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Slowing the progression of chronic kidney diseases

(CKDs) requires new and effective treatment approaches.

Aldosterone classically acts on the distal nephron: it

facilitates sodium reabsorption, potassium secretion, and

participates in blood pressure control. Recently, new targets

of aldosterone have been described including the heart and

the vasculature, and other kidney cells such as

mesangial cells, podocytes, and renal fibroblasts.

The pathophysiological implications of increased

mineralocorticoid receptor (MR) expression and activation

(either dependent on aldosterone or direct ligand-

independent activation) and its blockade have been

illustrated with ex vivo in cell cultures and in vivo in

experimental animal models of CKD, including diabetic and

hypertensive nephropathies, and glomerulopathies. The

beneficial effects of the MR antagonists are independent of

the hypertensive effect of aldosterone, indicating that

blocking the activation of the MR may have unique clinical

importance. Several studies have reported efficacy and safety

studies with spironolactone or eplerenone in patients with

kidney diseases. In this review, we discuss the recent results

reported in experimental and clinical research in this field,

and emphasize the direct activation of the MR that can occur

in pathological states associated with CKD, even in the

absence of increased circulating levels of aldosterone.
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In 1955, Conn1 described a young female with primary
aldosteronism and proteinuria. In 1964, he described the first
145 cases of proven primary aldosteronism: proteinuria was
present in 85% of the patients.2 This proteinuria was
attributed to hypertension present in Conn’s syndrome until
animal studies showed that mineralocorticoid hormones,
especially aldosterone, could cause proteinuria in absence
of hypertension.3 In 2001, a brief report of the use of a
mineralocorticoid receptor (MR) antagonist in eight protei-
nuric patients was published; a 54% decrease in proteinuria
was reported after 4 weeks of treatment with spironolactone.4

Several additional studies have explored the role of
aldosterone and MR in proteinuria, and in the progression
of chronic kidney diseases (CKD).

Prospective randomized controlled trials have demon-
strated reduction in mortality in patients with severe heart
failure,5 for those who develop heart failure following acute
myocardial infarction,6 and those with mild heart failure7

who are treated with MR blockers (MRBs). Patients with
CKD have not been included in these large-scale prospective
outcome studies, primarily because of concerns about
hyperkalemia. The aim of this review is to consider the
implications of aldosterone, the MR, and MRBs in the
progression and treatment of CKD, and solidify the base
upon which prospective outcome studies of CKD can be
based.

NEW CONCEPTS OF THE PATHOPHYSIOLOGICAL ROLE
OF ALDOSTERONE

Aldosterone controls sodium reabsorption and potassium
secretion in the distal nephron, and has a major role in
volume and blood pressure homeostasis. The hormone
functions in the distal nephron after binding to the MR, a
ligand-dependant transcription factor, which binds to
specific hormone response elements.8 Transepithelial sodium
reabsorption is regulated acutely via increased expression/
activity of the apical epithelial sodium channel, and in the
longer term by changes in the expression of the basolateral
Naþ /Kþ -ATPase.9,10 Membrane expression of the sodium
channel is tightly controlled by aldosterone, through regula-
tion of expression/activity of ubiquinylation pathways.11

Aldosterone and glucocorticoids (corticosterone in rodents)
have similar binding affinities for the MR. Aldosterone
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specificity in the distal nephron is ensured by the expression
and activity of the enzyme 11-b-hydroxysteroid dehydrogen-
ase type 2, which converts cortisol into corti-
sone (having a weak affinity for MR), preventing full MR
occupancy by cortisol, despite plasma concentrations
100- to 1000-fold greater than those of aldosterone.12

Cloning of the MR13 and development of specific
antibodies permitted mapping of the MR expression in the
distal nephron (convoluted distal tubule and collecting duct),
distal colon, and sweat glands, all sites previously known as
classical targets of aldosterone.12,14 MR is also expressed in
tissues and cell types wherein vectorial sodium transport does
not occur, indicating novel and yet unknown roles of
aldosterone and MR activation that does not serve whole-
body sodium homeostasis. In some of these nonclassical
targets (like vascular endothelium), MR is co-expressed with
11-b-hydroxysteroid dehydrogenase type 2 indicating that
aldosterone is the preferred MR ligand in these cells.15 In
other targets (cardiomyocytes, vascular smooth muscle cells,
neurons, adipocytes, and keratinocytes), the absence of 11-b-
hydroxysteroid dehydrogenase type 2 expression suggests that
the MR ligand is cortisol (or corticosterone) rather than
aldosterone.15,16

Aldosterone defends the extracellular fluid volume during
acute volume loss or salt depletion.12,14 However, MR
activation may become maladaptive,17 with sustained activa-
tion inducing pathological consequences like hypertension,
extracellular matrix remodeling, apoptosis, or inflam-
mation. The ‘coincidence’ model proposes that adding two
or more pathological inputs will have a synergic effect
resulting in inappropriate activation of MR.17 These triggers
include dietary salt intake, which could affect cellular
responses (cellular volume, membrane stiffness, and inflam-
mation), oxidative stress (induced by angiotensin or other
hormones), and ligand-independent MR activation. There-
fore, during modest, but coincident increases of aldoster-
one or MR expression, oxidative stress, and sodium load
will induce molecular and functional alterations and
pathophysiology.

MRs are expressed in heart and blood vessels, posing the
question of the pathophysiological role of MR activation in
these nonclassical target tissues. The pharmacological model,
in which unilateral nephrectomy and chronic aldosterone
infusion are associated with a high salt load, induces an
increase of blood pressure and pathological consequences
with perivascular and extracellular matrix remodeling in
kidney and heart.18,19 The administration of nonhypotensive
doses of MR antagonists, has clearly shown differential
responses to hemodynamic effects and profibrotic, proin-
flammatory, and increased oxidative stress of aldosterone
and/or activation of MR.20

MR expression is not fixed, but can be modulated in
various pathophysiological contexts like diabetes,21–23 CKD
with heavy proteinuria,24 cardiac failure,25,26 myocardial
infarction,27,28 high blood pressure,29 vascular aging,30 or
cerebral aneurysm.31 It has also recently been shown that MR

activation can occur independently of ligand. MR activation
by Rac1 has been demonstrated in vascular endothelium and
podocytes.32,33 Post-translational modifications of MR like
phosphorylation, as demonstrated for the glucocorticoid or
estrogen receptors are also possible.34 A further layer of
complexity is offered by the possibility for intracellular
‘cross-talk’ between the MR and the angiotensin type 1
receptor and the epidermal growth factor receptor, meditated
by phosphorylation cascades.35–37 This novel concept requires
that the traditional distinction38 between ‘genomic’ and
‘non-genomic’ effects of aldosterone be viewed in a different
perspective. These results indicate that MR activation does
not necessarily require increases in circulating aldosterone
levels, and can explain the beneficial effects of MR
antagonism in various pathological conditions wherein
circulating aldosterone levels are not elevated.

MINERALOCORTICOIDS AND RENAL DISEASES:
EXPERIMENTAL AND CLINICAL EVIDENCE
MR expression in the kidney

MR expression has been demonstrated in the distal nephron
(Figure 1).12,14 MR immunolocalization has been challen-
ging, but the generation of novel antipeptide monoclonal
anti-MR antibodies by CE Gomez-Sanchez39 has permitted
MR immuno-detection in tissues where expression level is
lower than in the distal nephron. MR is clearly expressed in
vascular endothelial cells and in the vascular smooth muscle
cells of inter-lobar arteries in the mouse kidney.15 MR
expression is not normally detected in the glomerulus, but
has been demonstrated ex vivo in cultured podocytes,33

mesangial cells,40 and renal fibroblasts.41 In vivo, MR appears
to be expressed in nonclassical targets like podocytes or
mesangial cells only during pathological conditions like type
1 diabetes in the rat,42 and in spontaneous hypertensive rats
with metabolic syndrome.43

Pathophysiological consequences of MR activation
in experimental models of kidney disease

The renal consequences of MR activation have been described
during aldosterone infusion, with suppression of aldosterone
synthesis after adrenalectomy, and with pharmacological MR
blockade (Figure 2).

Hypertensive nephropathy. MR blockade reduces the
vascular changes induced by blockade of nitric oxide
synthesis during high-sodium intake,44,45 in the Dahl salt-
sensitive rat,46 in the stroke-prone spontaneous hypertensive
rat,47 and the ren2 transgenic rat.48 These effects are observed
without blood pressure reduction, indicating a nonhemody-
namic protective effect of MR blockade. The underlying
mechanisms include decreased oxidative stress, inflamma-
tion, and extracellular matrix. Podocytes injury is evidenced
by decreased expression of podocin, synaptopodine,
and nephrin, and increased apoptosis.49 Intrarenal vessels
develop angiosclerosis and microangiopathy secondary to
MR activation.44,50 Aldosterone modulates the expression
of proinflammatory and profibrosis molecules, as well as
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components of the NADPH oxidase complex.47,49 The
endothelium is altered with increased expression of adhesion
molecules as well as decreased nitric oxide synthase
expression.46 Eplerenone prevents aldosterone-induced Rac1
activation in the endothelium.32 Altogether, these various
targets could contribute to the beneficial effects of the MR
antagonists in hypertensive nephropathy.

Chronic kidney disease. Decreased glomerular filtration,
glomerulosclerosis, and proteinuria associated to subtotal
nephrectomy are observed after aldosterone infusion3 and are
blunted by adrenalectomy51 or spironolactone.52 MR block-
ade slows the progression of preexisting lesions,52 and

prevents proliferation, interstitial fibrosis, and proteinuria
in a model of glomerulonephritis,53 in adriamycin-induced
nephropathy,54 and in a lupus nephritis model.55

Activation of the Rho kinase pathway and Rac1 could be
involved in the progression of CKD.33,46,48,56 In a transgenic
model with constitutive activation of the Rac1/Rho kinase
pathway presenting with nephrotic syndrome, MR blockade
prevented the development of proteinuria in the absence of
changes in arterial blood pressure.33 MR may be a direct
target for Rac1, which could modulate MR activation within
the podocyte, even in the absence of increased circulating
aldosterone.33

ASDN

Blood vessels

Smooth muscle

CT

Vessels

PT
PT

Mesangial cells

Podocytes

Afferent
arteriole
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arteriole
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Figure 1 | Mineralocorticoid receptor expression in the kidney. (a) The classical target of aldosterone is the aldosterone-sensitive
distal nephron (ASDN) but blood vessels have also been shown to express the mineralocortoid receptor (MR). (b) Immunolocalization of the
MR in the kidney. In addition to collecting tubule (CT), both endothelial and smooth muscle cells physiologically express MR. (c) Proposed
cellular targets in kidney diseases in the glomerulus: podocytes, mesangial cells, and glomerular capillaries. PT, proximal tubule.
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Diabetic nephropathy. The role of aldosterone and/or MR
activation in diabetic nephropathy has been demonstrated in
experimental models. Renal expression of MR is increased in
animals with streptozotocin-induced type 1 diabetes21,23,42

and in type 2 diabetes (db/db mice,21 F. Jaisser, personal
communication). Spironolactone has beneficial effects on
glomerular lesions observed in models of type 1 dia-
betes,21,23,57,58 which are associated with aldosterone—MR
dependent podocyte apoptosis.42 Pharmacological MR block-
ade prevents renal fibrosis and increased expression of
transforming growth factor-b1, PAI-1, type 1 and 4 collagens,
and fibronectin23,57,58 as well as local oxidative stress.58 Type 2
diabetes is associated in the rat and mouse models with renal
lesions, including mesangial expansion, albuminuria, tubulo-
interstitial lesions, macrophage infiltration, inflammation, and
increased expression of markers such as MCP-1, osteopontin,
transforming growth factor-b1, and PAI-1.21,40,42,57,59 Decrease
podocin and nephrin expression reflects podocyte injury in
these models.40,43 These molecular or functional parameters are
improved with MR blockade.21,40,42,57,59

Cyclosporine nephrotoxicity. Acute and chronic nephro-
toxicity complicates the course of transplant patients treated
with cyclosporine A (CsA). Acute nephrotoxicity, includes
vascular effects (acute arteriolopathy), tubular damage (toxic
tubulopathy), and occasionally, thrombotic microangiopa-
thy.9,60 Histological lesions related to chronic CsA nephro-
toxicity are present after 10 years when analyzed with
protocol biopsies.61 Several irreversible changes have been
described: vascular effects (hyaline arteriolopathy), tubular
lesions (tubular atrophy and interstitial ‘stripped’ fibrosis),
and glomerular lesions (enlarged Bowman’s capsule and
segmental and focal hyalinosis).60 Angiotensin-converting

enzyme-inhibitors (ACEI) or angiotensin II receptor blockers
(ARB) have been used to limit renal function decline after
transplantation.60,62,63

Renin activity is reduced during CsA treatment, pre-
sumably due to sodium retention and extracellular volume
expansion.64 Paradoxically, aldosterone and MR activation
have been proposed as deleterious factors in this setting.
However, circulating renin and aldosterone activities do not
necessarily reflect tissue activation of MR.65 Vasoactive and
proinflammatory effects of aldosterone could be explain the
beneficial effects of MR blockade during CsA nephrotoxi-
city.62 Perez-Rojas et al.66 reported that spironolactone
prevented renal damage in a model of CsA nephrotoxicity.
Vasoconstriction could be due to an ‘over-activation’ of MR
as recently described in transgenic mice with increased
MR expression in the vascular endothelium.15 Endothelial
MR regulates vasoconstrictor tone and blood pressure, so MR
blockade could limit vasoconstriction and ischemia and thus
reduce CsA nephrotoxicity. In rats, spironolactone improved
survival,66,67 prevented decreased renal function,66–69 afferent
arteriolopathy,68 and interstitial fibrosis.66–68 Eplerenone
prevented renal dysfunction and hyaline arteriolopathy in
the chronic CsA nephrotoxicity model.70 In a model of allo-
transplantation in the rat, MR antagonism decreased allograft
vasculopathy and macrophage infiltration.69

Renin–angiotensin–aldosterone system blockade
and aldosterone breakthrough in CKD

The importance of renin–angiotensin–aldosterone system
(RAAS) blockade for slowing the progression to end-stage
renal disease is well recognized.37 The effects of MR
antagonists on the progression of CKD are less well described

Kidney diseases Proposed mechanisms

Nephroangiosclerosis

Diabetic nephropathy

Cyclosporine
nephrotoxicity

Proteinuric
nephropathies

End-stage
renal disease

Vasoconstriction

Oxidative stress

Inflammation

Glomerulosclerosis

Alteration of glomerulus
filtration barrier

Mineralocorticoid
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O O
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Figure 2 | Implication of aldosterone and the mineralocorticoid receptor (MR) in renal pathophysiology. (a) Aldosterone and/or
mineralocorticoid receptor are involved in various kidney diseases in human and/or experimental models. (b) Proposed pathophysiological
mechanisms involved in renal lesions linked to aldosterone/MR activation.

1054 Kidney International (2011) 79, 1051–1060

r e v i e w J-P Bertocchio et al.: Aldosterone, MR, and kidney disease



than the effects of ACEIs and ARBs. The RALES,5 EPHESUS,6

and most recently, the EMPHASIS_HF7 studies have clearly
shown the beneficial impact on outcome of MR blockade in
heart failure. Studies of the effects of MR antagonists on the
progression of CKD are limited, without any outcome studies
examining loss of kidney function, progression to end-stage
renal disease, or cardiovascular death as the primary
outcome.37,71

The use of MR antagonists in CKD is suggested by
aldosterone ‘breakthrough’,37,72,73 defined as an increase in
circulating aldosterone after the initiation of a RAAS
blockade as compared with baseline values, despite blockade
of the effects of angiotensin II.37 Aldosterone breakthrough
occurs in 10–50% of the patients within 6–12 months after
the initiation of a RAAS blocker.74 This variability may reflect
different definitions for the thresholds of plasma aldosterone
increase. Furthermore, aldosterone breakthrough does not
seem to be correlated with the class of treatment (ACEI or
ARB) or the specific agent,74 and is associated with increased
proteinuria,74,75 or a faster decline in kidney function.73

Several studies have shown a direct relationship between
increases in plasma aldosterone after ACEI treatment and
increases in proteinuria and decreases in kidney function.73,76

The underlying cause of aldosterone breakthrough is not fully
defined, but a popular hypothesis invokes activation of non-
ACEI enzymes that cleave angiotensin I in angiotensin II,74

and stimulate aldosterone synthesis. This hypothesis does not
explain the equivalent incidence of aldosterone breakthrough
when ARBs are used compared with ACEIs. Studies of the
angiotensinogen knockout mouse are also relevant.77 RAAS
was presumably totally ablated in this model, and aldosterone
secretion was driven by serum potassium, especially during
dietary salt restriction. Hyperkalemia needs to be evaluated as
a potential contributor to aldosterone breakthrough in
patients receiving RAAS blockade,78 as potassium has long
been recognized as an important stimulus for aldosterone
secretion.5,79

Clinical studies of mineralocorticoids and kidney diseases

Conn2 described the first prospective cohort of patients with
primary aldosteronism, among whom 85% of the patients
presented with proteinuria, which was attributed to hyper-
tension and ‘kaliopenic nephropathy’.80 The Primary Aldos-
teronism Prevalence in Italy Study showed that patients
presenting with hyperaldosteronism more often have protei-
nuria than control patients with essential hypertension.81

Plasma aldosterone levels have been correlated with
alterations in kidney function in CKD,82 suggesting an
association between kidney dysfunction and MR activation.80

Patients with a heavy proteinuria (42 g per day) have
increased renal expression of MR and increased plasma
aldosterone levels that were correlated with the severity of
renal biopsy findings.24 Chrysostomou et al.4 first proposed
the use of MR antagonists in proteinuric patients with CKD,
and described a 54% reduction in proteinuria (3.8±2.5
versus 1.8±1.0 g per day) with spironolactone (25 mg per

day for 4 weeks). Initial reports4,83 and more recent analysis
describe decreased blood pressure after MR antagonism.84,85

Other studies showed reduction in proteinuria independent
of effects on blood pressure at the doses used.75,86–89 Whether
part of the beneficial effects of MR antagonism in CKD are
independent of effects on blood pressure is a point of
continuing debate. Table 1 summarizes the number of
published studies of MR blockade in CKD and proteinuria.

Diabetic nephropathy. In 2003, a trial in 45 patients with
diabetes mellitus and persistent proteinuria during ACEI
treatment showed a decrease in urinary albumin/creatinine
ratio with the addition of spironolactone, without changes in
mean blood pressure,75 and the decrease in proteinuria was
more marked in diabetic patients than in other proteinuric
patients.86 The same year, another team published similar
results: proteinuria decreased under MR antagonist; the
efficiency was correlated with the aldosterone level before the
initiation of the treatment, and after MR antagonist
withdrawal, proteinuria reappeared.90 In this open-label trial,
the reduction of proteinuria correlated with MR blockade.
This was confirmed in another clinical trial in type II diabetic
patients.91 The first controlled, crossover, versus placebo trial
was performed in type I diabetic patients:92 the authors
confirmed that proteinuria was decreased, but there was also
a decrease in blood pressure and glomerular filtration rate.
These results have been confirmed by at least two other
studies.92,93 The dose of spironolactone used in these studies
was 25 mg per day. Higher doses have shown similar
efficiency: a trial in 53 diabetic patients used spironolactone
50 mg per day during 1 year and showed a decrease in
albuminuria;94 and a trial comparing the effect of spirono-
lactone 100 mg per day to ACEI (cilazapril) in diabetic
patients confirmed the benefit of MR antagonism in addition
to the effect of ACEI.91 Spironolactone decreased albuminur-
ia, renal excretion of MCP-1, and activation of oxidative
stress (as estimated with renal excretion of 8-iso-prostaglan-
din F2a) better than a calcium-channel blocker in diabetic
subjects.95 Only one study has been performed with
eplerenone in type 2 diabetic patients: the tolerability was
similar to spironolactone and proteinuria was decreased after
3 months.83

Nondiabetic proteinurias. In a randomized, controlled,
double-blind trial, was decreased by MR blockade in 41
patients with baseline proteinuria 41.5 g per day who had
already received ACEI treatment for more than 6 months.88

Spironolactone (25 mg per day) had a beneficial effect,
whereas ARB treatment did not. At 3 and 6 months after
starting spironolactone treatment, there were independent
effects on proteinuria and blood pressure. Glomerular
filtration rate and hyperkalemia were not different in the
spironolactone-treated patients compared with the ARB-
treated group. In a prospective, randomized, and open-label
study of proteinuric patients (41.0 g/g of creatinine) with
nondiabetic forms of CKD and estimated glomerular
filtration rate from 34 to 116 ml/min per 1.73 m2, spirono-
lactone (25 mg per day) decreased proteinuria and slowed the
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progression of CKD over 12 months duration of follow-up.87

This study is the only one that clearly demonstrates that
spironolactone slowed progression of CKD. A recent
systematic review on 15 clinical trials and abstracts evaluated
the effect of a MR blockade in patients with CKD and
proteinuria who were also receiving another RAAS blocker;
there was a uniform decrease in proteinuria.96 The incidence
of hyperkalemia during MR antagonist was between 3 and
17%, depending on the definition used for hyperkalemia.96 In
2008, a prospective, randomized, multi-centric, open-trial in
32 patients with proteinuric nephropathy (40.5 g per day)
showed that addition of spironolactone (25 mg per day) to
ACEI and ARB treatment decreased proteinuria and renal
excretion of type 4 collagen (a renal marker of fibrosis)
without any modification of blood pressure or kidney
function when compared with the control group.89 Another
report of a prospective, open-label, crossover trial, showed
that ‘triple blockade’ during 8 weeks decreased proteinuria as
well as urinary excretion of a kidney injury biomarker,
decreased fibrosis but increased serum potassium.97

In 2009, a meta-analysis of 11 controlled and randomized
trials compared the effect of a MR antagonist in patients with
CKD, albuminuria, or proteinuria due to diabetic and
nondiabetic nephropathy, who were already receiving another
RAAS antagonist (ACEI or ARB).85 All studies, but one, used
25 mg per day spironolactone. This meta-analysis showed that
spironolactone significantly decreased proteinuria when added
to ACEI and/or ARB treatment without any change in renal
function, but with a decrease in systemic blood pressure. The
risk of hyperkalemia was higher and a few cases of gynecomastia
were reported. Eplerenone (50 mg per day) treatment decreased
of proteinuria after 12 weeks associated with a decrease of blood
pressure (systolic and diastolic) but without change in kidney
function or hyperkalemia. Gynecomastia was not reported with
eplerenone.85

A large-scale prospective, placebo-controlled evaluation of
eplerenone versus conventional agents in hypertensive
patients with proteinuria is underway, and is referred to as
the EVALUATE Trial.98 The primary end point is reduction in
urine albumin/creatinine ratio after 12 months of active drug
treatment, with secondary outcomes that include reduction
in blood pressure, hyperkalemia, and slowing of progression
of CKD.

End-stage renal disease. In most of the clinical studies, the
primary end point was reduction in proteinuria and/or
albuminuria. The possibility that the beneficial effects of MR
antagonism may not require an effect on proteinuria is raised
by studies in anuric end-stage renal disease patients showing
cardiovascular effects of MR antagonists.99–101 Those per-
formed in anuric patients are informative about the effects of
MR antagonists that are independent from their action on
kidney function and proteinuria. An open-label trial in 14
hemodialyzed patients with a residual renal function (from 2
to 6 ml/min) showed that 25 mg per day spironolactone,
three times a week for 2 weeks, did not cause hyperkale-
mia.102 Another observational trial reported a similar safety

profile in eight chronic hemodialyzed patients.103 One case of
hyperkalemia 46 mmol/l and one with 45.5 mmol/l were
reported but without need to modify treatment.103 Hemo-
dialysis, by effecting potassium removal, seems to limit the
risk of hyperkalemia.104 Another trial in nine hemodialyzed
patients examined the risk of hyperkalemia after an oral load
of potassium, with or without spironolactone (50 mg per day
three times a week): after 2 weeks, hyperkalemia was not
worsened by spironolactone.105 In 2009, an observational
study in 50 hemodialyzed patients showed that 25 mg per day
spironolactone could be used safely for 6 months.106

A single report describes the use of spironolactone in
association with an ACEI and a b-blocker in a patient with
heart failure who received chronic peritoneal dialysis: there
was no particular adverse effect.107

Decreased of aortic vascular calcifications has been described
with spironolactone treatment in five hemodialysis patients.99 A
controlled, crossover versus placebo trial in eight hemodialysis
patients showed a significant blood pressure decrease without
hyperkalemia.100 A prospective, randomized, controlled trial in
30 hemodialysis patients showed decreased carotid intimal
thickness with spironolactone and minimal safety issues over 2
years of treatment.101 These studies have been summarized in a
recent meta-analysis.108

Pediatric cases and pregnancy. Very few studies are
available in children. The etiologies of nephropathies are a
bit different than for adults, so it is difficult to extrapolate
from the trials performed in adult patients to children. A
recent review mentioned two observational trials.76 The first
one described children with Alport’s syndrome: spironolac-
tone (25 mg per day) safely decreased proteinuria with 18
months of use.109 Another retrospective study, in 100 MR
antagonist-treated children, reported hypokalemia rather
than hyperkalemia.110 Randomized controlled trials with
adequate power have to be done to evaluate the efficiency and
the safety of MR antagonists in children as well as adults.

Eplerenone has been assigned to pregnancy risk category
B; there are not animal studies with evidence of teratogeni-
city, and there are no controlled data in human pregnancy.
Spironolactone has been assigned to pregnancy risk category
C, with adverse effects seen in animal studies and no
adequate studies in humans. Both drugs should probably be
avoided in pregnancy.

Adverse effects associated with MR antagonists. The
adverse effects in MR antagonists could be divided in ionic
effects (hyperkalemia and salt depletion related to the
diuretic effect) and anti-androgenic effects (gynecomastia,
disorders of the menstrual cycle, and so on, related to the
nonspecific androgen receptor blockade). The use of MR
antagonists has not been recommended in CKD patients
because of the concerns about hyperkalemia,111,112 which
often occurs when multiple RAAS blockers are used.113

Several authors suggest that the MR antagonists are not used
often enough in heart failure, based on comparisons to the
inclusion criteria for the RALES5 and EPHESUS6 studies, and
that the biological follow-up (monitoring of serum creatinine
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and potassium) have not been optimal.114 Anti-androgenic
adverse effects appeared with high doses spironolactone.85,115

Spironolactone and eplerenone seem to have different
adverse event profiles, particularly the anti-androgenic
effects. This difference is due to the lower selectivity for
MR of spironolactone; spironolactone is also an antagonist
for the androgenic receptor in contrast to eplerenone, which
is relatively more MR specific.115

The safety issues related to hyperkalemia may have
overshadowed the potential beneficial effects of MRBs in
patients with CKD.38,116,117 Indeed, the risks associated with
hypokalemia seem to be more consequential than the risks
associated with hyperkalemia in patients with CKD.118,119

What has not been properly emphasized is the possibility that
hyperkalemia may stimulate aldosterone secretion and
contribute to aldosterone breakthrough, thus limiting the
beneficial effects of MRBs and RAAS blockade in patients
with CKD.78 Several approaches to controlling hyperkalemia
during RAAS blockade have been recently summarized, and
include dietary restriction, increased colonic secretion of
potassium, and the use of adjunctive diuretic therapy.37

CONCLUSION

Aldosterone and/or direct MR activation are important risk
factors for various forms of heart disease. It seems likely that
MR activation has similar effects in CKD, beyond any effects
on blood pressure. The beneficial effects of MR antagonism
have not been fully explored in several clinical situations: in
end-stage renal disease patients (with or without anuria, in
hemodialysis, and peritoneal dialysis), in proteinuric pa-
tients, in kidney transplant patients, and in children. The use
of MR blockade to slow the progression of CKD needs to be
rigorously explored with properly powered outcome studies.
In other clinical conditions, such as cyclosporine and/or
transplant vasculopathy, the effects of MRB need to be better
defined. As a complement to more aggressive RAAS blockade
(with higher doses of ACEIs and ARBs) in proteinuric kidney
diseases, there is growing interest in the cardiovascular
benefits of adding MR antagonism to RAAS blockade.
Concerns about hyperkalemia have prevented the organiza-
tion of large-scale outcome studies in CKD similar to
RALES,5 EPHESUS,6 and EMPHASIS_HF.7 The current
recommendations for MR antagonism in heart failure
specifically exclude patients with CKD; perhaps this ther-
apeutic window can be extended if effective means of
managing hyperkalemia can be developed for use during
long-term outcome studies, both from the safety perspective
as well as limiting the detrimental effects of hyperkalemia and
aldosterone breakthrough on the efficacy of RAAS blockade.
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