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a b s t r a c t

In this work the global stability of a unique interior equilibrium for a Leslie–Gower
predator–preymodel with feedback controls is investigated. Themain result together with
its numerical simulations shows that feedback control variables have no influence on the
global stability of the Leslie–Gower model, which means that feedback control variables
only change the position of the unique interior equilibrium and retain its global stability.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, much scholars studied the predator–prey system with the Leslie–Gower scheme [1–4]. Numerical studies for
a Leslie–Gower type tritrophic model were done in [1,2]. In [3], the authors obtained a set of sufficient conditions which
ensure the global stability of the positive equilibrium for a predator–prey model with modified Leslie–Gower and Holling
type II schemes. Korobeinikov [4] considered the following Leslie–Gower predator–prey model:

Ṅ1(t) = (r1 − a1N2 − b1N1)N1,

Ṅ2(t) =
(
r2 − a2

N2
N1

)
N2.

(1)

By introducing the Lyapunov function

V (N1,N2) = ln
N1
N01
+
N01
N1
+
a1N01
a2

(
ln
N2
N02
+
N02
N2

)
,

where N01 =
r1a2

a1r2+a2b1
,N02 =

r1r2
a1r2+a2b1

, he was able to show that the unique coexisting point E0(N01 ,N
0
2 ) of system (1) is

globally stable.
On the other hand, in some situations, one may wish to alter the positions of positive equilibrium, but to retain its

stability. This is of significance in the control procedure of ecology balance. One of the techniques used to achieve the aim
is to alter system (1) structurally by introducing ‘‘indirect control’’ variables. Though there are many works on the single-
species ormultispecies competition systemswith feedback controls [5–7], to the best of the authors’ knowledge, to this day,
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still no scholars are investigating the stability property of the Leslie–Gower predator–prey model with feedback controls;
this motivates us to propose and study such a model. In this work, we introduce and study the following Leslie–Gower
predator–prey model with feedback controls:

Ṅ1(t) = (r1 − a1N2 − b1N1 − c1u1)N1,

Ṅ2(t) =
(
r2 − a2

N2
N1
− c2u2

)
N2,

u̇1(t) = −f1u1 + g1N1,
u̇2(t) = −f2u2 + g2N2,

(2)

where N1(t) and N2(t) denote the density of prey and predator populations at time t , respectively; u1(t) and u2(t)
are feedback control variables; the term a2

N2
N1
describes the ‘‘carrying capacity’’ of the predator’s environment which is

proportional to the number of prey and a2 is the maximum value which a per capita reduction rate of N1(t) can attain; r1
and r2 describe the intrinsic growth rates of N1(t) and N2(t), respectively; a1 denotes the capturing rate of predator species
N2(t); b1 measures the strength of competition among individuals of N1(t). ri, ai, ci, fi, gi, i = 1, 2, and b1 are all positive
constants. For more detailed adjustment of the Leslie–Gower system and the meanings of coefficients of the system, one
could refer to [8–10] and the references cited therein.
With the restriction of their analysis technique, traditional works on the feedback control ecosystem (see [5,6] and the

references cited therein) showed that feedback control variables play important roles as regards the persistency and stability
properties of the system. Recently, by giving a detailed analysis of the right-hand side functional of the system, Hu, Teng and
Jiang [7] were able to show that feedback control variables have no influence on the persistence property of the competition
system that they considered. Their success motivated us to propose the following conjecture: Maybe the feedback control
variables have no influence on the stability property of the system (2), that is, we can show that feedback controls only
change the position of the unique interior equilibrium and retain its stability property.
The work is organized as follows. In the next section, we state and prove the global stability property of model (2). In

Section 3, numerical simulations are presented to illustrate the feasibility of our results. We end this work with a brief
discussion.

2. Global stability

For practical biological meaning, we simply study system (2) in R4
+
= {(N1,N2, u1, u2) ∈ R4|Ni > 0, ui > 0, i = 1, 2} or

in R4+. From the first equation of system (2), it is easy to derive that lim supt→∞ N1(t) ≤
r1
b1
.

Lemma 1. The solutions (N1(t),N2(t), u1(t), u2(t))T of system (2) with initial values Ni(0) > 0, ui(0) > 0, i = 1, 2, are
positive and bounded for all t ≥ 0.

Proof. Obviously, the solutions (N1(t),N2(t), u1(t), u2(t))T of system (2) with initial values Ni(0) > 0, ui(0) > 0, i = 1, 2,
are positive for all t ≥ 0. Given any ε > 0,N1(t) ≤

r1
b1
+ ε for t sufficiently large, from the second equation of system (2),

it follows that Ṅ2(t) ≤
(
r2 −

a2N2
r1
b1
+ε

)
N2, which implies that lim supt→∞ N2(t) ≤

r1r2
a2b1
. For above ε > 0,N1(t) ≤

r1
b1
+ ε and

N2(t) ≤
r1r2
a2b1
+ ε for t sufficiently large, from the third and fourth equations of system (2), it follows that

u̇1(t) ≤ −f1u1 + g1

(
r1
b1
+ ε

)
,

u̇2(t) ≤ −f2u2 + g2

(
r1r2
a2b1
+ ε

)
.

By a standard comparison argument and basic ODE theory, it follows that lim supt→∞ u1(t) ≤
g1r1
f1b1
and lim supt→∞ u2(t) ≤

g2r1r2
a2b1f2

, which completes the proof. �

Define δ = f1(a1r2f2 − r1c2g2)+ a2f2(b1f1 + c1g1), ∆ = δ2 + 4r1f1a2f2c2g2(b1f1 + c1g1).

Lemma 2. Model (2) admits a unique interior equilibrium E∗(N∗1 ,N
∗

2 , u
∗

1, u
∗

2), where N
∗

1 =
−δ+
√
∆

2c2g2(b1f1+c1g1)
, N∗2 =

(δ+2f1r1c2g2)−
√
∆

2a1f1c2g2
and u∗i =

gi
fi
N∗i , i = 1, 2.

Proof. We now consider positive equilibria of model (2). By the third and the fourth equation of model (2), we have
ui = giNi/fi, i = 1, 2. Substituting them into the right-hand side of the first and the second equations of model (2),
respectively, we obtain

N1 =
f1(r1 − a1N2)
b1f1 + c1g1

, (3)
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and

r2f2N1 − a2f2N2 − c2g2N1N2 = 0. (4)

Substituting (3) into (4), we have

a1f1c2g2N22 − (δ + 2r1f1c2g2)N2 + r1r2f1f2 = 0. (5)

Since the discriminant of (5) satisfies

∆ = (δ + 2r1f1c2g2)2 − 4a1c2g2r1r2f2f 21 = δ
2
+ 4r1f1a2f2c2g2(b1f1 + c1g1) > 0,

it is easy to see that (5) has two positive roots

N±2 =
(δ + 2f1r1c2g2)±

√
∆

2a1f1c2g2
> 0.

Note that r1 − a1N+2 =
−δ−
√
∆

2f1c2g2
< 0 and hence N1 =

f1(r1−a1N
+

2 )

b1f1+c1g1
< 0; then model (2) has a unique positive equilibrium

E∗(N∗1 ,N
∗

2 , u
∗

1, u
∗

2), where N
∗

2 = N
−

2 =
(δ+2f1r1c2g2)−

√
∆

2a1f1c2g2
, N∗1 =

f1(r1−a1N∗2 )
b1f1+c1g1

=
−δ+
√
∆

2c2g2(b1f1+c1g1)
and u∗i = giN

∗

i /fi, i = 1, 2, which
completes the proof. �

Before we state and prove the global stability of this work, we need to state a definition and a useful lemma.

Definition 3 (Chen, Song and Lu [11]). A matrix A = (aij)n×n is said to be anM matrix if aij ≤ 0, i 6= j, i, j = 1, 2, . . . , n, and
any one of the following conditions holds:
(I) all of the eigenvalues of matrix A have positive real parts;
(II) the order principal minor of matrix A is positive;
(III) matrix A is nonsingular and A−1 ≥ 0;
(IV) there exists a vector x > 0 such that Ax > 0;
(V) there exists a vector y > 0 such that ATy > 0.

Lemma 4 (Araki andKondo [12]). If A is anM matrix, then there exists a positive diagonalmatrix D = diag(d1, d2, . . . , dn), di >
0, i = 1, . . . , n, such that matrix B = 1

2 (DA+ A
TD) is positive definite.

Theorem 5. Assume that a2b1 ≥ a1r2 holds; then the unique interior equilibrium E∗(N∗1 ,N
∗

2 , u
∗

1, u
∗

2) of model (2) is globally
stable.
Proof. Note that r1 = a1N∗2 + b1N

∗

1 + c1u
∗

1 , r2 = a2N
∗

2 /N
∗

1 + c2u
∗

2 , fiu
∗

i = giN
∗

i , i = 1, 2; then model (2) can be rewritten as

Ṅ1(t) = [−b1(N1 − N∗1 )− a1(N2 − N
∗

2 )− c1(u1 − u
∗

1)]N1,

Ṅ2(t) =
[(
−N∗1 (N2 − N

∗

2 )+ N
∗

2 (N1 − N
∗

1 )
) a2
N1N∗1

− c2(u2 − u∗2)
]
N2,

u̇1(t) = [−N1(u1 − u∗1)+ u1(N1 − N
∗

1 )]
g1
u∗1
,

u̇2(t) = [−N2(u2 − u∗2)+ u2(N2 − N
∗

2 )]
g2
u∗2
.

(6)

Now let’s construct a Lyapunov function

V (t) = d1V1(t)+ d2V2(t)+ e1φ1(t)+ e2φ2(t),

whereVi(t) = Ni−N∗i −N
∗

i ln
Ni
N∗i
, φi(t) = ui−u∗i −u

∗

i ln
ui
u∗i
, ei =

diciu∗i
gi
, i = 1, 2, and di, i = 1, 2, are positively undetermined

coefficients. Obviously, V (t) is well defined and continuous for all Ni, ui > 0, i = 1, 2. The time derivative of the function
V (t) along the solutions of model (6) is

V̇ (t) = d1(N1 − N∗1 )[−b1(N1 − N
∗

1 )− a1(N2 − N
∗

2 )− c1(u1 − u
∗

1)]

+ d2(N2 − N∗2 )
[(
−N∗1 (N2 − N

∗

2 )+ N
∗

2 (N1 − N
∗

1 )
) a2
N1N∗1

− c2(u2 − u∗2)
]

+
g1e1(u1 − u∗1)

u1u∗1
[−N1(u1 − u∗1)+ u1(N1 − N

∗

1 )] +
g2e2(u2 − u∗2)

u2u∗2
[−N2(u2 − u∗2)+ u2(N2 − N

∗

2 )]

= −d1b1(N1 − N∗1 )
2
+

(
a2d2N∗2
N∗1N1

− a1d1

)
(N1 − N∗1 )(N2 − N

∗

2 )

−
a2d2
N1

(N2 − N∗2 )
2
−
c1d1N1
u1

(u1 − u∗1)
2
−
c2d2N2
u2

(u2 − u∗2)
2,
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Fig. 1. Dynamic behaviors diagram ofmodel (2) for a2b1 ≥ a1r2 . (a) E∗(1.3, 0.848, 1.95, 1.696) is globally stable for a1 = 0.5, a2 = 1, b1 = 2 and r2 = 1.5.
(b) E∗(1.077, 1.037, 1.6155, 2.074) is globally stable for a1 = a2 = 1, b1 = r2 = 2.

and

−d1b1(N1 − N∗1 )
2
+

(
a2d2N∗2
N∗1N1

− a1d1

)
(N1 − N∗1 )(N2 − N

∗

2 )−
a2d2
N1

(N2 − N∗2 )
2

≤ −d1b1(N1 − N∗1 )
2
+

(
a2d2N∗2
N∗1N1

+ a1d1

)
| N1 − N∗1 | · | N2 − N

∗

2 | −
a2d2
N1

(N2 − N∗2 )
2

∆
=
1
2
Y T(DG+ GTD)Y ,

where Y =
(
| N1 − N∗1 |, | N2 − N

∗

2 |
)T
, D = diag(d1, d2), di > 0, i = 1, 2, and

G =

 −b1 a1
a2N∗2
N∗1N1

−
a2
N1

 .
To show that conclusion of Theorem 5 holds, for all Ni, ui > 0, i = 1, 2, it is enough to prove that there exists a positive
diagonal matrix D = diag(d1, d2), di > 0, i = 1, 2, such that matrix (DG+ GTD) is negative definite. Note first that both of
the off-diagonal elements of matrix G are positive and

b1 −
a1N∗2
N∗1
=
2a2f2(2b1f1 + c1g1)− (

√
∆+ δ)

2a2f1f2
.

Simple algebraic computations show that, under the assumption a2b1 ≥ a1r2, b1−
a1N∗2
N∗1

> 0, the two order principal minors

ofmatrix−G are b1 and
a2
N1

(
b1 −

a1N∗2
N∗1

)
, which are positive. FromDefinition 3, it follows that−G is anMmatrix; according to

Lemma 4, there exists a positive diagonal matrix D = diag(d1, d2), di > 0, i = 1, 2, such that matrix (DG+GTD) is negative
definite. So, under the assumption a2b1 ≥ a1r2, V̇ (t) < 0 strictly for all Ni, ui > 0, i = 1, 2, except the positive equilibrium
E∗(N∗1 ,N

∗

2 , u
∗

1, u
∗

2), where V̇ (t) = 0. The above analysis shows that V (t) satisfies Lyapunov’s asymptotic stability theorem
and the unique interior equilibrium E∗(N∗1 ,N

∗

2 , u
∗

1, u
∗

2) of model (2) is globally stable, which completes the proof. �

3. Numerical examples

Let f1 = f2 = 1, c1 = c2 = 0.5, r1 = 4, g1 = 1.5 and g2 = 2. For these values of parameters, we verify the existence and
stability properties of the positive equilibrium formodel (2). In Fig. 1, we clearly observe that the unique interior equilibrium
of model (2) is globally stable under the assumption that a2b1 ≥ a1r2 holds.
Since it is difficult to make further analytical studies, we invoke numerical calculations to find asymptotical behaviors of

model (2) for a2b1 < a1r2. Fig. 2 shows that the unique interior equilibrium of model (2) is globally stable also under the
condition that a2b1 < a1r2 holds.

4. Discussion

Figs. 1 and 2 and Theorem 5 show that the unique interior equilibrium is globally stable for the Leslie–Gower
predator–preymodelwith feedback controls. Compared to the global stability of the unique interior equilibrium E0 formodel
(1) in [4], it is found that feedback controls have no influence on the existence and stability properties of the unique positive
equilibrium for the Leslie–Gower predator–prey model. Moreover, in the cases of Fig. 1(a), (b) and Fig. 2(a), (b), the unique
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Fig. 2. Dynamic behaviors diagram of model (2) for a2b1 < a1r2 . (a) E∗(1.157, 1.397, 1.736, 2.794) is globally stable for a1 = 1, a2 = 0.5, b1 = 1.5 and
r2 = 2. (b) E∗(1.101, 0.971, 1.6515, 1.942) is globally stable for a1 = 1, a2 = 0.6, b1 = 2 and r2 = 1.5.

interior equilibrium E0 of model (1) is E0(1.455, 2.182), E0(1, 2), E0(0.727, 2.909) and E0(0.889, 2.222), respectively. Note
that N∗2 < N

0
2 in the above four cases. Hence, for the Leslie–Gower predator–prey model, feedback controls only change the

position of the unique interior equilibrium and help the predator species to stability, while retaining global stability of the
unique interior equilibrium. This indicates that, in the realistic environment, predator species could extend their survival
space by introducing the feedback control variables and both predator species and prey species would finally reach a ‘good’
state, which is suitable for them to survive and develop in. This aids permanence of ecosystems.
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