiction, that 27' is not maximal. 
Then 2"' has a blocking set B of size k + 1 or less. Since B meets the line L, 
IBNSI<~k.  

Suppose first that IB n S I = k. Then there is a point Pi in K \ B .  Since B meets 
all lines of 27' of type (i), B n S meets all lines of 27. The maximality of 2" implies 
that B n S = G for some line G of 2". Since B meets L but is not a line (of type 
(i)), B = G O Po. Since B meets all lines of type (iii), B is a line of type (ii). This 
contradiction yields the conclusion that I B n S I < k. 

The maximality of 27 guarantees the existence of a line G of 27 that is disjoint 
from B. Since B meets all lines of type (i), B contains K. Since B ;~ L and since B 
meets all lines of type (ii), B = K U q for some point q which lies in every line of 
[R]. Since R is closed, q is in R; and therefore B is a line of type (iii). This final 
contradiction completes the proof of the maximality of 27'. 

Conversely, assume that 27' is any maximal (k + 1)-clique which contains 27 as a 
subclique. Denote the full point sets of  27 and 2" by S and S', respectively. By 
Lemma 2.1 there is a unique external line L = (Po, . - . ,  Pk}  -" S ' \ S .  Further, all 
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piercing lines (if any) contain the set K = {P 1 , . . . ,  Pk}" The maximality of 27' 
guarantees that all sets of type (i) are lines of 27'. 

Define R to be the set of all points q (if any) such that K t3 q is a piercing line. 
(If there are no piercing lines, R is the empty set.) To complete the proof of 
Theorem 2.2, it suffices to prove that R is closed and that G t3 Po is a line of 27' if 
and only if G is in [R]. If G is in [R], then G t_J Po is a set of k + 1 points which 
meets all lines of 27' and, hence, is itself a line. Conversely, it is clear that G t3p0 
is a line only if G is in [R]. If r is in [R] 2, then K t_J r is a set of k + 1 points that 
meets all lines of 2:'. It follows that K t3 r is a line of 2:', hence that r is in R, and 
therefore that R is closed. The proof of Theorem 2.2 is complete. [] 

Special eases. Let 2: and 27' satisfy the conditions of Construction 1. Write b and 
b' to denote the numbers of lines in 2: and 2:', respectively. If k ~ 1, no point of 2: 
is incident with all lines of 27. It follows that the empty set E is a closed set of 
points of 2: and that [El is the set of all lines of 2:. Using R = E in Construction 1, 
one obtains b lines of type (ii) and no lines of type (iii); in this case 
b' = b (k  + 1) + 1. This special case has been described by Erd6s and Lovfisz in [7, 
p. 620(c)]. At  the other extreme, one may take R to be the set of all points of 27. 
Then 2:' has v lines of type (iii) and no lines of type (ii), so b ' =  bk + v + 1. 

Other possibilities are to take R to be the points of some line (so that 
b' = bk + k + 2) or to be a single point p (so that b'  - bk + I[P]I + 2). 

Corollary 2.3. Let 2: be a maximal k-clique with v points and b lines, k >I 4. Let  27 

be a subclique o f  a maximal (k + 1)-clique 2:' which has b' lines. Then 

bk +4~<b ' ~ b k  + 1 +max(v,  b). 

Proof. It suffices to prove that the number of lines of 27' of types (ii) and (iii) lies 
between 3 and m := max(v, b); i.e., to prove that 3 ~< c(2:) ~< m. If R is the empty 
set, c(R)  I> b 1> 3. If R is a single point, c(R) I> 3 because every point of 2: must lie 
on at least two lines. If R is a closed set of two points, the points must lie on a 
common line, so again c(R)>t 3. 

Let R be a closed point set of 2:. Clearly c(R)  <~ m if R contains all or none of 
the points of 2:. If ]RI <v,  then I R l ~ k .  If IRI--k, R must be a line; so 
c(R)  = k + 1 <<- m. Let  r denote max I[P]I as p ranges over all points of 27. If R 
consists of a single point, then c(R)  <~ 1 + r < b <~ m. Lastly, consider the case that 
1 < IRI < k. Since there are no blocking sets of size k -  1, every point on any 
given line G must be incident with at least one line that meets no other point of 
G. T h e n c ( R ) < - ( k - 1 ) + ( r - 1 ) < r + ( k - 1 ) ~ b < - - - m .  [] 

Remark. The special cases mentioned above make it clear that the upper bound 
of Corollary 2.3 is achieved for every choice of 27. For every k, there is a 
maximal k-clique with points of valence 2 (see [7, p. 620(b)]); thus the lower 
bound in Corollary 2.3 is best possible for every k. 
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3. Subcliques without piercing lines 

The goal of Section 3 is to describe all the maximal cliques which contain a 
given maximal clique ,~ without piercing lines. Such cliques are obtained from ~' 
by means of 'extenders' which we proceed to define. 

Let • = (S, E) be an incidence structure whose line set E is the disjoint union 
of the non-empty sets C and D. Then (S, C, D) is called an (m, n)-grating if every 
line of C (called a vertical line) has m points, every line of D (called a horizontal 
line) has n points, and every horizontal line meets every vertical line. We 
sometimes write 2" for (S, C, D); and we denote IcI by c, IOl by d. 

An (m, n)-grating ,~ = (S, C, D) is said to be long if no set of fewer than n 
points intersects all vertical lines, (horizontally) braided if each two horizontal 
lines intersect, (horizontally) loose if each vertical line is disjoint from at least one 
other vertical line or if there is only one vertical line; 2" is said to be vertically 
loose if (S, D, C) is (horizontally) loose. Generally we shall omit the adverb 
'horizontally' while retaining the descriptor 'vertically'. 

An (m, n)-boxcar is a vertically loose (m, n)-grating that cannot be embedded 
in another (m, n)-grating through the addition of a line (and the possible addition 
of points to the new line). An (m, n)-extender is a loose, braided (m, n)-grating 
which cannot be embedded in another braided (m, n)-grating through the 
addition of a line (and the possible addition of points to the new line). A long 
(m, n)-extender is called an (m, n)-train. 

Construction 2. Let 2"= (S, E) be a maximal k-clique, Z'*= (S*, C, D) be an 
(m, k +m)-extender  such that S and S* are disjoint. We define an incidence 
structure 2" on the point set S' = S U S* by taking the following subsets of S' as 
lines: 

(i) every set G U H with G in E and H in C; 
(ii) every line K of D. 

Theorem 3.1. Let .S be a maximal k-clique, m be a positive integer. The maximal 
(k + m)-cliques that contain .S as a subclique without piercing lines are precisely the 
structures ~S' that are described in Construction 2. 

Proof. Given 2" and an (m, k + m)-extender Z*, it is clear that Construction 2 
produces a (k + m)-clique ~ ' .  It is also obvious that 2" is a subclique and that 
there are no piercing lines. Assume, by way  of contradiction, that ,~' is not 
maximal. Then there is a blocking set B of size k + m or less. 

Suppose first that IB n S*l ~<m. Since B AS* intersects all lines in D, the 
definition of an extender guarantees that B O S* is a line of C. In particular, 
IB n s*l = m, so IB n sI ~ k .  If B n s* were the only vertical line of 2"*, one 
could adjoint a new horizontal line (that contained B n S*). Thus 2"  has at least 
two vertical lines; and, as Z* is loose, there is a line H in C which is disjoint from 
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B n S*. Since B intersects all lines of 27 of type (i), B n S must intersect all lines 
of 27. The maximality of 27 thus implies that B n S is a line of Z, hence that B is a 
line of Z' .  This contradiction forces the conclusion 1B n s*l > m. 

Then IB n SI < k, so there is a line G of Z that does not intersect B n S. It 
follows that B n S* intersects every line H of C (as well as every line K of D). 
The definition of extender thus forces B n S* = B to be a line of D, because B is 
of size k + m or less. This contradiction completes the proof that 27' is maximal. 

Conversely, assume that Z '  is a m~imal  (k + m)-clique which contains the 
maximal k-clique 27 as a subclique and that there are no piercing lines. Let S and 
S' be the respective point sets of Z and 27', and write S* for S ' \S .  Let C denote 
the collection of all subsets L A S *  such that L is a structural line; D, the 
collection of all external lines. Clearly 27*:= (S*, C, D) is a braided (m, k + m)- 
grating. If Z* were not loose, some structural line L of 27' would intersect all 
other lines of Z" in points of S*. Then L n S* would be a blocking set of 27' of 
size m < k + m. We conclude that Z'* is loose. 

Assume next that Y~* can be extended to a braided (m, k +m)-grat ing by 
adding a new line G* to C. Then, taking G to be any line of 27, the set G U G* is 
a new set of size k + m which intersects all lines of Z' .  This contradiction proves 
that Z* could only be extended by adding a new horizontal line H* to D. The 
latter alternative would yield the contradiction that Z '  has a blocking set, H*, of 
size k + m. We are compelled to conclude that Z* is an (m, k + m)-extender. 

We have yet to verify that the application of Construction 2 to Z and 2~* yields 
Z ' .  By intent, the lines of type (ii) generated by Construction 2 are precisely the 
external lines of Z ' .  It is also clear that every structural line of Z '  is a line of type 
(i). Conversely, the maximality of 27 guarantees that every line of type (i) is a 
structural line of Z ' .  [] 

4. Couplings and stretchings of boxcars and trains 

We intend to apply Construction 2 to extend maximal k-cliques to maximal 
(k + m)-cliques. To do so, we must create a supply of (m, k + m)-extenders. The 
following lemma gets us started. 

Lemma 4.1. Let q be one or the order of  a finite projective plane. Then there is a 
(q, q + 1)-train FI = (S, C, D) on v = q2 + q points where C is a parallel class with 

Ic l  = q + 1 and IDI = q2 

Proof. Let p be a point of a projective plane 27 of order q. Take S to be the set of 
all points of 27 except p. Let C consist of the lines of 27 that are incident with p, 
each restricted to its intersection with S; and let D consist of the remaining lines 
of 27. Since 27 is a maximal clique, H = (S, C, D) is a train. The case q = 1 is left 
to the reader. [] 
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A moment's reflection will convince one that the use of the trains of Lemma 
4.1 as extenders in Construction 2 will produce nothing more than projective 
planes. Ultimately, however, the trains of Lemma 4.1 will prove useful: the goal 
of Section 4 is to describe methods for 'coupling' and 'stretching'. 

Let H i = (Si, Ci, Di) be (m, ni)-gratings for i =  1 and 2. Write S and C, 
respectively, for the disjoint unions St U $2 and C1 U C-2; write D for the collection 
of all sets K I U K 2  with Ki in Di for each i. Then H = ( S , C , D )  is an 
(m, nl + n2)-grating called the coupling of HI and HE. 

Lemma 4.2 (The Coupling Lemma). Let /71 be an (m, nl)-train, /72 be an 
(m, n2)-boxcar. Suppose that m ~ n2 or that 172 is loose. Then the coupling/7 o f  
/71 and/72 is an (m, nl + n2)-train. I f  each/7~ has c i vertical lines and d i horizontal 
lines, then 11 has c I + c 2 vertical lines and did2 horizontal lines. 

Proof. Clearly the coupling/7 is a loose, braided (m, n)-grating with n = nt + n2. 
No set S of fewer than n 2 points of/72 intersects all vertical lines of / /2 ,  because 
any such S could be extended to a new horizontal line. Since Ha is long, it is clear 
that 17 is long. 

It now suffices to prove that 17 cannot be extended to another braided 
(m, n)-grating through the addition of a line. Thus assume that G is a set of m 
points o f / 7  which intersects all lines of D and that G is not in (71. Since H 1 cannot 
be extended, G is not contained in S 1. Therefore, some line K1 of D1 is disjoint 
from G. It follows that G intersects all lines K 2 from D2, hence that G is a line of 
C2. We have proved t h a t / 7  cannot be extended by adjoining a vertical line. 

Assume next that K is a set of n points which intersects all lines of C (.J D. 
Write Kt for K A $1, K2 for K f3 $2. Since/71 is long, IKll >/nl. Since/72 cannot 
be extended, Ig21 >i n2. Therefore Ig, I = ni for i =  1 and 2, and K 2 is a line of/72- 
If K2 were in C2, then m would be equal to n2; and/72 could not be loose. We 
conclude that K2 is in D 2. Since/72 is vertically loose, there is a line in DE that is 
disjoint from K2. Since K meets all lines of C U D, K 1 must meet all lines of 
C1 U D 1. Then K~ must be in D~, else/71 could be extended. Thus K is in D. We 
have proved t h a t / 7  cannot be extended, s o / 7  is a train. [] 

Construction 3a (Uniform stretching). L e t / 7  = (S, C, D) be an (m, n)-grating, k 
be a positive integer. To each point p o f / 7 ,  associate a set (p) of k points, so 
chosen that the sets (p) are disjoint. Define an incidence structure /7' on the 
union S' of the (p) by taking as lines all point sets of the following two types: 

(i) to each line G = {Pl, - • -, P,,,} of C, all sets {xl,. • . ,  xm} with x i in (Pi) for 
each i; 

(ii) to each line H = {Pl, • • . ,  Pn} of D, the single set (Pl) U- • - t_J (pn). 
Take C' to be the collection of all lines of type (i), D '  to be the collection of all 
lines of type (ii). The (m, nk)-grat ing/7 '  = (S', C', D ' )  is said to arise f r o m / 7  by 
uniform horizontal stretching. It is clear how one obtains an (ink, n)-grating 
IT' = (S", C", D") f r o m / 7  by means of uniform vertical stretching. 
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Construction 3b (Non-uniform stretching). L e t / 7  = (S, C, D) be an (m, n)-grating 

which has a verticalparallel class; i.e., a subset Co = {G1, • • •,  G,,} of n lines of C 
which partitions the points o f / 7 .  Let k~ . . . .  , k,, be fixed positive integers. For 
each i <~ n and each point p on Gi, one takes (p) to be a set of cardinality ki, 
choosing the sets (p) to be disjoint.- One continues as in Construction 3a to obtain 

a non-uniform horizontal stretching o f / 7  to an (m, kl + • • • + kn)-grating /7' - 

(S',  C' ,  D ' ) .  The existence of a horizontal parallel class D O = {H1, • . . ,  H,,,} in D 

allows one to obtain non-uniform vertical stretchings to (k I + • • • + kin, n)-gratings 
r r  = (s", C",D"). 

Lemma 4.3 (Stretching Lemma) .  Every stretching (horizontal or vertical, uniform 
or not) o f  a loose boxcar is a loose boxcar. I f / 7  is an (m, n)-train with m < n, 
every horizontal stretching o f / 7  is a train. 

Proof.  Clearly, all stretchings preserve looseness (horizontal and vertical); and 

all horizontal stretchings preserve horizontal braidings. Since the definition of 

loose boxcars is symmetric in the treatment of vertical and horizontal,  it suffices 

to consider horizontal stretchings. Thus, let /7 be a loose (m, n)-boxcar or an 

(m, n)-train, and let H '  be a horizontal stretching o f /7 .  I f / 7  is a train, we assume 

m < n .  We observe that /7 '  is an (m, N)-grating where N is either nk or 

kl + - • • +kn.  
Let G '  be any set of m or fewer points o f / 7 '  which intersects all horizontal 

lines o f / 7 ' .  Then G '  induces a set G of at most m points o f / 7 ,  and G intersects 

all horizontal lines o f / 7 .  It follows that G is a line o f / 7 .  I f / 7  is a boxcar, G 

cannot be a horizontal line, since boxcars are vertically loose. I f / 7  is a train, G 

cannot be a horizontal line, since one has m < n in this case. Therefore G is a 

vertical line of H ,  so G '  is a vertical line o f / 7 ' .  T h e n / 7 '  cannot be extended by 
the addition of a new vertical line. 

Let H '  be a set of N or fewer points o f / 7 '  which intersects all vertical lines of 
/7' .  We treat the case t h a t / 7 '  is obtained from H by uniform stretching and leave 

the non-uniform case to the reader.  The k m lines o f / 7 '  obtained from a given 

vertical line G o f / 7  can all be covered by the points of H '  only if H '  contains a 

set (p) for some p in G. S i n c e / / i s  long (even when I / i s  a boxcar!) ,  at least n sets 

(p) are needed. Then H '  has cardinality nk = N, and H '  is the union of n sets (p). 
We have proved that 17' is long. 

I f / 7  is a train, we may now assume that H '  also intersects all horizontal lines of 

H '  (because it suffices to prove that /7'  cannnot be extended as a braided 
grating). The set H '  induces a set H of n points of H which intersects all vertical 
lines o f / 7 ;  i f / 7  is a train, H also intersects all horizontal lines o f / 7 .  Thus H is a 

fine of H which intersects all vertical lines of H.  Since H is (horizontally) loose, 
either H is a horizontal line or else H is the sole vertical line o f / 7 .  If H is a 
vertical fine, n = m;  s o / 7  is a boxcar. Then each point p of H is on a horizontal 

line o f / 7 ,  else a new vertical line could be added t o / 7 ;  namely,  ( H \ ( p } )  tO {q}, 
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where q is a new point. If G is a horizontal line, then G 4: H; so G contains a 
point x not in H, and x must lie on some vertical line. This contradiction ( tha t /7  
has two vertical lines) yields the conclusion that H is a horizontal line of /7 .  Then 
H '  is a horizontal line o f / 7 ' .  We have proved tha t /7 '  cannot be extended by the 
addition of a new horizontal line. Then /7' is a loose boxcar or a train, as 
required. [] 

Corollary 4.4. Let  kl ,  k2, m be positive integers with m >>- 2. Then, f o r  each o f  the 

fo l lowing sets o f  parameters,  there is a loose boxcar 17= (S, C, D )  with a 

horizontal  parallel class and a vertical parallel class: 

(i) a (2, kl  + k2)-boxcar with I f  I = k~l + k~ and IDI = 4, 
(ii) an (m, 2)-boxcar with ICI = 2 and IDI = m2; 

(iii) a (k  1 + k2, 2)-boxcar with IcI = 4 and IO[ = + k~; 
(iv) a (2, m)-boxcar  with IcI = m 2 and IDI = 2. 

Proof. The complete graph of four points may be regarded as a loose 
(2,2)-boxcar H with IcI--2 and I D I - 4 .  Stretching / /hor izonta l ly  yields the 
examples of type (i) while vertical stretchings o f / 7  yield the examples of type (ii). 
Interchanging the vertical and horizontal sets will turn the examples of types (i) 
and (ii) into the examples of types (iii) and (iv). [] 

Proposition 4.5. Let  m be the order o f  a projective plane, x and y be integers with 

x >- m and y >t O. Le t  A o, . . . ,  Ax and B1, • • •, By be positive integers. Then there 

is an (m, n)-train N* with 

x y 

n =  ~ Ai  + 2 ~'~ Bi, 
i = 0  i = 1  

x y 

c = ~ A m + 4 ~ B m, 
i = 0  i = 1  

d = mX-"+2[(m 2 + 1)/2] y, 

where [.] denotes the greatest integer function. 

Proof. By Lemma 4.1 there is an (m, m + 1)-train with m 2 horizontal lines and 
m + 1 vertical lines that are a parallel class. The Stretching Lemma yields an 
(m, n0)-train X 0 with no = Ao + • • • + Am, Co = A ~  +"  • • + A m and d o = m 2. The 
unique (m, 1)-boxcar is loose and hence may be stretched into a loose 
(m, Ai)-boxcar Xi with ci = A m and d i=  m for m < i ~ x. Next we apply Corollary 
4.4(iii) with k~ = k2 = m / 2  if m is even, with k 1 = (m + 1)/2 and k2 = (m - 1)/2 if 
m is odd. In both cases we obtain a loose (m, 2)-boxcar with four vertical lines 
and [(m2+ 1)/2] = :m '  horizontal lines. Uniform stretching yields loose (m, 2Bi)- 
boxcars/7/with 4B m vertical lines and m '  horizontal lines for 1 ~< i ~< y. Coupling 
the boxcars ~,,,+1, • • •, X~ and/ /1 ,  • • . , / ' / y  tO the train Z 0 yields the desired train 
X*. [] 
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Remark. At this point the reader may wish to skip ahead to the appendix to see 
examples of the use of Proposition 4.5 in obtaining upper bounds for m(k)  for 
selected values of k. 

5. Nets and boxcars 

In Section 5 we use nets (see [2] or [3]) to construct additional boxcars. A net 
of degree r, deficiency d and order g is an incidence s t ruc ture /7  = (S, C) with the 
following properties: 

(1) IsI = q2; 
(2) C is the disjoint union of r parallel classes of lines where each class is a set 

of q disjoint lines of size q; 
(3) two non-parallel lines have a (unique) point of intersection; 
(4) r + d = q + l .  

A n e t / 7  of degree r is often called an r-net. A transversal t o / 7  is a set of q points 
that contains (exactly) one point from each line of 11. An affine plane of order q is 
a ( q + l ) - n e t  of order q. Two nets ~ = ( S ,  Ci), i = l  and 2, are said to be 
complementary nets if Ca and C2 are disjoint and if 11: = (S, Ca tA C2) is an attine 
plane. The easy proof of the following lemma is left to the reader. 

Lemma 5.1. Let / /1  = (S, C) and H 2 = (S, D) be complementary nets of  order q. 
Suppose also that the only transversals of  Ha and 1I 2 are the lines o f  1I 2 and 111, 
respectively. Then (S, C, D) is a loose (q, q)-boxcar. 

In order to apply Lemma 5.1, we need the following result. 

Theorem 5.2 (A. Blokhuis [1]). Let F be a subfield of  order q of  K = GF(q 2) with 
q odd. Let T be a subset of  q elements of  K with the property that all or none of  the 
differences o f  pairs of  elements o f  T are squares. Then T is a coset o f  a subspace of  
K (regarded as a vector space over F). 

Corollary 5.3. For each odd prime power q, there is a loose (q, q)-boxcar 
(K, C, D) on q2 points with the following property: each of  C and D is the disjoint 
union of  (q + 1)/2 parallel classes o f  lines. 

Proof. Let E be the collection of all cosets of 1-dimensional subspaces of K 
regarded as a vector space over F. Then H = (K, E)  is an affme plane of order q. 
Half of the lines through the origin consist of points that are squares of elements 
of K. Let C denote the collection of all cosets of these lines, D denote E \ C .  
Then two points of H are joined by a line of C if their difference is a square and 
by a line of D if their difference is a non-square. By Theorem 5.2, the 
complementary nets (K, C) and (K, D) have no extra transversals, so Corollary 
5.3 follows from Lemma 5.1. [] 
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Remarks. By the theorem of Blokhuis, one may partition the parallel classes of 
any finite Desarguesian atiine plane of odd order q into two nets of degree 
(q + 1)/2 in such a manner that the only transversals of each net are the lines of 
the complementary net. In general the choice of partition is critical: it is well 
known, for example, that some nets of degree as large as q -  ql/2 have 'extra' 
transversals. On the other hand, if q is a prime, the following theorem shows that 
the choice of partition is completely arbitrary: for every non-linear function f 
from GF(p)  into itself, p a prime, the difference quotient ( f ( y ) - f ( x ) ) / ( y - x )  
assumes at least (p + 3)/2 distinct values. This theorem is due to Rrdei with an 
assist from Megyesi (see Theorem 24' and the preceding discussion on page 226 
of [12]). A recent brief proof of this theorem has been given by Lov~sz and 
Schrijver [9]. 

Proposition 5.4. Let m be an odd prime power; x and z be integers with x >t m and 
z >i0. Let A o , . . . ,  Ax and C~ , . . . ,  Cz be positive integers. Then there is an 
(m, n)-train Z* with 

x z 

n = ~ , a i + m ~ , C , ,  
i = 0  i = 1  

x z 

= + ((m + m) /2 )  C'2, 
i = 0  i---1 

d=mX-",÷2((mE+m)/2)L 

Proof. Corollary 5.3 guarantees the existence of loose (m, m)-boxcars which may 
be stretched into loose (m, mCi)-boxcars H i with (m 2 + m)C7'/2 vertical lines and 
(m2+ m)/2 horizontal lines. The desired trains X* are obtained by successively 
coupling boxcars H 1 , . . . ,  Hz to those trains of Proposition 4.5 which have y 
equal to zero. [] 

Appendix 

Call a value of k a 'good' value if k is of the form qn + qn-1 or 2q, where q is a 
prime power and n is a positive integer. Theorems 1.1 and 1.2 give re(k) < k 2 for 
all good values of k. Thus (1.1) yields m(k +s) < (k + s )  ts+2~ if k is good and s is 
a positive integer. Improvements in this bound for k + s  < 100, s = 1 were 
obtained in [5]. In this appendix we apply Propositions 4.5 and 5.5 to improve 
known upper bounds for k + s < 100, with s/> 2. The bounds and sketches of the 
proofs are indicated in Table 1. 

As an example, consider the case k = 40. Using 2q = 38, Theorem 1.2 gives 
m(38) ~< 1083. Application of either of the Propositions 4.5, 5.5 (with m = 2, 
x = 13, A o = A  1 = 2 and A 2 = A 3 = . - - = A 1 3  = 3) assures the existence of a (2, 
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Table 1. Upper bounds for m(k) 

upper bound 
k for m(k) proof 

40 133,820 (2q = 38), m = 2, Ao = A1 = 2, A 2 . . . . .  A13 = 3 
41 426,291 (2q = 38), m = 3, A0 = 2, A1 . . . . .  A 3 = 3, Ct . . . . .  Ca = 2 
52 355,268 (2q = 50), m = 2, Ao . . . . .  A 3 = 4, A4 . . . . .  A15 = 3 
53 1502,484 (2q = 50), m = 3, A 0 = A t = 4, A 2 = A 3 = C 1 . . . . .  C 3 = 3, C4 = C5 = 2 
67 1168,201 (q + 1 = 65), m = 2, Ao = 3, At . . . . .  AI6 = 4 
70 1379,690 (q + 1 =68),  m =2 ,  A o = A  1 =3 ,  A 2 . . . . .  A 1 7 = 4  

71 6293,877 (q + 1 = 68), m = 3, A0 = 5, At . . . . .  A 3 = 4, C~ . . . . .  C6 = 3 
76 1461,740 (2q =74),  m =2 ,  A0 . . . . .  A 3 = 5 ,  A4 . . . . .  A R T = 4  

77 7377,162 (2q = 74), m = 3, A0 . . . . .  A3 = 5, C1 = 4, C2 . . . . .  C6 = 3 
78 56041,072 (2q = 74), m = 4, A 0 . . . . .  A 4 = 6, B1 . . . . .  B6 = 4 
79 64034,058 ( 2 q = 7 4 ) , m = 5 ,  A o = 4 ,  A~ . . . . .  A s = C t = C 2 = 3 ,  C3 . . . . .  C5=2  
88 2527,376 (2q = 86), m = 2, A o = A 1 = 4, A 2 . . . . .  A 1 7  = 5 
89 14046,090 ( 2 q = 8 6 ) , m = 3 ,  A0 . . . . .  A 3 = 5 ,  C t = C 2 = 4 ,  Ca . . . . .  C7=3  
92 3851,072 (q + 1 =90),  m = 2 ,  A 0 . . . . .  A2=4, A 3 . . . . .  A18= 5. 
93 21267,725 ( q + l = 9 0 ) ,  m = 3 ,  A 0 = 6 ,  A t . . . . .  A 3 = 5 ,  C1 . . . . .  C 3 = 4 ,  C4 . . . . .  C 7 = 3  

40)-train with c = 1 1 6  and d = 8 1 9 2 .  Thus Theorem 3.1 yields m ( 4 0 ) ~  < 

c • m(38) + d <~ 133,820. 
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