Arabian Journal of Chemistry

ORIGINAL ARTICLE

Substitution reactions of
 cis-dichloro(2,2'-biquinoline)palladium(II) with amino acids

Mukarram H. Zaghal ${ }^{\text {a }}$, Manar S. Bani Saeed ${ }^{\text {a }}$, Amer A.G. Abdel Hamid ${ }^{\text {a }}$, Basem F. Ali ${ }^{\text {b,* }}$

${ }^{\text {a }}$ Department of Chemistry, Yarmouk University, Irbid, Jordan
${ }^{\text {b }}$ Department of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan

Received 23 October 2013; accepted 31 May 2014

KEYWORDS

$\mathrm{Pd}(\mathrm{II})$ amino acid complexes; Substitution reactions; Biquinoline

Abstract

The substitution reactions of the 2, 2^{\prime}-biquinoline (biq) complex cis-[$\left.\mathrm{Pd}(\mathrm{biq}) \mathrm{Cl}_{2}\right]$ with different amino acids, namely, glycine (glyH), l-serine (serH), l-tyrosine (tyrH), l-phenylalanine (pheH) and l-alanine (alaH) have been investigated. The new complexes $[\mathrm{Pd}($ biq $)(\mathrm{gly})] \mathrm{Cl},[\mathrm{Pd}(\mathrm{biq})(\mathrm{ser})]$ $\mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { (tyr })_{2}\right],[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O},\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O},[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ have been characterized by elemental analysis, conductivity measurements, IR, electronic absorption and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. Based on these data all amino acid anions are found to act as bidentates except tyrosinate and phenylalanilate which behave also as monodentates.

© 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.

1. Introduction

The discovery of cisplatin and its use as one of the most effective drugs in the treatment of various types of cancer (Gao et al., 2009; Zhang et al., 2010; El-Sherif, 2011) have led to the development of second generation of platinum complexes formed by replacing the two ammonia molecules by other N -donor ligands (Gao et al., 2009; Zhang et al., 2010;

[^0]

El-Sherif, 2011; Kumar et al., 1982; Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003). However, cisplatin and the second generation of platinum drugs have major drawbacks such as high toxicity, low water solubility and relative inactivity against gastrointestinal tumors (Gao et al., 2009; Zhang et al., 2010; El-Sherif, 2011). To overcome such drawbacks, research continues in this field in order to prepare new platinum and other transition metal complexes with less toxicity and higher activity (Gao et al., 2009; Zhang et al., 2010; El-Sherif, 2011; Kumar et al., 1982; Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003). Among the other transition metal complexes are those of palladium(II) (Gao et al., 2009; Zhang et al., 2010; El-Sherif, 2011; Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003). Interest in $\mathrm{Pd}(\mathrm{II})$ comes from the fact that both $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ are in the same group and complexes of both are expected to

1878-5352 © 2014 Production and hosting by Elsevier B.V. on behalf of King Saud University.
http://dx.doi.org/10.1016/j.arabjc.2014.05.032
show somehow similar structural properties (El-Sherif, 2011; Cotton et al., 1999). Numerous Pd(II) complexes with other aliphatic amines and aromatic N -heterocyclic ligands such as ethylenediamine, pyridine, quinoline, $2,2^{\prime}$-bipyridine, 1,10 -phenanthroline as well as with amino acids, amino acid esters, DNA units, peptides and related compounds have been synthesized and their anticancer activity was examined (Gao et al., 2009; Zhang et al., 2010; El-Sherif, 2011; Kumar et al., 1982; Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003; Puthraya et al., 1986; El-Medani et al., 1998; Battistuzzi et al., 1998; Nijasure et al., 1999; Karkali and Bugari, 2000; Nagy and Sóvágó, 2001; Mohamed and Shoukry, 2001; Nagy et al., 2003; Krylova et al., 2008).

The synthesis, characterization, DNA binding and cytotoxic studies of some $\mathrm{Pd}(\mathrm{II})$ complexes of $2,2^{\prime}$-bipyridine (bpy) and 1,10-phenanthroline (phen) (Mital et al., 1991; Puthraya et al., 1986) with amino acids having the general formula $[\operatorname{Pd}(\mathrm{NN})(\mathrm{NO})]^{\mathrm{n}+}$ where NN is bpy, phen; NO is an anion of an amino acid such as l-cysteine, l-aspartic acid, l-glutamic acid, L-methionine, l-histidine, L-arginine, L-phenylalanine, l-tyrosine, glycine, l-alanine, L -leucine, L-tryptophan, L-valine, L-proline or L-serine; $n=0$ or 1 have been reported (Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003; Cotton et al., 1999; Puthraya et al., 1986). These mixed-ligand complexes proved to be more biologically active than the parent compounds $\left[\mathrm{Pd}(\mathrm{NN}) \mathrm{Cl}_{2}\right]$ (Mital et al., 1991; Puthraya et al., 1986).

Although many derivatives formulated as $[\mathrm{Pd}(\mathrm{NN})(\mathrm{NO})]^{\mathrm{n}+}$ ($\mathrm{NN}=$ bpy, phen; $\mathrm{NO}=$ amino acid anions) have been isolated and studied, no similar complexes have been reported with the structurally related but sterically hindered $2,2^{\prime}$-biquinoline ligand. Free biq is known to have a trans configuration while upon complexation it adopts a cis one (Fig. 1). Moreover, its complex cis$\left[\mathrm{Pd}(\mathrm{biq}) \mathrm{Cl}_{2}\right]$ has been reported to show high mutagenic activity (Kana'n et al., 2002).

The above state of affairs prompted us to study the substitution reactions of $c i s-\left[\mathrm{Pd}(\mathrm{biq}) \mathrm{Cl}_{2}\right]$ with various amino acids in order to prepare mixed-ligand complexes that might have better biological properties. We, herein, report the isolation of some $\mathrm{Pd}(\mathrm{II})$-biq complexes containing various amino acids.

2. Experimental

2.1. Materials

2,2'-Biquinoline $\left(\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{2}\right.$; biq), ammonium hexafluorophosphate $\left(\mathrm{NH}_{4} \mathrm{PF}_{6}\right)$, L-phenylalanine $\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~N}\right)$ and palladium(II) chloride $\left(\mathrm{PdCl}_{2}\right)$ were purchased from Fluka while
other reagents were obtained from BDH . All solvents used were of AR grade. The cis $-\left[\mathrm{Pd}(\mathrm{biq}) \mathrm{Cl}_{2}\right]$ starting complex (hereafter referred to as complex A) was prepared according to the literature method (Zaghal and Qaseer, 1991).

2.2. Physical measurements

Melting points were determined on an electrothermal digital melting point apparatus (uncorrected). Conductivity measurements were carried out for $1 \times 10^{-3} \mathrm{M}$ DMSO solutions on a BC 3020 digital conductivity meter at $25^{\circ} \mathrm{C}$. IR spectra were recorded on an FT-IR Tensor 27 spectrometer, Bruker spectrum 2000 over the range $4000-300 \mathrm{~cm}^{-1}$ using KBr and CsI pellets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a 400 and 100 MHz , respectively, Bruker Avance III spectrometer in $D M S O-d_{6}$ using $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. Electronic absorption spectra were recorded on a double beam spectrometer "Shimadzu Corporation" UV-2401 (PC) using $1.5 \times 10^{-5} \mathrm{M}$ solutions in DMSO. Elemental analyses for C, H and N were carried out by the Jordan University of Science and Technology Laboratories, Jordan.

2.3. Preparation of the complexes

The cis-dichloro(2,2'-biquinoline)palladium(II) (complex A) was reacted with the sodium salts of the following amino acids: glycine (glyH), l-serine ($\operatorname{ser} \mathrm{H}$), l-tyrosine ($\mathrm{t} y \mathrm{rH}$), , -phenylalanine (pheH) and l-alanine (alaH), as described below. The metal: ligand molar ratio used is almost $1: 1$ with slight excess of the ligand. All complexes were filtered off, washed several times with deionized $\mathrm{H}_{2} \mathrm{O}, \mathrm{Me}_{2} \mathrm{CO}$ and $\mathrm{Et}_{2} \mathrm{O}$ by centrifugation and dried under vacuum at room temperature.

2.3.1. Synthesis of [Pd(biq)(gly)]Cl

To a stirred suspension of complex A $(0.10 \mathrm{~g}, 0.23 \mathrm{mmol})$ in deionized water (20 ml) was added dropwise a concentrated aqueous solution of glyH $(0.022 \mathrm{~g}, 0.29 \mathrm{mmol})$ and NaHCO_{3} $(0.024 \mathrm{~g}, 0.29 \mathrm{mmol})$. The reaction mixture was refluxed for 18 hours, and then it gave a yellow solid. Yield: 0.085 g , 77%; decomp. p. $170^{\circ} \mathrm{C}$.

2.3.2. Synthesis of $[P d($ biq $)($ ser $)] P F_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$

A concentrated aqueous solution of $\operatorname{ser} H(0.032 \mathrm{~g}, 0.30 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.025 \mathrm{~g}, 0.30 \mathrm{mmol})$ was added dropwise to a stirred suspension of complex $\mathrm{A}(0.10 \mathrm{~g}, 0.23 \mathrm{mmol})$ in deionized water $(20 \mathrm{ml})$. The reaction mixture was refluxed for 12 hours until a clear yellow solution was obtained. The

trans

cis
biq

Figure 1 Structure of biq (cis and trans conformations) and atom numbering scheme.
solution was allowed to cool to room temperature and filtered. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was then added and a yellow solid was obtained. Yield: $0.070 \mathrm{~g}, 48 \%$; decomp. p. $190^{\circ} \mathrm{C}$.

2.3.3. Synthesis of $\left[P d(b i q)(t y r)_{2}\right]$

To a stirred suspension of complex A $(0.10 \mathrm{~g}, 0.23 \mathrm{mmol})$ in deionized water (20 ml) was added dropwise a concentrated aqueous solution of $\operatorname{tyrH}(0.052 \mathrm{~g}, 0.29 \mathrm{mmol})$ and NaHCO_{3} $(0.024 \mathrm{~g}, 0.29 \mathrm{mmol})$. The color of the reaction mixture changed from orange to yellow and a yellow precipitate appeared immediately. It was stirred for 10 hours at room temperature then a dark yellow solid was formed. Yield: $0.072 \mathrm{~g}, 43 \%$; decomp. p. $174^{\circ} \mathrm{C}$.

2.3.4. Synthesis of $[P d($ biq $)(t y r)] P F_{6} \cdot H_{2} O$

To the filtrate of the reaction mixture obtained in part (2.3.3), a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added and a deep yellow solid was formed immediately. Yield: $0.082 \mathrm{~g}, 51 \%$; decomp. p. $210^{\circ} \mathrm{C}$.

2.3.5. Synthesis of $\left[\mathrm{Pd}(\mathrm{biq})(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$

To a stirred suspension of complex A $(0.20 \mathrm{~g}, 0.46 \mathrm{mmol})$ in deionized water (20 ml) was added dropwise a concentrated aqueous solution of pheH $(0.092 \mathrm{~g}, 0.56 \mathrm{mmol})$ and NaHCO_{3} $(0.047 \mathrm{~g}, 0.56 \mathrm{mmol})$. The clear reaction mixture was refluxed for 16 hours. Upon heating, the color of the mixture changed from orange to yellow and a yellow solid resulted. Yield: $0.15 \mathrm{~g}, 44 \%$; yellow; decomp. p. $162^{\circ} \mathrm{C}$.

2.3.6. Synthesis of $[\mathrm{Pd}(\mathrm{biq})($ phe $)] P F_{6} \cdot \mathrm{H}_{2} \mathrm{O}$

To the filtrate of the reaction mixture obtained in part (2.3.5), a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{PF}_{6}$ was added and a yellow solid was formed immediately. Yield: $0.11 \mathrm{~g}, 35 \%$; decomp. p. $178{ }^{\circ} \mathrm{C}$.

2.3.7. Synthesis of $[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$

A concentrated aqueous solution of alaH $(0.033 \mathrm{~g}, 0.37 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(0.031 \mathrm{~g}, 0.37 \mathrm{mmol})$ was added dropwise to a stirred suspension of complex A $(0.10 \mathrm{~g}, 0.23 \mathrm{mmol})$ in deionized water $(20 \mathrm{ml})$. The mixture was refluxed for 12 hours. Upon heating, the color of the mixture changed from orange to yellow and then a yellow solid was obtained. Yield: $0.065 \mathrm{~g}, 55 \%$; decomp. p. $160^{\circ} \mathrm{C}$.

3. Results and discussion

The $\mathrm{Pd}(\mathrm{II})$ complexes were prepared by the reaction of cis$\left[\mathrm{Pd}(\mathrm{biq}) \mathrm{Cl}_{2}\right]$ with the sodium salts of glycine, L-serine, L-tyrosine, L -phenylalanine and L -alanine amino acids using $1: 1$ molar ratios. The new isolated complexes along with some of their physical properties are listed in Table 1.

3.1. Conductivity

The molar conductance values for $10^{-3} \mathrm{M}$ solutions for the complexes (Table 1) are in good agreement with those reported for similar complexes (Girolami et al., 1999). The complexes $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { tyr })_{2}\right]$ and $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ behave as non-electrolytes while $[\mathrm{Pd}($ biq $)($ gly $)] \mathrm{Cl}, \quad[\mathrm{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, $[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O},[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ biq $)-$ (ala)]Cl. $1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ act as $1: 1$ electrolytes.

3.2. IR spectra

Assignments of IR peaks for all complexes (Table 2) were made on the basis of the reported data for free amino acids and their complexes (El-Sherif, 2011; Mital et al., 1991; Jin and Ranford, 2000; Nijasure et al., 1999; Krylova et al., 2006, 2008; Appleton, 1997; Nakamoto, 1997; Kumar et al., 1984; Corradi et al., 1994; Calaf et al., 1995; Akat'eva et al., 2004), particularly those of $[\mathrm{M}(\mathrm{NN})(\mathrm{NO})]^{\mathrm{n}+}$ (where $\mathrm{M}=\mathrm{Pd}(\mathrm{II})$, $\mathrm{Pt}(\mathrm{II}) ; \mathrm{NN}=$ bpy, phen; $\mathrm{NO}=$ anions of the following amino acids: glycine, l-alanine, -leucine, -serine, -cysteine, -methionine, -phenylalanine, -tyrosine, -tryptophan, -valine, -proline, -histidine, -aspartic acid, -glutamic acid, -arginine, -phenylglycine, -lysine, -asparagines, -glutamine and -methylcysteine; $n=0,1$) (Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Puthraya et al., 1986; Nijasure et al., 1999; Erickson et al., 2003).

The reported IR spectra of free amino acids which exist in the zwitterionic form, $\mathrm{H}_{3} \mathrm{~N}^{+} \mathrm{CH}(\mathrm{R}) \mathrm{COO}^{-}$exhibit a broad band at about $3400 \mathrm{~cm}^{-1}$ which is assigned to the $\mathrm{N}-\mathrm{H}$ stretching vibrations, $v(\mathrm{NH})$, in addition to another strong band at about $1600 \mathrm{~cm}^{-1}$ that is assigned to the $-\mathrm{COO}^{-}$asymmetric stretching vibrations, $v\left(\mathrm{COO}^{-}\right)$. However, the reported IR spectra of coordinated amino acid anions show the $v(\mathrm{NH})$ and $v\left(\mathrm{COO}^{-}\right)$in the range $3100-3200 \mathrm{~cm}^{-1}$ and $1620-1690 \mathrm{~cm}^{-1}$, respectively. These shifts in both stretching vibrations were reported to confirm the bidentate coordination of the amino acid anion to

Table 1 Analytical and physical data for the new $\mathrm{Pd}(\mathrm{II})$ complexes.

Complex	Color	Decomp. point (${ }^{\circ} \mathrm{C}$)	Yield \% ${ }^{\text {a }}$	Analysis: found (calc) (\%)			$\Lambda_{m}{ }^{\text {b }}$
				C	H	N	
$[\mathrm{Pd}$ (biq)(gly) $] \mathrm{Cl}$	Dark yellow	170	77	50.494 (50.867)	3.918 (3.416)	8.329 (8.899)	15.22
$\left[\mathrm{Pd}(\right.$ biq) $($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	Yellow	190	48	40.000 (40.600)	2.916 (2.937)	7.332 (6.936)	23.09
$\left[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})_{2}\right]$	Dark yellow	174	43	61.090 (59.889)	4.880 (4.570)	8.899 (8.310)	1.86
$[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	Dark yellow	210	51	45.711 (45.939)	3.746 (3.426)	6.176 (5.952)	21.80
$\left[\mathrm{Pd}(\mathrm{biq})(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	Yellow	162	44	58.091 (58.737)	4.759 (4.991)	8.304 (7.806)	6.93
$[\mathrm{Pd}(\mathrm{biq})($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	Yellow	178	35	49.471 (49.451)	4.104 (3.914)	6.732 (6.607)	19.70
$\underline{[P d(b i q)(a l a)}] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$	Yellow	160	55	49.168 (49.140)	4.454 (4.125)	8.194 (8.187)	21.83

[^1]
vs, very strong; s, strong; m, medium; w, weak; sh, shoulder; b, broad. ${ }^{b}$ Hydrogen bonded NH_{2} and $v(\mathrm{O}-\mathrm{H})$ of phenolic group of tyrosinate. ${ }^{c}$ For phenolic group and water of hydration.
the metal through $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups forming a 5membered chelate ring, Fig. 2.

Similarly, the IR spectra of our complexes were studied along with their corresponding free amino acids and the starting complex A (Zaghal and Qaseer, 1991). The main points are given below:
(i) The IR spectra of all complexes show the characteristic bands of coordinated biq: the strong-medium bands in the range $1595-1419 \mathrm{~cm}^{-1}$ (Table 2) are assigned to $v(\mathrm{C}=\mathrm{C})$ and $v(\mathrm{C}=\mathrm{N})$ of course mixed with some $v(\mathrm{C}=\mathrm{C})$ of the aromatic amino acid anions like tyrosinate and phenylalaninate and $\delta\left(\mathrm{NH}_{2}\right)$; the bands in the range $1150-1000 \mathrm{~cm}^{-1}$ may be assigned to in-plane while those in the range $950-730 \mathrm{~cm}^{-1}$ to out-of-plane bending modes of the $\mathrm{C}-\mathrm{H}$ bonds.
(ii) The IR spectra of the complexes $[\mathrm{Pd}($ biq $)(\mathrm{gly})] \mathrm{Cl}$, $[\mathrm{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$, $[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ exhibit bands in the region $3252-3000 \mathrm{~cm}^{-1}$, assigned to $v(\mathrm{NH})$, and in the region $1684-1640 \mathrm{~cm}^{-1}$, assigned to $\mathrm{v}\left(\mathrm{COO}^{-}\right)$which confirm the bidentate coordination of the amino acid anion to $\mathrm{Pd}(\mathrm{II})$ through the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups forming a 5 -membered chelate ring as shown in Fig. 2.
(iii) The IR spectra of $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { tyr })_{2}\right]$ and $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right]-$ $\cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ show strong broad bands at 3384-3065 and $3453 \mathrm{~cm}^{-1}$, respectively. These bands may be assigned to H -bonded $-\mathrm{NH}_{2}$ groups in addition to $\mathrm{v}(\mathrm{O}-\mathrm{H})$ of the phenolic groups of bonded tyrosinate and of water of hydration in phenylanalinate complexes. Their presence in this region suggests that the $-\mathrm{NH}_{2}$ groups are not bonded. However, the appearance of very strong bands at 1644 and $1666 \mathrm{~cm}^{-1}$ confirms the coordination of the carboxylate groups of tyrosinate and phenylalaninate, respectively, in bonding to $\mathrm{Pd}(\mathrm{II})$.
(iv) The low-frequency region (Table 2) of all the isolated complexes shows four bands in the range 490$310 \mathrm{~cm}^{-1}$ which may be assigned to the stretching vibrations of $\mathrm{Pd}-\mathrm{N}$ (biq and $-\mathrm{NH}_{2}$) and $\mathrm{Pd}-\mathrm{O}$ of the $-\mathrm{COO}^{-}$groups of the amino acid anions.
(v) The strong absorption bands appearing in the range 839-847 and $559-560 \mathrm{~cm}^{-1}$, which are assigned to $v(\mathrm{P}-\mathrm{F})$ vibrations, indicate the presence of ionic PF_{6}^{-} groups (Nakamoto, 1997) in the complexes $[\mathrm{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$.
(vi) The broad medium bands in the range $3549-3309 \mathrm{~cm}^{-1}$ (Table 2) in the spectra of the complexes $[\mathrm{Pd}($ biq $)($ ser $)]$ $\mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right]$. $2.5 \mathrm{H}_{2} \mathrm{O},[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O},[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{Pd}(\right.$ biq $\left.)(\mathrm{tyr})_{2}\right]$ may be assigned to $v(\mathrm{OH})$ of water of hydration and/or the hydroxyl group of serinate and the $v(\mathrm{OH})$ of the phenolic groups of tyrosinates.

3.3. Electronic spectra

The electronic spectra of the isolated complexes were assigned (Table 3) on the basis of earlier studies made on $[\mathrm{M}(\mathrm{NN})(\mathrm{NO})]^{\mathrm{n}+}$ complexes, where $\mathrm{NN}=$ bpy, phen;

Figure 2 The coordination of NH_{2} and COO^{-}groups forming a 5-membered chelate ring.
$\mathrm{NO}=$ various amino acid anions; $n^{+}=0$ or 1 (El-Sherif, 2011; Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Jain et al., 1987) in addition to the reported spectrum of the starting complex which shows 3 bands: a broad one at 371 nm , assigned to MLCT transition and two LC strong bands at 338 and 330 nm due to $\pi-\pi^{*}$ transitions (Zaghal and Qaseer, 1991).

The dominant features of the spectra of our mixed biq amino acid complexes in this study, are the strong broad bands which are assigned to metal to ligand charge-transfer (MLCT) or ligand to metal charge-transfer (LMCT) transitions in addition to the ligand centered (LC) or $\pi-\pi^{*}$ transitions which are characteristic of biquinoline.

The MLCT bands in the prepared complexes are in the range: $231-235,240-243,258-274 \mathrm{~nm}$. In some complexes the latter band is mixed with the LC band of biq (Table 3) while other complexes have the LC band of biq at 273274 nm . The two bands in the range 310-315 and 324 328 nm are assigned to MLCT and LMCT transitions from $\mathrm{Pd}(\mathrm{II})$ to the amino acid and vice versa, except for the serinate complex which has a strong broad band at 324 nm , assigned to MLCT and LMCT transitions from Pd(II) to the ligands and vice versa. The band appearing at 342 or 341 nm , in some complexes, may be assigned to LC $\left(\pi-\pi^{*}\right)$ of biquinoline. The broad band in the range $369-382 \mathrm{~nm}$ may be assigned to MLCT transitions from $\operatorname{Pd}(\mathrm{II})$ to biq.

The bands due to d-d transitions were not observed since they are forbidden and expected to be very week. Thus they may be obscured by the LC, MLCT or LMCT bands. The latter two transitions as well as the d-d transitions are responsible for the characteristic yellowish colors of $\mathrm{Pd}(\mathrm{II})$ complexes (Cotton et al., 1999) as shown in Table 1.

3.4. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data for the isolated complexes are presented in Table 4. The peak assignments for the amino acids were made with the aid of earlier studies for amino acids such as L -valine, -isoleucine, -aspartic acid, -glutamic acid, -glutamine, -proline, -cystein, -glycine, -alanine, -tyrosine, -tryptophan, -histidine and -arginine and their mono-, bis- and mixed-ligand complexes (El-Sherif, 2011; Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Puthraya et al., 1986; Nijasure et al., 1999; Krylova et al., 2006; Yamauchi and Odani, 1981; Erickson et al., 2003).

It has been mentioned that the coordination of amino acid anions to metal ions particularly $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$ produces shifts for amino acid protons and carbons. Moreover, the bonding of $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups of the amino acid anion mainly affects the α-protons, α-carbons and the carboxylate group carbon (COO^{-}), (El-Sherif, 2011; Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Puthraya et al., 1986; Nijasure et al., 1999; Krylova et al., 2006; Yamauchi and Odani, 1981; Erickson et al., 2003). The
shifts found for the protons of coordinated amino acid complexes are very small, in most cases less than 0.4 ppm and in both directions either downfield or upfield (Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Casas et al., 2003; Puthraya et al., 1986; Calaf et al., 1995; Erickson et al., 2003). However, these small shifts may also be affected by concentrations, temperatures and solvents used for measurements. Furthermore, a detailed comparison between the coordinated and the free ligand cannot be made since the intermolecular forces including H-bonding are different in both cases in addition to the fact that the free amino acid is in the zwitterionic form and its NMR studies are carried out in deuterated water while the coordinated one is the anion of the amino acid and the reported spectral measurements are not all done in $\mathrm{D}_{2} \mathrm{O}$.

On the other hand, the reported downfield shifts for the carboxylate $\left(\mathrm{COO}^{-}\right)$carbon and the α-carbon are $5-12$ and $3-$ 6 ppm , respectively. Such values can be clearly used to confirm the bonding mode of amino acids through the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups (Nijasure et al., 1999; Krylova et al., 2006). Therefore, the signals due to the protons will be listed and emphasis will be on the ${ }^{13} \mathrm{C}$ NMR spectra.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the starting complex A, shows the peaks at 8.80 (d, H8, 8'); 8.58 (d, H3, 3^{\prime}); 8.18 (d, H4, 4^{\prime}), 8.08 (d, H5, 5'); 7.86 (t, H7, 7'); (t, H6, 6') ppm (Fig. 1). The ${ }^{13} \mathrm{C}$ NMR spectrum shows only 9 signals for 9 different carbon atoms at $155.26,147.18,137.23,130.09,129.33$, $128.10,128.00,127.35$, and 118.79 ppm . This result indicates that the complex is symmetrical and the two quinoline groups are equivalent.

Therefore, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of our mixed biqamino acid complexes of $\mathrm{Pd}(\mathrm{II})$ were assigned by comparing them with the reported data (El-Sherif, 2011; Kumar et al., 1982, 1984; Mital et al., 1991; Jin and Ranford, 2000; Puthraya et al., 1986; Nijasure et al., 1999; Krylova et al., 2006; Yamauchi and Odani, 1981; Erickson et al., 2003) as well as with the starting complex cis-[$\mathrm{Pd}($ biq $\left.) \mathrm{Cl}_{2}\right]$. The main points are given below:
(i) The ${ }^{1} \mathrm{H}$ NMR spectrum of $[\mathrm{Pd}(\mathrm{biq})(\mathrm{gly})] \mathrm{Cl}$ shows the presence of 10 different peaks (Table 4) corresponding to 16 protons. Some biq protons are equivalent on both sides, others are not, i.e the quinoline protons here are not symmetrical on both sides like the starting complex. However, the ${ }^{13} \mathrm{C}$ NMR spectrum shows only 9 different peaks (Table 4) due to 9 different carbon atoms of biq and thus suggesting that the two quinolines are equivalent. These peaks appear at $155.25,147.18,137.22$, $130.09,129.32,128.10,127.97,127.34$ and 118.78 ppm . They are almost the same as the starting complex. One may conclude that the σ-skeleton of biquinoline is symmetrical and is not affected by the unsymmetrical bonding of the glycinate anion like the protons. On the other hand, coordinated glycinate (I) shows a triplet peak at

Table 3 Electronic absorption spectra of the complexes.

Complex (1×10^{-5} M DMSO solutions)	$\lambda(\mathrm{nm})$	$\begin{aligned} & \hline \varepsilon \times 10^{-3} \\ & \left(1 \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) \end{aligned}$	Assignment
$[\mathrm{Pd}(\mathrm{biq})(\mathrm{gly})] \mathrm{Cl}$	235	32.3	MLCT ${ }^{\text {a }}$
	243	34.4	MLCT ${ }^{\text {a }}$
	262 sh	92.0	$\mathrm{MLCT}^{\mathrm{a}, \mathrm{b}}$ \& $\mathrm{LC}^{\text {b }}$
	315	29.9	MLCT \& LMCT ${ }^{\text {a }}$
	327 br	33.2	MLCT \& LMCT ${ }^{\text {a }}$
	369	5.70	MLCT ${ }^{\text {b }}$
$[\mathrm{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	234	22.7	MLCT ${ }^{\text {a }}$
	240	22.9	MLCT ${ }^{\text {a }}$
	258 sh	68.0	$\mathrm{MLCT}^{\mathrm{a}, \mathrm{b}}$ \& LC^{b}
	324 br	14.6	MLCT \& LMCT ${ }^{\text {a,b }}$
$\left[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})_{2}\right]$	231	34.7	MLCT ${ }^{\text {a }}$
	243	39.1	MLCT ${ }^{\text {a }}$
	262 sh	10.7	$\mathrm{MLCT}^{\text {a,b }}$, $\mathrm{LC}^{\text {b }}$
	310	32.1	MLCT \& LMCT ${ }^{\text {a }}$
	328	38.7	MLCT \& LMCT ${ }^{\text {a }}$
	342	31.3	LC ${ }^{\text {b }}$
	382	2.90	MLCT ${ }^{\text {b }}$
$[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	272 sh	95.5	LC^{b}
	374 br	34.0	MLCT ${ }^{\text {a,b }}$
$\left[\mathrm{Pd}(\mathrm{biq})(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	265	124.5	MLCT ${ }^{\text {a,b }}$
	274 sh	122.0	$L^{\text {b }}$
	342	32.9	LC ${ }^{\text {b }}$
	381 br	41.2	MLCT ${ }^{\text {b }}$
$[\mathrm{Pd}(\mathrm{biq})($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$	274 sh	173.9	LC^{b}
	381 br	68.1	MLCT ${ }^{\text {a,b }}$
$[\mathrm{Pd}(\mathrm{biq})(\mathrm{ala})] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$	243	39.0	MLCT ${ }^{\text {a }}$
	264	72.2	MLCT ${ }^{\text {a }}$
	273 sh	65.1	LC ${ }^{\text {b }}$
	310	11.9	MLCT \& LMCT ${ }^{\text {a }}$
	327	20.1	MLCT \& LMCT ${ }^{\text {a }}$
	341	19.6	LC ${ }^{\text {b }}$
	378 br	20.8	MLCT ${ }^{\text {b }}$

br, broad; sh, shoulder.
${ }^{\text {a }}$ To amino acid.
${ }^{\mathrm{b}}$ To biq.
3.65 ppm (free glycine at 3.52 ppm) for the two α-protons. The peaks at 5.1 and 4.7 ppm are assigned to the $-\mathrm{NH}_{2}$ protons. The $-\mathrm{COO}^{-}$and α-carbon atoms show two signals at 181.40 and 46.67 ppm , respectively, while free glycine shows these signals at 172.38 and 41.44 ppm . The measurable downfield shifts confirm the bonding of both $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups to $\mathrm{Pd}(\mathrm{II})$.

I

II
(ii) The ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ shows the following peaks for biq at 155.26, 147.77, $136.52,129.76,129.19,129.09,128.10,128.02$, and 120.60 ppm . The coordinated serinate ion (II) shows 3 signals at $179.08,60.29$ and 61.76 ppm due to the car-boxylate-, α - and β-carbon atoms, respectively. Free serine shows the corresponding peaks at 172.31, 56.32 and 60.10 ppm . The ${ }^{1} \mathrm{H}$ NMR spectrum shows the following peaks for bonded serinate: a multiplet at 7.07 ppm which is assigned to the -OH proton; a doublet of a doublet at 5.69 ppm , assigned to the β-protons; a triplet and a doublet at 5.88 and 5.01 ppm which are assigned to the $-\mathrm{NH}_{2}$ protons and a doublet at 4.84 ppm for the α-proton. Free serinate shows the α - and β-protons at 3.73 and 3.85 ppm . These downfield shifts indicate that the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups are coordinated to $\mathrm{Pd}(\mathrm{II})$.

Table $4 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (in DMSO- d_{6}) for the complexes.

Complex	NMR band shift: δ, ppm	NMR band shift: δ, ppm
$[\operatorname{Pd}($ biq $)($ gly $)] \mathrm{Cl}$	$8.86(\mathrm{~m}, 4 \mathrm{H}), 8.57(\mathrm{~d}, 1 \mathrm{H}), 8.24(\mathrm{~d}, 1 \mathrm{H}), 8.18$	$181.40,155.25,147.18,137.22,130.09,129.32,128.10$,
	$(\mathrm{d}, 1 \mathrm{H}), 8.07(\mathrm{t}, 2 \mathrm{H}), 7.86(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{t}$,	$127.97,127.34,118.78,46.67$
	$1 \mathrm{H}), 5.1(\mathrm{~m}, 1 \mathrm{H}), 4.7(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, 2 \mathrm{H})$	
$[\operatorname{Pd}($ biq $)($ ser $)] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	$9.16(\mathrm{~d}, 2 \mathrm{H}), 8.97(\mathrm{~d}, 2 \mathrm{H}), 8.68(\mathrm{~d}, 2 \mathrm{H}), 8.34$	$179.08,155.26,147.77,136.52,129.76,129.19,129.09$,
	$(\mathrm{d}, 2 \mathrm{H}), 8.11(\mathrm{dt}, 2 \mathrm{H}), 7.97(\mathrm{dt}, 2 \mathrm{H}), 7.07(\mathrm{~m}$,	$128.10,128.02,120.60,61.76,60.29$

$\left[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})_{2}\right]$
$[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$
$\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$
$[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$
$[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$

IV
(iii) The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Pd}(\right.$ biq $\left.)(\mathrm{tyr})_{2}\right]$ shows 9 peaks, as expected for a symmetrical biq at 155.26, $147.19,137.24,130.10,129.33,128.10,127.98,127.35$ and 118.79 ppm . One may notice that they are almost the same as the coordinated biq in the starting complex A. The coordinated tyrosinates (III) show the peaks at $156.07,130.14,127.08$ and 115.24 ppm for the aromatic carbons ($\mathrm{c} ; \gamma, \mathrm{a}, \mathrm{a}^{\prime} ; \mathrm{b}, \mathrm{b}^{\prime}$), indicating that the two tyrosinate groups are symmetrical. The peak at 180.14 ppm , assigned to the carboxylate carbon $\left(\mathrm{COO}^{-}\right)$, suggests that this group is involved in bonding to $\mathrm{Pd}(\mathrm{II})$. The
presence of only two peaks for the two α - and two β-carbons at 59.19 and 38.10 ppm , respectively, further suggests that the complex is symmetrical. The ${ }^{1} \mathrm{H}$ NMR spectrum shows a single peak at 9.34 ppm which is assigned to the two equivalent phenolic protons. The two triplets at 4.60 and 4.00 ppm may be assigned to the protons of the two $-\mathrm{NH}_{2}$ groups. The doublet of a doublet signal at 2.93 ppm is assigned to the four β-protons while the triplet at 2.73 ppm to the two α-protons.
(iv) The ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ exhibits 16 different peaks for the 9 different carbon atoms of the symmetrical biq and the 7 different carbons of coordinated tyrosinate (IV). Here, it is noteworthy that some of the biq peaks are shifted upfield or downfield, as compared to the starting complex, and cannot all be differentiated from the carbon atoms of the phenyl group of tyrosinate (Table 4). However, the peaks due to the carboxylate, α - and β-carbons of bonded tyrosinate are easy to distinguish. They appear at 180.61, 60.23 and 36.13 ppm , respectively. Its ${ }^{1} \mathrm{H}$ NMR spectrum shows the following peaks for coordinated tyrosinate: two triplets at 6.36 and 3.60 ppm , assigned to the NH_{2} protons; two doublet of a doublet at 2.98 and 2.84 due to the two β-protons and a triplet at 2.73 ppm , assigned to the α-proton. The single peak at 9.17 ppm is assigned to the phenolic proton. These results confirm the chelation of the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups to $\mathrm{Pd}(\mathrm{II})$.

(v) The ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right] \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ shows peaks for the symmetrical biq carbons at 155.24, 147.17, 137.52, 130.11, 129.31, 128.21, 127.98, 127.36 and 118.78 ppm . These bands are similar to those of the starting complex and the biq in the tyrosinate complex $\left[\mathrm{Pd}(\mathrm{biq})(\mathrm{tyr})_{2}\right]$. The 4 peaks at 137.16, 129.71, 128.45 and 126.58 ppm which are assigned to the phenyl carbons ($\gamma, \mathrm{a}, \mathrm{a}^{\prime}, \mathrm{b}, \mathrm{b}^{\prime}, \mathrm{c}$) of coordinated phenylalaninate (\mathbf{V}) again suggest that the complex is symmetrical. The signal at 181.00 ppm , which is assigned to the two carboxylate carbons, suggests that the $-\mathrm{COO}^{-}$groups are coordinated to $\mathrm{Pd}(\mathrm{II})$ and are symmetrical. Free phenylalanine shows the corresponding signal at 173.89 ppm . Furthermore, the presence of only two peaks for the two α - and two β-carbons at 58.24 and 38.79 ppm , suggests that the complex is symmetrical. The ${ }^{1} \mathrm{H}$ NMR spectrum exhibits the following peaks for bonded phenylalaninate: two doublets at 4.59 and 4.09 ppm which may be assigned to the protons of the two $-\mathrm{NH}_{2}$ groups; a doublet and a doublet of a doublet at 3.36 and 3.01 ppm that are assigned to the four β-protons and a triplet at 2.77 ppm which is assigned to the two α-protons. This pattern indicates that the $-\mathrm{NH}_{2}$ is not involved in bonding, when compared to $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { tyr })_{2}\right],[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and the next complex $[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$.
(vi) The ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ shows 18 signals for 18 different carbon atoms. The symmetrical biq shows 9 peaks at 157.42, 147.68, $137.34,130.11,129.56,128.23,127.98,127.36$ and 118.78 ppm , with the carbon atoms close to the coordination site are the ones expected to undergo downfield shifts while those that are not affected are away from that site. The coordinated phenylalaninate (VI) shows 9 different signals, unlike the analogous tyrosinate complex $[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$. It shows peaks at 137.25 , $129.20,128.68,128.46,126.52$ and 125.95 ppm that are assigned to the 6 different aromatic carbons (γ, a, b, c, d , and e). The peak at 180.04 ppm , which is assigned to the carboxylate carbon, confirms the involvement of the $-\mathrm{COO}^{-}$group in coordination to $\mathrm{Pd}(\mathrm{II})$. The downfield shifts of the α - and β-carbon signals (at 58.84 and 39.25 , respectively), as compared to those of $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, confirm the chelation of $-\mathrm{NH}_{2}$
and $-\mathrm{COO}^{-}$groups to $\mathrm{Pd}(\mathrm{II})$. Free phenylalanine has the corresponding peaks at 55.99 and 36.31 ppm . The ${ }^{1} \mathrm{H}$ NMR spectrum of coordinated phenylalaninate exhibits two doublets 4.55 and 4.08 ppm due to the two $-\mathrm{NH}_{2}$ protons; two doublets of a doublet at 2.96 and 2.77 ppm assigned to the two β-protons and a triplet at 2.67 ppm that is assigned to the α-proton. This part of the spectrum is different from that for $\left[\mathrm{Pd}(\right.$ biq $\left.)(\text { phe })_{2}\right]$. Therefore, one may conclude that the $-\mathrm{NH}_{2}$ group is bonded to $\mathrm{Pd}(\mathrm{II})$.
(vii) The ${ }^{13} \mathrm{C}$ NMR spectrum of $[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} 1.1 .5 \mathrm{H}_{2} \mathrm{O}$ shows the following 9 peaks at $155.24,147.17,137.23$, $130.09,129.23,128.09,127.97,127.34$ and 118.78 ppm for the 9 different carbons of the symmetrical biq. The three peaks at $181.96,53.63$ and 19.43 ppm , which are assigned to the carboxylate, α - and β-carbons, respectively, confirm the chelation of the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups to Pd (II) (VII). Free alanine shows the corresponding peaks at $175.73,50.30$ and 16.05 ppm , respectively. All peaks undergo downfield shifts indicating withdrawal of electrons from the amino acid anion, by coordination through $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups, to $\mathrm{Pd}(\mathrm{II})$. The ${ }^{1} \mathrm{H}$ NMR spectrum shows the following peaks for the coordinated alaninate: two doublets at 5.56 and 5.20 ppm that are assigned to the protons of the $-\mathrm{NH}_{2}$ group; a multiplet at 3.65 ppm and a doublet at 1.18 that are assigned to α - and β-protons, respectively. Free alanine shows the peaks for the α - and β-protons at 3.75 and 4.8 ppm . These shifts suggest the bonding of alaninate through the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups.

4. Conclusion

The reactions of amino acid anions with $\left[\mathrm{Pd}(\right.$ biq $\left.) \mathrm{Cl}_{2}\right]$, using 1:1 molar ratios (with slight excess of the ligand), resulted in the formation of two types of complexes: (a) complexes having one amino acid anion, acting as a bidentate through the $-\mathrm{NH}_{2}$ and $-\mathrm{COO}^{-}$groups, as in $[\mathrm{Pd}($ biq $)(\mathrm{gly})] \mathrm{Cl},[\mathrm{Pd}($ biq $)$ (ser) $] \mathrm{PF}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}($ biq $)($ tyr $)] \mathrm{PF}_{6} \cdot \mathrm{H}_{2} \mathrm{O}, \quad[\mathrm{Pd}($ biq $)($ phe $)] \mathrm{PF}_{6}$. $\mathrm{H}_{2} \mathrm{O}$ and $[\mathrm{Pd}($ biq $)($ ala $)] \mathrm{Cl} .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$; (b) complexes having two monodentate amino acid anions with the carboxylate $-\mathrm{O}^{-}$being the donor ion, as in $\left[\mathrm{Pd}(\right.$ biq $\left.)(\mathrm{tyr})_{2}\right]$ and $[\mathrm{Pd}($ biq $)$ (phe) $)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$.

Acknowledgement

The authors would like to thank the Deanship of Research at Yarmouk University for partial financial support of this project.

References

Akat'eva, M.E., Erofeeva, O.S., Dobrynina, N.A., Ivanova, N.A., Efimenko, I.A., 2004. Interaction of $\mathrm{Pd}(\mathrm{II})$ with glutamic acid. Russ. J. Coord. Chem. 30, 584-590.
Appleton, T.G., 1997. Donor atom preferences in complexes of platinum and palladium with amino acids and related molecules. Coord. Chem. Rev. 166, 313-359 (and refs. therein.).
Battistuzzi, G., Borsari, M., Menabue, L., Saladini, M., Sola, M., 1998. Palladium(II) complexes of N -sulfonyl-asparagine and glutamine. Evidence for metal coordination of the deprotonated amide nitrogen of the side-chain. Inorg. Chim. Acta 273, 397-402.
Calaf, M., Caubet, A., Moreno, V., Font-Bardia, M., Solans, X., 1995. Alkyl ester derivatives of methionine and histidine with $\mathrm{Pd}(\mathrm{II})$ and Pt(II). J. Inorg. Biochem. 59, 63-77.
Casas, J.S., Castiñeiras, A., Parajó, Y., Pérez-Parallé, M.L., Sánchez, A., Sánchez-González, A., Sordo, J., 2003. Pd (II) and Pt (II) complexes of $2,2^{\prime}$-biimidazole and its N, N^{\prime}-dimethyl derivative. The crystal structure of $\left[\{\mathrm{PtBr}(\mathrm{DMSO})\}_{2}\left(\mathrm{Me}_{2} \mathrm{bim}\right)\right]$ ($\mathrm{Me}_{2} \mathrm{bim}=N, N^{\prime}$-dimethyl-2, $\quad 2^{\prime}$-biimidazole). Polyhedron 22, 1113-1121 (and refs. therein.).
Corradi, A.B., Gozzoli, E., Menabue, L., Saladini, M., Battaglia, L.P., Sgarabotto, P., 1994. Palladium (II) complexes of N -sulfonylamino acids. Part 1. Solid-state behaviour of binary and ternary 2, 2'-bipyridine-containing systems. J. Chem. Soc. Dalton Trans., 273278.

Cotton, F.A., Wilkinson, G., Murillo, C.A., Bochmann, M., 1999. Advanced Inorganic Chemistry. John Wiley \& Sons, New York.
El-Medani, S., Shohayeb, S., Shoukry, M., 1998. Equilibrium studies of complex formation involving palladium(II)-(1,3-diaminopropane) and cyclobutane dicarboxylic acid, DNA units, amino acids or peptides. Transition Met. Chem. 23, 287-293.
El-Sherif, A.A., 2011. Synthesis and characterization of some potential antitumor palladium (II) complexes of 2-aminomethylbenzimidazole and amino acids. J. Coord. Chem. 64, 2035-2055 (and refs. therein.).
Erickson, L.E., Bailey, P.D., Kimball, T.L., Morgan, B.R., 2003. Stereochemistry of platinum complexes of the neutral amino acids allylglycine, S-methylcysteine, methionine, and corresponding sulfoxides. Inorg. Chim. Acta 346, 169-180.
Gao, E., Liu, C., Zhu, M., Lin, H., Wu, Q., Liu, L., 2009. Current development of Pd (II) complexes as potential antitumor agents. Anti-Cancer Agents Med. Chem. 9, 356-368 (and refs. therein.).
Girolami, G.S., Rauchfuss, T.B., Angelici, R.J., 1999. Synthesis and Technique in Inorganic Chemistry: A Laboratory Manual, Appendix 2, Sausalito, CA 94965, USA. University Science Books.
Jain, N., Mital, R., Ray, K.S., Srivastava, T.S., Bhattacharya, R.K., 1987. Synthesis, spectroccopic, mutagenic, and cytotoxicity studies of some mixed-ligand platinum(II) complexes of $2,2^{\prime}$-bipyridine and amino acids. J. Inorg. Biochem. 31, 57-64.

Jin, V.X., Ranford, J.D., 2000. Complexes of platinum (II) or palladium (II) with 1, 10-phenanthroline and amino acids. Inorg. Chim. Acta 304, 38-44 (and refs. therein.).
Kana'n, G.J.M., Qaseer, H.A., El-Qisairi, A.K., Zaghal, M.H., AlNajar, H.A., 2002. Mu’tah J. Res. Stud. 17, 101.
Karkali, R., Bugari, D., 2000. Synthesis and reactivity of [PdCl(terpy)]Cl. Monatsh. Chem. 131, 819-824.
Krylova, L., Kovtunova, L., Romanenko, G., 2008. Pt (II) and Pd (II) complexes with β-Alanine. Bioinorganic Chem. Appl. 2008, 1 10.

Krylova, L.F., Matveeva, L.M., Romanenko, G.V., 2006. Pt(II) stereoisomeric complexes with serine. J. Struct. Chem. 47, 651662.

Kumar, L., Kandasamy, N., Srivastava, T., 1982. Synthesis and spectroscopic studies of potential antiviral [Pt (2, 2'-bipyridyl)(amino acid)] Cl complexes. Inorg. Chim. Acta 67, 139-143 (and refs. therein.).
Kumar, L., Kandasamy, N.R., Srivastava, T.S., Amonkar, A.J., Adwankar, M.K., Chitnis, M.P., 1984. Synthesis and spectroscopic studies of potential anticancer [platinum(II)(2, 2^{\prime}-bipyridine)(amino acid) $]^{\mathrm{n}+}(\mathrm{n}=1$ or 2$)$ complexes. J. Inorg. Biochem. 23, $1-11$.
Mital, R., Srivastava, T., Parekh, H., Chitnis, M., 1991. Synthesis, characterization, DNA binding, and cytotoxic studies of some mixed-ligand palladium (II) and platinum (II) complexes of α diimine and amino acids. J. Inorg. Biochem. 41, 93-103 (and refs. therein.).
Mohamed, M.M.A., Shoukry, M.M., 2001. Complex formation reactions of (N, N^{\prime}-dimethylethylenediamine) palladium(II) with various biologically relevant ligands. Polyhedron 20, 343-352.
Nagy, Z., Fábián, I., Bényei, A., Sóvágó, I., 2003. Thermodynamic, kinetic and structural studies on the mixed ligand complexes of palladium(II) with tridentate and monodentate ligands. J. Inorg. Biochem. 94, 291-299.
Nagy, Z., Sóvágó, I., 2001. Thermodynamic and structural characterisation of the complexes formed in the reaction of $[\operatorname{Pd}(\mathrm{en})$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Pd}(\text { pic })\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}$ with N -alkyl nucleobases and N-acetyl amino acids. J. Chem. Soc. Dalton Trans., 2467-2475.
Nakamoto, K., 1997. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York.
Nijasure, A.M., Joshi, V.N., Sawant, A.D., 1999. Ternary complexes of palladium (II) with levamisole and L-amino acids. J. Inorg. Biochem. 73, 109-115.
Puthraya, K.H., Srivastava, T.S., Amonkar, A.J., Adwankar, M.K., Chitnis, M.P., 1986. Some potential anticancer Palladium(II) complexes of 2, 2^{\prime}-bipyridine and amino acids. J. Inorg. Biochem. 26, 45-54.
Yamauchi, O., Odani, A., 1981. Electrostatic ligand-ligand interactions in ternary amino acid-palladium (II) complexes. Synthetic studies and spectroscopic evidence. J. Am. Chem. Soc. 103, 391398.

Zaghal, M.H., Qaseer, H.A., 1991. Complexes of palladium, platinum and rhodium with $2,2^{\prime}$-biquinoline and 2 -(2^{\prime}-pyridyl) quinoline. Transition Met. Chem. 16, 39-44.
Zhang, J., Li, L., Wang, L., Zhang, F., Li, X., 2010. Synthesis, characterization and cytotoxicity of mixed-ligand complexes of palladium(II) with aromatic diimine and 4-toluenesulfonyl-L-amino acid dianion. Eur. J. Med. Chem. 45, 5337-5344 (and refs. therein.).

[^0]: * Corresponding author. Tel.: +962 65864568; fax: +962 26297021.

 E-mail address: bfali@aabu.edu.jo (B.F. Ali).
 Peer review under responsibility of King Saud University.

[^1]: ${ }^{\text {a }}$ Calculated based on the starting complex A .
 ${ }^{\mathrm{b}}$ The molar conductance (in ohm ${ }^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$) of $1 \times 10^{-3} \mathrm{M}$ solution at $25^{\circ} \mathrm{C}$ in DMSO.

