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A B S T R A C T

Sustainable intensification (SI) is at the forefront of food security discussions as a means to meet the growing
demand for agricultural production while conserving land and other resources. A broader definition of SI is
emerging that takes into account the human condition, nutrition and social equity. Next steps require
identification of indicators and associated metrics, to track progress, assess tradeoffs and identify synergies.
Through a systematic, qualitative review of the literature we identified SI indicators, with a primary focus on
African smallholder farming systems. We assessed indicators and metrics for which there is consensus, and
those that remain contested. We conclude that, while numerous metrics for evaluating SI systems exist, many
often-cited indicators lack strong sets of associated metrics.

1. Introduction

Food security is threatened by rising food demand, a degrading
resource base and a changing climate, all at a time when nearly a billion
people suffer from malnutrition and even more experience nutrient
deficits (Godfray and Garnett, 2014). In order to ensure future food
security and meet current needs, sustainable intensification (SI) has
been put forward as a key approach. Godfray et al. (2010) define
sustainable intensification as the process of “producing more food from
the same area of land while reducing the environmental impacts”.
Many resource-limited smallholder farms have a great potential for
increased productivity (Herrero et al., 2010; Pretty et al., 2011). Given
that many smallholder farmers suffer from malnourishment and rely
largely on their own agricultural production (Garrity et al., 2010), SI of
these systems has the potential to increase human wellbeing while
strengthening the foundations of future food security. Though there is
widespread agreement on the need to increase productivity and
sustainability in smallholder agroecosystems, SI is an evolving concept
that has been the subject of debate. Initially SI was presented as a
collaborative project between researchers and farmers to increase food
production while paying attention to environmental, social and eco-
nomic sustainability (Pretty, 1997). Since then, some authors have

expressed concern that SI has come to be used in a productionist sense,
with concerns for sustainability and equity taking second place (Loos
et al., 2014; Tittonell, 2014). This has prompted the use of ‘ecological
intensification’ as an alternative term suggesting a greater focus on
ecological principles and environmental sustainability (Cassman, 1999;
Petersen and Snapp, 2015). However, in the view of many, SI has a
strong focus on ecological integrity, social sustainability and the human
condition (The Montpelier Panel, 2013). Given this contention, it is
necessary to define boundary conditions for what can be placed under
the rubric of SI (Tittonell, 2014). These boundary conditions, in turn,
are defined by the metrics that we use to measure and evaluate SI
systems.

In recent years there have been many calls to define and elaborate
metrics of SI in order to lend the concept greater clarity and bring
increased coherence to the field of SI research (Struik et al., 2014; The
Montpelier Panel, 2013). Our objective is to report on a literature
review that considers the current state of thinking on SI indicators and
concrete metrics used to assess them, highlighting areas of consensus
and contestation. This is an important next step in efforts to develop
context-appropriate metrics and improve understanding of SI in
smallholder systems.
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2. Methodology and terminology

We searched the scientific literature using Web of Science and
Google Scholar for references to SI and smallholder agriculture
systems. Additionally, we searched for literature that employed related
terms, namely, ecological intensification, climate-smart agriculture and
eco-efficient agriculture. From these searches, we identified publica-
tions that focused on SI indicators and metrics appropriate to
smallholder systems at the field, farm/household, and landscape or
community scales. Papers that did not explicitly refer to SI or related
terms, but that focused on both intensification and sustainability in
smallholder systems were regarded as valuable and eligible for inclu-
sion. Literature referenced in this review includes peer-reviewed
journal articles, academic books and book chapters, academic con-
ference proceedings, and public reports by well-known international
agricultural research organizations. Agronomic studies of smallholder
agriculture in Africa receive a strong emphasis in this review due to the
authors’ areas of expertise, and the focus of SI literature on agricultural
development.

Two general classes of publications were identified: I) publications
defining SI and presenting a range of SI indicators or described metrics
appropriate to SI systems (46 publications), and II) publications that
describe and evaluate SI efforts in the field (60 publications, see
Table 1). We applied the following criteria for inclusion of publications
in our review:

• The study must have been conducted in a smallholder system or
define SI indicators relevant to this system. This includes on-farm
research trials, but excludes trials performed on agricultural sta-
tions. The size criteria regarding what should be considered a
smallholder system varied from one study to the next, as this
criterion is dependent on bioregion and farm type.

• The study must have explicitly evaluated both productivity and at
least one aspect of sustainability.

• The study must have employed and clearly described SI-relevant
metrics. These metrics must go beyond simply crop yield or
adoption of a technology.

Overall, we included 104 references describing and evaluating SI
efforts in the field. These publications dealt with themes of productiv-
ity, economic, environmental and social sustainability, and human
wellbeing in both crop and livestock systems. Table 1 presents a
summary of the papers and the themes, related to the systems (crop,
livestock, and integrated crop livestock) that they covered. Of all the
publications we reviewed, only 22% originated from the same group of
authors. To test if our literature review captured diverse views, we
assessed if publications originated from the same author group: this
was scored as a yes if they shared two authors in common (or shared a
single author in the case of works with one or two authors). 82% of

reviewed publications evaluating SI efforts in the field dealt with work
in Africa, 8% dealt with work in Asia, and 10% dealt with work in the
Americas.

This paper assigns specific meanings to the terms “indicators” and
“metrics.” We use the term “indicator” to denote a quality or concept
that is cited in the literature as an essential component of sustainable
intensification. “Metric,” on the other hand, refers to a specific property
of a cropping system, farm system, household or community that can
be directly measured. Indicators can have numerous metrics associated
with them. For example, for the indicator biodiversity, a wide range of
measurable properties are employed–the metrics. Among these are
species richness, relative abundance of species, and functional diver-
sity..

3. Widely used indicators and metrics of SI

We organized SI indictors identified in literature into five domains:
productivity, economic sustainability, environmental sustainability,
social sustainability and human wellbeing. Indicators within each of
the domains are disaggregated by frequency of appearance in the
scientific literature. While many SI indicators have quantifiable me-
trics, there are some exceptions (Tables 2–6). A key goal of this paper is
to present SI metrics that can be broadly applied in different contexts.
Indicators of sustainable intensification can be grouped into three main
categories: indicators with limited application, indicators that commu-
nicate adequately, and indicators that can be applied broadly to
evaluate system performance. In the following section we describe
some of the most broadly applied indicators and the metrics associated
with them. A complete list of indicators and their associated metrics is
presented in Tables 2–6.

3.1. Indicators and metrics of productivity

3.1.1. Yield
Yield is by far the most common indicator used in the SI literature

(Table 2). In cropping systems, yield refers to the production of crops
per unit land area (Mg grain ha−1). In livestock systems, yield is
measured as the production of animal products (milk, meat or eggs)
per livestock animal per day (Chigwa et al., 2015; Lusigi, 1995), or the
production of milk per animal per lactation period (Descheemaeker
et al., 2011). Livestock yield is also measured as the conversion
efficiency of grain into meat, in kg meat kg−1 grain as feed (Herrero
et al., 2010). Farmer-assessed range condition is a participatory
approach to assessing yield applied only to livestock systems, which
could be modified for use in integrated crop-livestock systems
(Klintenberg et al., 2006).

One variant on crop yield that is highly relevant to the mixtures of
species commonly grown on many smallholder farms is the land
equivalent ratio (LER) (Altieri, 1999; Valet and Ozier-Lafontaine,
2014), used to measure the yield of intercrop systems relative to
monocrops. An LER greater than 1 indicates that the intercrop is more
productive than when the available land is devoted to sole cropping of
the crops involved. This is currently only applied to cropping systems,
but potential could be of value as an approach to consider for mixed
livestock systems.

An associated SI productivity indicator is the yield gap, or the
difference between the actual yield of the cropping system and the
attainable yield (Mueller et al., 2011; Tittonell, 2013). The attainable
yield is the yield that could be achieved under existing soil conditions,
water availability, solar radiation and temperatures if all nutrient
stresses and pest pressures were removed (Table 2). There are
numerous methods for determining attainable yield. One commonly
used approach involves simulating crop growth using crop growth
models parameterized with local soil and historical climate data (Wani
et al., 2003). As an alternative metric appropriate to resource-limited
farms, Tittonell (2013) propose a locally attainable yield, based on the

Table 1
The sixty publications included in this review are summarized here by the domains of
sustainability that they deal with, and the types of agricultural systems that they
encompass. Values are numbers of publications cited in this review. Note that some
publications dealt with multiple domains of sustainability and both crop and livestock (or
integrated crop/livestock) systems.

Domain of SI Crop
systems

Livestock
systems

Crop, Livestock
or Integrated

Productivity 40 11 45
Economic

sustainability
23 6 26

Human wellbeing 12 3 15
Environmental

sustainability
36 9 39

Social sustainability 15 6 18
Total across domains 53 15 60
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highest yields actually achieved by farmers in a given region.

3.1.2. Input efficiency
Efficient use of inputs for production is a critical goal in SI, and

input efficiency is therefore a commonly proposed SI indicator (Keating
et al., 2010; Pretty et al., 2011). There are numerous metrics of input
efficiency in the literature, appropriate for different purposes. Partial
factor productivity is the most commonly used metric, consisting of kg

grain yield/kg of a single nutrient (usually N or P) applied (Chikowo
et al., 2015; Snapp et al., 2010). For livestock systems a common
metric is kg animal product yield/kg dry feed intake (Tarawali et al.,
2011). An alternative metric of input efficiency is the eco-efficiency
score where the performance of each individual cropping system is
contrasted with an eco-efficiency frontier (Keating et al., 2010). This
frontier is determined using data on inputs and outputs for a range of
cropping systems representative of the region Linear programming

Table 2
SI indicators of productivity with their associated metrics, organized by scale. Indicators in normal font are cited by 3–7 sources, indicators in bold are cited by 8–14 sources, and
indicators in BOLD CAPS are cited by 15+ sources. Indicators that are associated with contention in the SI literature are underlined. Citations in normal font refer to evaluations or
descriptions of SI systems in the field that involve only crops, while underlined citations refer to publications that involve livestock, or both crops and livestock. Citations in italics refer to
methods papers or overviews that are not specific to any single cropping system.

Indicator Field scale metrics Farm / Household metrics Community metrics

Alternative pest
management

Yield effects of alt pest mgt.(Thrupp, 2000;Zhu et al.,
2000)

% farmers using alternative pest mgt.
(Schreinemachers et al., 2011)

Animal health Disease incidence (Lusigi, 1995)
Farmer-reported condition (Klintenberg et al., 2006)
Growth rate(Chigwa et al., 2015;Lusigi, 1995)
Mortality rate (McDermott et al., 2010)

Biological inputs kg chemical inputs replaced (Powell et al., 2004;Oikeh
et al., 2012)

Farm-generated inputs used (Powell et al.,
2004; Pretty et al., 2011)

% farmers using biol. Inputs (Fungo
et al., 2013)

Biomass production kg / ha biomass produced (Myaka et al., 2006;Ojiem
et al., 2007)

Conversion efficiency kg meat/kg grain consumed (Herrero et al., 2010)
Crop diversity Crop genotype richness (Zhu et al., 2000) Crop species richness (Altieri, 1999)

Crop species richness (Valet and Ozier-Lafontaine,
2014)

Cropping intensity # of crops/unit time (Tilman et al., 2002) R factor (cropping frequency) (Morse et al.,
2002)

Fodder production Farmer-assessed range condition(Klintenberg et al.,
2006)
Primary production of rangeland (Lusigi, 1995)
T fodder produced/ha (Boval et al., 2014)

Fodder quality Nutritional content of fodder (Lusigi, 1995) Consumption of legumes (Powell et al., 2004)
Presence of toxins (Bekunda, 2012)

INPUT EFFICIENCY Efficiency equivalent ratio of nutrient inputs (Valet and
Ozier-Lafontaine, 2014)

Eco-efficiency score; all inputs (Keating et al.,
2010; Gadanakis et al., 2015)

Partial factor productivity of nutrient inputs (Chikowo
et al., 2015; Snapp et al., 2010; Tarawali et al., 2011)

Energy efficiency analysis; all inputs (Tyedmers
and Pelletier, 2006)

Input intensity Capital intensity in $/ha (Shriar, 2000) Intensification index (Shirar, 2000)
Energy intensity in Mj/ha (Giller et al., 1997; Tyedmers
and Pelletier, 2006)
Fertilizer rate in kg/ha (Tittonell et al., 2007)

Irrigation mm irrigation water applied (Wani et al., 2003) % farmers irrigating (Graciana, 2006)
Pest pressure Farmer reported pest pressure (Snapp and Silim, 2002)

# pests/plant or sample (Ndemah et al., 2003;
Clermont-Dauphin et al., 2014)
# pest species suppressed (Ratnadass and Barzman,
2014)
% crop plants damaged (Khan et al., 2008)
Weed infestation score (Tittonell et al., 2007)

RESILIENCE Relative crop loss due to disaster (Holt-Gimenez et al.,
2002)
Ability to maintain yield under a range of future
scenarios, modeled (Rosenzweig and Tubelo, 2007)

Stocking rate # animals/ha (Lusigi, 1995)
T live weight / ha (Boval et al., 2014)

WATER EFFICIENCY kg grain/m3 water applied / ha (Wani et al., 2003) $ animal products/m3 evapotranspiration
(Descheemaeker et al., 2011)

Yield/mm rainfall (Anderson et al., 2006; Chikowo
et al., 2015)

kg total products/m3 water on land used to
grown feed (Kahinda and Masiyandima, 2014)

Yield/mm evapotranspiration (Anderson et al., 2006)
YIELD $ product/ha (Kamanga et al., 2014; Zhu et al., 2000)

kg product/ha (ISPC, 2014; Rai et al., 2011)
kg product/animal/day (Chigwa et al., 2015; Lusigi,
1995)
Land equivalent ratio (Altieri, 1999;Valet and Ozier-
Lafontaine, 2014)

Yield gap Attainable yield–actual yield (Keating et al., 2010; Wani
et al., 2003)
Locally attainable yield–actual yield (Tittonell, 2013)

Yield variability Coefficient of variation (Morse et al., 2002; Rosenzweig
and Tubiello, 2007)
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models are then used to identify the existing frontier of optimal net
resource use (Gadanakis et al., 2015).

3.1.3. Water efficiency
Water use efficiency is employed as a metric of productivity and

sustainability in agricultural intensification efforts, particularly in
rainfed smallholder systems (Garrity et al., 2010; The Montpelier
Panel, 2013). Water use efficiency measures include grain yield/mm
rainfall (Anderson et al., 2006; Chikowo et al., 2015), and the increase
in crop yield due to irrigation/m3 irrigation water applied per hectare
(Wani et al., 2003). In integrated crop-livestock systems, efficiency of
water at the farm scale can be measured as the monetary value of
animal products produced per m3 over total evapo-transpiration from
land used to grow feed crops during the growing season
(Descheemaeker et al., 2011).

3.1.4. Animal health
Animal health is frequently cited as an SI indicator in systems that

include livestock (Herrero et al., 2010; McDermott et al., 2010).
Animal nutrition, the first dimension, can be measured in terms of
livestock growth rate (Chigwa et al., 2015; Lusigi, 1995). Incidence of
disease, the second dimension of animal health, can be measured as the
proportion of the herd displaying disease indicators (Lusigi, 1995).
Finally, mortality rate is sometimes used as a metric (McDermott et al.,
2010).

3.2. Indicators and metrics of economic sustainability

3.2.1. Agricultural income
Several metrics of agricultural income are used in the SI literature

(Table 3). Agricultural income is most frequently measured as net
income from agriculture (i.e. income from agriculture minus agricul-
tural expenses) (Sanginga et al., 2003; Twomlow et al., 2006). It can
also be measured in terms of disposable income, or the agricultural
income remaining after expenditures on agricultural inputs and house-
hold necessities (Altieri, 1999). Losses of agricultural income due to a
natural disaster can be measured by estimating the total market value
of crops destroyed by the disaster (Holt-Giménez, 2002). Changes in
total agricultural income due to adoption of an agricultural practice can
be measured using the benefit/cost ratio (BCR) (Snapp et al., 2010;
Tenge et al., 2006).

Table 3
SI indicators of economic sustainability with their associated metrics, organized by scale.
Indicators in normal font are cited by 3–7 sources, indicators in bold are cited by 8–14
sources, and indicators in BOLD CAPS are cited by 15+ sources. Indicators that are
associated with contention in the SI literature are underlined. Citations in normal font
refer to evaluations or descriptions of SI systems in the field that involve only crops, while
underlined citations refer to publications that involve livestock, or both crops and
livestock. Citations in italics refer to methods papers or overviews that are not specific to
any single cropping system.

Indicator Field scale
metrics

Farm /
Household
metrics

Community
metrics

AGRICULTURAL
INCOME

$ product/ha
(Lewis et al., 2011;
Zhu et al., 2000)

Disposable
income (Altieri,
1999)

$ product - $
expenses (Kahinda
and Masiyandima,
2014; Silici, 2010)

Losses to
disaster (Holt-
Giménez,
2002)
Net income
from farming
(Sanginga
et al., 2003;
Twomlow
et al., 2006)

Capital access Farmer reported
change in access
to credit
(Owenya et al.,
2012)

% of
households
reporting
access to credit
(Graciana,
2006)

Capital productivity Benefit / cost
ratio (Kamanga
et al., 2010;
Sanginga et al.,
2003)
Total factor
productivity
(Gadanakis
et al., 2015)

Household
purchases

Farmer reported
change in
household
consumption
(Owenya et al.,
2012)
% change in
household
consumption
(ISPC, 2014)

Input access % farmers
reporting
access to input
(Graciana,
2006)
% farmers
reporting use
of input (Fungo
et al., 2013)

Labor intensity Person time/ha
(Schreinemachers
et al., 2011;
Zimmerer, 2013)

LABOR
PRODUCTIVI-
TY

$ product /
person day
(Silici, 2010;
Twomlow et al.,
2006)
kg product /
person day
(Tittonell et al.,
2007)
Replacement of
labor by
technology
(Powell et al.,
2004)

(continued on next page)

Table 3 (continued)

Indicator Field scale
metrics

Farm /
Household
metrics

Community
metrics

Market access Distance to
nearest market
(Clay et al.,
1998; Owenya
et al., 2012)

Risk Prob. that income
> expenses
(Dorward, 1996;
Kamanga et al.,
2010)
Std. dev. in
income/ha (Keating
et al., 2010)

Seed/stock access % of farmers
reporting
access
constraints
(Snapp and
Silim, 2002)
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3.2.2. Crop value
Crop value is a commonly cited indicator of economic sustainability

in SI systems (ISPC, 2014; Vanlauwe et al., 2014). Several metrics are
used to determine the value of crops at the field level. Crop value is
most frequently measured as profitability of a crop (income from the
crop minus input costs) (Kahinda and Masiyandima, 2014; Silici,
2010). Estimates of labor required to grow a particular crop may be
difficult to obtain in smallholder systems. However, factoring in the
value of labor is essential to capture the true costs of growing a crop
(Kahinda and Masiyandima, 2014).

Table 4
SI indicators of human wellbeing with their associated metrics, organized by scale.
Indicators in normal font are cited by 3–7 sources, indicators in bold are cited by 8–14
sources, and indicators in BOLD CAPS are cited by 15+ sources. Indicators that are
associated with contention in the SI literature are underlined. Citations in normal font
refer to evaluations or descriptions of SI systems in the field that involve only crops, while
underlined citations refer to publications that involve livestock, or both crops and
livestock. Citations in italics refer to methods papers that are not specific to any single
cropping system.

Indicator Field
scale
metrics

Farm/Household
metrics

Community
metrics

Food safety Environmental Impact
Quotient of pesticides
used (Schreinemachers
et al., 2011)

Toxin concentration
of foodstuffs
(Bekunda, 2012)

Food security Days additional food
from adopting technology
(Garrity et al., 2010)

% farmers reporting
reduced food
consumption (Lewis
et al., 2011)

Months of available grain
stores reported by
farmers (Lewis et al.,
2011)

Food self-
sufficiency

Calorie production meets
household needs
(Kamanga et al., 2010)
Nutrient production
meets household needs
(Altieri, 1999; Remans
et al., 2013)

Labor reduction Reduction in overall time
req. to perform
agricultural activities
(Owenya et al., 2012)

% farmers reporting
reduced time needed
for ag. activities
(Snapp and Silim,
2002)

NUTRITION Food consumption score
(Silici, 2010)

Child stunting rate
(Bezner Kerr et al.,
2011; Remans et al.,
2013)

Nutrient consumption/
unit agricultural input
(The Montpelier Panel,
2013)

Community nutrient
demand / community
nutrient
consumption
(Remans et al., 2013)

Consumption of specific
nutrients (Remans et al.
2013)

% farmers reporting
access to a healthy
diet (Owenya et al.,
2012)

Quality of life % farmers reporting
pos. or neg. changes
in family health
(Morse, 2002)
% farmers reporting
pos. or neg. changes
in quality of life
(Owenya et al., 2012)

Risk Prob. that crops meet
household calorie
demand (Dorward, 1996;
Kamanga et al., 2010)

Table 5
SI indicators of environmental sustainability with their associated metrics, organized by
scale. Indicators in normal font are cited by 3–7 sources, indicators in bold are cited by
8–14 sources, and indicators in BOLD CAPS are cited by 15+ sources. Indicators that
are associated with contention in the SI literature are underlined. Citations in normal
font refer to evaluations or descriptions of SI systems in the field that involve only crops,
while underlined citations refer to publications that involve livestock, or both crops and
livestock. Citations in italics refer to methods papers or overviews that are not specific to
any single cropping system.

Indicator Field scale
metrics

Farm/
Household
metrics

Community
metrics

Beneficial macro-
organisms

Parasitism rate
of pests by
beneficials
(Ndemah et al.,
2003
Pollination rate
(Bommarco
et al., 2013)
Pollinator
diversity
(Bommarco
et al., 2013)
Population of
beneficial
organism
(Clermont-
Dauphin et al.,
2014; Owenya
et al., 2012)

BIODIVERSITY Functional
diversity
(Clermont-
Dauphin et al.,
2014; Giller
et al., 1997)

Genetic diversity
as number of
varieties planted;
Zhu et al., 2000)

Abundance of
species of
conservation
concern
(Lewis et al.,
2011)

Presence and
abundance of
indicator species
(Phalan et al.,
2011)

Crop diversity
dynamics,
typological, based
on land use over
time (Chopin et al.
2015)

Functional
diversity
(Clermont-
Dauphin
et al., 2014;
Giller et al.,
1997)
Presence and
abundance of
indicator
species
(Phalan et al.,
2011)
Landscape-
level crop
diversity,
proportion of
farms growing
diverse crops
(Chopin et al.
2015)

C sequestration Soil organic
carbon mg C/g
soil (Demessie
et al., 2015;
Rosenzweig and
Tubiello, 2007),
Mg C/ha (Gelaw
et al., 2015)

C sequestration
rate (Rosenzweig
and Tubelo, 2007)

Standing tree
biomass
(Asase et al.,
2008)

Standing tree
biomass (Asase
et al., 2008)

Chemical input
reduction

kg chemical
fertilizer
replaced (Altieri,
1999; Oikeh
et al., 2012)

Reduction in kg
chemicalfertilizer
(Fungo et al.,
2013) or pesticide
(Schreinemachers
et al., 2011)
applied
Reduction in

(continued on next page)
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Table 5 (continued)

Indicator Field scale
metrics

Farm/
Household
metrics

Community
metrics

number of
pesticide
applications (Zhu
et al., 2000)

Ecological thresholds Carrying capacity
(Lusigi, 1995)

Ecosystem services Replacement
value of ecosystem
services (Valet and
Ozier-Lafontaine,
2014)

ENVIRONMENTAL
IMPACT

Mj inputs/kg of
product
(Tyedmers,
2006)

$ value of inputs
used in system
(Gadanakis et al.,
2015)

Mj inputs/Mj
food energy
output
(Tyedmers,
2006)

Ecological
footprint analysis
(Tyedmers, 2006)

EIQ* of pesticides
used
(Schreinemachers
et al., 2011)
Lifecycle analysis
(Tyedmers, 2006)

EROSION C-value
(erosivity) (Clay
et al., 1998)

Volume of gully
erosion; area of rill
erosion/landslides
(Holt-Giménez,
2002)

% farmers
reporting
erosion
(Schmitt-
Olabisi, 2012)

Farmer reported
change in soil
depth (Swinton,
2000).

Land area with
erosion control
technologies
implemented
(Schmitt-Olabisi,
2012; Smith and
Plucknett, 1995)

Participatory
erosion
mapping
(Tenge et al.,
2006)

T soil lost/ha/
year (Valet and
Ozier-
Lafontaine,
2014)

GHG emissions NH3 emissions
(Klapwijk et al.,
2014)

T c/kg feed
digested (Tarawali
et al., 2011)

T CO2/kg grain
yield (Bellarby
et al., 2014)

T CO2/kg milk or
meat yield
(Tarawali et al.,
2011)

T CO2/ha
(Bellarby et al.,
2014)

NUTRIENT
BALANCE

Nutrients
applied–nutrient
export in grain
(Mtengeti et al.,
2015)

Participatory
resource
mapping
(Tittonell
et al., 2007)

Total nutrient
import–total
nutrient export
(Tittonell 2007)

Cycling index
(Rufino et al.,
2009)

Mineralizable
soil N (Myaka
et al., 2006)
N mineralization
rate (Clermont-
Dauphin et al.,
2014)

Table 6
SI indicators of social sustainability with their associated metrics, organized by scale.
Indicators in normal font are cited by 3–7 sources, indicators in bold are cited by 8–14
sources, and indicators in BOLD CAPS are cited by 15+ sources. Indicators that are
associated with contention in the SI literature are underlined. Citations in normal font
refer to evaluations or descriptions of SI systems in the field that involve only crops, while
underlined citations refer to publications that involve livestock, or both crops and
livestock. Citations in italics refer to methods papers or overviews that are not specific to
any single cropping system.

Indicator Field scale Farm/Household
scale

Community
scale

Adoption % of households
adopting
(Degrande et al.,
2013)
Adopted on % of
total land
(Schmitt-Olabisi,
2012)
# of hhlds that
have adopted
(ISPC, 2014;
Mhango et al.,
2013)
# of hectares
where adopted
(Altieri, 1999)

Animal welfare Sufficient
space for
unimpaired
health
(Fraser,
2008)

Empowerment Women's
Empowerment in
Agriculture Index
(Alkire et al., 2013)

% farmers
reporting better
positioned to
solve problems
(Rusike et al.,
2006)

Equity Differences in
social network
connectivity
(Hoang, 2006)
% households
producing
profitable cash
crop (Graciana,
2006)
Uptake and
benefits among
better off and
poorer farmers
(Giller, 2011)

FARMER
KNOWLEDGE
INTEGRATION

% farmers
receiving
agricultural
information from
other farmers
(Kimaru-Muchai
et al., 2013)
Use of farmers’
criteria for
evaluation of SI
efforts (Snapp
and Silim, 2002;
Tenge et al.,
2006)

FARMER
PARTICIPATI-
ON

No metrics identified

Farmer preference Evaluation of
agricultural
technologies
based on farmers’
criteria (Maass
et al., 2013;
Snapp and Silim,

(continued on next page)
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3.3. Indicators and metrics of human wellbeing

3.3.1. Food and nutrition security
A subset of authors in the field of SI emphasize the importance of

smallholder households being able to meet their own food needs
(Altieri, 1999; Remans et al., 2013). This can be measured in terms
of the net production of nutrients on the farm relative to the food needs
of the farming household. Food production relative to food needs can
be measured simply in terms of calories produced by crops versus
calorie requirements (Kamanga et al., 2010). Similar analyses have
been conducted using a wider range of nutrients, such as protein,
calcium and vitamin A (Altieri, 1999; Remans et al., 2013). Human

nutrient requirements and food nutrient contents are typically ob-
tained from the literature (Kamanga et al., 2010) or reported by
farmers (Remans et al., 2013). The household's ability to meet their
own food needs can also be measured in terms of nutrition efficiency,
or the consumption of nutrients per unit of agricultural input (The
Montpelier Panel, 2013).

3.3.2. Risk
While we have chosen to place risk among indicators of human

wellbeing, the concept of risk actually encompasses multiple domains
of sustainability. In the context of SI, risk is generally measured as
either production risk or perceived risk. Production risk can be
quantified as the probability that crops will produce sufficient yield to
meet the food or nutritional needs of the household (Dorward, 1996;
Kamanga et al., 2010). Production risk can also be assessed economic-
ally as the chance that income will exceed expenses (Dorward, 1996),
or standard deviation in the economic returns from a cropping system
(Keating et al., 2010). Perceived risk was measured by Smith et al.
(2000) using participatory risk mapping. Respondents to a survey
assessed risk in two stages – first identifying factors they worry about,
then assigning a severity to each. This information was used to score
the breadth and severity of perceived risks in a community.

3.4. Indicators and metrics of environmental sustainability

3.4.1. Biodiversity
Biodiversity is a broad indicator of SI, and many metrics of

biodiversity have been employed. Biodiversity may be measured on
the farm itself (Thrupp, 2000) or in the surrounding landscape (Phalan
et al., 2011). Functional diversity has been employed as a metric of
biodiversity based on the richness and abundance of organisms
representing key functional groups in a biological community
(Clermont-Dauphin et al., 2014; Giller et al., 1997). The specific
functional groups that should be included depend on the type of
community under consideration–for example, in a soil community the
relevant functional groups might be ecosystem engineers, litter trans-
formers, micro-predators, and decomposer microbes (Giller et al.,
1997). In order to measure the impacts of agriculture on biodiversity
across many communities, Phalan et al. (2011) recommend measuring
biodiversity based on the presence or absence, and abundance, of a
number of indicator species. This approach measures alpha diversity
(i.e. biodiversity at the local level). In order to determine beta (land-
scape level) diversity, separate measurements must be conducted for
each contiguous area under a distinct type of land use. Other metrics of
biodiversity focus on species of special conservation concern, such as
population counts of large mammals for a study of intensification
effects on an adjacent wildlife reserve (Lewis et al., 2011).

3.4.2. Carbon sequestration
Carbon sequestration is an important indicator of the climate

change mitigation potential of agricultural ecosystem (Rai et al.,
2011; The Montpelier Panel, 2013). In annual cropping systems
consideration is typically restricted to belowground C stocks whereas
in perennial systems, C sequestration can be measured as a combina-
tion of aboveground and belowground C stocks (Demessie et al., 2015;
Rosenzweig and Tubiello, 2007). Aboveground C stocks are typically
derived from estimates of standing tree biomass (Asase et al., 2008). To
maximize relevance to climate change mitigation, Rosenzweig and
Tubelo (2007) recommend calculating the C sequestration rate, a
highly data intensive exercise.

3.4.3. Erosion
Metrics of erosion generally focus on the field or farm level, with the

rate of erosion expressed in tons of soil lost/ha/year (Valet and Ozier-
Lafontaine, 2014). The erosivity of a cropping system (i.e. how prone it
is to erosion relative to other cropping systems) can be measured using

Table 6 (continued)

Indicator Field scale Farm/Household
scale

Community
scale

2002)
Multi-category
scoring of
technology
(Owenya et al.,
2012;
Rusinamhodzi
et al., 2012)
% farmers
favoring a
technology
(Altieri, 1999;
Snapp et al.,
2010)

Gender equity Distribution of labor
between men and
women (Powell
et al., 2004)

% project
participants or
technology users
who are women
(Degrande et al.,
2013; Sanginga
et al., 2003)

Women's
Empowerment in
Agriculture Index
(Alkire et al., 2013)

Women's access
to agricultural
information (The
Montpelier Panel,
2013)

Information
access

Connectivity to
farmer knowledge
network (Hoang
et al., 2006)

% farmers
reporting
knowledge of an
SI practice
(Degrande et al.,
2013)

Farmer reported
access to extension
and other sources
(Kimaru-Muchai
et al., 2013; Owenya
et al., 2012)

Test on SI
practices (Rusike
et al., 2006)

RESILIENCE Farmer reported
adaptation in
responses to
challenges (Owenya,
2012)

Costs of recovery
from disaster
(social and
monetary) (Béné,
2013)

Resource conflict Farmer reported
conflict intensity
(Kisoza, 2014)

Risk Community risk
mapping (Smith
et al., 2000)

Social capital Connectivity to
social networks
(Hoang, 2006)

Community social
capital index
(Silici, 2010)
Social network
structure at
community level
(Hoang, 2006)

Membership in
organizations
(Swinton, 2000)
# of social
connections
(Swinton, 2000)
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the C-value (Clay et al., 1998). Alternately, erosion caused by a discreet
event such as a hurricane can be measured based on the volume of
gully erosion, area of rill erosion, and area of landslides present
following the event (Holt-Giménez, 2002). Tenge et al. (2006) present
a participatory metric of soil erosion at the community level where a
catchment map is drawn by a community assembly, and indicators of
erosion are identified. Estimates are validated by the community, and
also validated against biophysical measurements taken by researchers.

3.4.4. Nutrient dynamics
When nutrients are cycled within an agroecosystem, farmers gain

access to fertility that would otherwise have to be supplied via
purchased inputs. Therefore, the degree of nutrient cycling within an
agricultural system is frequently cited as an indicator of both produc-
tivity and environmental sustainability in SI systems (Garrity et al.,
2010; Vanlauwe et al., 2014) (Table 5). The most simple metric of
internal cycling is the use of farm-generated biological inputs such as
leaf litter, manure and compost (Powell et al., 2004; Rufino et al.,
2009). The rate of N mineralization in the soil can be used as a metric
of internal nutrient cycling (Clermont-Dauphin et al., 2014; Myaka
et al., 2006). Some metrics capture multiple stocks and flows of
nutrients across the agricultural system, and evaluate the balance
between inputs and outputs. In participatory resource mapping, farm-
ers identify all sources, stocks and flows of fertility, into, within, and
out of their farming system (Tittonell et al., 2007). This allows farmers
to perceive opportunities to increase internal cycling of nutrients.

3.4.5. Soil biological activity
Soil biological activity is often proposed as an indicator of ecosys-

tem function in SI (Garrity et al., 2010; Rai et al., 2011). Soil biological
activity metrics include soil microbial biomass (Bommarco et al., 2013;
Clermont-Dauphin et al., 2014) and soil respiration rate (Clermont-
Dauphin et al., 2014). Decomposition is a central biological function in
soils, and therefore the decomposition rate is commonly employed as a
metric (Asase et al., 2008; Demessie et al., 2015). Additionally, the rate
of N mineralization in the soil (part of the decomposition process) is
sometimes measured directly (Clermont-Dauphin et al., 2014).
Biological N fixation is another critical biological function, particularly
in association with legumes and other N fixing plants. One commonly
used metric of biological N fixation is the percentage of legume N
biomass derived from the atmosphere is one metric of N fixation
(Oikeh et al., 2012; Ojiem et al., 2007), but many other metrics are also
used in the literature.

3.4.6. Soil quality
Soil quality is one of the most commonly cited SI indicators. Soil

quality generally refers to the capacity of the soil to support and sustain
agricultural production (Clermont-Dauphin et al., 2014; Rai et al.,
2011). Water infiltration rate into the soil (Rusinamhodzi et al., 2012;
Thierfelder et al., 2013) and the related porosity (Clermont-Dauphin
et al., 2014; Rai et al., 2011) are common physical metrics related to
soil quality. Soil aggregate stability, which is related to the soil's
capacity to resist erosion, can also be employed as a soil quality metric
(Clermont-Dauphin et al., 2014).

One of the most commonly employed metrics of soil quality is soil
organic matter (Bommarco et al., 2013; Rai et al., 2011), or the closely
related metric soil organic carbon (Chikowo et al., 2015; Demessie
et al., 2015). Soil organic matter influences the capacity of the soil to
retain nutrients and water, as well as multiple other properties. Other
chemical properties that are often measured include nutrient status,
such as total soil N (Demessie et al., 2015; Gelaw et al., 2015),
inorganic N and mineralizable N (Myaka et al., 2006). Other nutrient
metrics in the assessment of soil quality include extractable P, Ca, Mg
and K (Mhango et al., 2013; Tittonell et al., 2007). The most common
metric of nutrient holding capacity is cation exchange capacity
(Mhango et al., 2013; Tittonell et al., 2007). Soil pH is also frequently

measured in the assessment of soil quality.

3.5. Indicators and metrics of social sustainability

3.5.1. Information access
Farmers' access to information about agriculture is frequently cited

as a sustainability indicator (Rai et al., 2011; Tilman et al., 2002). One
metric of farmers' access to information is their level of connectivity
within the agricultural knowledge network, consisting of farmers and
local experts (Hoang et al., 2006). Access to information about
agriculture can also be scored by farmers (Kimaru-Muchai et al.,
2013; Owenya et al., 2012). Farmers' knowledge of a specific SI
technology or practice can be measured as the percent of farmers
reporting knowledge of a practice, and the percent reporting interest in
experimenting with the practice, or teaching it to others (Degrande
et al., 2013). It can also be measured quantitatively by administering a
test to farmers regarding a set of agricultural practices (Rusike et al.,
2006).

3.6. Gender equity

Organizations promoting SI frequently point out the need to foster
gender equity and create opportunities for women (ISPC, 2014; The
Montpelier Panel, 2013). Gender equity has been assessed in the SI
literature either in an absolute sense, or in relation to a particular SI
effort (Table 6). An absolute metric of gender equity, spanning both the
household and community levels, is the women's empowerment in
agriculture index (WEAI) (Alkire et al., 2013). The WEAI is computed
based on a set of farmer-reported indicators where each indicator is
assigned a positive or negative value based on survey responses, and a
numerical value is calculated using a set of standard weights. Gender
equity in a given SI effort can also be measured as the percent of
farmers participating in the project or adopting an SI technology who
are women (Degrande et al., 2013; Sanginga et al., 2003). Furthermore,
equity in the impacts of an SI effort can be reflected in the distribution
of labor, or the proportion of SI-related work performed by men
relative to that performed by women (Powell et al., 2004).

3.7. Sustainability frameworks

Sustainability is a very broad concept, and definitions of sustain-
ability are continually being proposed (Bosshard, 2000; Pretty, 1997).
Therefore, it would not be possible to present a single metric of
sustainability applicable to any situation. However, a number of
authors have proposed frameworks for measuring sustainability of
smallholder systems. The most common frameworks for measuring
sustainability are based on the “pillars of sustainability” approach
(McCune et al., 2011; Steiner et al., 2000). The pillars are individual
indicators with associated metrics which are selected to represent
different domains of sustainability. Steiner et al., (2000) suggests that
pillars be chosen to represent natural capital, social capital and
economic capital. However, the approach has also been employed
using only biophysical indicators (McCune et al., 2011), or biophysical
and economic indicators (Snapp et al., 2010). Regardless of the pillars
of sustainability employed, the pillars are depicted as spokes radiating
from a central hub, connected by a web diagram. The area and
symmetry of the resulting sustainability polygon indicate the sustain-
ability of the system (Steiner et al., 2000). A somewhat different but
related approach is the sustainability score employed by Moore et al.,
(2014). To compute this score, farmers were asked questions related to
production, economic sustainability, ecological sustainability, and
social sustainability. The researchers assigned a degree of sustainability
to each response, and scores were averaged to generate an aggregate
sustainability score.
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4. Tradeoffs and synergies among SI indicators

Tradeoffs between aspects of sustainability and intensification of
agricultural production require close attention, as efforts to achieve
large gains in yield can negatively impact production potential in the
future through resource exploitation. Intensification of agriculture has
been linked to decreased biodiversity (Asase et al., 2008; Phalan et al.,
2011), negative impacts on the surrounding environment (Gadanakis
et al., 2015; Klapwijk et al., 2014), and increased GHG emissions
(Asase et al., 2008; Struik et al., 2014). Conversely, intensification of
production on a limited land area can free land for the conservation of
species that do not thrive in an agricultural setting (Lewis et al., 2011).
Increasing agricultural production in the short term can undermine the
long-term basis of productivity through adverse impacts on soil quality,
or have the opposite, synergistic effect (Powell et al., 2004; Valbuena
et al., 2012). There can be tradeoffs between different types of
agricultural productivity, as when dedication of resources to fodder
production leads to decreased food security through the displacement
of food crops (Herrero et al., 2010). Efforts to increase production can
also come into conflict with social values such as the protection of
animal welfare (Fraser, 2008; Godfray and Garnett, 2014).

Tittonell (2013) presents a framework for evaluating tradeoffs in SI
systems. Tradeoff curves are constructed by plotting values achieved
for one SI objective against values achieved for a second objective. The
shape of the tradeoff curve reflects the degree of complementarity
between these objectives Tradeoff curves are closely related to eco-
efficiency frontiers employed in eco-efficiency analysis (Gadanakis
et al., 2015; Keating et al., 2010) presented under “input efficiency.”
In the analysis of tradeoffs, it is essential to know which properties of
the agroecosystem are most important to farmers and other stake-
holders. Therefore, Klapwijk (2014) advocates participatory identifica-
tion and analysis of tradeoffs. In addition, Klapwijk cautions against an
excessive focus on optimization, as optimization models are unable to
represent all factors that are relevant to the community. Instead,
tradeoff curves can be used in a “discussion support” rather than a
“decision support” capacity (Klapwijk et al., 2014).

5. Contention regarding SI indicators

While there have been recent calls to define a set of metrics for
evaluating SI efforts (Struik et al., 2014; The Montpelier Panel, 2013),
there is considerable disagreement in the research community over
which indicators and metrics constitute relevant criteria. The meaning
of food security in relation to associated concepts such as food equity
and distributive justice is contested. Some address food security
through gains in production to improve synch with market demand
(Keating et al., 2010). Others argue that a focus on market demand
privileges those with more purchasing power over those with less, and
that an explicit focus on food self-sufficiency and equity is required
(Loos et al., 2014). Several SI authors argue that in areas with limited
market linkages, farming households' ability to meet their own needs is
a key component of food security (Remans et al., 2013; The Montpelier
Panel, 2013).

There is also disagreement within the SI literature on the precise
meaning of intensification. Some SI theorists equate intensification
with increased yield (Godfray and Garnett, 2014). Others define
intensification as “more output per unit input”, or the increased
efficiency of net resource use (Rai et al., 2011; The Montpelier Panel,
2013). While increased resource use efficiency and improved yield
frequently coincide, there are situations in which they do not. For
example, deficit irrigation programs generally decrease yield, but
greatly increase water use efficiency (Rai et al., 2011).

The meaning of ecological sustainability and the indicators appro-
priate for its evaluation are debated. Ecological sustainability can be
viewed as the reduction of environmental costs associated with each
unit of agricultural output with no cap on productivity per-se, an input

efficiency approach (Keating et al., 2010). Other authors maintain that
impacts must remain bounded by definite ecological thresholds (Shriar,
2000). These thresholds are primarily interpreted as levels of distur-
bance that would cause the ecological system to transition to an
alternate, less productive stable state (Walker et al., 2010).

It should also be kept in mind that – as Bosshard (2000) suggests –
sustainability is a discursive paradigm. The precise meaning of
sustainability is context dependent, and emerges from the ongoing
discussion and engagement of researchers and practitioners working in
the field of sustainable agriculture. The structure and goals of any SI
effort will depend on the context in which it is carried out, and the
actors involved (McDermott et al., 2010; Steiner et al., 2000).
According to this view, researchers must continuously define the
boundary conditions within which a given set of indicator or metrics
is applicable (Tittonell, 2014).

6. Gaps in the SI indicator literature

In this section we assess gaps in the SI literature for each of the
domains. Indicators of productivity and economic sustainability are
associated with strong collections of metrics, but there are some
significant gaps. We were able to locate only a small number of metrics
of farmers' access to capital (Graciana, 2006; Owenya et al., 2012),
access to agricultural inputs (Fungo et al., 2013; Mhango et al., 2013)
and household purchasing power (ISPC, 2014; Owenya et al., 2012).
Finally, metrics of market access often focus on distance to the nearest
market (Clay et al., 1998; Owenya et al., 2012), and do not consider
farmers' ability to competitively participate in markets (The Montpelier
Panel, 2013).

Indicators of human wellbeing in SI systems generally lack strong
sets of metrics. In the SI literature we found little attention paid to food
safety (Bekunda, 2012; Schreinemachers et al., 2011). Food safety
concerns appear to be growing within civil society, and it will likely be
necessary to develop food safety metrics from the public health
literature. Metrics related to quality of life are also scarce. Only a few
authors have measured reduction in overall agricultural labor require-
ments due to SI efforts (Altieri, 1999; Owenya et al., 2012), or impacts
on farmers' overall quality of life (Morse et al., 2002). It is also worth
noting that none of the cited publications dealing with livestock
systems employ metrics of human wellbeing.

Nearly all indicators of environmental sustainability are associated
with adequate or strong sets of metrics. One exception is ecological
thresholds, which refer to the degree of disturbance that will cause an
ecosystem to shift to an alternate, less productive stable state (Walker
et al., 2010). The only metric for an environmental threshold that we
could locate in the SI literature concerned the carrying capacity of
rangeland systems (Lusigi, 1995). To date ecological thresholds have
primarily been discussed in the conservation literature, where they are
generally conceptualized as the point at which incremental habitat
destruction causes a population to go into precipitous decline (Huggett,
2005). It may be advisable to draw on metrics from this literature as we
seek to assess ecological thresholds in agricultural systems.

Indicators of social sustainability in SI systems are often associated
with few or no concrete metrics in the SI literature. The effects of SI
efforts on farmer empowerment have been measured in only a few
studies (Alkire et al., 2013; Rusike et al., 2006), and metrics concerning
social equity are equally rare (Graciana, 2006; Hoang et al., 2006).
Similarly, few metrics of gender equity that go beyond simply counting
the women involved in SI efforts have been employed (Alkire et al.,
2013; Powell et al., 2004). There are also very few metrics employed to
date in the SI literature having to do with social stability. We could only
locate a single metric of resource conflict (Kisoza, 2014), though
conflict is often a major concern in resource-limited situations. While
social metrics are scarce, we should also note that the literature on
livestock and crop/livestock systems is rich in farmer-participatory,
community-level metrics on subjects ranging from technology prefer-
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ence (Maas et al., 2013) to risk (Smith et al., 2000) to resource conflict
(Kisoza, 2014).

Farmer participation and integration of SI efforts with local knowl-
edge systems represent a major gap in the literature (Bosshard, 2000;
Kimaru-Muchai et al., 2013). We could find no concrete metrics of the
degree of farmer participation in SI efforts (Van de Fliert and Braun,
2002). Criteria for meaningful participation in agricultural research
have been defined in the social sciences literature (McDougall and
Braun, 2003), and could be used as a basis for quantitative assessment
following the model of the WEAI. Addressing this gap in the SI
literature is crucial, as farmer participation is central to the SI concept
(Pretty, 1997) and there are claims that meaningful participation has
been sidelined in the SI agenda (Tittonell, 2014).

Finally, our review of SI indicator literature found that indicators
and associated metrics were overwhelmingly static. This allows snap
shots in time to be assessed along SI trajectories; however, we think
that a more dynamic view is essential.

7. Conclusion

The sustainable intensification literature to date contains a rich
array of indicators and metrics for evaluating SI efforts. SI indicators
define concepts relevant to sustainable intensification and allow for the
articulation of goals in SI efforts. Metrics provide critical tools for
assessing progress towards these goals, and evaluating tradeoffs
between them. Some often-cited SI indicators currently have few
metrics associated with them, particularly in the domain of social
sustainability. As the discourse around SI continues and gaps in the
literature are filled, it will remain the responsibility of researchers and
stakeholders to select indices and metrics that are appropriate to the
goals, constraints, and ecological setting of each individual SI effort.
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