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ABSTRACT The Thermomyces lanuginosa lipase has been extensively studied in industrial and biotechnological research
because of its potential for triacylglycerol transformation. This protein is known to catalyze both hydrolysis at high water contents
and transesterification in quasi-anhydrous conditions. Here, we investigated the Thermomyces lanuginosa lipase structure in
solution in the presence of a tributyrin aggregate using 30 ns molecular-dynamics simulations. The water content of the
active-site groove was modified between the runs to focus on the protein-water molecule interactions and their implications
for protein structure and protein-lipid interactions. The simulations confirmed the high plasticity of the lid fragment and showed
that lipid molecules also bind to a secondary pocket beside the lid. Together, these results strongly suggest that the lid plays
a role in the anchoring of the protein to the aggregate. The simulations also revealed the existence of a polar channel that
connects the active-site groove to the outside solvent. At the inner extremity of this channel, a tyrosine makes hydrogen bonds
with residues interacting with the catalytic triad. This system could function as a pipe (polar channel) controlled by a valve (the
tyrosine) that could regulate the water content of the active site.
INTRODUCTION

Lipases (EC 3.1.1.3) are a class of enzymes that are able to

catalyze different reactions, such as hydrolysis and transester-

ification of triglycerides (TGs). They have been characterized

for various species and present differences despite a well-

conserved a/b hydrolase fold (1). Some lipases, such as the

mammal a-pancreatic lipase, are associated with another

protein, the colipase. The role of the colipase is not yet well

understood, but it seems to be responsible for the anchoring

of the lipase/colipase complex to cell membranes or micelles

(2–4) and is necessary for the enzyme to work properly in the

presence of bile salts (5). Other members of the family, such

as the Thermomyces lanuginosa lipase (TLL), are active

without any cofactor. Lipases can catalyze several reactions

in different compounds. They can mediate TG hydrolysis in

di- or monoglycerides and free fatty acids, but can also drive

transesterification or interesterification (6). Transesterifica-

tion consists of the exchange of acyl chains between two

TGs. As consumers’ demand for healthy food is increasing,

the use of such enzymes for TG modification is crucial for

the food industry. Moreover, these proteins show good poten-
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tial for use in industrial and biotechnological research and

applications (6).

The water content and activity of the catalytic environment

greatly influences the reaction rates (7). For most lipases, a low

water content (<5%) is needed for optimal transesterification

(7). In all cases, the enzymatic activity increases drastically

when the lipid concentration reaches the supersaturation level,

where the substrate can be an emulsion or form micelles. This

phenomenon, known as interfacial activation (8), is of great

importance for the reaction rate. Indeed, the maximal catalytic

activity occurs after a characteristic lag period (9) during

which the enzyme is stacked at the lipid interface.

To date, two models have been proposed to explain

the molecular basis of interfacial activation. According to

the ‘‘substrate’’ theory (10), the most important feature is the

quality of the interface, whereas the ‘‘enzyme’’ theory pro-

poses that the driving parameter is the conformational change

of a protein fragment (the lid) at the adsorption surface (11).

Based on crystallographic studies, Derewenda et al. (12)

showed the high conformational lability of the lid in the

absence of interface, and suggested that the two theories are

nonexclusive.

The crystal structure of several lipases has already been

solved (12–15). The structure of T. lanuginosa lipase presents

the a/b hydrolase fold typical of the family. The TLL structure

consists of a central seven-stranded b-sheet surrounded by

a large N-terminal a-helix on the distal face and connecting

fragments on the proximal face (15). The classical catalytic

triad S146, D201, and H258 is buried in a hydrophobic

groove. Located on one border of the groove, the lid (residues
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85–93) can adopt two major conformations, defined as

‘‘open’’ and ‘‘closed’’ with respect to the active site (16,17).

In aqueous conditions, the lid covers the active site and

restricts its accessibility to water. In the open conformation,

hydrophobic residues that are located at the inner face of the

lid are exposed to the solvent. The opening of the lid increases

the hydrophobic surface area near the active site, which is then

more favorable to lipid binding.

Preliminary works using lipase crystallographic structures

have been performed in an attempt to understand the interfa-

cial activation and its associated lid motions. Based on 500 ps

molecular dynamics (MD), it has been proposed that the

conserved arginine at the lid hinge of Rhizomucor miehei
lipase contributes to the stabilization of the open conforma-

tion by forming an electrostatic interaction with an aspartate

(D62 in T. lanuginosa) (18). Moreover, in a study combining

MD approaches with a constrained mechanical protocol,

Peters et al. (19) suggested that lipase activation is enhanced

in a hydrophobic environment.

Using fast Fourier transform-attenuated total reflection

studies, Noinville et al. (20) followed the hydrogen/deuterium

exchange reaction for Humicola lanuginosa lipase and

proposed a two-step water shuttling mechanism occurring at

the interface. They suggested that water molecules can be

trapped near the internal cavity of the lipase (the first step)

and could be released during the adsorption onto the interface

(the second step). Moreover, they proposed that lipases

should have a unique structural feature that leads to the release

of water molecules during the adsorption/opening process,

but did not identify the residues implicated in the process.

A partial answer was proposed by Derewenda et al. (14),

who showed that lipases from a fungal family have a buried

polar cluster of amino acids. They furthermore revealed the

presence of ordered water molecules in protein cavities. No

explicit mechanism by which water molecules gain access

to the active site has been proposed to date; however, in

a recent work on another type of lipase, Linderoth et al.

(21) suggested that access of water molecules to the active

site is a key step in the hydrolysis mechanism.

In this study, we performed MD simulation runs of TLL

complexed to a tributyrylglycerol (TBG) aggregate in water.

We modified the water content of the active site in the last

two MD runs to focus on the role of water-protein interac-

tions near the active site, and their implications for lipase

activity. The different runs correspond to the lipase with an
active-site cavity 1), full of water; 2), with only one water

molecule in the vicinity of the catalytic triad; and 3), without

water. We further analyzed the conformational plasticity of

the lid as well as the adsorption and motion of the TBG

near the active site.

MATERIALS AND METHODS

Protein model selection

The initial protein structure was an open structure of TLL cocrystallized with

lipids (diundecyl phosphatidyl choline (PLC); Protein Data Bank (PDB):

1EIN) (15). This conformation was selected because it contains a phospho-

lipid in the active site and thus could accept ligand within the MD timescale

without requiring major modifications to simulate the opening of the lid.

Moreover, extensive experimental research has been performed on this

enzyme. A major challenge in studying transesterification by MD using

actual all-atom force fields is to reproduce experimental conditions with

very low water concentrations (<1%) and TGs as solvent molecules. To

avoid a fast pressure increase and system instability, we worked on a system

consisting of one TLL molecule and a sufficiently large, unstructured TG

aggregate in a box of water. The TGs were not constrained or treated as rigid.

TBG model construction

To limit the size of the system while mimicking experimental procedures, we

did not use the lipid cocrystallized with the protein; instead we used TBG,

which is less complex than PLC and is fluid at 308 K. The structural model

(Fig. 1 A) was achieved based on the experimental structure of a truncated tris-

tearylglycerol obtained from the HIC-UP server (22). The TBG GROMACS

(23) topology and coordinate files were generated with the PRODRG server

(24) using GROMOS96 (G43a1) parameters (25). The atom names, bond and

angle definitions, and charge repartition were adapted to fit the atom and bond

types defined in the default topology files of the G45a3 version of the force

field (26) (see Fig. S1 in the Supporting Material). This version was chosen

for its potential for lipid description.

TBG aggregate construction

The TBG aggregate was created using an MD simulation of a complete

system (Fig. 1 B). A lipase molecule was put into a 10 nm cubic box and

surrounded by 922 TBG molecules. All remaining spaces were filled in

with 15,528 simple point charge (SPC) water molecules. The system was

minimized by 2000 steps of steepest descent and 1000 steps of conjugate

gradient, and then run for a 10 ns simulation with the protein under position

restraints in periodic boundary conditions (PBCs) using a 2 fs time step. The

temperature was fixed to 343 K to accelerate the TBG aggregation process.

Temperature and pressure (1 bar) were maintained using the bath method

(27). Electrostatics and van der Waals were treated with a 1.4 nm cutoff.

Bonds were maintained with the SHAKE algorithm (28). As expected, indi-

vidualized lipid molecules clustered rapidly to form an unstructured aggre-

gate. A volume corresponding to a cubic box of 4 nm sides (larger than the
FIGURE 1 Initial system models. (A)

Structural model of a TBG. Oxygen

atoms are in red and carbon atoms are

in green. (B) Initial system used to

obtain the TBG aggregate. (C) Starting

system for the first MD run. Protein is

in ribbon (yellow, b-sheets; red,

a-helices; and green, coils), and the

aggregate is in yellow sticks. Water

molecules are not represented.
Biophysical Journal 96(12) 4814–4825
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entire protein volume) containing only TBG molecules was selected in the

vicinity of the protein.

Starting box construction and minimization

A crystallographic lipase structure that had not been subjected to any simu-

lation was placed with the lid helix oriented toward the aggregate (Fig. 1 C).

Protonation states of ionizable groups were set according to pH 7. For histi-

dine, the protonation state was determined from the hydrogen (H)-bonding

pattern, or if the side chain was solvent-exposed, a proton was put on the

N3 only (29). The minimal distance between any atom of the protein and

the aggregate was set to 4 Å. The protein/TBG complex was then put into

a triclinic box at 1 nm from each side of the box filled with 27,981 SPC water

molecules, and neutralized using an automatic subroutine replacing solvent

molecules by monoatomic ions at the position of the first atoms with the

most favorable electrostatic potential. Nine sodium ions were added this

way, for a total size of 92,768 atoms. The system was minimized by 2000

steps of steepest descent and 1000 steps of conjugate gradient, and submitted

to two consecutive 50 ps heating runs in PBC at 308 K and 1 bar (bath

method) with a 2 fs time step. During the first heating run, the protein and

all TBG molecules were constrained. The TBG molecules were relaxed in

the second run. Electrostatic interactions were treated using the particle

mesh Ewald (PME) method, and van der Waals interactions were treated

with the shift method. All cutoffs were set to 1.2 nm. Atomic bonds were

maintained using the SHAKE algorithm.

Simulation runs

A first run (R1) of 10 ns, with no restraint, was achieved to completely relax

the system and leave enough time for the protein and aggregate to move

closer together. The last structure was then used as starting point to extend

R1 by 20 ns through runs R2–R4. R2 was a continuation of the first 10 ns

with no change in the system. The opening of the lid is thought to be

a step in interfacial activation and to be enhanced in a hydrophobic environ-

ment (19). It is thus likely that the active site contains only a few water mole-

cules after the activation lag time. To test the effect of an active site free of

water molecules, we performed two runs. In R3, only one water molecule

was left near the active site, for a total system size of 92,726 atoms. During

R4, all water molecules between the protein and the aggregate were removed

from the active-site groove, leaving the system with 92,723 atoms. These

three runs (R2–R4) were carried out with coordinates and velocities gener-

ated in the last step of the first trajectory (R1). A 2 fs time step was used in all

four simulations. Two repeats of each run were computed using two

different sets of velocity for R1. All computations, corresponding to a total

time of 210 ns, were performed on four Bi-Xeon Quad core computers.

The trajectories were performed and analyzed with the GROMACS 3.3

tools as well as with in-house-made scripts and softwares, and 3D structures

were analyzed with both PYMOL (30) and VMD (31) softwares. All anal-

yses were performed on the triplicated runs independently and yielded

similar results. The results are described here on the basis of the first runs

only; differences observed in the repeats, if any, are specified in the text.

RESULTS

Evolution of global parameters

To evaluate the stability of the protein structure during the

simulations, a root mean-square deviation (RMSD) was

calculated on the a-carbons after the superposition of each

structure from the trajectory by series of rotations and transla-

tions (least-square fit computed on a-carbons) to the crystal-

lographic reference structure using the standard GROMACS

subroutine g_rms. During the first simulation (R1), the RSMD

reaches a plateau between 1.5 and 2 Å after 2 ns (Fig. 2 A).
Biophysical Journal 96(12) 4814–4825
This plateau is continued through the simulation without

water in the active site (R4). During R2 and R3, the RMSD

value increases more or less linearly to reach another plateau

between 2 and 2.5 Å. It is not surprising that the largest RMS

fluctuation (RMSF) values are associated with both the

protein loops and the lid (Fig. 2 B). The lowest RMSF values

are obtained during R4, indicating a structure that is slightly

less labile than in the other simulations. The three residues

of the active site (S146, D201, and H258) present an RMSF

value of <1 Å in all trajectories.

To follow the relative displacement of the protein and the

TBG aggregate, we computed the surface of contact shared

by these groups averaged over 21 steps. This was computed

by subtracting the solvent-accessible surface of the group

protein-TBG aggregate from the sum of the solvent-acces-

sible surface of the protein and the TBG aggregate alone.

Fig. 2 C shows that the protein and the TBG aggregate get

close together in <2 ns and share 45–55 nm2 of their surface

after 10 ns. During the other runs, the two groups do not move

away from each other and share a surface varying between

40 and 60 nm2.

The helical part of the lid can be defined by residues

I86–N92, which correspond to the a3 helix of the protein

(15). The number of lid residues (computed between S85 and

L93) in helical conformation computed with DSSP software

(32) over 21 steps shows that the helix is very stable during

R1 (Fig. 2 D). Five to six residues are in helical conformation

during R4, whereas the number of helical residues decreases

during the first 5 ns of R2. After 5 ns, there are 4–5 residues

in helical conformation, except for a short unstructured break

around 26 ns. During R3, the helix is stable until 17 ns and

then becomes totally unstructured. Its helicity is partially recov-

ered at the end of the simulation (Fig. 2 D). When the lid loses

helicity, the unfolding begins from its C-terminal end (Fig. S2).

These results show that the integrity of the protein is

conserved during the simulations even in the region close to

the aggregate. The lid is known to be very flexible and labile.

Even if its structure is not well conserved through time, no

movement of large magnitude is observed during the simula-

tion. Repeat runs confirm the global evolution of the parame-

ters. To investigate in detail the reciprocal impact of lipids,

water, and protein on each other, we focused on interactions

in the active site and at the protein/TBG interface.

Movement of functional residues

The catalytic triad consists of residues S146, D201, and H258.

To examine how this triad adapts its conformation to

incoming TBG molecules, we analyzed distances between

atoms implicated in the processing of the substrate as previ-

ously described (33,34), i.e., one D201 side-chain oxygen,

two nitrogens from the H258 ring, and the S146 hydroxyl

oxygen. Since the two oxygen atoms from the aspartate are

indistinguishable, we focused on the D201 CG–H258 ND1

and S146 OG–H258 NE2 distances (Fig. 2 E). In all runs,
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C

B

A
 the distance between D201 CG and H258 ND1 averaged over

21 steps is maintained around 3.2� 1 Å. The S146 OG–H258

NE2 distance is subject to more variations. During the first 10

ns (R1), it fluctuates between 3.5 and 4.5 Å. After 10 ns, some

differences can be observed between the three runs R2–R4. In

R2, the distance increases to 9 Å after 15 ns up to the end of the

simulation. In R3, where the starting structure has only one

water molecule in the active site, the distance decreases regu-

larly with time down to 3 Å and increases to 4 Å at the end of

the simulation. In R4, with no water molecule in the active

site, this distance decreases more rapidly than in R3 (in

a few picoseconds), and is always lower than 4.0 Å.

These results show that the catalytic triad can adapt to

different ligand sizes and to environmental variations.

Run R1 (0–10 ns active site full of water)

During the first 10 ns, the protein and aggregate come close to

each other. The average surface of contact between the protein

and the TBG aggregate shows that it takes place in <2 ns

(Fig. 2 C). Nevertheless, we did not observe any TBG mole-

cule close enough to the active site and in a conformation

compatible with the enzymatic reaction. None of the TBG

molecules in R1 superimpose exactly on the lipid molecule

(PLC) present in the crystallographic structure. However,

from time to time, the acyl part of a TBG molecule superim-

poses partially with part of the PLC molecule (Fig. 3 A).

The catalytic triad and substrate can only make indirect inter-

actions through water molecule bridges. This is not surprising

given the starting structure, the time of simulation, and the

hindrance of the active site by water molecules. Indeed, whereas

most water molecules are chased out of the protein/TBG inter-

face, some remain trapped in the active-site groove (Fig. 4 A).

Our attention was drawn to the motion of a particular mole-

cule of water (SOL1) initially located at the protein/lipid inter-

face. SOL1 is rapidly integrated into a cluster of hydrogen-

bonded water molecules in the hydrophobic cavity and is

highly mobile from t¼ 0–9 ns. Meanwhile, the Y21 hydroxyl

group makes an H-bond with either the carboxy oxygen or the

amide hydrogen of G82, and H145 makes an H-bond with the

carboxy oxygen of H258 (Fig. 5 A). After 9 ns, Y21 adopts

another conformation and is hydrogen-bonded to the H145

side chain, which is always connected to the H258 backbone

(Fig. 5 B). This reorganization lets SOL1 enter a polar channel

formed by the side or the main chains of residues S17, Y21,

N26, D27, R81–S85, N88, and H145 (Fig. 4 B). When

FIGURE 2 Global parameters. (A) RMSD calculated on a-carbons after

a least-square fit on a-carbons of the crystallographic initial structure. (B)

RMS fluctuations computed on the a-carbons. (C) Contact surface computed

between the protein and the TBG aggregate. (D) Number of lid residues in

a-helix computed with DSSP along the trajectories. (E) Active-site residue

distances. Upper panel: Distances between CG from D201 and ND1 from

H258. Lower panel: Distance between OG from S146 and NE2 from

H258. The same color code is adopted in all plots (R1, black; R2, red;

R3, blue; and R4, green).
Biophysical Journal 96(12) 4814–4825
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SOL1 enters the channel, it takes the place of a second water

molecule, SOL2 (site 1; Fig. 4 B). A comparison of the struc-

tures along the trajectory with the crystallographic structure of

the lipase shows that despite their low RMSF (Fig. 2 B), three

residues (Y21, R81, and R84) located at each extremity can

move enough to close or open the channel. At the end of the

FIGURE 3 TBG orientation in the active site at (A) 6,610 ps during R1,

(B) 13,490 ps during R2, and (C) 17,090 ps during R2. Each structure

was superimposed on the reference crystallographic structure (1EIN) shown

in green cartoon representation with the active-site residues in dark blue.

Carbon atoms of the PLC molecule are colored in light blue, oxygen atoms

in red, phosphorus atom in orange, and nitrogen atom in dark blue. Carbon

atoms from TBG molecules (labeled as in the simulations) are colored in

green, and oxygen atoms in red.
Biophysical Journal 96(12) 4814–4825
run, only 14 molecules occupy the active-site groove, and

two are in the polar channel (Table 1).

In some lipases, the lid is suspected to play an important

role in both the interfacial activation and the adsorption

mechanism. It presents two different faces along its helix

axis, both of which are accessible to the solvent in the struc-

ture used here. Most of the lid residues facing the active site

are hydrophobic (I86, W89, I90, N92, L93, and F95). The

outer face of the lid, opposed to the active site, is more polar

with two asparagines (N88 and N94), S85, E87, and R84,

and could interact with solvent molecules at the interface.

Surprisingly, after 5 ns, a TBG molecule (TBG365) interacts

with the protein on the outer face. TBG365 is maintained until

the end of the run in a pocket defined by residues V60, V63,

N88, G91, N92, G112, F113, S116, and L147 (Fig. 6 A).

This pocket corresponds to an alternative binding site that

was partially described in the crystallographic structures of

TLL by Yapoudjian et al. (35), who highlighted interactions

between residues N92 and H110 with lipids. In our simulation,

the main stabilizing interaction is an H-bond between the OC1

atom from TBG365 (Fig. 1 A) and the amide group from the

N88 side chain. Moreover, the residues that border the

secondary pocket form a polar ring that could make electrostatic

interactions with the remaining oxygen atoms of the TBG mole-

cule. Regarding the orientation of the acyl chain containing

OC1, we could assume other possible interactions between

this part and the four hydrophobic residues from the bottom

of the pocket. During the repeats of this run, the pocket structure

is not conserved and no TBG interacts with the lid outer face.

Run R2 (10–30 ns full of water)

The R2 run was a continuation of R1 under the same condi-

tions (i.e., the same number of atoms, temperature, and

pressure; Table 1). The velocities used for the first step of

R2 were taken from the last step of R1.

The H-bond between TBG365 and N88 breaks after 12 ns,

but the lipid is maintained in the secondary pocket by another

H-bond with the D62 backbone nitrogen. The pocket confor-

mation does not vary much during the last few nanoseconds.

The V60 side chain, which interacts with an acyl chain of the

TBG365, would increase its stabilization in the secondary

pocket through additional hydrophobic interactions.

The lid loses its helical conformation from I90 to its

C-terminus (Fig. 2 D). This explains the high RMSF value

for theses residues during R2 (Fig. 2 B). After 17 ns, there

are four to five lid residues in helical conformation, except

for a short unstructured break just before 26 ns. During this

event, a water molecule is present between the TBG365 and

the lid for few picoseconds (Fig. S2).

At the beginning of the run, 14 water molecules are evenly

distributed along the active-site groove and two others (SOL1

and SOL2) are present in the polar channel. The water mole-

cule SOL1, which leaves the catalytic groove during R1,

replaces SOL2, which is expelled from the protein through



Molecular-Dynamics Simulations of TLL 4819
the polar channel in few picoseconds (Fig. 4 C). At 23 ns, the

water molecule SOL1 is replaced by another molecule from

the active-site groove and returns near the catalytic triad.

Thirteen solvent molecules in the active-site groove

cluster around the catalytic triad. Only one remains in the

hydrophobic part of the site during the whole simulation,

stabilized by H-bonds with the carboxyl of V203 and the

backbone nitrogen of R175.

Two water molecules of the cluster diffuse at the interface

near the C-terminal end of the protein. A third one enters the

groove in the same way before the TBG molecules get close

enough to the protein to hinder the path. One last water mole-

cule leaves the groove under the lid segment. At the same

time, near Y21, a water network is established connecting

the cluster to the water molecule in the polar channel

(SOL1). The two arginines at the other end of the channel

move to open or close the channel during the simulation.

The H-bond between Y21 and H145 side chains breaks

after 11 ns and is never observed again. Then, H145 moves

slightly and establishes another H-bond with the D201 side

chain between 12 and 30 ns (Fig. 5 C).

Finally, at t ¼ 30 ns, one molecule is engaged in the polar

channel and a water molecule network is formed between the

channel and the active site.

As a result, the water molecules make more contacts with

the surrounding polar residues, especially with the serine and

the histidine of the catalytic triad, preventing interactions of

TBG molecules with the active site. Three major TBG mole-

cules come close enough to the triad to be hydrolyzed, but

are not stabilized for more than a few picoseconds. Neverthe-

less, two TBGs present two of the three acyl chains superim-

posed on the PLC present in the crystallographic structure

(Fig. 3, B and C).

Run R3 (10–30 ns with one water molecule into the
active site)

To mimic conditions that could happen during hydrolysis,

we conserved only one water molecule (SOL3) in the active

FIGURE 4 Water molecules at the

protein/lipid interface. (A) At 0 and 10 ns

(R1) water molecules are represented as

a white surface outside and dark cyan

surfaces inside the active-site groove.

Water molecule motions at the interface

near the active site during R1 (B), R2

(C), R3 (D), and R4 (E) are shown.

Residues of the channel are shown in

green and active-site residues in dark

blue. SOL1 is in cyan, SOL2 in red,

and SOL3 in orange. H-bonds formed

by SOL3 are indicated by dashed lines.

Water molecules that fill in the channel

in R4 are shown in ball representation.
Biophysical Journal 96(12) 4814–4825
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site of the last conformation of R1. This molecule was

chosen for its location between S146 and H258.

During R3, the lid progressively loses its a-helical confor-

mation from W89 to its C-terminus (Fig. 2 D) and is

completely random after 18 ns.

The H-bond between TBG365 and N88 definitely breaks

after 11.5 ns and the TBG progressively slides out of the

secondary pocket. After 15 ns, the pocket is empty of any

TBG molecule and will not be filled again. As the TBG365

leaves the secondary pocket, the N92 side chain rotates to

fill in the pocket and makes H-bonds with S116 and N88.

The hydrophobic residues of the secondary pocket are then

hidden by these polar side chains. Even if no TBG molecule

can be superimposed on the PLC present in the crystallo-

graphic structure, TBG455 enters the groove near W89 and

comes close to the active site. Of interest, it exposes its central

ester bond to the catalytic triad and makes transient H-bonds

with S146 (Fig. 6 B).

At the beginning of R3, the SOL3 water molecule is located

between H258 and S146 (Fig. 4 D). It then moves slightly

around this position for the next 5 ns, making transient

H-bonds with these two residues. During this time, Y21,

H145, and H258 keep the same H-bond network observed

at the end of R1 (Fig. 5 D). After 15 ns, SOL3 jumps to another

position, still close to S146, where it is maintained by three

H-bonds with Y21, S83, and H145 (Figs. 4 D and 5 E).

Throughout the 20 ns of R3, no water molecule enters the

active site. The polar channel is filled with water from 28 ns

to the end of the run. The H-bond between the H145 and

H258 backbone is maintained. Y21 adopts the conformation

of the crystallographic structure, but the rotation of the

hydroxyl hydrogen allows different H-bonds.

Run R4 (10–30 ns with no water molecule into the
active site)

To facilitate the interactions between TGs and the protein, all

water molecules were removed from the catalytic groove in

the last conformation of R1.

As in R3, the H-bond between TBG365 and N88 breaks

after 10.3 ns and the TG starts to move out of the secondary

FIGURE 5 H-bond pattern in the active site at (A) t ¼ 6,070 ps and (B)

t ¼ 9,980 ps during R1, (C) t ¼ 12,350 ps during R2, (D) t ¼ 13,220, (E)

t ¼ 18,900 ps during R3, and (F) t ¼ 11,810 ps during R4. Carbon atoms

are in green, oxygen in red, nitrogen in blue, and hydrogen in white. Water

molecules are in cyan and H-bonds are represented as yellow lines.

TABLE 1 Active-site water content

Run

ti tf

Groove Channel Groove Channel

1 Full 1 14 2

2 14 2 11 2

3 1 1 1 3

4 0 1 0 7
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A

B

C

FIGURE 6 Two TBG-binding sites. (A) Secondary TBG-binding pocket.

The more representative snapshot is at 10 ns (R1). The TBG molecule is in

red, the lid fragment in magenta, and the catalytic triad in blue. Hydrophobic

residues are in yellow and polar residues are in green. A transient H-bond

(yellow dashed line) between a TBG molecule (green and red) and S146

from the catalytic triad (blue) is shown at t ¼ 19,570 ps during R3 (B)

and t ¼ 11,420 ps during R4 (C).
pocket after 11.8 ns. However, this pocket is not left empty or

filled in by water molecules. TBG303 slowly replaces

TBG365 between 13.1 and 19.2 ns. In the meantime, the

pocket is obstructed by the two molecules and after 19 ns,

the TBG308 molecule enters the pocket, replacing TBG303

and blocking the access of water molecules. At 27 ns, the

TBG308 slides out of the pocket, which will not be filled

again. Over the 20 ns run of R4, the lid is thus maintained

in a hydrophobic environment on both sides and loses one

a-helix turn at its C-terminus. During repeats, TBG365 never

slides out of the pocket.

All along the trajectory, six TBG molecules interact with

the active-site groove (TBG 412, 428, 455, 494, 499, and

525). At the beginning of the simulation, TBG428 is too

far away to make contact with the protein. The three other

TGs cover the major part of the groove without interacting

with the catalytic triad. TBG494 rapidly enters the groove

and slides between W89 and the active site, exposing one

of its ester bonds to the catalytic triad. A transient H-bond

is made between the OA1 atom from the TBG molecule

and the S146 side chain (Fig. 6 C).

The active-site cavity remains free of any water molecule

all along R4. This is not surprising since the groove entry is

blocked by the TBG aggregate on the upper side and by

a hydrophobic cap of three aromatic residues (F211, Y213,

and F95) in contact with the aggregate on the side opposed

to the active site. Although no water molecule enters the

active-site groove, a network of H-bonded water molecules

enters the protein through the polar channel observed in R1

and R2 (Fig. 4 E). Just before 29 ns, the water molecule of

site 1 is replaced by another one from the polar channel and

slides out of the protein. Y21 is then maintained by H-bonds

with both S83 and H145, the latter being always engaged in

another H-bond with the H258 backbone (Fig. 5 F), creating

a very polar environment very close to the active site (Fig. 4

E). This conformation is maintained until the end of the run.

The two arginines adopt an open conformation, but can adopt

a closed one during the repeats.

DISCUSSION

TLL can drive both hydrolysis and transesterification reac-

tions in vitro depending on the water content of the medium.

One of the major parameters controlling the efficiency of

these reactions is the interfacial activation that occurs

between the protein and the lipids. When the enzyme is acti-

vated, a pocket composed mainly of hydrophobic residues

and lipids is created around the active site. Here we studied

the behavior of water molecules as well as TBG molecules

and protein structure at the protein/lipid interface by MD

in four runs with varying active-site groove water contents.

Global evolution parameters, such as RMSD and RMSF,

show that the structure is stable throughout the different

simulations, except for some protein loops and the lid frag-

ment. Hence, we focused on details near the active site.
Biophysical Journal 96(12) 4814–4825
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Based on in silico studies, it was first proposed that the role

of the lid is to protect the active site in highly aqueous situa-

tions and to open in a hydrophobic environment during inter-

facial activation (36). However, later crystallographic studies

showed disordered lid conformations in aqueous conditions

(12). Based on molecular modeling of the pancreatic lipase

and experimental studies, Thomas et al. (37) suggested that

the high mobility of the lid fragment could be involved in

the extraction of substrate molecules from the lipid aggregate

or in the release of the product after hydrolysis.

As expected, it appears that the lid is highly flexible. It can

completely lose its helical structure, but can also evolve

between an unfolded structure and a partial a-helix in<30 ns

(Fig. S2). Moreover, as shown for other lipases (38), the

hydrophobic side of this fragment is tightly associated with

the aggregate. The TBG repartition around the lid highlights

the presence of a secondary binding site partially described in

crystallographic structures (35). When TBG molecules enter

this pocket and are also located in the active-site groove, the

lid fragment is entirely surrounded by lipids. Our simulations

show that, in this case, the lid adopts an a-helix conforma-

tion containing half of the residues defined as helical in

the crystallographic structure. Nevertheless, if only one

water molecule moves between the lid and the TBG mole-

cules (Fig. S2), it can lose its structure in a few picoseconds.

This effect is more important when the active-site groove is

full of water.

Altogether, these results suggest that, at the interface, the

lid may move as a hook to maintain interaction with the lipids,

rapidly adapting its conformation in response to a variation in

environment. We suppose that when the environment does

not vary, the lid can evolve toward a stable helix structure

as seen in the crystallographic structures, or in experimental

work using solid hydrophobic surfaces (20). One possible

function of the lid of fungal lipases could be to anchor the

protein at the protein/lipid interface, as proposed for colipase

in colipase-dependent enzymes (2–4).

The distance between D201 and H258 varies slightly over

the four simulations between 3 and 4 Å. The catalytic triad

mechanism implies the polarization of the histidine by the

aspartate with an H-bond, as described elsewhere (33).

Although classical MD simulations cannot solve this type

of reaction, it appears that during the runs containing no

more than one water molecule in the active site (R3 and

R4), the histidine is positioned correctly to activate S146.

The distance between these two residues (S146 and H258)

is subject to more fluctuations during R2. Since the RMSF

computed on a-carbons of the two residues is <0.08 Å

(Fig. 2 B), it appears that the sudden increase of the distance

to 9 Å is essentially due to side-chain motions; however, no

flip of the histidine was observed. This increase is exclusively

observed in R2 and its repeats in which no water molecules

were manually removed from the active site cavity.

During the 30 ns corresponding to the continuous R1 and

R2 runs, the protein and the TBG aggregate come close
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enough together to form a hydrophobic cap closing the

active-site groove. Inevitably, water molecules get trapped in

the active site as the system moves, and these molecules could

be responsible for the increase in the S146–H258 distance. A

cluster of water molecules is indeed formed around the S146

residue, repulsing the side chains of S146 and H258 apart.

Beer et al. (34) demonstrated that an H-bond network

including residues corresponding to Y21 and H145 in another

fungal species is essential for protein function because it

contributes to the rigidity of the catalytic triad and the oxyan-

ion hole. In fact, the bulk of water engages in many interac-

tions with these two residues, disrupting the H-bond network

that includes Y21, H145, and the backbone of H258, leading

to a greater mobility of the residues of the catalytic triad.

Since this is not observed during runs containing one or no

water molecules in the active-site groove, we propose that

the first step of the activation process after the adsorption

of the protein to the aggregate should be the draining of

the active-site groove until an optimal number of water mole-

cules is reached. Therefore, the sequestered water molecules

could be responsible for the relatively long lag time observed

experimentally, as suggested by Noinville et al. (20).

The study of water molecules around the active site

revealed that all along our trajectories, as well as in the repeat

runs, one position—site 1—is always occupied by a water

molecule. This molecule is located near the Y21 ring at the

inner extremity of a polar channel connecting the aqueous

phase and the active-site groove (Fig. 4, B–D). Two nonexclu-

sive roles can be proposed for this water molecule. Since it is

present in all crystallographic structures, it can be interpreted

as structural water that is crucial for the stabilization of this

part of the protein. Regarding its location very close to the

active site, it could also constitute a preferential position for

the water molecule used to hydrolyze the lipid after the forma-

tion of the acyl-enzyme.

The elucidation of the structure of a novel Mycobacterium
smegmatis enzyme involved in acyl transfer opens new ways

to unravel the transesterification mechanism (39). Indeed,

based on crystallographic data, Mathews et al. (39) showed

that this protein can favor alcoholysis over hydrolysis in

water by restricting the access of water to the active site. A

hydrophobic channel formed during the oligomerization of

the protein controls the access of water and substrate to the

active site, regulating the enzyme activity. Such a feature

has not heretofore been observed for lipases, but our simula-

tions revealed the presence of a polar channel formed by 11

residues (Fig. 7). Among these, Y21, R81, G82, and H145

are fully conserved through different species; two residues

(83 and 85) are always a serine or a threonine, and two

residues (84 and 88) are always polar. The three remaining

residues (17, 26, and 27) are highly variable. The presence

of this channel supports the hypothesis that water molecules

in site 1 are preferentially used during the hydrolysis process.

In all simulations containing water molecules in the active-

site groove (R1, R2, and their repeats), the channel is empty
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FIGURE 7 Multiple alignment of

lipases from Thermomyces lanuginosa

(PDB: 1EIN), Penicillium camembertii

(PDB: 1TIA), Rhizomucor miehei (PDB:

1TGL), Rhizopus oryzae (1TIC),

Rhizopus niveus (PDB: 1LGY), Caeno-

rhabditis elegans (SwissProt: Q9XTR8),

and Yarrowia lipolytica (SwissProt:

Q9P8F7) generated with 3D-Coffee (41)

and analyzed with ESpript (42). The

color code corresponds to the default

values of ESpript except for the green

dots indicating residues of the polar

channel. A red box over a white character

highlights a strict identity, a red character

indicates a similarity in a group, and

a blue frame indicates a similarity across

groups (refer to the ESpript manual

for more details). The first line shows

the secondary structure computed with

DSSP (32) on the T. lanuginosa structure

(PDB: 1EIN).
except at site 1. The water content of the channel is more vari-

able during the simulations with less water molecules in the

active-site groove. For example, it is entirely filled for more

than 10 ns during R4 (Fig. 4 E) but not in the repeats.

Conversely, it is empty during the major part of R3 but filled

for more than 10 ns during one R3 repeat. Given that a water

molecule is only needed in the second part of the hydrolysis

mechanism (33), the fact that this channel is not always filled

in all R3 and R4 runs is not surprising since the acyl-enzyme

formation cannot be reached during the classical MD simula-

tion times. We propose that a balance exists between filled and

empty channels until the overall active site conformation

becomes suitable for water entry. When the lipid is bound

to the protein, the channel could be filled with water mole-

cules; the water molecule present in site 1 could then be

‘‘pushed’’ to the catalytic triad and achieve the hydrolysis

of the bond between the serine and the lipid.

Based on short MD runs, the R. miehei residue equivalent to

R81 has been proposed to maintain the lid in the open confor-

mation by an electrostatic interaction with D62 (18). This

correlates with experimental studies demonstrating the role

of arginines in protein activity (40). Our results suggest that

the loss of activity could also result from the obstruction of
the polar channel since R81 is at the outer channel entry.

Moreover, the difference observed experimentally between

R. miehei and T. lanuginosa can be explained by the presence

of a second arginine (at position 23) at the channel extremity

in T. lanuginosa replaced by a glycine in R. miehei. These

arginines could directly control the content of water in the

polar channel.

At the inner extremity of the channel, opposite from these

arginines, a tyrosine (Y21) interacts directly with the site 1

water molecule. On one hand, site-directed mutagenesis in

another fungal lipase highlights the role of this residue in the

catalytic triad stabilization (34). On the other hand, it appears

that during the trajectories Y21 does not limit its contact to

H145 or to the site 1 water molecule, and can also interact

with other partners such as G82, R81, and S83 (Fig. 5). Our

results suggest that the mobility of Y21 is not associated

with the destabilization of the catalytic triad when the active

site is not full of water. Rather, we propose that it could func-

tion as a valve and control the water motion to the active site.

When there are too many water molecules in the hydrophobic

groove (for example, during the interfacial activation) this

valve could open and leave a part of the water molecules to

flow out. Since this mechanism is not observed in all of the
Biophysical Journal 96(12) 4814–4825
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repeats, it is probable that this is not the preferred way for the

water molecules to leave the groove. Although the acyl-

enzyme cannot be reached in the simulations, the intrinsic

mobility of Y21, as well as the location of site 1, allow us to

suppose that this valve, coupled to the polar channel, is

used to allow water to enter active site when the acyl-enzyme

is formed. This could take place without any contact with

TBG and the very hydrophobic environment of the groove.

Hence, it should be possible for the protein to control the

quantity of water present in the active site depending on its

conformation.

This is the first time, to our knowledge, that such a mech-

anism has been proposed for a lipase. Future investigations,

both experimental and in silico, should help to determine the

exact implication of the polar channel identified here and the

role of Y21 and H145 in balancing the hydrolysis/transester-

ification process. In fact, transesterification only occurs at

very low water concentration and requires heavy experi-

mental conditions to maintain a quasi-anhydrous environ-

ment. The control of this balance in aqueous solvent should

be of crucial importance for improving lipase efficiency for

biotechnological applications as well as for TG modifica-

tions at an industrial level.

SUPPORTING MATERIAL

Two figures are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(09)00784-X.

S.S. is supported by a grant from the Gembloux Agricultural University

(Belgium), and J.M.C. and B.C. are supported by the Belgian Program on

Interuniversity Attraction Poles initiated by the Federal Office for Scientific,

Technical and Cultural Affairs (IAP. P6/19 PROFUSA). L.L. is a research

associate and R.B. is a research director for the Fonds National pour la Re-

cherche Scientifique (Belgium). A.T. is a research director at the French

Institute for Medical Research.

REFERENCES

1. Ollis, D. L., E. Cheah, M. Cygler, B. Dijkstra, F. Frolow, et al. 1992.
The a/b hydrolase fold. Protein Eng. 5:197–211.

2. Borgstrom, B., and C. Erlanson-Albertsson. 1984. Lipases. In
Lipases B. Borgstrom and H. L. Brockman, editors. Elsevier Science
Publishers B.V., Amsterdam 152–183.

3. van Tilbeurgh, H., M. P. Egloff, C. Martinez, N. Rugani, R. Verger, et al.
1993. Interfacial activation of the lipase-procolipase complex by mixed
micelles revealed by X-ray crystallography. Nature. 362:814–820.

4. van Tilbeurgh, H., L. Sarda, R. Verger, and C. Cambillau. 1992.
Structure of the pancreatic lipase-procolipase complex. Nature.
359:159–162.

5. Borgstrom, B., and C. Erlanson. 1973. Pancreatic lipase and co-lipase.
Interactions and effects of bile salts and other detergents. Eur. J. Bio-
chem. 37:60–68.

6. Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocata-
lysts: molecular biology, three-dimensional structures, and biotechno-
logical applications of lipases. Annu. Rev. Microbiol. 53:315–351.

7. Villeneuve, P. 2007. Lipases in lipophilization reactions. Biotechnol.
Adv. 25:515–536.
Biophysical Journal 96(12) 4814–4825
8. Sarda, L., and P. Desnuelle. 1958. Action de la lipase pancreatique sur
les esters en emulsion. Biochim. Biophys. Acta. 30:513–521.

9. Patton, J. S., and M. C. Carey. 1979. Watching fat digestion. Science.
204:145–148.

10. Brockman, H. L., J. H. Law, and F. J. Kezdy. 1973. Catalysis by
adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase
adsorbed to siliconized glass beads. J. Biol. Chem. 248:4965–4970.

11. Muderhwa, J. M., and H. L. Brockman. 1992. Lateral lipid distribution
is a major regulator of lipase activity. Implications for lipid-mediated
signal transduction. J. Biol. Chem. 267:24184–24192.

12. Derewenda, U., L. Swenson, Y. Wei, R. Green, P. M. Kobos, et al.
1994. Conformational lability of lipases observed in the absence of an
oil-water interface: crystallographic studies of enzymes from the fungi
Humicola lanuginosa and Rhizopus delemar. J. Lipid Res. 35:524–534.

13. Kohno, M., J. Funatsu, B. Mikami, W. Kugimiya, T. Matsuo, et al.
1996. The crystal structure of lipase II from Rhizopus niveus at 2.2 A
resolution. J. Biochem. (Tokyo). 120:505–510.

14. Derewenda, U., L. Swenson, R. Green, Y. Wei, G. G. Dodson, et al.
1994. An unusual buried polar cluster in a family of fungal lipases.
Nat. Struct. Biol. 1:36–47.

15. Brzozowski, A. M., H. Savage, C. S. Verma, J. P. Turkenburg,
D. M. Lawson, et al. 2000. Structural origins of the interfacial activation
in Thermomyces (Humicola) lanuginosa lipase. Biochemistry.
39:15071–15082.

16. Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson,
et al. 1990. A serine protease triad forms the catalytic centre of a triacyl-
glycerol lipase. Nature. 343:767–770.

17. Brzozowski, A. M., U. Derewenda, Z. S. Derewenda, G. G. Dodson,
D. M. Lawson, et al. 1991. A model for interfacial activation in lipases
from the structure of a fungal lipase-inhibitor complex. Nature.
351:491–494.

18. Peters, G. H., D. M. van Aalten, O. Edholm, S. Toxvaerd, and
R. Bywater. 1996. Dynamics of proteins in different solvent systems:
analysis of essential motion in lipases. Biophys. J. 71:2245–2255.

19. Peters, G. H., S. Toxvaerd, O. H. Olsen, and A. Svendsen. 1997.
Computational studies of the activation of lipases and the effect of
a hydrophobic environment. Protein Eng. 10:137–147.

20. Noinville, S., M. Revault, M. H. Baron, A. Tiss, S. Yapoudjian, et al.
2002. Conformational changes and orientation of Humicola lanuginosa
lipase on a solid hydrophobic surface: an in situ interface Fourier
transform infrared-attenuated total reflection study. Biophys. J.
82:2709–2719.

21. Linderoth, L., T. L. Andresen, K. Jorgensen, R. Madsen, and
G. H. Peters. 2008. Molecular basis of phospholipase A2 activity toward
phospholipids with sn-1 substitutions. Biophys. J. 94:14–26.

22. Kleywegt, G. J. 2007. Crystallographic refinement of ligand complexes.
Acta Crystallogr. D Biol. Crystallogr. 63:94–100.

23. Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, et al.
2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26:1701–
1718.

24. Schuttelkopf, A. W., and D. M. van Aalten. 2004. PRODRG: a tool for
high-throughput crystallography of protein-ligand complexes. Acta
Crystallogr. D Biol. Crystallogr. 60:1355–1363.

25. van Gunsteren, W. F., S. R. Billeter, A. A. Eising, P. H. Hünenberger,
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