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0. INTRODUCTION 

Mathematical models of competition between species of organisms fre- 
quently involve systems of ordinary differential equations having the form 

x = (x,, x2,..., x,) 

and for which 

$ (Xffi(ty X))=xi$j Go 

J J 

(0.1) 

(0.2) 

for i#j, (t,x)ERxR”,, R”, = {x: xi > O}. The biological interpretation of 
(1.2) is that an increase in a competitor’s population size or density can 
only have a negative effect on a species per capita growth rate due, 
perhaps, to the competitor consuming resources which then become more 
scarce. The class of systems (0.1) satisfying (0.2) is a subset of a more 
general class of systems referred to as competitive systems by Hirsch [6]. 
Much of the early literature consists of the study of particular examples of 
systems having the form (0.1) and satisfying (0.2), such as the so-called 
Gauss-Lotka-Volterra-type systems in which the fi are linear time- 
independent functions of x. For these systems, there is an extensive 
literature [2, 5, 111. Important among these is a paper of May and 
Leonard [l 1 ] which pointed out that complex asymptotic behavior is 
possible in the three species Gauss-Lotka-Volterra model. For particular 
values of the parameters, solutions approach a triangular cycle consisting 
of three one-species equilibria together with three connecting heteroclinic 
orbits. 

The full range of asymptotic behavior possible for general vector fields 
can be realized with competitive systems. This, essentially, is the content of 
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a note by Smale [13] who showed that any vector field on the standard 
n - 1 simplex in R" can be imbedded in a smooth competitive vector field 
on R" for which the simplex is an attractor. On the positive side, Hirsch, in 
a series of papers [6-93 establishes that the limit sets of competitive 
systems can be no more complicated than those of general systems in one 
fewer dimension. The papers of Hirsch are especially important for 
introducing some useful techniques for treating monotone flows. 

The above-mentioned work focuses on autonomous systems. Our focus 
in this paper is on nonautonomous, periodic, competitive systems: 

.fi(t + 2% xl = fit4 xl (0.3) 

of normalized period 271. In the applications, periodicities in the parameters 
are introduced to model day-night or seasonal forcing. Of course, one can- 
not expect the asymptotic behavior of general periodic competitive systems 
to be any more tame than autonomous ones and indeed one might expect 
far worse. Important results for periodic systems were obtained by de Mot- 
toni and Schiafhno [ 121 for the two-dimensional Gauss-Lotka-Volterra 
system. They showed that all solutions are asymptotic to 2rr-periodic 
systems, described where these periodic solutions must lie, and obtained 
results on the basis of attraction of the one species periodic solutions. This 
paper is especially beautiful for its geometric approach; the authors study 
the discrete dynamical system generated by the Poincare map: 
x(0) + ‘x(27r). The methods employed in [ 123, although for a particular 
set of equations, turn out to have general applicability as was pointed out 
by Hale and Somolinos [4]. 

In [15], the present author introduced invariant manifold techniques 
which together with ideas of Hirsch, proved to be moderately successful for 
both competitive and cooperative periodic systems (reverse the inequalities 
(0.2)), at least for the discussion of periodic solutions of (0.1). However, the 
focus in [ 151 was primarily on cooperative systems. The purpose of the 
present paper is to employ many of the same ideas used in [15] to the 
study of competitive periodic systems. Competitive systems are slightly 
more difficult to work with than cooperative ones. The solution map of the 
latter preserves the natural partial ordering on R" (the Kamke theorem 
Cl]), whereas the solution map of the time-reversed competitive system 
preserves the partial ordering. In addition, the property of competitiveness, 
(0.2), places no restriction on the one-dimensional subsystems on each 
coordinate axis. To obtain general results for competitive systems, we are 
forced to introduce four important additional restrictions on (0.1). First, a 
reasonable restriction on the one-dimensional systems, from the point of 
view of applications, is that either the origin is a global attractor or there is 
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a unique nontrivial globally stable 2rr-periodic solution. Also motivated by 
the applications, we assume that no periodic solutions of (0.1) are repelling 
(all multipliers outside the unit circle). For this to be true, it sufhces, for 
example, that 8fi/axi Q 0 along periodic solutions. In [7], Hirsch indicated 
the importance of the assumption that ((a/ax,)(x,f,)) be an irreducible 
matrix. We require this to hold for each subsystem of (0.1) obtained by 
setting some of the xi = 0. Finally, for our consideration of two-dimen- 
sional competitive systems we assume that all Zn-periodic solutions are 
nondegenerate. 

For general n-dimensional periodic competitive systems satisfying the 
above-mentioned restrictions, we come very close to concluding that the 
limit set of every nontrivial orbit 0 +(x) = { T”x: n > 0}, where T is the 
Poincare map for (O.l), lies on a certain lower dimensional manifold which 
we describe in some detail. This lower dimensional manifold does contain 
all the p-periodic points of T, for every p. Under the additional assumption 
that the fixed points of Tare hyperbolic we are able to significantly extend 
the results of de Mottoni and Schiafhno for two-dimensional systems. In 
fact, we describe completely the possible “phase portraits” for the discrete 
dynamical system generated by the Poincare map T. 

We proceed as follows. In Section 1, various notations and conventions 
are introduced. In Section 2, the Poincare map (period 27~ map) for (0.1) is 
introduced and the various hypotheses mentioned above concerning (0.1) 
are translated into properties of the Poincare map. In Section 3, the class of 
competitive maps on R”+ is introduced and the discrete dynamical system 
generated by such a map is studied from a geometrical viewpoint. In the 
final section attention is restricted to the two-dimensional case where we 
catalogue the realizable phase portraits assuming all fixed points are non- 
degenerate. 

As we mentioned earlier, many of the important ideas used in this work 
are due to Hirsch [6-91 and to de Mottoni and Schiafhno [12] (see also 
Hale and Somolinos [4]). In addition to these, an invariant curve theorem 
for mappings, proved in [4] and first used in our earlier work on com- 
petitive and cooperative systems is crucial to our approach. This theory 
together with the Perron-Frobenius theory of positive matrices allows us 
to obtain monotone invariant curves associated with periodic points of 
competitive maps. 

The example of Leonard and May [l 1 ] and the theorem of Smale [ 131 
indicate that it is not likely that all possible “phase portraits” of com- 
petitive maps on R3 can be described even assuming the hyperbolicity of all 
periodic points. On the other hand, we have essentially complete infor- 
mation on the dynamics of the competitive map on each of the three two- 
dimensional faces of R: and Section 3 provides considerable information 
on the location of limit sets. We are led to believe that, at least in several 
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biologically interesting cases, a fairly complete description of the dynamics 
of a competitive map in R: is possible. It is our intention to pursue this 
goal in a future paper. 

1. NOTATION AND DEFINITIONS 

Throughout this paper, the letter n is reserved for the dimension of the 
euclidean space R”. Given two vectors (matrices) x and y we write x < y or 
x < y in case the order relation holds component-wise. Two vectors x and y 
are related (weakly related) if x< y or y <x (x< y or y<x). Let R”, = 
{x E R”: x 3 O> be the usual nonnegative cone and A”+ denote its interior. 
The usual basis for R” will be denoted by {e,, e2,..., e,>. We reserve the let- 
ter N for the set N= { 1, 2,..., n}. If IS N, let #I denote the cardinality of Z 
and C(Z) the complement of I in N. Given Zc N, let H, be the subspace of 
R” generated by {ei}i,,. If x and y are two n-vectors in H, we write x <,y 
provided xi < yi for every i E Z (the subscript on < is dropped if I= N). Let 
H: = {xEH,: x20) and fi: = {xEH~: x>,O). If x~y, let [x, ~1 be 
the order interval {z: x <z d y }. 

An n x n matrix A is reducible if it leaves invariant one of the subspaces 
H,, where Z is a nonempty proper subset of N. Otherwise A is irreducible. 
If Z is a nonempty subset of N and A is an n x n matrix, let A, be the 
#Ix #I submatrix of A obtained from A by deleting from A the rows and 
columns indexed by elements of C(Z). The spectrum of A will be denoted 
spt.4 1. 

If A is a subset of a topological space X, 2 denotes the closure of A in X 
and 8,A denotes the boundary of A relative to X. 

2. THE POINCARE MAP FOR COMPETITIVE SYSTEMS 

In this section we will be concerned with the nonautonomous system of 
differential equations 

x: = Xifi( t, x) = Fi( t, x), l<i<n, 

x = (XI 9 x2,-., -4, 
(2.1) 

where the function F( t, x) = (F, ,..., F,,) is defined and continuous, together 
with its first and second derivatives with respect to x, for (t, x) E R x U, 
where U is an open subset of R” containing R”, . We write &t, S, x0) for the 
solution map of (2.1), that is &. , S, x0) is the unique solution of (2.1) 
satisfying x(s) = x,,. We will assume without further mention that the 
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domain of 4( ., S, x,,) includes [s, oo] in case x0 E R”,. In addition to the 
special form of (2.1) we make two additional assumptions. 

(I) F is periodic in t of normalized period 2~ 

F(t + 275 x) = F(t, x). 

(II) The system (2.1) is competitive in the sense that the following 
two conditions hold: 

(A) (8FJax,)(t,x)<Ofor i#j, (t,x)ERxR”+. 

(B) For each Ic N, I# 4, the matrix 

(f$(t,x))(i,I)EIXI 

is irreducible for each (t, x) E R x I?:. 

Hirsch introduced the notion of a competitive system (2.1) (although he 
only required (A) hold) and stressed the importance of the assumption that 
(aFilaXj)(i,j)eNxN be irreducible in two important papers [6, 71 (see also 
Krasnoselskii [lo]). Our assumption (B) is motivated by considering the 
subsystem of (2.1) on H,, q5 # Zc N: 

x; = Fi( t, x), iEI,xEH,r+. (2.1,) 

Our assumption on the form of the Fi guarantees that H, is an invariant set 
for (2.1). Clearly the inequalities in (II)(A) are inherited by the subsystem 
(2.1,). However, the assumption that (~FJ~x,)(~,~)~~~ ,,, is irreducible for 
(t, x) E R x A; is not inherited by the submatrix (c?F,/~Jx~)~~, jjE ,X ,. We want 
the strong properties that irreducibility implies (see Proposition 2.3) to 
hold for each subsystem (2.1,). This is the motivation for (II)(B). 

Hereafter we will assume (I) and (II) hold and refer to (2.1) as a periodic 
competitive system. We will want to make additional assumptions on (2.1) 
motivated by the applications. To motivate these additional assumptions, 
consider the n one-dimensional subsystems 

x; = xJ;(t, (0 )...) 0, x,, 0 )..‘) 0)). 12-li) 

Our assumptions so far say essentially nothing about these one-dimen- 
sional subsystems, they could have any number of nontrivial 2n-periodic 
solutions (recall that for a scalar equation each bounded solution is either 
2rc-periodic or asymptotic to a 2rc-periodic solution). One should not 
expect to go far towards a qualitative understanding of (2.1) with this 
much freedom in each one-dimensional subsystem. Taking our cue from 
the applications we will make the following assumption: 
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(III) For each i E N the trivial solution of (2.1,) is hyperbolic, i.e., the 
Floquet multiplier, li, of the trivial solution, a positive number, is not 
unity. Either li < 1 in which case we assume the trivial solution is a global 
attractor for (2.1,) or Ai > 1 in which case we assume there is a unique, non- 
trivial, 2rr-periodic solution which is hyperbolic and every nontrivial 
solution of (2.1,) is attracted to this 2x-periodic solution. 

If (2.1) represents a community of competing species whose densities are 
given by x, then each species, in isolation from its competitors, will either 
become extinct or asymptotically approach a nontrivial oscillating pop- 
ulation density which is independent of initial conditions. This is the con- 
tent of our assumption (III). It is satisfied by most of mathematical models 
of competition which arise in the applications [2,4, 5, 111. By confining 
our considerations to systems satisfying (III), we will be ignoring some 
interesting cases, for example, when one or more of the species has several 
possible stable regimes available to it depending on initial conditions. Most 
of the techniques we use will apply to these other cases as well. 

We will make an additional assumption on (2.1) but before doing so it is 
convenient to define the fundamental object of study in this paper, namely, 
the Poincare map for (2.1). Let 

for those x for which the right-hand side is defined, namely an open set 
containing R”, , which we again label U. Let us state the consequences of 
our assumptions concerning (2.1) for the Poincare map T. Proofs for these 
assertions can be found in [ 151. First, the form of (2.1) implies that T fixes 
the origin and maps each of the sets H,, H,?, k: into itself where 
+f~ # Zc N. It is well known that T is a C*-diffeomorphism of U onto the 
open set TU which is orientation preserving. Our assumption (II)(A) 
implies that the time-reversed system (2.1) satisfies the Kamke condition 
[ 1 ] and results in 

PROPOSITION 2.1. Zf x, y E R”, and TX < Ty then x < y. 

PROPOSITION 2.2. Zf x E R”, and TX = y then [0, y] E T( [0, x]), 

The proofs of the two propositions can be found in [15, Corollaries F 
and G]. Proposition 2.1 says that T- ’ preserves the < relation and 
Proposition 2.2 describes a property of the domain of T-l, the open set 
T(U) containing T(R”+ ), which will prove to be important. As we men- 
tioned earlier, Hirsch [7] pointed out the stronger monotonicity properties 
that obtain if one assumes that (@,/ax.) , (r,,)ENx N is irreducible. In (II)(B) 
we have assumed more in order that the restriction of T to H: enjoys the 
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same properties as T. In the following proposition we state the result for T 
on Z?!+ with the relations < and d. An identical statement holds for TJ H, 
on H,? with the relations <I and G,. 

PROPOSITION 2.3. Zf x~Zb+ then DT(x)-‘>O. Zf x, PER”,, Tx<Ty, 
x# y and y>O then x-c y. 

Proposition 2.3 is contained in [15, Theorem D and Corollary E]. To 
clarify the remark preceding the statement of Proposition 2.3, we describe 
the first assertion of Proposition 2.3 as it relates to TI H,. If x E fi,? then 
D(T( H,)(x) is the #Ix #Z matrix obtained from DT(x) by deleting rows 
and columns indexed by j E C(Z). Proposition 2.3 together with the remark 
preceding it implies that D(Tj H,)(x)-1 > 0. Note that if x E k,+, DT(x) is a 
reducibile matrix (8Tj/8xi =0 for ieZ, jrz C(Z)) with D( TI “,)(x) as a sub- 
matrix. 

The significance of the fact that DT(x)-’ > 0 if x E A; (D(TI “,)(x)-I > 0 
if x E Z?,+ ) is that the Perron-Frobenius theory of positive matrices applies. 
Recall that if A > 0 is an n x n matrix then the spectral radius of A is a 
positive simple eigenvalue of A exceeding in modulus all other eigenvalues 
of A. Moreover, corresponding to the spectral radius is an eigenvector in 
Z?+ which is the only eigenvector of A, up to scalar multiple, which belongs 
to R”,. If A 2 0 and nonsingular then the spectral radius is still a positive 
eigenvalue though not necessarily simple nor exceeding in modulus other 
eigenvalues. There is an eigenvector in R”, corresponding to the spectral 
radius though it need not be positive nor unique. We refer the reader to 
[16] for the theory of nonnegative matrices. If DT(x)-’ >O, the 
Perron-Frobenius theory implies that DT(x) has a positive simple eigen- 
value which is strictly smaller in modulus than all other eigenvalues of 
DT(x) and a corresponding positive eigenvector. We will write p(x)(p[(x)) 
for this uniquely determined eigenvalue of DT(x)(D( TI H,)(~)). Notice that 
p(x) is well defined even if XEZ?,?(DT(X)~‘ZO) and ,u(x)<~,(x). 

The eigenvalue p(x)(~~(x)) has a special significance if x is a fixed point 
of T. In that case d( t, 0, x) is a 2x-periodic solution of (2.1) and p(x) is the 
smallest Floquet multiplier corresponding to the variational equation along 
&t, 0, x). Of course, p(x) does not determine the stability of &t, 0, x) as a 
solution of (2.1) (or of x as a fixed point of T) but in case p(x) > 1 we say 
that x(&t, 0, x)) is a repelling fixed point of T (repelling periodic solution 
of (2.1)). If x is a periodic point of T, that is, T*x = x for some positive 
integer p and Tjx # x for j= 1,2,..., p - 1, then $(t, 0, x) is a 2np-periodic 
solution of (2.1). The Floquet multipliers of the variational equation along 
(2.1) are just the eigenvalues of D(Tp)(x)= DT(TPplx) DT(TP-*x)... 
DT(x) which has a positive (nonnegative) inverse if x > 0 (x20). 
Consequently, D( TP)(x)(D( TI H,)p(x)) has a smallest positive eigenvalue 
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(Floquet multiplier) which we label p,(x)@,,,(x)). Note that as before 
~~(4 G Pi,, if x E W . 

Our final hypothesis concerning (2.1) is most easily motivated from the 
point of view of the applications. Before doing this we state the hypothesis: 

(IV) For each Z, 4 # ZG ZV, and for each 2rrpperiodic solution, x(t), 
of (2.1), in k:, p a positive integer, we have 

1;“’ [ c x,(t) 2 (t, x(t))] dt < 0. 
icl I 

Hypothesis (IV) is obviously satisfied if af,/ax, 6 0, 1 6 i < n and this is in 
fact the case for most models of competition in ecology. The inequality 
afi/axi 6 0 expresses the usual assumption in ecology that increasing a 
species’ density does not increase its per capita growth rate, indeed it 
usually decreases due to crowding or other effects. Hypothesis (IV) has the 
following important implication, which is really our sole reason for assum- 
ing it. In the next section we will merely assume the following result holds. 

PROPOSITION 2.4. If x E k: is a p-periodic point of T then pp,,(x) < 1, 
d#ZcN. 

Proof We write x(t) = &t, 0, x) for the 2np-periodic solution of (2.1,) 
which lies in fi,+. In case Z= {i}, the result follows from our hypothesis 
(III). Assume Z contains at least two elements. Then 

Det D((TI H,)P)(~) = Det 

s 

2nP 
= exp (Div F,)( t, x(t)) dt 

0 

In the above calculation, @/ax, represents the #Z x #Z submatrix of &j/ax 
obtained by deleting the jth row and column of &$/ax if j E C(Z). In other 
words, @//ax, is the fundamental matrix solution of the variational 
equation of (2.1 I) along x(t). Similarly, Div F, is the divergence of the vec- 
tor field F( H,. Now, since the product of the moduli of the eigenvalues of 
D(( TJ H,)P)(x) cannot exceed unity and the smallest eigenvalue, p,Jx), is 
positive and strictly smaller in modulus than the remaining eigenvalues, the 
result follows. 
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Observe that Proposition 2.4 is stronger than the assertion that T( Tl “,) 
has no nontrivial repelling periodic points. One could probably give a 
plausible biological argument for assuming the latter. 

Proposition 2.4 may be known to other researchers who have worked 
with competitive systems. The author believes the genesis of his idea of 
assuming (2.2) occurred after listening to a talk by G. Butler at the Univer- 
sity of Alberta. 

If is worth noting that if, for each nonempty set Is N, (af,/ax,)(t, x) < 0 
for (t,x)~RxZ?: and (i,j)EZxZthen (II)(A) and (B) hold, (IV) holds, 
and the uniqueness and local asymptotic stability hold in the final 
statement in (III). It turns out that, as a consequence of assuming (III), all 
forward orbits of (2.1) are bounded so our assumption that solutions are 
extendable into the future is redundant (see Proposition 3.4 in the next sec- 
tion). 

3. THE DYNAMICS OF COMPETITIVE MAPS 

In this section we study the discrete dynamical system generated by what 
we term competitive maps. The class of competitive maps include the Poin- 
care maps for periodic competitive systems (2.1) satisfying (I) and (II)(A) 
and (B) of Section 2. More precisely, let U be an open neighborhood of R”, 
and T: U + R”. We say that T is a competitive map provided the following 
hold: 

(Hl ) T is an injective, C* diffeomorphism onto T(U). 

(H2) For each nonempty Is N, the sets A = H,, H,? and a,? have 
the property that T(A)cA and T-‘(A) GA. 

(H3) For each nonempty subset Zc N and XE~,+, D(Tj H,)(~)p’ = 
DT(x);’ > 0. 

(H4) If x E R”, and y = TX then [0, y] c T[O, x]. 

(Hl) implies that LIT(x) is nonsingular for every x E U. It follows that 
for XEE~:, DT(x), is nonsingular so that the content of (H3) is that 
DT(x), has a positive inverse. 

Our first three results below are rather technical in nature and might 
well be skipped over in a first reading. They are the tools which are useful 
in the results to follow. The study of the discrete dynamical system 
generated by T begins following the proof of Proposition 3.3 where we 
make some assumptions about the action of T on each coordinate axis. In 
our first important result, Proposition 3.4, we show that orbits of points 
under the action of T approach a bounded set. Thereafter we may restrict 
our attention to this bounded set. 
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Most of the following properties of competitive maps follow immediately 
from (H2)-(H4). 

PROFWITION 3.1. Let T be a competitive map. Then 

(i) X)=0. 

(ii) T is orientation preserving. 

(iii) For each nonempty subset I c N, TI H, is competitive; TP is com- 
petitive for each positive integer p. 

(iv) For each nonempty subset ZC N and distinct points x and y in H: 
with y > I 0 satisfying TX < Ty we have x <, y. 

Proof. (H2) implies that 70=0 and that DT(O)=diag{A,,..., A,}, 
where Ai = (d/dxJ Ix,=oT I HI,1 30. By (Hl), Ai >O, 1 di~n, and (ii) 
follows. Part (iii) is easily checked. To prove (iv) we follow Hirsch [7]. 
For each s, O<s<l, STY + (1 -s) TX E T(H: ) by (H4) and 
x, E T- ‘(STY + (1 - s) TX) E fi,+ for 0 < s d 1 by (H2). Consequently we 
have 

D(T-‘)(Tx,)ds 1 (Ty- TX) 

DT(xJ’ ds (Ty - TX). 1 
(H3) and the above calculation imply that (iv) holds. 

The following very simple result turns out to be of fundamental impor- 
tance. 

LEMMA 3.2. Let a be a positive number, y E R”, , i E N and suppose y and 
aei are distinct points with yi < a. Then Ti( y) <: Ti(aei). 

Proof If YE Hii) then by assumption yi <a and the result follows by 
(H3) which implies that (d/dxJ( T( “{,)) > 0. If yi = 0 then the result follows 
from (H2). We suppose yi > 0 and yj > 0 for some j # i. Let Ic N be such 
that y E A,,+. Clearly aei E H1+ and if Ti( y) 2 T,(ae,) then Ty > T(ae,) so by 
Proposition 3.l(iv) we have y >,ae,, hence yi > a contradicting a 
hypothesis. 

Let a be a positive number and ie N and let Pi(a) = aei + H,(i) = {x: 
xi = a} and Pi+ (a) = P,(a) n R”, . Then TP+ (a) is a C* (n - 1)-manifold 
with boundary in R”,. The next result describes some of the geometry of 
TP+ (a), in particular it can be parametrized by Xi = Xi(xl,..., xi-r, 
xi+ 1 ,..., x,), Xi a smooth function. 



COMPETITIVE MAPS 175 

PROPOSITION 3.3. TP+ (a) is the graph of a C2 function 

where Xi is defined on a domain Di, which is relatively open in H&,,, and 
satisfies the following: 

(1) If zj = (x( )...) xi- 1 ) xi+ 1 )...) xl), j= 1, 2, are distinct points of Di 
with J?, < i2, then 

Xj(2-l) > X422). 

In particular, if a, = 0 and z2 # 0, Ti(aei) = X,(O) > X,(a,) > 0. 

(2) IfZcN with i#Z, XE~,? nDi then 

Z(x)<0 if je I. 
J 

Figure 3.1 depicts TP,(a) and P,(a). 

If we define the orthogonal projection Qi of R” onto He(,) along ei then 
one of the assertions of Proposition 3.3 is essentially that Qi 1 Tp,+(O,: 
TPT (a) + Di c HeIiI is a smooth dtffeomorphism whose inverse is given by 

(x I?.**3 xi- 17 O, xi+ I)*..? x,) = x 3 x + X,(i)e,. 

Proof of Proposition 3.3. First, note that there cannot be two points of 
TPi(a) having the same projection onto HcfiI along ei. For if Q,Tx = Qi Ty 
where x # y, x, y E P,(a) then clearly, either TX 6 Ty or Ty Q TX. Assume 
TX < Ty and let Ic N be such that y E k,?. It follows that x E HT and by 

FIG. 3.1. Portions of P,+(a) and V:(a) in the case that T(ue,) <Cl1 ae,. 
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Proposition 3.l(iv), x <, y. But i E Z so we have the contradiction a < a. It 
follows that the functions Xi: Qi(7’Pi(a)) = Di + R is well defined. If 
ij E Di, j= 1,2, are distinct, ii < f, and if X,(2,) < Xi(&) then we have 
two points x and y in P,(a) with TX d Ty. But now we can again argue as 
above to the contradiction a < a. Thus we have proved (1). 

For the remainder of the proof, take i = 1 (there are no special coor- 
dinates) and consider what the implicit function theorem says about the 
map (bl, x2,.-~ xA (y2, Y~~...~ Y,)) -, ‘T(a, x~,...~ x,) - (.JJ~, Y~,...~ Y,) of 
R” x R”-’ into R” at a particular zero of the map ((~?i, f2,..., X,), 
(V 2 ,..., yn)). We may assume X = (a, X2 ,..., X,) E k: for some Z, {l} E Zc N 
and (yi ,..., jjn) E fi,? follows. The jacobian, (aF/a( y, , x2,..., x,))(X) = 
( -e,, DT(k)e,,..., DT(Z)e,) is singular if there exists h # 0, h E H,(, ), such 
that DT(Z)h = e,. Now by (H2) and (H3), there is a permutation (T of N 
fixing one such that in the basis {e,, eoc2),..., e,(,,,>, DT(X) has the form 

#Z #C(Z) 

#Z A B [ 1 #C(Z) 0 c ’ 

where A = DT(X), and A and C are invertible since DT(1) is invertible. We 
have h = col(h’, Zr2) with h’ = (0, hi ,..., A’,,) and e, = col((1, 0 ,..., 0), 
(O,..., 0)) so DT(X)lt = e, implies 

Ah’ + Bh2 = col( 1,0 ,..., 0), 

Ch2 = 0. 

or, since C is invertible, 

h’=A-‘(col(l,O ,..., 0)). 

But A-’ > 0 implies h’ > 0 contradicting that the first component of h’ is 
zero. Hence our jacobian is nonzero and the implicit function theorem 
implies that the zero set of F in a neightborhood of ((j,, X2,..., X,), 
( y2 ,..., J,)) is the graph of a C*-function (yi, x2 ,..., x,) = X(y, ,..., y,) = 
WI ,..-, XJ and Y, = Xlb2,..., y,). For the proof of (2) one must implicitly 
differentiate and we leave this to the reader. In case Z= N in (2), the reader 
should find that 

2 (x)= -!c!p, 
I II 

where IIT(x =(M,,)~,,,~ENxN >O if x>O. 
Before beginning our study of the dynamics generated by the map T, we 
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impose some restrictions on the behavior of TI Hiii for each i E N motivated 
by our discussion in the previous section. We have already noted that 

DT(0) = diag[J,, A2 ,..., A,], li > 0. 

We will assume from here on that the following hold: 

(H5) li # 1 for all i (hyperbolicity). 

(H6) If li < 1 then 0 is a globally attracting fixed point for the 
dynamics generated by TI Hili. 

If A1 > 1 then TJ ,,{,) has a unique fixed point ui > 0 and 0 < 
d/dxi( TI Hti))(~i) < 1. Hence ui attracts all orbits with nontrivial 
initial condition in Hfil. 

For simplicity of notation we let ui denote both a scalar and the vector 
uiei E R”, , the context in which it is used will determine the appropriate 
meaning. 

If XER’!+, let U(x) = { TPx: p an integer}, O’(x) = {T%: p a non- 
negative integer}, O-(x) = { TPx: p a nonpositive integer} denote the orbit, 
the positive orbit and the negative orbit of x. Only O+(x) is guaranteed to 
exist, of course. Let n(x) denote the limit points of 0 +(x), ,4(x) = {y: y = 
limi, o. TPfx, where ( TPfx} i , ,, is a convergent subsequence of ( TPx}, p 0}, 
and E(X) denote the limit points of O-(x) if O-(x) is defined. If O+(x) is 
bounded then /i(x) is a nonempty compact set invariant under T: 
TA(x)=A(x). A similar statement holds for N(X) if O-(x) is defined and 
bounded. 

We now begin our study of the discrete dynamical system generated by 
T. Our first result says that all orbits are bounded and approach a certain 
compact set. 

PROPOSITION 3.4. 
Cie I* Ui E k,+,. 

Let I* = { irs N: 2; > 1 } and, if I* # 4, let ul. = 
Ifx~ R: then O+(x) is bounded. ZfZ* = 4 then A(x) = 0 for 

all XER”,. If Z* is a nonempty proper subset of N then A(x) = 0 for 

x E Hc’c,‘) and A(x) c [0, u,*] - (0) for x $ H&). Zf Z* = N then A(x) c 
[O,u,l-{O}forx#O. 

ProoJ Let x = (x,, x2 ,..., x,) and suppose xj > 0. If jE I*, TP(xjej) + uj 
as p + cc while if Jo C(Z*), TP(xjej) -+ 0 as p + cc by (H6). Lemma 3.2 
implies ( TP)j(x) < ( TP),(xjej) for p = 1, 2,.... Consequently, if Jo C(Z*), 
( TP)j(x) + 0 while if j E Z* then lim sup, _ o3 ( Tp)j(x) < uj. This, together 
with the hyperbolicity of the trivial fixed point, implies the result. 

Proposition 3.4 can be improved in the following way in case Z* # 4. If 
DE [O, u,.] has the property that every T invariant subset of [O, u,*] is 
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contained in D, then necessarily A(x) c D for every x > 0 since 
TA(x) = A(x). We will now construct such a set. 

Hereafter, we will assume Z* # 4 and restrict our attention to TI H;: 
H,+, + HI-. Equivalently, we may and do take Z* =N. We make some 
remarks on the general case where Z* is a nonempty proper subset of N at 
the end of this section. Let u = uN 

PROPOSITION 3.5. If y~[O,u], y#ui, l<i<n, then Ti(y)<ui, 
1 < i < n. T[O, u] is a compact set contained in [0, u] and bounded by the 2n 
(n - 1)-manifolds H&ij, T(P+ (u)), 1 < i 6 n. The set 

D= n TPIO, u] 
P,O 

is a nonempty compact invariant set with the property that every invariant 
subset of [0, u] is contained in D. Zf v E D then [0, v] c D. 

Proof The first assertion is immediate from Lemma 3.2. Hence 
T[O, u] c [0, u] and TP+l[O, u] c TPIO, u], p=O, 1,2 ,.... It follows that D 
is a nonempty compact subset of [0, u]. The remaining assertions are 
easily checked (the last assertion follows since T* satisfies (H4)). 

Since we are assuming Ai > 1, 1 < i< n, the zero fixed point of T is 
repulsive and we expect that its domain of repulsion is contained in D. Let 
B(0) denote the domain of repulsion, B(0) = { y E n, h o TP(R”, ): T-jy + 0 
as j + cc }. The following result gives some properties of Z?(O). 

PROPOSITION 3.6. B(0) has the following properties. 

0) 0-v EB(O) then CO, ~1 = WI, 
(ii) B(O)c D, 

(iii) B(O), B(0) are T invariant, 

(iv) B(0) is relatively open in R”+, 

(VI 40) n H{i) = CO, ui). 

Proof The reader may check that (H4) holds for TP, p = 1,2,..., by 
induction on p. If y E B(0) then for each p 2 0 there exists xP E R’!+ such 
that y = TPx,. It follows that [0, y] c TPIO, xP] and thus 
[O,YI= npro TP(R’!+ ). If z E [0, y], then T-jz < T-jy for j = 1, 2 ,..., since 
T-’ is order preserving. Since T-jy + 0 as j + co, it follows that the same 
holds for z and z E Z?(O). 

If y E B(0) then T-jy E [0, u] for all large j(u > 0). Equivalently, 
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y E T’[O, u] for all large j and hence y E D. Thus B(0) c D and B(0) c D 
since D is closed. -- 

Clearly T(B(0)) = B(0) and T(B(0)) = B(0) follows since T is a 
homeomorphism. 

Using the fact that DT(0) = diag{l,,..., A,,} with Ji > 1, 1 <i< n, it is 
easily established that there exists x > 0, XE [0, u], satisfying TX > x and 
with [0, x] containing no nontrivial fixed point of T. Since [0, x] c 
[0, TX] c T[O, x], we have TPIO, x] c TP+l[O, x], p = 0, 1, 2 ,.... Clearly 
w= up>0 TPIO, x] is a T invariant subset of D with nonempty interior. 
Now Tx>x implies T-(P-ljX> T-PX for p = 1, 2,..., by 
Proposition 3.1 (iv). It follows that limp _ o. T-P~ exists and is a fixed point 
of T in [0, x J. Hence this fixed point must be the trivial fixed point. We 
may conclude that O(x)cB(O) and hence WcB(0). In fact W=B(O) as 
the reader may show but at least we may conclude that B(0) contains a 
neighborhood of zero in R”,. If y~B(0) then TpPy lies in this 
neighborhood of zero so by continuity of TeP, all points suffkiently near y 
have images under T-P in this neighborhood. It follows that B(0) is open 
in R”,. 

Assertion (v) is obvious from (H6). 
The fixed points ui of T lie on the boundary of B(0) relative to R”, 

according to Proposition 3.6(v). We will show that all nontrivial fixed 
points and periodic points of T lie on the boundary of B(0) relative to R’!+ 
with an additional assumption on T. Before doing this we describe the 
geometry of this set which we label S. 

PROPOSITION 3.7. S= aB(0) is a T invariant set containing the fixed 
points ui, 1 < i < n, and satisfying: 

(i) S is homeomorphic to the n - 1 simplex 

i 
if, tiui: ti 2 0, 2 ti = l}. 

i= 1 

(ii) If x, ye S are distinct points then x and y cannot be weakly 
related. 

(iii) For each je N, the orthogonal projection Qj: R” -+ HCfjl along ej 
is a homeomorphism when restricted to S: Qj 1 s: S -+ Q,(S). If u, v E Q,(S) 
with u < v then [u, v] c Qj(S). The map Q,- ‘; Q,(S) + S has the form 
Q,:l(i) =?+ hj(2)ej, 2= (x1 ,..., xi-I, 0, xi+ 1 ,..., x,) where hi is strictly 
decreasing: hi($) < hj( 9) if 2 B 9, 2 # 9. 

Proof: S is T invariant since both B(0) and B(0) are T invariant. We 
verify (ii) first. Suppose x, y E S are distinct with x < y. Let I# 4, Ic N be 
such that y E A!+. Then x E H,+ and x< y. Since TS=S, x= Tu, y= TV, 

505/M/2-4 
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where u, u E S are distinct and Proposition 3.l(iv) implies that u < p. Now 
u E S n fi: implies there exists w  E B(0) n fi: so close to u that u <I w. But 
then u E B(0) since [0, w] c B(0). This contradiction proves (ii). 

To verify (i), note that if h > 0, 1 h 1 = 1, then there exists atmost one 
point of intersection of the ray { th: t > 0} with S by (ii) and there exists at 
least one point of intersection of the ray with S since B(0) is relatively open 
in R’!+ and bounded. Thus the map h --+ t,h from (x E R”, : 1 x I= l} to S is 
well defined. It is injective by (ii) and obviously onto S. The continuity of 
the map is easily verified so S is homeomorphic to the intersection of the 
unit ball with R”, which, in turn, is homeomorphic to the simplex. 

The verification of (iii) is essentially contained in [ 15, Proposition 2.41. 

It should be clear that (i) and (iii) of Proposition 3.7, suitably modified, 
hold for SnH,, 4#ZcN. 

At this point the reader must wonder whether the sets B(0) and D are 
not the very same. We have already shown that B(0) c D. We now indicate 
that the boundary of D relative to R”, possesses some of the same proper- 
ties as S. 

FROFQSITION 3.8. M= aR: D is a T invariant set containing the fixed 
points ui, 1 < i< n. A4 satisfies (i)-(iii) of Proposition 3.7. In addition, if 
x#D then A(x)cM. 

The proof of Proposition 3.8 is entirely similar to that of Proposition 3.7. 
The set S is clearly an important invariant set for T: it contains the fixed 

points ui and n(x) c S for every XE B(O), x # 0. Under an additional 
assumption on T, mentioned in the previous section, we will show that all 
fixed points and periodic points of T belong to S. 

Recall that if x # 0 is a periodic point of T of period p, then D( TP)(x) = 
DT( TP ~ ‘x) . . . DT(x) has a nonnegative inverse: D( TP)(x) ~ ’ 2 0. Con- 
sequently, by the Perron-Frobenius theorem, D(TP)(x) has a positive 
eigenvalue with the property that no other eigenvalue of D(TP)(x) has 
smaller modulus. We label this eigenvalue pp(x) (or simply p(x) if p = 1). 
Corresponding to p,(x) there is an eigenvector for D( Tp)(x) in R”,. If 
x&d; then there is some Z, (b # Z c N such that x E a,+. It then follows 
from (H3) that D((TI,,)P)(~) = D(TI,,)(TPplx). . . D(T(,,)(x) = 
[D( T”)(x)], has a positive inverse. The Perron-Frobenius theory implies 
that this submatrix of D( TJ’)(x) has a positive, simple eigenvalue, which we 
label ~~,~(x), which is strictly smaller in modulus than all other eigenvalues 
of [D( TP)(x)], and corresponding to which there is an eigenvector in Z?,? . 
Since p[,Jx) is also an eigenvalue of D(TP)(x), we have pLp(x) < ~~,~(x). 

The following theorem is of fundamental importance to our discussion of 
fixed points and periodic points of T. It is the sole reason that we assume 
TE C* (see [14]). 
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THEOREM 3.9. Let x, be a nontrivial, p-periodic point of T and Ic N 
such that x E Z!Z,+. Assume pt,r(x,) z p1 < 1 and denote by v the unique (up 
to scalar multiple) eigenvector of D(TP)(x,) which belongs to fit+. Then 
there exists t,, 0 < t, < co, and d unique C’ function y, : [0, to) + ti: 
satisfying: 

(A+) y+(t)=xl +tv+O(t2) as t-+0. 

(B+) O<t, <t2 <t, implies y+(tI)<ty+(t2). 

CC+) Wy+(t))=y+(~u,th OGt<to. 
(D,) Either lim,,,i (y+(t)1 =co or lim,,,; y+(t)=x2 ~fij:. In 

the latter case, to = 00, TPx2 =x2, p,,r(xz)> 1, and limr+co y’+(t)/ 
I v’+(t)1 =w4+, where D( TP)(xZ) w  = p,,(x2) w. 

(E+) If lb+ I y+(t)J=co then for all x~fij:, xfx,, x2x, 
either there exists N such that TernPx~ TP(H,?), O<m < N and 
TmcN+ lJpx $ TP(H,? ) or TdmPx E TP(H,? ) for all m > 0 and 1 T-mP~ 1 + co 
asm+co.Zflim,,, y + (t) = x2 then TVmPx -+ x2 as m -+ co for all x # x, , 
x E CXl, x21. 

There exists a C’ function y _ : [O, co ) --+ Z?,? satisfying 

(A-) y-(t)=x, -tv+O(t2) as t-+0 

(B-) O< t, < t2 implies y-(tz)<,y-(t,) 

(C-1 TPb-(t))=y-(p~tL 120 

(D-1 lim,,, y-(t)=x, E H,?, Tpxo =x0, and P,,~(x~)> 1. Zf 
x0 >t 0, then 

-Y’(t) 
I’!: , Y’-(t), =w4+, where D( TP)(xo) w  = pt, p(xo) w. 

(E-) Zfx#xl,x~[xO,x,] then T-mP~~~oasm~oo. 

Theorem 3.9, a rather long-winded result, essentially says that to every 
periodic point x1 E Z?,? with P~,~(x~) < 1, there are two monotone invariant 
curves C+(x,)= {y+(t): O<t<t,}sEj,? and C-(x,)= {y-(t): 
t 2 0} c fi,? for T, which, according to (C, ) and (C ) might be called the 
“most stable” manifolds of x1. C+(x,) either connects x1 to co or to a 
periodic point x2 >,x, in Z?T while C-(x,) connects x1 to a fixed point 
x0 E Ht+, x0 <tx,. These periodic points x0 and x2 (if it exists) are quite 
unstable for T( n; since ,u,,~ 2 1 for each. The periods of these periodic 
points divide p, they need not be p-periodic points. 

The proof of Theorem 3.9 is contained in [ 15, Theorem 3.31 for the case 
Z= N and p = 1. This proof contains all the essential ideas since (TI H,+)P 
has the same properties as T. 
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Motivated by our discussion in the previous section we now make our 
final assumption. 

(H7) If x is a nontrivial periodic point of T and Zc N is such that 
x E I?,? then p,,Jx) < 1. 

A brief glance at Theorem 3.9 shows that (H7) has important 
implications. We list some of these implications in 

THEOREM 3.10. Let (H7) hold. Then all nontrivial periodic points of T 
belong to S. Zf x, is a nontrivial periodic point of T and Ic N is such that 
X,EEiI+, then C-(x,) c B(0) n fi,Z connects x, to the trivial jixed point: 
lim t-00 y-(t)=O. C+(x,)cI-kj: connects X, to co: lim,,,; y+(t)=co. 
Moreover, x1 belongs to the boundary of D n H: relative to H,,+ . 

Proof: All nontrivial periodic points of T belong to D - B(0). Let x1 be 
a nontrivial periodic point of T, x1 E fi :. Theorem 3.9 implies that C-(x,) 
connects x1 to a periodic point x,, E H,?, x0 <I x1, with CL,, JxO) > 1. By 
(H7), the trivial fixed point is the only such point so lim,, o. y_(t) = 0. 
But then Theorem 3.9( C- ) implies y _ (t) E B(0) for t > 0. In fact, for 
m = 1, 2,..., T-mpy-(t)=y_(u~pmt) so T-“Py-(t)-+O as m-+a. It 
follows that x1 E S n fi;. 

According to Theorem 3.9, to prove lim, _ to y +(t) = cc we need only 
rule out the possibility that t, = co and lim, _ o3 y + (t) = x2, where 
xq Efq, x2 >, x1, Tpx, = x2, and p,,Jxz) > 1. But the latter cannot occur 
since by our previous argument, x2 E S and x, and xa are weakly related, a 
contradiction to Proposition 3.7(ii). 

Finally x1 must belong to the boundary of D n H,? relative to H,?. If 
not, there is a neighborhood V of x1, relative to H,Z, contained in D. If 
v E fi: is the positive eigenvector of D( Tr)(x,), described in Theorem 3.9, 
corresponding to pl, Jxl ) then x1 + tv E Vc D for all small values of t. It 
follows from [14, Remark 3, Theorem 1.11 that C+(xI)c Dn H,? con- 
tradicting that lim,, ,; y + (t) = + co. 

Are the sets B(0) and D the same? Equivalently, are M= a,:D and 
S = a,:B(O) the same? We saw in Propositions 3.7 and 3.8 that they share 
several important properties together with the fixed points ui, 1 < i< n. 
Theorem 3.10 implies that every periodic point of T lies on M and S. We 
are led to conjecture that, generically, these sets are the same although we 
give an example in the next section where they are not. If the conjecture 
were true then, generically, n(x) c S for every nontrivial x, i.e., all the 
action occurs on S, topologically, an (n - 1) simplex in R”, . As it stands, 
we may conclude that n(x) c S for XE B(O), /i(x) c M for x$ D, and 
.4(x) c D -B(O) for x E D - B(0). 

In the following result we deduce some order properties of orbits and 
limit sets for points x E D - B(0). 
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THEOREM 3.11. Let (H7) hold and let x E D - B(0). Then each of the sets 
O(x), A(x) and a(x) contain no pair of weakly related points. 

Proof: Suppose O(x) contains two weakly related points TPx and T’x, 
I> p. By appropriate choice of Zc N we may assume O(x) c Z?,? . 

Suppose T’x 2 TPx so TpT’- px b Tpx. By Proposition 3.1, T’- px >I x. 
Let r = I- p> 0. Then x <I TX and the monotonicity of T-’ 
implies . . . <,T-m’x<,T-(m-l)‘x<,... <,x<,T’x. It follows that 
lim, + oo T-“‘lx= yEHj+exists and Ty= y. Now y~SnHj+, y<,x, so, 
since [0, x] c D, this contradicts Theorem 3.10. 

Suppose T’x < Tpx so TpTlepx 6 Tpx. Again, by Proposition 3.1, 
TX <I x, where r = I - p. Since T-’ is order preserving, 

We may conclude that lim, _ m T-“‘x = y exists where y E fi,+ , y >1 x, and 
Ty = y. But then y E S n Z!?,? and so x E B(0) contradicting our assumption 
that x E D - B(0). 

We have shown that O(x) can contain no pair of weakly related points. 
Suppose n(x) contains two weakly related points, j and Z, y < 5. Let JC Z 
be such that z E fi; so YE HJ’ and jj 6 Z. Since both HJ’ and .4(x) are 
mapped into themselves by T, 5 = Tz, and j = Ty, where z E Ei: n n(x), 
YE H,? n n(x), and y <,z by Proposition 3.1. We can choose a positive 
integer p such that TPx is so close to z that ( TP~)j > yj for Jo J. Fixing p 
we can now choose a positive integer 1 such that T’x is so close to y that 
T’x < TPx. This contradicts that O(x) contains no pair of weakly related 
points. Thus ,4(x) contains no pair of weakly related points. A similar 
argument can be used to show that a(x) contains no pair of weakly related 
points. 

An immediate corollary of Theorem 3.11 and our discussion leading up 
to its statement is 

COROLLARY 3.12. If Z* = N, then for every x E R”, , A(x) contains no 
pair of weakly related points. 

Let us briefly review what we have been able to prove in this section. We 
consider the general situation where Z* = { iE N: Izi > 11. If Z* = 4 then 
n(x) = 0 for every x E R”, by Proposition 3.4. If Z* is a nonempty, proper 
subset of N, then /i(x) = 0 if and only if x E H&,., by Proposition 3.4. If 
x $ H&, then n(x) c D - B(0) where B(0) and D are subsets of HI’; . This 
follows partly from Proposition 3.4, which asserts that n(x) c 
[0, u,.] - {0}, and partly from the fact that /l(x) A B(O)= q5 while every 
invariant subset of [0, u,.] is a subset of D. In both the case where Z* is a 
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nonempty proper subset of N and when Z* = N, all the nontrivial fixed 
points and periodic points of T lie on S n M, where S and A4 are the boun- 
daries relative to ZZG of the sets B(0) and D. The sets S and A4 have very 
similar properties, both being homeomorphic to the standard 
(#I- 1)-dimensional simplex {Cic,* tiui: ti >O, Cif,* ti = l} in Hs. 
Associated with each periodic point x of T on S are two invariant curves 
C-(x) and C’(x) connecting x to 0, respectively, co. C(x)- {x} lies in 
8: nB(0) and C’(x)- {x} c&T n D where Z c N is such that x E a,+. 
C-(x) u C’(X) belongs to the stable manifold of the periodic point x. 

Briefly, we have been able to say something about where periodic points 
lie, and more generally, where limit sets lie. There are many open problems 
remaining. For example, it would be very nice to have sufficient conditions 
for n(x) c S for all nontrivial x. One would then want to know how 
smooth is the manifold S. A question related to this is whether the unstable 
manifold of an unstable periodic point must lie on S. The answer should be 
yes for a hyperbolic periodic point (see the next section for a counterexam- 
ple in the nonhyperbolic case). Clearly the unstable manifold cannot 
impinge on B(0) and in [lS] we showed that no point of the unstable 
manifold of a periodic point x distinct from x can be weakly related to x. 

Finally, in the next section we will give a complete qualitative descrip- 
tion of the dynamics of two-dimensional competitive maps in the case that 
all fixed points are nondegenerate. It follows that we have a fairly complete 
description of the dynamics for n > 2 if #I* = 2. 

4. COMPETITIVE MAPS ON R2, 

In two dimensions, to say x and y are not related is to give the same 
amount of information as to say x and y are related. This fact, not true in 
higher dimensions, allows us to obtain significantly stronger results for 
two-dimensional competitive maps than the general case considered in the 
previous section. In fact, for every x E R:, either x is a fixed point of T or 
lim p _ o. TPx is a fixed point of T and the convergence of TPx to the fixed 
point is eventually monotone. This very important result is due to de Mot- 
toni and Schiafino [12] who proved the result for a special class of com- 
petitive maps T, the Poincare map of a periodic Lotka-Volterra system, 
but the proof of which remains valid in the general case. We reproduce that 
proof here for completeness (see also[4]). We assume in this section that T 
satisfies (Hl)-(H7), although for the result of de Mottoni and Schiaffino 
we use only (Hl)-(H4). Some additional notation will prove to be useful. 
For i = 1,2,3,4, let Qi denote the usual open quadrants of R2, in counter- 
clockwise order, e.g., Q1 = {XE R2: x > 0). Given x> 0, let Qi(x) = 
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(x + Q,) r\ R$, j = 1,2, 3,4. The following lemma, due to de Mottoni and 
Schiaftino, is instrumental in proving the above-mentioned result. 

LEMMA 4.1. Zf x>O then for i=2,4, T(Q,(x)-x)cQ,(Tx); 
T(Ql(x)-x)nQdTx)=4 and T(Q3(x)-x)nQl(Tx)=4. 

Proof If y E Q2(x) -x then TX and Ty cannot be weakly related in 
view of Proposition 3.1 (iv). Thus T( Q*(x) - x) c Q2( TX) u Q4( TX). Since 
T(QJx) - x) is connected, it must be contained entirely in one of the two 
sets Q,(Tx) or Q4(Tx). Now note that Proposition 3.3 implies that the two 
rays emanating from x and forming part of the boundary of QJx) lie in 
Q2( TX). A similar argument shows T( Q4(x) - x) c Q4( TX). 

If z E T(Q,(x) -x) r\ Q,(Tx) then z = Ty for y # x, y Z x and Ty d TX. 
But Proposition 3.l(iv) produces the contradiction y < x. 

We can now state the theorem of de Mottoni and Schiaflino [ 121. Note 
that we are assuming only that (Hl)-(H4) hold for T. 

THEOREM 4.2. Zf T is a competitive map on R$, x 20; and 
xcm) = (xim), x$m)) = TX, m = 1, 2 ,..., then there exists a positive integer A4 
such that if m>M, (x\“‘)} and (x$“‘)} are monotone sequences. Either 
lim, + m T”x= cc or lim,,, TX = x0, where TX,, = x0. 

Proof: We need only consider the case that x>O and x is not a fixed 
point of T. Exactly one of the following must hold for 0 +(x): (1) for every 
m>O, T”‘+‘xEQ,(P”x)uQ~(T”‘x), or (2) for some integer Mao, 
T”+1~~Q2(TM~)uQ4(TM~). If (1) holds and TxEQ~(x) then 
T2x~Ql(Tx) by Lemma4.1 since T(Q,(x)-x)nQ,(Tx)=d. By induction 
on m, T”‘+ ‘XE Ql(T”x) and the lemma is proved in this case; similarly if 
TXG Q,(x). If (2) holds and TM’ lx E Q2( T”x) then by Lemma 4.1, 
T M+ 2x E T(Q,( T”x)) c Q2( TM+ ‘x) and by induction T”‘+ lx E Q,( 7”“~) 
for m > M. Again the lemma follows. 

If we assume (Hl)-(H7) holds for T then all orbits are bounded. It 
follows from Theorem 4.2 that if ~20 then either TX= x or /i(x) is a fixed 
point of T. Recall that DT(0) = diag[I,, A,] where li > 0, li # 1 for 
i= 1,2. 

THEOREM 4.3. ZfO<&<lfor i=l,2 then n(x)=Ofor every x20. Zf 
{i,j}={1,2}andO<li<1,~j>l thenA(x)=OforxEH~)andA(x)=uj 
forx~0,x#H&,.Zfili>1,i=1,2, thencl(x)cSisafixedpointforx#O, 
x 2 0. 

Proof: The first assertion is immediate (and holds in R”, if 0 < 1; < 1, 
1 < i< n) from Proposition 3.4. The remaining assertions follow from 
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Proposition 3.4, the hyperbolicity of the trivial fixed point and 
Theorem 4.2. 

In the remainder of this section we concentrate on the case that li > 1 
for i= 1,2. To be able to catalogue the possible “phase portraits” of the 
map T it will be assumed that all fixed points of T are nondegenerate. In 
Fig. 4.1 we describe a scenario in which not all fixed points are non- 
degenerate and consequently, B(0) and D are distinct sets. While confident 
that some competitive map satisfying (Hl k(H7) generates Fig. 4.1, we are 
unable to explicitly write down such a map. 

The difference between B(0) and D in Fig. 4.1 is due to the two 
degenerate positive fixed points x, and x2: (/J(x~)E (0, 1) and 1 are the 
eigenvalues of DT(x,)) and the “fan” of connecting invariant curves for T. 
Hereafter we assume: 

(H8) If TX = x then 14 sp(DT(x)), i.e., x is a nondegenerate fixed 
point. 

One should be able to prove anything given eight hypotheses. Actually, 
with (Hl b(H8) we will be able to completely catalogue the “phase por- 
traits” of T. 

Consider the spectrum of DT(x) for the nontrivial fixed points x of T in 
the light of (H8). If x= ui then sp(DT(u,)) = {pi, vi} where pi = 
(d/dxi) jxlzP,T lHfij satisfies O<pi < 1 by (H6) and either 0 <vi < 1, i.e., ui 
is stable or vi > 1, so ui is a saddle fixed point. If x is a positive fixed point 
of T then sp(DT(x)) = {p(x), p(x)} where ,u(x) is the smallest positive 
eigenvalue of DT(x), 0 c p(x) < 1, by (H7) and p(x) is the positive spectral 
radius of DT(x) satisfying either 0 <p(x) < p(x) < 1 or 0 c p(x) < 1 < p(x) 
by (H8) and the Perron-Frobenius theory. Corresponding to p(x) there is 
an eigenvector for DT(x) in @+. Since this eigenvector is the unique, up to 

FIG. 4.1. A fan of connecting invariant curves for Tjoin x1 and x2. B(0) is bounded by the 
inside curve and D is bounded by the outer most curve. 
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scalar multiple, eigenvector of DT(x) in R?+, it follows that corresponding 
to p(x) there is an eigenvector in Q2 (or QJ. The following result is crucial 
for determining the phase portrait of two-dimensional competitive maps. 
Compare it with Theorem 3.9. 

THEOREM 4.4. Let x1 > 0 be a fixed point of T with p(xl) = p1 > 1 and 
DT(x,)u = p1 v, v E Q2, Then there exists a unique C’ function y,: [0, 00) + 

Q2(xl 1 n QI saWFng 

(A,) y/(t) = x1 + IV + Q(t’) as t + 0. 

(B,) O<t<s implies y,(s)-yl(t)~Q2. 

(Cd y/(t) = T(Y,(P,‘~)), 12 0. 

VW lim, - m y,(t) = XI E Qz(x,), TX, =x,, P(Xl) 6 1 and 
lim,, m ~Xf)ll~Xt)l =fwhere WxJf=~(-df: - - 

(E,) For every XE Q2(xI) n Q4(x,) different from x1, T”x + xI as 
m-rw. 

There exists a unique C’ function y,: [0, co) --f Q4(xl) n Q1 satisfying 

(A,) y,(t)=x, -1u+O(t’) us t-rO. 

(B,) O< t<s implies y?(s)- yr(t)eQ4. 

(Cl rr(t) = T(Y,(P,‘~)), 12 0. 

PJ lim, + oo y,(t) = x, E Q&G), TX, =x,, ,4x,) G 1 and lim 
r-m ~Xt)ll~Xt)l =fwhere Wx,)f=dx,)f: - - 

(E,) For eoery XE Q4(xl) n Q,(x,) dzjjfirent from x1, 7”“~ +x, us 
m+oO. 

Theorems 3.9 and 4.4 give a very nice qualitative picture of the stable 
and unstable manifolds of a positive saddle fixed point of T. If we let 
C’(xl) = {y/(t): t 2 O}and @(x1) = {y,(t): t > 0}, then C’ and C’ make up 
the unstable manifold of x1 by (C,) and (C,) of Theorem 4.4. The four cur- 
ves C’, c’, C+, C- are invariant, monotone curves connecting x1 to four 
distinct unstable fixed points of T (counting co as a fixed point). Figure 4.2 
depicts the situation described by the two theorems. 

Proof of Theorem 4.4. We merely outline the proof which is essentially 
similar to the proof of Theorem 4.5 in [ 151 and based on Theorem 1.1 in 
[ 143. In fact, the latter theorem asserts the existence of yI: [O, tl] + li: 
satisfying (A,) and (C,) where 0~ tl < co. Since y,(t)= 
lim p+m TP(x, +~cPtu) by [14, Theorem 1.11, y,(t)~Q,(x,) by 
Lemma 4.1. Since y!(t) E Q2(x1) for small t it is easy to show that y,(t) E 
Q2(x1) n Q, for all t, 0 < t < t,. (B,) follows essentially as in Theorem 4.5 in 
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FIG. 4.2. The invariant manifolds C’, C+, c’, and C- at a saddle point x. 

[ 151. Since R: is a closed set mapped into itself by T, tl = co by Remark 3 
following Theorem 1.1 in [14]. By (B,), either y,(t) + cc as t + co or 
y,(t)-‘x, as t-, cc for some xI EQ*(x,). But (C,) and the fact that all 
orbits are bounded rules out the first alternative and x, must be fixed point 
of T by (C,) and continuity of T. The remainder of (D,) is proved as in [ 15, - - 
Theorem 4.5). Let XE Qz(xl) n Q4(x,) be distinct form x1 and x,. By 
Lemma 4.1 TPx E Qz(x,) n Q4(x,) for p = 1, 2,.... Now TX E Qz(xl) n Q4(xr) 
implies that for some t,, > 0, TX E Q&(&J). Now, from Lemma 4.1 and 
(CA T*x E Q~(Y(P~ t)) and, by induction on m, T”‘xE Q,(y(pr;- ‘1)) 
m = 1 ,2,.... It follows that T”‘x + x, as m + co. This completes the proof of 
Theorem 4.4. 

A slightly modified version of Theorem 4.4 also holds for the fixed points 
u1 and u2. We will consider briefly the fixed point u2. We have DT(u,)= 
(p E,), where b 6 0 since DT(u,) ~ i > 0. Assume q2 > 1 and recall that 
0 < ,u2 < 1. The eigenvector corresponding to q2 is u = col(q, - p2, b) E Q4. 
There exists y,: [0, co) -+ Qd(u2) satisfying yJt) = u2 + tu + O(t’) as t -+ 0 
and (B,), (C,), and (D,) of Theorem 4.4 where p1 is replaced by q2 in (C,). -- 
In addition (E,) holds except x E Q4(u2) n Q,(x,) - [0, u2] must replace 
x E Q,Jxi) n Q,(x,). There is no change in the proof unless b = 0. In this 
case it is a slightly more delicate task to insure that y,(t) E Qd(u2). It is easy 
to show that T(Q4(u2) - [0, u2]) c Q4(u2) - [0, u2] and hence - - 
T(Q4(u2)) c Qd(u2). Remark 3 following Theorem 1.1 in [ 141 implies 
y,(t)6 Q4(u2) for t 30. If t >O then by (C,) and the above inclusion, 
y,(t) = T(Yr(rl2lt)) E Q4(u2) - CO, ~21. 

We need one more result to describe the phase portrait for T, namely, to 
show that if x is a saddle fixed point of T then C(x) and C’(x) are con- 
tained in S. This is the content of 

LEMMA 4.5. If x is a saddle fixed point of T then C(x) and C’(x) are 
contained in S. 



COMPETITIVE MAPS 189 

Proof First, assume x > 0 and consider C’(x). Now x separates S into 
two pieces S’(x) = S n Qz(x) and s’(x) = Sn Q4(x). We show 
C’(x) c S’(x). Both curves lie in Qz(x), in fact, since C’(x) n B(0) = 4 one 
easily sees that S’(x) lies between the two curves C’(X) and Co = {(t, b): 
0 < t 6 a} where x = (a, b). By a result of Hadamard [3], T”C” -+ C’(x) as 
m --f cc and one easily sees that the convergence is monotone in the sense 
that T”+ ‘Co lies between 7”“C’ and C’(x). On the other hand, since S’(x) 
is invariant under T, S’(x) must lie between T”‘C’ and C’(x) for every m. 
Moreover 7°C + S since Co c B(0). It follows that C’(x) c S’(x). 

Now suppose x = u2 and q2 > 1. We want to show C’(u,) c S. Observe 
that S must lie between C’(q) and the segment [0, uz]. Since these latter 
curves are, respectively, the stable and unstable manifold of u2 under the 
action of T- ‘, the nondegeneracy of u2 implies that in some neighborhood 
of u2 relative to R:, S and c’(u,) are identical. The invariance of each 
under T imply C(uz) c S. 

The discussion of the phase portrait of the discrete dynamical system 
generated by T naturally breaks up into four cases depending on the 
stability type of the two fixed points u1 and u2. We combine two of these 
cases in each of the next two theorems. The proofs of the theorems are to 
be found at the end of this section following some discussion. In each result 
we assume without mention that (Hl)-(H8) hold for T; in particular, T 
has a finite number of fixed points. In our first result, Theorem 4.6, we 
assume that one of the fixed points ui is a saddle and the other is stable. 
For definiteness, we take the former to be u2 and the latter ul. 

THEOREM 4.6. Assume u2 is a saddle fixed point and u, is a stable fixed 
point of T. Then either (a) T has no positive fixedpoints or (b) T has an even 
number of positive fixed points x1, x2,..., x2,,,, listed in order of occurrence on 
Sfrom x0 =u2 to xZmfl =ul. The odd indexed xi’s are stable while the even 
indexed xi’s are saddle fixed points. In case (a), S = C(uz) u {u, > is a C’ 
strictly decreasing curve. In case (b), S consists of Cr(uz) together with 
C’(x,,) v Cr(xZi), 1 < i < m, and the stable fixed points; S is a C’ strictly 
decreasing curve. In case (a), A(x) = {u, ) for all x > 0. In case (b), the set S 
together with the pairwise nonintersecting curves C-(Xi), c+(xi), 

0 < i < 2m + 1, partition R?-+ into 4m + 2 connected open components each of 
which is invariant under T and contains exactly one stable fixed point on its 
boundary. This stable fixed point is A(x) for all x in the open component. 

Figure 4.3 illustrates the two cases. 

In our next result, ui and u2 have the same stability type, either saddle 
type or stable. 
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FIG. 4.3. Theorem 4.6, case (a) and (b) (m = 1). (’ ) stable, ( 0 ) repeller, and 0 saddle 
point. See the remark following Fig. 4.4 for further explanation. 

THEOREM 4.7. Suppose that both u1 and u2 are stable (saddle) fixed 
points of T. Then S contains an odd number of positive fixed points, 
XI, x2>-, X2m+ I, listed in order of occurrence on S from u2 to ul. The odd 
indexed xi’s are saddles (stable) while the even indexed xi’s are stable (sad- 
dles). S is a C’ monotone decreasing curve consisting of fixed points together 
with C/(x,) and cl(xi) for odd (even) i (x0 = u2, x2m+2 = ul). S, together 
with C-(xi), C+(x,), 0 <i < 2m + 2, partitions R$ into 4(m + 1) open con- 
nected components each of which is invariant under T and contains exactly 
one stablefixedpoint on its boundary. This stablefixedpoint is A(x) for x in 
the open component. 

The two case contained in Theorem 4.7 are illustrated in Fig. 4.4. 
In Figs. 4.3 and 4.4 the curves C(xi) are tangent to the horizontal 

coordinate axis. Of course, none of our hypotheses allow us to conclude 
this behavior for C-(x,). However, we expect that typically Ai # 1, so that 
either 1 < I, < 1, or 1~ A, < A, holds. In both figures we have assumed the 
former holds and have drawn the double arrows along the vertical coor- 
dinate axis to indicate this further assumption that the vertical axis is the 
most repelling direction for T. Consequently, the vertical direction is the 
most attractive direction for T-’ and we expect the curves C-(x) to be 
tangent to the horizontal axis. It should be possible to give a 
straightforward proof of this without additional assumptions but we have 
not been able to do so. Under so-called nonresonance conditions on the 
eigenvalues (A,, A,} of DT(O), which in our case become I, #A? for all 
positive integers m > 2, and assuming additional smoothness of T, one can 
linearize TP1 in a neighborhood of x = 0 by a smooth map h: h(0) = 0, 
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a. 

b. 

FIG. 4.4. An illustration of Theorem 4.7. In (a) u, and IQ are stable while in (b) they are 
saddle points. For both cases m = 1 and there are 8 invariant components. 

D/z(O) = Z such that T-‘(Q)) = h(DT(O)-‘y) (see Hartman [17, 
Theorem 12.1, p. 2571). 

It is easy to see that h must send coordinate axes to coordinate axes 
since T-’ leaves them invariant. One can now see that hP’(C-(xi)) are 
tangent to the horizontal axis in the new coordinates and hence C(xJ 
must be tangent to the horizontal axis. 

Theorems 4.6 and 4.7 give a complete qualitative description of the 
dynamics of the discrete dynamical system generated by the competitive 
map T in the case that all fixed points are nondegenerate. Given that one 
knows the fixed point set of T, the stability type of ui and u2, the curves S 
and C+(xi), C-(xi), then one can determine A(x) for every x E R:. 

We have made clear, in the paragraph following the proof of 
Theorem 4.4, the manner in which the curve S intersects the coordinate 
axis at a saddle point ((ur , 0) or (0, uz)). However, we have not discussed 
the nature of this intersection in the case that (0, u2) (or (u,, 0)) is a stable 
fixed point. We consider this question briefly in this paragraph. Refering 
back to the remarks following the proof of Theorem 4.4, we see that there 
are several different possibilities for DT(u,) in case u2 is stable: (i) 
0 <,uL2 < q2 < 1, (ii) O< ylz < p2 < 1, and (iii) 0 <pl = ye* < 1, the latter 
being nongeneric. In case (i), Theorem 4.4 implies that the unstable 
manifold of a saddle fixed point on S is asymptotic to u2 and tangent to the 
eigenvector (q2 -Pi, b) E Q4 at u2. In other words, S is tangent at u2 to this 
eigenvector. This is the case that we have assumed to hold in sketching our 
phase portraits in Figs. 4.3 and 4.4. In case (ii), however, Theorem 4.4 
implies that an unstable manifold of a saddle point on S is asymptotic to u2 
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and tangent to the vertical axis. Hence S meets the vertical axis at u2 so as 
to be tangent to the vertical axis. One can show that this tangency of S 
with the vertical axis also prevails in case (iii) if b < 0. However, if (iii) 
holds and b = 0 there is no unique direction at u2 which is singled out and 
we cannot assert that S is tangent at u2 to any direction. 

A simple example of a two dimensional competitive map to which the 
foregoing theory applies is given by 

T(Xl, x,)= 
( 

4x1 22x2 - - 
1 +a,x,’ 1 +a,x, ) ’ 

a, = ai E a,, + m, tanI( 

u2 = uz(xi) = uzO + m2 tan’(x,), 

It is a straightforward calculation to check that DT(x))’ > 0 for x > 0 and 
det DT(x) >O. T has four fixed points: (0, 0), (0, ZQ), (u,, 0), (X1, X2), ui = 
(1; - 1 hl~ i= 1, 2, where (X,, X2) is the unique positive solution of x, = 
vl/dx2) and x2 = ~2/&1). 

Note that (H8) is equivalent to 

TX = x a det DT(x) - tr DT(x) # 1 

which can be verified in our example. One easily checks that (0, u2) and 
(u,, 0) are saddle fixed points, hence (X,, X2) must be stable. The phase 
portrait of the map is described in Fig. 4.5, where it is assumed that A, > L, 
and the above-mentioned nonresonance condition holds. 

Proof of Theorem 4.6. We may view S as a line segment on which T 
acts, fixing the two endpoints. If there are interior fixed points, they must 
be finite in number with alternating stability type since they are hyperbolic. 
Since u2 is repelling with respect to S and u1 is stable, there must be an 

FIG. 4.5. 

u2 l 

k 

; ;  

.  

"1 

An example illustrating Theorem 4.7; X = (2,) x2) is stable. 
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even number of interior fixed points. If there are no positive fixed points of 
T on S then S is a C’ strictly decreasing curve since S = C’(U*) u { u1 } (see 
Proposition 3.7). Even if S contains an even number of positive fixed 
points, S is a C’ strictly decreasing curve. The reason for this is contained 
in Theorem 4.4(DI) and (Dr). If xzi+ 1 is a stable positive fixed point, then 
C(xzi) and C’(xzi+ J meet at xzi+ , and are tangent to the same eigendirec- 
tion. By Lemma 4.5, S consists of the curves C’(u,), C’(xzi), C’(xZi), 
16 i < m - 1, together with the stable fixed points. If there are no positive 
fixed points then /l(x) = {u,} for x>O. Indeed, if XE [0, u1 + u,], x>O 
then the result follows from Theorem 4.4(E,) (see the remark following the 
proof of Theorem 4.4). Otherwise, if x$ [0, u1 + u2], x > 0, we know 
n(x) t [0, u1 + u,], is a fixed point, and can not be the saddle point u2 or 
the repeller 0. 

In the case that S contains an even number of positive fixed points, one 
easily sees that the C+(xi) and C-(xi), 0 d i < 2m + 1, are pairwise disjoint 
and partition R: into 4m + 2 connected components each containing 
exactly one stable fixed point. The invariance follows since the boundary 
curves are invariant. The remaining assertions are obvious. 

Proof of Theorem 4.7. As in the proof of Theorem 4.6, we may treat S 
as a line segment with attracting (repelling) fixed points as endpoints. The 
segment may contain a finite number of isolated fixed points according to 
our assumptions. By elementary topological degree theory (or simply note 
that TX-X changes sign from u1 + to u2 - ), T must have a fixed point in 
the interior of the segment, i.e., a positive fixed point on S. It is easy to see 
that the number of positive fixed points of T on S must be odd in number 
and their stability type, relative to S, must alternate. The remaining asser- 
tions are proved exactly as in the proof of Theorem 4.6. 

REFERENCES 

I. W. COPPEL, “Stability and Asymptotic Behavior of Differential Equations,” Heath, 
Boston, 1965. 

2. S. GROSSBERG, Competition, decision, and consensus, .I. Math. Anal. Appl. 66 (1978), 
47G493. 

3. J. HADAMARD, Sur I’iteration et les solutions asymptotiques des equations differentielles, 
Bull. Sot. Math. France 29 (1901), 224228. 

4. J. K. HALE AND A. S. SOMOLINOS, Competition for fluctuating nutrient, J. Math. Biol. 18 
(1983), 255-280. 

5. T. G. HALLAM, L. J. SVOBODA, AND T. C. GARD, Persistence and extinction in three 
species Lotka Volterra competitive systems, Math. Biosci. 46 (1979), 117-124. 

6. M. W. HIRSCH, Systems of differential equations which are competitive or cooperative. I. 
Limit Sets, SIAM J. Math. Anal 13 (2) (1982), 167-179. 

7. M. W. HIRSCH, Systems of differential equations which are competitive or cooperative. II. 
Convergence almost everwhere, SIAM J. Math. Anal., in press. 



194 HAL L. SMITH 

8. M. W. HIRSCH, The dynamical systems approach to differential equations, Bull. Amer. 
Math. Sot. 11 (1) (1984), l-64. 

9. M. W. HIRSCH, Attractors for discrete-time monotone dynamical systems in strongly 
ordered spaces, in “Proceedings of Special Year in Geometry, Univ. of Maryland, 
1983-84,” in press. 

10. M. A. KRASNOSEL’SKII, Translation along trajectories of differential equations, Amer. 
Math. Sot. Trans., Vol. 19, Providence, R.I., 1968. 

11. W. J. LEONARD AND R. MAY, Nonlinear aspects of competition between species, SIAM J. 
Appl. Math. 29 (1975), 243-275. 

12. P. DE MOTTONI AND A. SCHIAFFINO, Competition systems with periodic coeflicients: A 
geometric approach, J. Math. Biol. 11 (1981), 319-335. 

13. S. SMAL.E, On the differential equations of species in competition, J. Math. Biol. 3 (1976), 
5-7. 

14. H. L. SMITH, Invariant curves for mappings, SIAM J. M&h. Anal., to appear. 
15. H. L. SMITH, Periodic solutions of periodic competitive and cooperative systems, SIAM J. 

Math. Anal., to appear. 
16. R. S. VARGA, “Matrix Iterative Analysis,” Prentice-Hall, Englewood Cliffs, N.J., 1962. 
17. P. HARTMAN, “Ordinary Differential Equations,” Hartman, 1973. 


