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1. INTRODUCTION

We study the existence of a principal eigenvalue to the problem

[rN&1,(u$)]$+*rN&1�(u)=0, r # (0, R),
(1.1)

u$(0)=0, u(R)=0,

where , is an increasing homeomorphism of R and � is nondecreasing with
,(0)=�(0)=0; i.e., we study the existence of values of * such that problem
(1.1) has a solution u with u(r)>0, r # [0, R) and properties of the set of
such eigenvalues. In particular, we are interested whether distinguished
values *0 exist such that no nontrivial solutions of (1.1) exist for values of
*, *<*0 .

In the case that N is a positive integer and ,(u)=|u| p&2 u=�(u) the
above problem is the problem of the existence of the principal eigenvalue
of the p-Laplacian on a ball of radius R in RN, and subject to zero Dirchlet
boundary data. As such it is well understood ([1, 2, 6, 7, 11]).
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The tools that have been used for establishing the existence of such (and
higher) eigenvalues come from variational methods and are usually critical
point theorems for smooth functionals defined in an appropriate Sobolev
space; these methods consequently also yield theorems for the case the
underlying ball domain is replaced by an arbitrary bounded domain.

Very detailed information is available in the case N=1, see e.g. [5, 9
and 10].

In this paper we treat the general case (1.1) and rely in our techniques
and methods of proof on some earlier work in [3] and [8], i.e. fixed point
and continuation techniques.

We will assume further that N�1 (not necessarily an integer) and , and
� satisfy for all x{0 and _>0

A(_)�
,(_ |x| )
|�(x)|

�B(_), (1.2)

where A(_) and B(_) are positive constants depending on _ only
We call * an eigenvalue of (1.1) provided (1.1) has a nontrivial solution

and a principal eigenvalue if (1.1) has a positive (or negative) solution. We
let E be the set of all principal eigenvalues. Our main result in this paper
is as follows.

Theorem 1.1. Suppose the above. Then the set E{<, further there
exists a smallest *0>0 such that for *<*0 the eigenvalue problem (1.1) has
no nontrivial solutions. For every d>0, there exists * # E and a positive solu-
tion u of (1.1) such that u(0)=d. If, for each d>0, we denote by

1 (d, R)=[*>0 | problem (1.1) has a positive solution with u(0)=d]

and set

1&(d, R)=inf 1 (d, R),

then 1&(d, R)>0. Also

1&
1 (R) :=lim inf

d � �
1&(d, R),

#&
1 (R) :=lim inf

d � 0
1&(d, R)

*&
1 (R) := inf

d>0
1&(d, R),
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are nonincreasing functions of R, and

lim
R � 0+

1&
1 (R)= lim

R � 0+
#&

1 (R)= lim
R � 0+

*&
1 (R)=�,

lim
R � �

1&
1 (R)= lim

R � �
#&

1 (R)= lim
R � �

*&
1 (R)=0.

There is a result dual to Theorem 1.1 for principal eigenvalues with
associated solutions negative on [0, R), the set of such eigenvalues may, of
course, be different from the set whose existence is asserted in Theorem 1.1.

We shall also consider the nonhomogeneous problem

[rN&1,(u$)]$+*rN&1�(u)=rN&1h(r), r # (0, R),
(1.3)

u$(0)=0, u(R)=0,

where h # L�(0, R) is a given function. We have the following result.

Theorem 1.2. There exists *0>0 such that for every *<*0 and every
function h # L�(0, R) the nonhomogeneous problem (1.3) has a solution.

As is to be expected, *0 in this theorem is to the left of the set of prin-
cipal eigenvalues associated with both positive and negative eigenfunctions.

2. ABSTRACT FORMULATION OF THE PROBLEM

A quick calculation shows that finding positive solutions to problem
(1.1) is equivalent to finding nontrivial solutions to the problem

[rN&1,(u$)]$+*rN&1�( |u| )=0, r # (0, R),
(2.1)

u$(0)=0, u(R)=0.

Let C* denote the closed subspace of C[0, R] defined by

C*=[u # C[0, R] | u(R)=0].

Then C* is a Banach space for the norm & & :=& &� .
Let u(r) be a solution of (2.1). By integrating the equation in (2.1) we see

that that u(r) satisfies the integral equation

u(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*�( |u(!)| ) d!& ds. (2.2)
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Let us define T( } , } ): C*_[0, �) � C* by

T(u, *)(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*�( |u(!)| ) d!& ds. (2.3)

Clearly T is well defined and fixed points of T( } , *) will provide solutions
of (1.1). Define now the operator T= : C*_[0, �) � C* , by

T=(u, *)(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*(�( |u(!)| )+=) d!& ds, (2.4)

where =>0 is a constant. We have that T= sends bounded sets of
C* _[0, �) into bounded sets of C* . Moreover, T= is a completely con-
tinuous operator and T=( } , 0)=0.

Since

degLS(I&T=( } , 0), B(0, R1), 0)=1

there exists a solution continuum C+
= /C* _[0, �) of solutions of

u=T=(u, *) (2.5)

with C+
= unbounded in C* _[0, �) (see e.g. [4]).

3. A PRIORI BOUNDS FOR *

We will now prove that solutions (u, *) # C+
= are a priori bounded in the

*-direction.
We have:

Lemma 3.1. There exists *� such that for any solution (u, *) of (2.1),
*�*� . This number is independent of = for 0<=�=0 .

Proof. We have that u satisfies

&rN&1,(u$(r))=|
r

0
!N&1*(�( |u(!)| )+=) d!�0

and

u(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*(�( |u(!)| )+=) d!& ds�0.
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Hence, u$(r)�0 and u(r)�0 for all r # [0, R]. Also

u(r)� |
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*�( |u(!)| ) d!& ds,

Thus, for all r # [R�4, 3R�4], we have that

u(r)�
R
4

,&1 _ *R
N4N �(u(r))&

or equivalently,

, \4
R

u(r)+
�(u(r))

�
*R

N4N .

It follows from (3.1) and (1.2) that * is bounded independent of =. K

It therefore follows that for each d>0 and each 0<=�=0 there exists
(u= , *=) # C+

= , with &u= &=d>0 and 0<*=�*� .
We now let = � 0 and obtain a nontrivial solution of (1.1) for some

** # (0, *� ].
Next for each d>0, let us denote by

1 (d, R)=[*>0 | problem (1.1) has a positive solution with &u&=d]

and set

1 &(d, R)=inf 1(d, R), 1 +(d, R)=sup 1(d, R).

It follows from the above calculations that 1 +(d, R)<�. We next prove
the following:

Proposition 3.1. 1 &(d, R)>0.

Proof. We argue by contradiction and thus we assume there exist
sequences [un], [*n], such that

un=T(un , *n), with &un &=d,

and *n � 0. Since T is completely continuous we can assume without loss
of generality that [un] is convergent, say, un � u. Then letting n � � in
both expressions of (3.2), we obtain a contradiction. K
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Let us set

1 &
1 (R) :=lim inf

d � �
1 &(d, R) and 1 +

1 (R) :=lim sup
d � �

1 +(d, R),

# &
1 (R) :=lim inf

d � 0

1 &(d, R) and # +
1 (R) :=lim sup

d � 0

1 +(d, R),

and

* &
1 (R) := inf

d>0

1 &(d, R) and * +
1 (R) :=sup

d>0

1 +(d, R).

We have:

Proposition 3.2. Under the above hypotheses on , and �,

1 &
1 (R)>0, 1 +

1 (R)<�,

# &
1 (R)>0, # +

1 (R)<�,

* &
1 (R)>0, * +

1 (R)<�.

Proof. That the numbers in the second column are finite has already
been established. To show that the numbers in the first column are positive
we argue as follows. Assume (u, *) is a solution of (2.1) with u(0)=d. Then

&u&=d,

and

u(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*�( |u(!)| ) d!& ds. (3.3)

Hence

d�|
R

0
,&1 _*�(d )

s
N& ds,

which implies

,(d�R)
�(d)

�*
R
N

.

Using condition (1.2) we obtain a lower bound for *. K

The above proposition also has the following corollary:
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Corollary 3.1. Let (u, *) be a solution of (1.1) with u(0)=d and let
% # (0, 1) be fixed. Let r0 # (0, R) be such that u(r0)=%d. Then

r0�
N
*

A \1&%
R + . (3.5)

Proof. Using Eq. (3.3) we obtain

%d=|
R

r0

,&1 _ 1
sN&1 |

s

0
!N&1*�( |u(!)| ) d!& ds, (3.6)

and hence

(1&%)d=|
r0

0
,&1 _ 1

sN&1 |
s

0
!N&1*�( |u(!)| ) d!& ds,

from which follows

(1&%)d�|
r0

0
,&1 _ 1

sN&1 |
s

0
!N&1*�(d) d!& ds,

and

(1&%) d�R,&1 _*�(d) r0

N & ,

from which the conclusion follows. K

The result just proved has the following consequence.

Corollary 3.2. Let [(un , *n)] be a sequence of solutions of (1.1) with
un(0)=dn . If dn � � as n � �, then un(r) � � uniformly with respect to r
in compact subintervals of [0, R).

Proof. Since un is given by

un(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1*n�( |un(!)| ) d!& ds,

we obtain for r�r0 (viz. Corollary 3.1) that

un(r)� |
R

r
,&1 _ 1

sN&1 |
r0

0
!N&1*n�(%dn) d!& ds.

The conclusion follows from this inequality. K
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4. OSCILLATION OF SOLUTIONS

Let us consider the initial value problem

[rN&1,(u$)]$+*rN&1�(u)=0,
(4.1)

u$(0)=0, u(0)=d>0.

To obtain the (local) existence of solutions of (4.1) we obtain solutions of
an equivalent integral equation whose solutions are fixed points of the
operator S defined by

S(u)(r)=d&|
r

0
,&1 _ 1

sN&1 |
s

0
!N&1*�(u(!)) d!& ds.

Since u is decreasing and , and � are increasing we find that for given
=>0, there exists R0 such that

S: [u # C[0, R0]: &u&d&�=] � [u # C[0, R0]: &u&d&�=]

and that S is completely continuous. The result thus follows from
Schauder's fixed point theorem.

We next show that solutions of the initial value problem (4.1) exist
globally and are oscillatory.

Proposition 4.1. For each d>0 and each *>0 solutions of (4.1) exist
globally on [0, �), have only simple zeros and are oscillatory, i.e. the set of
zeros is unbounded.

Proof. It follows from the above existence argument that a solution u
of (4.1), as long as it is positive, is decreasing. If u(r)�0, 0�r<� we find
that for each r>0

u(r)�r,&1 \*r�(u(r))
N2N&1 + ,

and hence (since we may assume r�1)

,(u(r))
�(u(r))

�
*r

N2N&1 ,

which implies, using condition (1.2) that r cannot be unbounded. Therefore
u must have a first zero. Easy arguments show that the zeros of u must be
simple and that u is oscillatory.
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5. MONOTONICITY OF EIGENVALUES

In this section we shall show that * &
1 (R), # &

1 (R) and 1 &
1 (R) are non-

decreasing functions of R. To this end we shall need the following elemen-
tary properties of the operator T defined by Eq. (2.3). We note that the
space C* is a partially ordered Banach space with respect to the partial
order �, i.e. for u, v # C* , u�v whenever u(r)�v(r), r # [0, R]. Further if
[u, v]=[w # C* : u�w�v] is an order interval in C* , then it is a bounded
closed set in C* .

Proposition 5.1. The operator T defined by (2.3) is monotone with
respect to the above partial order in C[0, R] and hence in C* and also
monotone with respect to *.

From this proposition and the complete continuity of T immediately
follows the following fixed point result.

Proposition 5.2. Assume there exists [:, ;]/C[0, R] such that

T(*, } ): [:, ;] � [:, ;].

Then T(*, } ) has a fixed point u # C* & [:, ;].

We note that the hypotheses of Proposition 5.2 will hold, whenever we
can find a pair [:, ;]/C[0, R] such that

:�;

and

:�T(*, :), T(*, ;)�;.

Using these facts we can now establish the following result.

Theorem 5.1. * &
1 , # &

1 , 1 &
1 are nonincreasing functions of R.

Proof. Assume there exist R1 , R2 , R1<R2 such that * &
1 (R1)<* &

1 (R2).
Then there exists +, * &

1 (R1)<+<* &
1 (R2), such that (2.1) has a nontrivial

solution :~ for R=R1 and *=+. Furthermore, there exists &�* &
1 (R2) and

a nontrivial solution ; of (2.1) for R=R2 and *=&, with ;(0)=d as large
as desired. It follows from Corollary 3.2 that for d sufficiently large
;(r)>:~ (r), 0�r�R1 . Define

:={:~ ,
0,

0�r�R1

R1�r�R2 .
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Then the operator T(+, } ) for R=R2 satisfies in the space C[0, R2]

:�T(+, :), T(+, ;)�;,

as may easily be verified. Thus by Proposition 5.2 this operator will have
a fixed point in [:, ;], contradicting that +<* &

1 (R2). The monotonicity of
the other functions is proved using virtually similar arguments. K

Remark 5.1. 1. Theorem 5.1 implies that problem (1.1) has no non-
trivial solutions for *<* &

1 (R).

2. Solutions of (1.1) are a priori bounded for * in compact subinter-
vals of (&�, 1 &

1 (R)).

3. We have proved all of Theorem 1.1 except the last conclusion
which follows from inequalities (3.1) and (3.4).

4. Our calculations and results also imply that for $>0, small, the
degrees

degLS(I&T( } , a), B(0, $), 0)

degLS(I&T( } , b), B(0, $), 0)

are defined for a<# &
1 (R) and b># +

1 (R) and equal 1 and 0, respec-
tively. Hence it follows from global bifurcation theory (see [4]) that an
unbounded continuum of positive solutions of (1.1) will bifurcate from
[# &

1 (R), # +
1 (R)].

6. THE NONHOMOGENEOUS PROBLEM

In this section we shall consider the nonhomogeneous problem (1.3) and
prove Theorem 1.2.

The existence of solutions to the nonhomogeneous problem is equivalent
to the existence of fixed points of the operator T(*, u, h) defined by

T(*, u, h)(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1(*�(u(!))&h(r)) d!& ds. (6.1)

We shall establish the existence of a fixed point of T in the space C* using
Proposition 5.2. To this end, we define

*0=inf [*: * is a principal eigenvalue of (1.1)]

and consider problem (1.3) for values of *<*0 . Let * be so chosen, and
choose *� such that *<*� <*0 .
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Let us consider the boundary value problem

[rN&1,(u$)]$++rN&1�(u)=0,
(6.2)

u$(0)=0, u(R)=0.

It then follows from the results in Sections 4 and 5 that there exists a solu-
tion u and a value +�*0 with u(0)=d as large as we like. Then u satisfies
also

u(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1+�(u(!)) d!& ds,

Further u(r) may be made arbitrarily large uniformly on compact subinter-
vals of [0, R] by choosing d sufficiently large. Hence

u(r)=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1+�(u(!)) d!& ds

=|
R

r
,&1 _ 1

sN&1 |
s

0
!N&1(*�(u(!))&h) d!

+
1

sN&1 |
s

0
!N&1((+&*) �(u(!))+h) d!& ds

�T(*, u, h)(r)

provided

1
sN&1 |

s

0
!N&1((+&*) �(u(!))+h) d!�0, 0�s�R

which may be accomplished for given h # L�(0, R), provided d is suf-
ficiently large. In a similar manner we may construct a negative : such that
:�T(*, :, h). We now apply Proposition 5.2 to complete the proof.
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