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The intermediate variable technique, developed by S. Kaplun, “Fluid Mechanics 
and Singular Perturbations,” Academic Press, San Diego, 1967, and by P. A. 
Lagerstrom and R. G. Casten, Basic concepts underlying singular perturbation 
techniques, SIAM Reo. 14 (1972), 63-120, for the solution of singular perturbation 
problems, is applied to several problems which are normally solved by other pertur- 
bative methods. The objective of the present analysis is to obtain approximate solu- 
tions which are characterized by their domains of validity, so that the matching of 
adjacent solutions is promptly determined. The analysis also shows how the inter- 
mediate equations can be derived and how they play an important role in the deter- 
mination of approximate solutions. up 1990 Academic Press, Inc. 

1. INTRODUCTION 

In many branches of mathematical physics, the governing equations are 
non-linear. Because of that, exact solutions are rare and so approximate 
analytical solutions to differential equations must be sought. The purpose 
of this work is to show how the intermediate variable technique [ 1, 21 can 
be used to obtain an approximation to the solution of a differential equa- 
tion whose highest derivative is multiplied by a small parameter E. This 
technique differs from other classical perturbative methods, such as the 
matched asymptotic expansion method and the strained coordinates 
method [ 1, 33, in the sense that it resorts to the concept of an intermediate 
limit to find the approximate equations, and that this process yields equa- 
tions which are associated with different parts of the domain. Thus the 
intermediate variable technique avoids the conceptual difficulties of 
choosing the appropriate asymptotic expansions, and of determining the 
stretching functions. The emphasis of this technique is on characterizing the 
approximate equations by their domains of validity so that overlapping is 
promptly determined. However, the most important feature of this techni- 
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que is its simplicity, which makes it a powerful means of obtaining 
approximations for engineering problems. In this paper, we show how 
apparently complicated problems, which are normally solved using other 
perturbative methods, are easily solved by the intermediate variable techni- 
que. These problems range from an exactly soluble differential equation to 
the complex problem of an incompressible turbulent flow past a flat sur- 
face. A novelty of the present analysis is the derivation of the intermediate 
equations which are otherwise omitted. The analysis shows that, under 
some conditions, these equations can be used to find good approximate 
solutions. To the present authors’ knowledge, this is the first time that such 
a feature of the intermediate variable technique is being explored. The 
technique, as proposed here, is not to be seen as a substitute method to 
other classical perturbation methods, but as a technique which can be of 
great help in the pre-analysis of singular perturbation problems. 

2. THE INTERMEDIATE VARIABLE TECHNIQUE 

The objective of the intermediate variable technique is to split a differen- 
tial equation into a set of approximate equations which are uniformly valid 
in different parts of the domain. The approximate equations are obtained 
by applying an arbitrary limit process to the differential equation of the 
problem. Normally, the splitting of the equations gives first-order 
approximations only. However, an extension of the splitting may be 
obtained for higher orders by the introduction of a fictitious perturbation 
of an arbitrary order E, Kaplun [ 11. This procedure makes the use of 
arbitrary limit processes much more complicated and difficult to under- 
stand. Because of that, and despite realizing that such an extension 
provides a great deal of additional information about the domains of 
validity, we have opted in this work to not consider the splitting of a 
differential equation for higher orders. 

The q-limit of an equation E(x, y; 8) is defined as follows. Let the 
intermediate variable, i, be 

i+/(E) =x, (1) 

where, as indicated, q is an arbitrary function of E. Then, the q-limit of 
E(x, y; E) is 

lim, E(x, y; E) = lim E(i.r(s), ~7 e) as e --+ 0 with 2 fixed. (2) 

The above definition is of fundamental importance for what follows and so 
it should be well understood. It will be studied in more detail, together with 
some important concepts, in the next examples. 
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EXAMPLE 1. Consider the exactly soluble boundary layer problem given 
by 

,y”+ (1 +E) y’+ y=o, y(O)=O, y(l)= 1 (3) 

To find an approximation to Eq. (3) we substitute expression (1) above 
and obtain 

E 
7 ,Y’+ 

(1 +E) 
-p’+ c=o, 

rl r 

where j and j’ denote y($) and dp/di, respectively. 
Depending on the order of q, each term will have a formal order in E. 

The derivatives and i are considered to be formally of order unity. For 
example, the first term is formally of order .v-‘. 

Applying the limit process q-limit to Eq. (4), we find the following 
approximate equations for the various orders of 9: 

007) = 1, y+j=o (5a) 

O(E) < o(V) < 1, y=o (5b) 

o(1) = O(E)> 9” + p’ = 0 (5c) 

Oh) < O(E), 8” = 0. (5d) 

Equations (5a) and (5~) exhibit an important feature, that is, if v is such 
that the limit process q-limit applied to Eq. (4) gives Eq. (Sb), then the 
q-limit of Eq. (5a) and of Eq. (5~) also give Eq. (5b). These two equations 
are then said to be “rich enough” to contain Eq. (5b). Lagerstrom and 
Casten [2] make the following definitions: 

DEFINITION I. If E is an equation and lim,, E = E,, lim,, E = E, and 
also lim,, E, = E,, we say that E, contains E, (relative to E). 

DEFINITION II. The formal domain of validity of an equation F, relative 
to the “full” equation E, is the ord v such that lim, E is either F or an 
equation contained in F. 

Thus, according to these definitions, the domain of validity of Eqs. (5a) 
and (5~) are respectively 

D,={~/ord~>orda) (6a) 

and 

Di = { q/ord q < ord 1). (6b) 
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Equations (5a) and (5~) are the two important equations; they are, in 
fact, called the principal equations. They define the outer, (5a), and the 
inner, (5c), equations, and the thickness of the boundary layer (a). We shall 
call the other equations, (Sb) and (5d), the intermediate equations. 

Now, if some sort of relationship can be established between the formal 
domains defined by sets (6a-6b) and the actual domains of validity (as an 
approximation to the solution of Eq. (4)) of the solutions of Eqs. (5a) 
and (5c), one can easily justify the matching of the outer and the inner 
solutions. Using the notion that neighboring equations should yield 
neighboring solutions, Kaplun [ 1 ] enunciated the following heuristic 
principle: 

PRINCIPLE. Zf y is a solution of an equation E and E* is an approximate 
equation, then there exists a solution y* of E* whose actual domain of 
validity (as an approximation to y) includes the formal domain of validity of 
E* (as an approximation to E). 

The above principle is not always true and, in particular, it fails when 
small terms have large integrated effects [2]. In the present case, however, 
the principle can be applied. The overlap domain is then given by 

D,nDj= {@<vl@l}. (7) 

We now finally proceed to the solution of problem (3). From Eqs. (5a) 
and (5c), it follows that the outer and the inner solutions are respectively 

f(i)=Ae-’ (84 

and 

g(i)=B+CeC’. (8b) 

Since domain (6a) includes the point x = 1, Eq. (8a) must satisfy the 
boundary condition y( 1) = 1. This gives 

f(x) = e’ ~~ ‘. Pa) 

The inner solution in its turn must satisfy the boundary condition at 
x = 0, this gives 

B+C=O. (10) 

We still need a complementary condition to find B and C. We know that 
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the outer and the inner solutions must match in the overlap domain (7). 
Thus, we must have 

lim, f(x) = lim, g(x/s), &<r/41. (11) 

Note that in writing (11) we have used C? = x for the outer solution 
(Eq. (5a)) and R = X/E for the inner solution (Eq. (5~)). From expressions 
(10) and (11) it follows that 

B= e, C= -e. (12) 

So far, we have found two expressions which approximate the solution of 
the problem in the entire region. So, in theory, we have a solution which 
is uniformly valid in [0, 11. However, it is often of practical interest to 
represent the solution by one expression, h. To construct this expression, 
the so-called composite expression, we use here the additive composite 
method. In this method, the outer and the inner expressions are added and 
the part they have in common is subtracted, so that it is not evaluated 
twice. In the overlap domain Eq. (9a) assumes the value 

lim f(x) = e, x + 0. (13) 

Hence, it follows that 
h(x)=e’px-e’-xl”. (14) 

As just illustrated, the existence of an overlap domain is crucial to the 
matching of the outer and of the inner solutions. Unfortunately, the 
calculation of this domain is often too difficult, and so, as long as there is 
no inconsistency in the performance of the matching of the outer and inner 
solutions, one is normally happy in just assuming that there is such a 
region. 

In the next section we show how the search for the overlap region 
normally yields a large number of qualitative information about the 
problem under consideration. The analysis also shows that the intermediate 
equations may be used sometimes to great advantage. 

3. RESULTS 

To demonstrate the versatility of the intermediate variable technique, 
consider the problems: 

EXAMPLE 2. Problem with a boundary layer of thickness ~‘1~. 

,y” - x2y' - y  = 0, y(O)= y(l)= 1. (15) 

409!145’1-17 
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Applying the limit process q-limit to Eq. (15) we obtain 

WV) = 1, -,?“j’-3=0 (lea) 

o(&“2) < O(q) < 1, ,$=O (16b) 

O(q) = o(&“2), y-y=0 (16~) 

O(v) < w&1’2), j” = 0. (16d) 

The two principal equations, easily spotted, are Eqs. (16a) and (16~). 
Consequently the outer and the inner variables are 2=x and 1 =X/E”*, 
respectively. Note that for this case the thickness of the boundary layer 
is siJ2, 

The general solution to Eq. (16a) is 

I; = A&/-: 9 (17,) 

where, to satisfy the boundary condition y( 1) = 1, we have A = e-‘. 
The inner solution (Eq. (16~)) in its turn is given by 

(17b) 

where, the boundary condition y(O) = 1 implies that B + C = 1. 
The two parameters B and C must be determined as in the previous 

section, that is, by matching solutions (17a)-( 17b). Here, we start to 
suspect that something must have gone terribly wrong with our analysis, 
since the outer solution blows up as 2 tends to zero and hence no matching 
can be performed. Indeed, we have overlooked the fact that the function 
multiplying the first derivative in Eq. (15), x2, becomes zero at 1= 0. This 
makes the outer solution singular at 2 =0 except when j(O) = 0, that is, 
A = 0. However, we have seen that A must be e-- ’ so that we have y( 1) = 1 
satisfied. What in fact happens here is that we have a boundary layer of 
thickness E at x = 1, whose solution should be able to satisfy y( 1) = 1 and 
match with solution (17a). The existence of the right boundary layer is 
indeed suggested by Eq. (16b). This equation states that the approximate 
solution, j = 0, applies over a large portion of the domain, E”* -@ ~6 1, so 
that the actual solution must “jump” near 1 to satisfy y( 1) = 1. As a matter 
of fact the two intermediate equations yield 

and 

j=ax+h in Di = (q/q & s”*}. (18b) 
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NUMERICAL SOLUTION (E=0.005) 

EQUATION (19) 

FIG. 1. Comparison of exact and approximate results. 

This is an important result which gives us an approximate solution for 
the whole of the domain except in the neighbourhoods of x = 1 and of 
x = .s’/‘. To get an app roximation for the interval [O, l] we extend 
solutions (18a)-( 18b) to the points x = 1, x = s’j2, obtaining 

i 

&-1’2X+ 1, X<&‘12 

h= 0, &1’2<x< 1 (19) 
1, x= 1. 

Figure 1 compares the above approximation with the actual solution of 
Eq. (15) for E = 0.005. The agreement is reasonable. Of course, the 
agreement becomes better as E tends to zero. 

EXAMPLE 3. Boundary layer with a singularity. 

EyTt+K+y=o, Y(1)=eP1/2 
X y(0) = 0. (20) 

To solve this problem we apply the q-limit to Eq. (20) to obtain 

O(v) = 1, y/z? + 9 = 0 @la) 

WV) < 1, y/-12 = 0. @lb) 

Observe that no second-order approximate differential equation occurs 
no matter what is the order of q(s). Therefore, a complete approximate 
solution to problem (20) seems to be impossible to obtain through the 
present procedure. In fact, this difficulty is inherent to the problem and 
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occurs with any perturbation method used. The singularity at x = 0 of the 
term l/x multiplying the first derivative in Eq. (20) is, of course, the cause 
of our difficulties. To avoid this singularity we redefine the intermediate 
variable as 

.f = (x - 1 )/r/(E). (22) 

Substitution of the above equation into Eq. (20) gives 

P’+ 

“I 
Y - + f/p = 0. 

I+iYj (23) 

Now, passing the limit process q-limit in expression (23) we obtain 

O(v) = 1, j’+(l +g-) p=o (24a) 

O(E) < WV]) < 1, i,‘=O (24b) 

WI) = WE), j” + 3’ = 0 (24~) 

WV) < W&h j” = 0. WI 

The two principal equations are obviously given by Eq. (24a), the outer, 
and Eq. (24c), the inner. The outer equation subject to the boundary 
condition y( 1) = e- I’*, gives 

pe-(l+.t)?/2 
> Wa) 

whereas, the inner equation subject to the other boundary condition gives 

j=Ae-“+B, Wb) 

AelI’+ B=O. WC) 

Comparison of Eqs. (25a) and (25b) in the overlap region, E G q G 1, 
determines B = 1, so that A = -e ~ “‘. The composite solution constructed 
using Eqs. (25a) to (25~) is then given by 

j= ~,-.x/i:+,~-\-~l*~ 
(26) 

This example illustrates well the capability of the intermediate variable 
technique of anticipating difficulties in the search for the solutions of 
perturbation problems. Thus the necessity of using some sort of co-ordinate 
transformation is evident from Eqs. (21a)-(21b). Since the intermediate 
equations are arrived at with great ease, their derivation is worthy and 
avoids unnecessary work. 
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EXAMPLE 4. Nested boundary layers. Consider the problem defined by 

E3Xf + x2y’ - y(x3 + E) = 0, y(O)= 1, y(l)=&. 

Substitution of the intermediate variable, x = iv(c), gives 

(27) 

(28) 

Passing the q-limit in Eq. (28) we obtain 

O(1) = 1, 9j’ - pa3 = 0 (294 

O(E) < O(1) < 1, a’$ = 0 (29b) 

O(v) = O(E), pJy - 9 = 0 (294 

Ok21 < O(v) < O(E), p=o (29d) 

o(q)=o(E2), iy’-j=o We) 

O(1) < O(E2h jy’ = 0. Wf 1 

The particularity of this example is the occurrence of three principal 
equations, Eqs. (29a), (29c), and (29e). This implies that now we have two 
boundary layers, one of thickness E and another of thickness E*, both of 
them at x=0. The necessity of working with a set of two inner equations 
is not clear at all from Eq. (27), and any attempt by a inexperienced user 
of perturbation methods to apply a classical method, such as the matched 
asymptotic expansion method, to Eq. (27) would probably lead to an 
unsuccessful first-try. Our straightforward analysis, however, quickly 
reveals the structure of the domains of the several approximations. Thus, 
solutions of Eqs. (29a) and (29~) must match in the overlap region, 
E 3 q < 1, whereas solutions of Eqs. (29~) and (29e) must match in the 
overlap region, a2 < r~ + E. The general solution of (29a) with the boundary 
condition y( 1) = & gives 

5 = e-a=/2* 
@a) 

The outermore inner solution (Eq. (29~)) is given by 

g=Ae-‘/* (Job) 

Comparison of Eq. (30a) as f tends to zero with Eq. (30b) as i tends to 
infinity determines A = 1. It is obvious that Eq. (30b) does not satisfy the 
boundary condition at x = 0. This is done by Eq. (29e) whose solution is 

3 = B~t-“*Z,(2i-‘*) + Cz?“2K,(2f”2), (3(k) 

where I, and K, are solutions of the modified Bessel equation. 



250 FREIRE AND HIRATA 

The matching of Eqs. (30b) and (30~) yields 

B=O. c=2. 

Hence, the approximate solution of Eq. (27) is 

j=e- r12+,-c:xL 1 +2X1/2e-1K,(2X1/2e- 1). (31) 

EXAMPLE 5. Turbulent boundary layer. Consider now the problem of a 
two-dimensional, incompressible, turbulent fluid Rowing over a flat surface. 
The equations of motion for a steady flow can be written as 

(a) continuity 

(b) momentum 

a17 ;/axi = 0 (324 

(32b) 

In these equations, xi, i = 1,2, are the tangential and normal co- 
ordinates to the surface, ui are the velocities, p is the pressure, and p is the 
density. The superscript denotes turbulent fluctuations and the bars denote 
conventional time averaging. A summation is understood for repeated 
indices. All quantities are non-dimensional based on properties evaluated 
at external condition. 

The small parameter, E, is introduced assuming [4] that the fluctuations 
are of the order of the non-dimensional friction velocity, ur, that is 

(33) 

Here, u, and L are reference quantities and t, is the total shear stress at 
the wall. The second small parameter, E ,̂ arises from the fact that the 
kinematic viscosity, v, is small and so viscous terms are only important 
close to the wall. Hence we have 

where R denotes the Reynolds number. 
The solution of Eqs. (32a)-(32b) is required to satisfy the no-slip and 

no-permeability conditions at the wall, that is, 

U,(Xl) 0) = i&(X2, 0) = 0. (35) 
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Upstream the flow has to agree with some previously prescribed velocity 
profile. 

Substitution of the intermediate variable 

a,r(&) =x2 (36) 

into Eq. (32b) together with the fact that Eq. (32a) gives &&/ax2 = 
O(&,/ax,), yields for the various orders of q: 

(a) momentum equation in tangential direction: 

Oh) = 1, 

WE21 < O(u) < 1, 

O(rl) = O(E2), 

O(rl) = O(G^), 

O(4 < O(V)? 

where zXY denotes -. 

au, ati, -1 ap, u,-++*-=-- 
ax, ai P ax, 

_ au, _ aii, -1 apl 
Ulax,+U’aa,=pax, 

aii, aii, -I ap, aT 
jj,-++2,=--++ 

ax, ax, P ax, ax2 

dzv 
ai 

-0 

at, a2ul 
aa+-= 

2 ax, 

a%, o -= 
a.$ ' 

(b) momentum equation in normal direction: 

O(v) = 1, aji,/aa, = 0 

O(v) < 1, ap,/aa, = 0. 

(374 

W’b) 

(37c) 

WI 

(374 

Wf) 

The principal equations are Eqs. (37a), (37c), and (37e). They show that 
far away from the wall, in the outermost layer, the Reynolds stress and the 
viscous stress effects can be neglected. Approaching the wall, a layer is 
reached where the inertia, pressure and Reynolds stress effects are of the 
same importance. Further down, very close to the wall, a new region is 
reached where the Reynolds stress and the viscous stress effects are the 
dominating effects. Thus, the approximate solution to this problem consists 
of three solutions which must be matched in the overlap domains defined 
by Eqs. (37b) and (37d). The x,-momentum equation just shows that to 
the lowest order, pressure is constant across the boundary layer. 
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The difficulty with this example is that the principal equations are still 
complicated equations. To solve them we first need to introduce a tur- 
bulence model to relate the Reynolds stress to the mean velocity field. For 
the sake of simplicity we use the mixing-length theory of Prandtl together 
with the Van Driest assumption about the form of the mixing-length, 1. 
Hence it follows that 

2 

5 r,,=p 2 [ 1 2 
Wa) 

with 

l=K&[l -exp(-i-,/A)], A = constant. Wb) 

Substitution of Eqs. (39a)-(39b) into Eq. (37e), subject to the boundary 
condition U,(x,, 0) = 0 and the assumption that close to the wall the total 
shear stress is nearly constant, yields 

(40) 

where B = 12~2. 

Equation (40) gives a continuous velocity distribution in the domain 
q 4 s2 defined by Eq. (37e). Very close to the wall, in the so-called wall 
layer, Eq. (40) reduces to 

ii1 = &i2 (41) 

as implied by Eq. (37f ). 
In the region of fully turbulent flow, E  ̂+ q 4 s*, it reduces to 

z?,=s(K-‘ln.?-,+C). (42) 

The above equation is the famous law of the wall. It could have been 
derived directly from the intermediate Eq. (37d). Note that classical pertur- 
bation methods would have omitted the two important intermediate 
Eqs. (37d) and (37f ). 

A complete solution for the entire flow region depends now on the solu- 
tion of Eqs. (37a) and (37~). These equations are complex and it is not our 
aim to solve them here. Indeed, in this example we have striven to show 
how the intermediate variable technique can be used to obtain valuable 
qualitative information about the inner layers that arise in a turbulent 
boundary layer problem. 
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4. FINAL REMARKS 

In this work, we have not tried to propose a substitutive method to 
classical perturbation methods, but have presented a method which can be 
used with great advantage in a pre-analysis of singular perturbation 
problems. The method, as introduced here, is not suitable for finding 
higher order approximations, but provides very good lower order results. 
The emphasis is on obtaining qualitative results and on characterizing 
approximate solutions by their domains of validity. In particular, we have 
shown how the intermediate equations can sometimes provide useful 
approximations. Another interesting feature of this method is the 
possibility of coupling it with numerical techniques. Thus the principal 
equations of Example 5 could be solved numerically with a patching of 
adjacent solutions being performed in the overlap regions. 
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